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Abstract: Cross sections and thermally-averaged rate coefficients for vibration (de-)excitation of HeH+

by an electron impact are computed using a theoretical approach that combines the multi-channel
quantum defect theory and the UK R-matrix code. Fitting formulas with a few numerical parameters
are derived for the obtained rate coefficients. The interval of applicability of the formulas is from
40 to 10,000 K.
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1. Introduction

The hydrohelium (helium hydride) cation HeH+ is an important species in the interstellar medium
(ISM) [1] and in the chemistry of the planetary nebulae such as NGC 7027 [2–4]. It is one of the simplest
molecular ions and the first one formed in the early universe [5]. In the ISM it is formed mainly in
the process of radiative association of He and H+ or of He+ and H [6,7]. Due to the relatively large
abundance of electrons and HeH+ in the ISM, collisions of HeH+ with electrons play a significant role,
in particular, leading to dissociation (dissociative recombination) and rovibrational (de-)excitation of
HeH+. Other than in the ISM, the HeH+ ion is also present in fusion reactors. Because it is one of the
most abundant molecular ions near walls of the reactors, its contribution to the complete network of
processes taking place in the reactors should be accounted for in fusion plasma modeling. In particular,
cross sections for electron-HeH+ collisions are needed.

A number of processes can occur when an electron collides with HeH+. One of the most important
processes is the dissociative recombination. Cross sections for this process were measured and
calculated in several previous studies [8–13]. Another process, relevant for the ISM [14] and fusion
reactors, in the vibrational excitation and (de)-excitation,

e− + HeH+(v, j)→ e− + HeH+(v′, j′) , (1)

for which cross sections were calculated in a previous study [15] for the transitions between the three
lowest vibrational levels v = 0, 1, 2. In that study, an R-matrix approach was employed to determine
scattering matrices for fixed geometries. Rydberg series of vibrational and rotational resonances
present in the spectrum of the e− − HeH+ system were neglected. In this work we determine cross
sections and rate coefficients for the process using an improved treatment, in which the Rydberg
series of vibrational resonances in HeH are accounted for using the multichannel quantum defect
theory (MQDT). Electron-impact transitions between the five lowest vibrational levels, v = 0− 4,
are considered.
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The rest of the article is organized in the following way. The next section of the article discusses
the theoretical approach used in the present calculation. In Section 3, the obtained rate coefficients for
vibrational (de-)excitation are discussed and compared with the data available in literature. Section 4
concludes the study.

2. Theoretical Approach

2.1. Scattering Matrix for Fixed Geometries Of HeH+

The theoretical model employed in the present study combines the UK R -matrix method [16,17]
and the multi-channel quantum defect theory (MQDT) [18–20]. The electron scattering calculations
were performed employing the Quantemol-N interface [21] to run the UK R-Matrix code [16,17].
The target HeH+ ion was assumed to be in the ground electronic state X1Σ+.

In the R-matrix calculations, the target and the scattering wave functions were represented within
a full CI treatment, i.e., by allowing all electrons to occupy all orbitals. The calculations were performed
using the Gaussian basis set 6-311G∗. The continuum orbitals of Faure et al. [22], representing the
scattering electron, was included up to the g-wave. The R-matrix radius was set to a0 = 10 bohrs.
All generated states up to 25 eV were retained in the final close-coupling calculation. As the first
electronically excited state, A1Σ+ correlated with H(1s) + He+(1s) is approximately 11 eV above the
H+ + He(1s2) dissociation limit for the X1Σ+ground state, the ground state is essentially isolated
and non-adiabatic effects are expected to be small. Therefore, for low electron energy collisions
(bellow 10 eV) only the lowest electronic state is open for ionization in e− − HeH+ collisions and the
dimension of the geometry-fixed scattering matrix does not change with energy.

Wave functions of e− − HeH+ continuum states obtained in the R-matrix calculations have the
following asymptotic behavior at large distances r between the electron and the target ion in channels
open for ionization [16]

Fij(r) ∼
1√
ki

(
sin θi(r)δij + cos θi(r)Kij(R)

)
, (2)

θi(r) = kir−
liπ
2

+
ln(2kir)

ki
+ arg Γ

(
l + 1− i

π

)
, (3)

where index i refers to the entrance channel before a collision and j refers to the outgoing channel
after the collision. In the above equation, Kij(R) are the elements of the reactance matrix [16,20],
which depend on the internuclear distance R. In the cross section calculation, the scattering matrix
S(R) is needed, which is obtained from K(R) as

S(R) = (1 + iK(R))(1− iK(R))−1 . (4)

Generally, for fixed geometries of the target and low collisional velocities, the matrices S(R) and
K(R) depend weakly on energy. A sharper energy-dependence is observed only at certain higher
energies, corresponding to positions of Rydberg states attached to excited electronic states of the ion.
A convenient way to represent a weak or a strong energy dependence of the matrices is the eigenphase
sum. Figure 1 shows eigenphase sums for three symmetries (2Σ+, 2Π, and 2∆) of the e− + HeH+

system and for several internuclear distances in HeH+. The chosen interval of internuclear distances
corresponds to the Franck-Condon region of the lowest vibrational level of HeH+. The variation of the
eigenphase sums for 2Π and 2∆ is smooth for energies below 10 eV and does not change significantly
with R. The 2Σ+ eigenphase sums demonstrate a sharp energy dependence at certain energies, which
corresponds to a resonant state of HeH with energy changing with the internuclear distance R.



Atoms 2016, 4, 30 3 of 10

0 1 2 3 4 5 6 7 8 9

electron scattering energy (eV)

1.6

1.7

1.8

1.9

2

2.1

0.02

0.04

0.06

0.08

0 1 2 3 4 5 6 7 8 9

electron scattering energy (eV)

-0.1

-0.08

-0.06

-0.04

R=1.3

2
Σ

+

R=1.5

ei
g
en

p
h
as

e 
(r

ad
)

R=1.1

R=1.4

R=1.6

R=1.7

R
e
=1.455

2
∆

2
Π

R=1.1

R=1.2

R=1.2

R=1.3

R=1.4

R=1.7
R=1.5

R=1.5

R=1.6

Figure 1. Eigenphase sum as a function of the electron scattering energy Eel (in eV) for several
internuclear distances R (in units of bohr) for the 2Σ+ (left panel), 2Π (right upper panel), and 2∆
(right bottom panel) symmetries. The color scheme used to label different values of R is the same for
all three panels. The dashed line represents the equilibrium internuclear distance Re = 1.445 bohrs [15]
of HeH+.

2.2. HeH+ Vibrational Dynamics

In calculations of the cross section for vibration (de-)excitations, vibrational wave functions of the
target ion are needed in order to construct elements of the scattering matrix for transitions from one
state v′ to another v. We calculated vibrational wave functions ψv(R) and energies εv by solving the
Schrödinger equation for vibrational motion along R,[

− 1
2µ

∂2

∂R2 + V(R)
]

ψv(R) = εvψv(R) , (5)

where µ the reduced mass and V(R) is the internal potential of HeH+. The above equation was solved
using a DVR-type method [23]. In the numerical calculation, the distance R was varied from 0.5 to
20 bohrs. The potential energy curve V(R) was calculated with the ab initio CCSD(T) method and the
cc-pVQZ basis of Gaussian-type orbitals using the Molpro package [24]. Figure 2 shows the potential
energy curve V(R) and wave functions for four vibrational levels v = 0, 1, 2, 8. Energy differences for
transitions v→ v + 1 and rotational constants of the HeH+ vibrational levels are listed in Table 1 and
compared with previous benchmark calculations [25,26].
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Figure 2. Wave functions ψv(R) of the v = 0, 1, 2, and 8 vibrational states of the HeH+ ion. The inset
shows the potential energy curve V(R) of the X2Σ+ electronic state of HeH+ used in the calculation.
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Table 1. The vibrational frequencies ∆v = Ev+1 − Ev for transitions v→ v + 1 and rotational constants
Bv obtained in the present study and compared with previous calculations. All values are in cm−1.

Level v ∆v ∆v [26] Bv Bv [25]

0 2913 2911.0007 33.527 33.558
1 2607 2604.1676 30.816 30.839
2 2300 2295.5787 28.088 28.090
3 1988 1982.0562 25.305 25.301
4 1668 1660.3559 22.425 22.402
5 1339 1327.7860 19.394 19.344
6 1000 984.3599 16.151 16.058
7 660 639.1959 12.645 12.479
8 328 327.3615 8.813 8.621

2.3. The Scattering Matrix for an Electron Colliding with HeH+

Once vibrational energies, wave functions, and geometry-fixed S-matrix are calculated,
the scattering matrix describing the transition amplitude Si′ ,i from one vibrational level v to another
v′ is obtained using the method of vibrational frame transformation [19,27]. The indexes i′ and i
enumerate vibrational states v, states of different electron angular momentum l, and its projections Λ
on the molecular axis Z. Therefore, for the process

e−(l, Λ) + HeH+(v) −→ e−(l′, Λ′) + HeH+(v′) , (6)

the scattering matrix in the molecular frame coordinate system can be written as

SΛ′v′ l′ ,Λvl =
〈
ψv′(R)

∣∣SΛ′ l′ ,Λl(R)
∣∣ψv(R)

〉
, (7)

where the brackets imply an integration over the vibrational coordinates. Many elements among
SΛ′v′ l′ ,Λvl are zero. In particular, the symmetry (one of the irreducible representations Γ of the
C∞v group) of the total e− + HeH+ system stays the same before and after a collision. Also, for low
energies when there is only one electronic state X1Σ+ open for ionization, the SΛ′v′ l′ ,Λvl matrix is
diagonal over Λ. Note that the matrix element SΛ′ l′ ,Λl(R) in the above equation is obtained from
R-matrix calculations for a given value of R. It represents the scattering amplitude when the electron
scatters from one channel (Λl) to another (Λ′l′), while the nuclei do not have time to move. To evaluate
the integral in Equation (7) the R-matrix calculations were performed for thirty values of R in the
interval R = 1.0–3.9 bohrs with a step of 0.1 bohrs.

2.4. Elimination of Channels Closed for Ionization From the Scattering Matrix

The scattering matrix S of Equation (7) can be used for cross sections calculations only if the total
energy of the system is high enough for all collision channels to be open for ionization. When some
channels are closed, the scattering matrix should be modified applying the “closed-channel-elimination”
procedure [20] and producing matrix S phys(E) according to

S phys(E) = Soo − Soc
[
S cc − e−2iβ(E)

]−1
S co . (8)

The matrix S phys(E) has No ×No dimension, No being the number of channels open for ionization
for a given total energy E of the system. The total energy could be written as a sum of the energy of the
entrance channel Ei and the relative kinetic energy Eel of electron and the target ion: E = Ei + Eel . In the
above equation, the matrices Soo, Soc, S cc and S coare submatrices of the original matrix S [18,20],
partitioned as

S =

(
Soo Soc

S co S cc

)
, (9)
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where the partition of the matrix elements in the “o”- and “c”-parts is made on the basis whether the
corresponding channel, i or i′, is open or closed for ionization for a given total energy E. The quantity
β(E) is a diagonal Nc × Nc matrix

βi′i(E) =
π√

2(Ei − E)
δi′i , (10)

where Ei refers to energy of the corresponding closed channel i and Nc = N − No is the number of
closed channels. For a given vibrational quantum number v, channel energies are degenerate with
respect to l and Λ. In principle, the channel energy Ei depends also on the electronic excitation of the
target ion, but in this study the initial electronic state is X1Σ+ and collisional energies are too low to
excite other electronic states.

3. Rate Coefficients and Cross Sections for Vibrational (De-)Excitation

Using the scattering matrix S phys, the cross section for electron-impact vibrational transition
v→ v′ of the ion is [28]

σv′v(Eel) =
πh̄2

2meEel
∑

Λ′ l′Λl

∣∣∣S phys
Λ′ l′v′ ,Λlv − δΛlv,Λ′ l′v′

∣∣∣2 , (11)

where me is the reduced mass of the electron and the HeH+ ion. It is also convenient to represent the
cross section in the form

σv′v(Eel) =
π

k2
el

Pv′v(Eel) , (12)

where kel is the wave vector of the incident electron and Pv′v(Eel) could be viewed as the probability
for vibrational (de-)excitation at collision energy Eel .

Figures 3 and 4 demonstrate, as examples, the cross sections of Equation (11) and the
corresponding probabilities from Equation (12) for the v = 3 → v′ = 0, 1, 2, 4 transitions.
At very low scattering energies, below 0.02 eV, the de-excitation cross sections are smooth
functions inversely proportional to the incident energy of the electron as predicted by the Wigner
threshold law. But at higher energies, especially, just below the energy of the each excited threshold,
v′ = 4, 5, · · · , the (de-)excitation cross sections and probabilities demonstrate series of Rydberg
resonances, where they vary significantly.
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Figure 3. Cross sections of vibrational (de-)excitation from the vibrational level v = 3 to several other
levels v′. The inset enlarges the region of Rydberg series of resonances close to the v′ = 4 and v′ = 5
ionization thresholds, situated at energy of 0.2465 and 0.4533 eV, respectively, above the v = 3 threshold.
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v′ = 0, 1, 2, 4 vibrational levels. Notice that the energy scale is linear in contrast to the logarithmic scale
in Figure 3.

The thermally averaged rate coefficient αv′←v(T) (in atomic units) is obtained from the
energy-dependent cross section of Equation (11),

αv′v(T) =
8π

(2πkbT)3/2

∫ ∞

0
σv′v(Eel)e

− Eel
kbT EeldEel , (13)

where kb is the Boltzmann coefficient and T is the temperature. Examples of obtained rate coefficients
αv′←v(T) are shown in Figure 5.
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Figure 5. Thermally averaged rate coefficients for several (de-)excitation transitions obtained by direct
integration using Equation (13). Vibrational transition v→ v′ labels are shown in each panel. Results of
a previous calculation [15] are shown by dashed lines.
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In order to simplify eventual applications of the calculated numerical coefficients αv′v(T),
the obtained numerical rate coefficients were fitted using the following analytical interpolation formula

α
f it
v′←v(T) =

1√
T

e−
∆v′v

T P f it
v′v(x), (14)

where
P f it

v′v(x) = a0 + a1x + a2x2 + a3x3 and x = ln(T). (15)

with P f it
v′v(x) ≈ P f it

vv′(x). In equation (14), ∆v′v is the threshold energy having the following expression:

∆v′v =

{
Ev′ − Ev > 0 for excitation ,
0 for (de-)excitation .

(16)

The coefficients ai (i = 0, 1, 2, 3) are obtained for each pair of transitions v′ ↔ v from a numerical fit.
The quantity P f it

v′v(x) in the above equation could be viewed as an averaged (de-)excitation probability
that varies weakly with energy.

Figure 6 illustrates the rates coefficients for the v = 3 → v′ = 0, 1, 2, 4 transitions obtained
numerically from Equation (13) and by the fit of Equation (14). Overall, the fitting curves agree well
with the curves obtained numerically. The numerical values of ai listed in the Table 2 are such that,
when plugged into Equation (14), they give rate coefficients in units of cm3·s−1. The temperature in
the fitting formulas of Equation (15) is in kelvin.
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Table 2. Parameters a0, a1, a2 and a3 of the polynomial P f it
v′v(x) = P f it

vv′ (x) of Equation (14) for several
pairs of initial and final vibrational level. The upper line in the header of the table specifies the pairs of
initial and final vibrational levels for which the parameters are fitted. For convenience, we also specify
(the second line of the header) the threshold energy ∆v′v for excitation process of the corresponding
pair. For all excitation and de-excitation processes, same parameters ai are used in Equations (14) and
(15) where the threshold for de-excitation is zero, ∆v′v = 0, as in Equation (16).

v′− v 0–1 0–2 0–3 0–4 1–2 1–3 1–4 2–3 2–4 3–4

∆v′v
(K)

4191 7942 11251 14112 3751 7060 9920 3309 6169 2860

a0 0.23e-5 0.20e-6 0.75e-7 0.11e-7 0.21e-5 0.47e-6 0.80e-7 0.24e-5 0.44e-6 0.28e-5
a1 −0.11e-6 −0.20e-8 0.88e-8 0.31e-9 0.95e-7 0.62e-7 −0.71e-9 0.34e-6 −0.53e-8 0.16e-8
a2 0.25e-8 0.10e-8 −0.28e-8 −0.24e-10 −0.18e-7 −0.16e-7 0.76e-9 −0.56e-7 0.40e-8 0.13e-7
a3 0.85e-10 −0.11e-9 0.15e-9 −0.56e-12 0.79e-9 0.85e-9 −0.76e-10 0.22e-8 −0.36e-9 −0.92e-9

4. Conclusions and Discussion

In this study, cross sections and rate coefficients for electron-impact vibrational transitions in
HeH+ were computed for different combinations of the five lowest vibrational levels of HeH+.
The calculations were performed using the UK R-matrix package combined to the quantum-defect
approach. The obtained thermally averaged rate coefficients were fitted with a simple analytical
formula with four parameters. The numerical values of the fitting parameters are provided in Table 2.
The obtained cross sections and rate coefficients could be used in modeling the hydrogen/helium
plasma experiments as well as for modeling interstellar clouds and planetary atmospheres, where the
HeH+ ion is present.

The rotational structure of each vibrational level was neglected in the present approach such that
the obtained cross sections and rate coefficients should be viewed as averaged over initial rotational
states and summed over final rotational states of corresponding vibrational levels. Neglecting the
rotational structure would correspond to an experiment for which the energy resolution is worse
than a typical energy splitting between rotational levels. The rotational constants for the lowest
vibrational levels of HeH+ are in the interval 20–33 cm−1 (see Table 1). The energy resolution of
existing experimental data on e− + HeH+ collisions is much worse [9]. Detailed rotational state-to-state
thermally-averaged rate coefficients for rotational transitions without changing the vibrational state
might be useful to model very cold environment, below 40 K. Due to this reason the rate coefficients
obtained in the present study should not be viewed as accurate below 40 K. Theoretical rate coefficients
for rotational excitation at low temperatures will be presented in a separate study.

It is worth stressing that narrow electronic resonances present in the e − HeH+ spectrum
(see Figure 1), around 1 eV and above, are taken into account only in a very crude manner.
Namely, they produce scattering matrix S(R) of Equation (4), which depends significantly on
energy. Because the resonances are situated at relatively high energies and their widths are small
(see, for example, the resonance at 4 eV for R = 1.455 bohrs in Figure 1), their effect is expected to be
small on the obtained cross sections at low energies. The reason why the effect of such resonances is
accounted for in a crude manner is because after the vibrational frame transformation of Equation (7),
the resonances will be smeared out and will no appear in the excitation cross section. In a better
treatment such resonances associated with HeH∗ potential curves should be represented by one
or several additional vibronic channels and would produce a few more additional resonances in
the cross section for vibrational excitation. In the present treatment, the energy-dependence of
S(R), increases the excitation cross section near the corresponding energies but only on average, in a
washed-out manner, without producing a few additional resonances. In any case, the effect of these
resonances on the thermally-averaged rate coefficient is averaged out. A wider resonance appearing
at large internuclear distances (for example, at 5 eV for R = 1.7 bohrs) could produce an important
contribution to the vibrational excitation cross section at energies above 5 eV. A better treatment of the
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vibrational excitation process accounting for electronic resonances is possible and will be developed in
a further publication.
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