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Main question 

 Are expected returns related to 

• Risk/betas, OR 

• Characteristics 

 

 If both, which is more important? 
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How to answer? 

 Use portfolios 

• Helps mitigate EIV problem (Fama and MacBeth, 1973) 

• But, 

– Less efficient (Ang, Liu, and Schwarz, 2010) 

– Method of grouping is important (Lewellen, Nagel, and Shanken, 2010) 

 

 Use individual securities 

• But, EIV problem 
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What we do 

 Use individual securities 

 

 Correct for EIV bias (Litzenberger and Ramaswamy, 1979; Shanken, 1992; 

Kim, 1995) 

• And a few other biases 

 

 Allow betas to change over time (Rosenberg and Guy, 1976; Shanken, 

1990; Fama and French, 1997; Avramov and Chordia, 2006) 

 

 Quantify relative contribution of risk loadings versus 

characteristics in explaining the cross-section of returns 

4 



Two-pass procedure 

 Time-series regression (TSR) 

• Condition betas on  

– Firm characteristics (Size, B/M, six-month return), or 

– Firm characteristics (Size, B/M, six-month return) + Macro 

variables (Term spread, Default spread) 

• One-, three-, and four-factor models 

 Cross-sectional regression (CSR) 

 

 For now, we do not allow for time-variation in risk premia 

but relax this later on in the third-stage 
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TSR 

 Unconditional TSR 

 

 

 Conditional TSR 

• Define ztsit to be a p×1 vector of conditioning variables 

• Redefine scaled intercept and factors as 

 

 

• Then, the TSR is  

*

0it i i it itR B B F    

( 1) 1 1 1 1, [ , , ]it p it i t t ipt tF zts zts F zts F

   
   

0it i i t itR B B F   

6 



TSR … 

 Example of a one-factor model with firm characteristics 

conditioning variables 

 

 

 

 

 

 Characteristics are cross-sectionally demeaned 

 

 Then the implied market beta is given by 
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CSR 

 Cross-sectional regression (CSR) using OLS 

0 1 1 1 2
ˆ

t t t t t t tR B Zcs       

 
1

1 1
ˆ ˆ ˆ ˆ ˆ ˆ, where 1 : :

tt t t t t t N t tX X X R X B Zcs


 
    
 

 0 1 2
ˆ ˆ ˆ ˆ, , 't t t t    

8 



CSR biases 

 

 

 

 

 

 

 Estimation error in betas, U, is the cause of all the trouble 
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CSR biases – EIV 

          contains a term        , which is the (cross-sectional 

sum of the) of the estimation error variance in betas 

 This increases the “denominator” and causes the classic 

EIV problem 

 Fortunately, we know the estimation error in betas from 

TSR 
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Intuition … 

 For a one-factor model with no additional characteristics 

 

 

 

 The denominator is equal to the cross-sectional variation of 

betas (this is what we want) plus the cross-sectional variation of 

beta estimation error (this is what we want to remove). 

Fortunately 

 

 

 This means 
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CSR biases – 1-month bias 

 The “numerator” contains       . This should cancel out in 

balanced panels and homosekadastic case 

• In one-factor case, this term is equal to the sum of 

 

 

 In heteroskedastic case (as observed in the data), this 

term is not zero and leads to the second correction 
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CSR biases – another bias 

 Both the denominator and the numerator contain term 

such as 

 Since       contains price-related variables (size, B/M, six-

month return), this term is also not zero 

 This necessitates a third correction 

• We assume for simplicity an AR(1) process for size and B/M 

to implement this correction 
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Final formula 
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Contribution measures 

 Using average CSR estimates 

 

 

 

 

 

 Using cross-sectional variation at time t 
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Contribution measures … 

 

 

 

 Have to again correct the cross-sectional variance of 

estimated betas using the same trick as in the regular EIV 

correction 

 

 Standard errors for contributions 

• Resample gammas using their standard errors 

• Recalculate contribution numbers 

• Repeat 1,000 times to obtain empirical distribution 

– Use Efron’s procedure to account for non-linearity 
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Data 

 All common stocks on NYSE, AMEX, and NASDAQ 

 Sample: 1951 to 2011 

 Price greater than $1 (for CSR) 

 

 At least five years of data 

• Could lead to survivorship bias 

• We do not include stocks in CSR in the first five years of their 

life 
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One-factor model 
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Three-factor model 
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Four-factor model 
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Time variation in risk premia 

 Allow predictability in risk premia with dividend-price ratio, 

term spread, and default spread as predictive variables x 

 

 

 Calculate fitted values 

 

 

 Recalculate the contribution numbers as 
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Four-factor 
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Conclusion 

 Risk premium on SMB strong but that on HML weak 

 

 Reject all factor models 

• Rejection not news 

 

 Both betas and characteristics matter 

 

 Characteristics often more important than betas 

• However, four-factor model conditional bias-corrected betas 

explain more of returns than characteristics with time-varying 

risk premia 
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Next steps 

Potential problems 

 Use of full-sample betas 

 Data restriction of minimum 5 years 

 

Limitations 

 Conclusions valid only for the factor models and the 

characteristics analyzed here 
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