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Abstract

Past work in relation extraction has focused

on binary relations in single sentences. Re-

cent NLP inroads in high-value domains have

sparked interest in the more general setting

of extracting n-ary relations that span mul-

tiple sentences. In this paper, we explore a

general relation extraction framework based

on graph long short-term memory networks

(graph LSTMs) that can be easily extended to

cross-sentence n-ary relation extraction. The

graph formulation provides a unified way of

exploring different LSTM approaches and in-

corporating various intra-sentential and inter-

sentential dependencies, such as sequential,

syntactic, and discourse relations. A robust

contextual representation is learned for the en-

tities, which serves as input to the relation clas-

sifier. This simplifies handling of relations with

arbitrary arity, and enables multi-task learning

with related relations. We evaluate this frame-

work in two important precision medicine set-

tings, demonstrating its effectiveness with both

conventional supervised learning and distant

supervision. Cross-sentence extraction pro-

duced larger knowledge bases. and multi-task

learning significantly improved extraction ac-

curacy. A thorough analysis of various LSTM

approaches yielded useful insight the impact

of linguistic analysis on extraction accuracy.

1 Introduction

Relation extraction has made great strides in

newswire and Web domains. Recently, there has

∗ This research was conducted when the authors were at

Microsoft Research.

been increasing interest in applying relation extrac-

tion to high-value domains such as biomedicine. The

advent of $1000 human genome1 heralds the dawn of

precision medicine, but progress in personalized can-

cer treatment has been hindered by the arduous task

of interpreting genomic data using prior knowledge.

For example, given a tumor sequence, a molecular

tumor board needs to determine which genes and mu-

tations are important, and what drugs are available

to treat them. Already the research literature has a

wealth of relevant knowledge, and it is growing at an

astonishing rate. PubMed2, the online repository of

biomedical articles, adds two new papers per minute,

or one million each year. It is thus imperative to

advance relation extraction for machine reading.

In the vast literature on relation extraction, past

work focused primarily on binary relations in single

sentences, limiting the available information. Con-

sider the following example: “The deletion mutation on

exon-19 of EGFR gene was present in 16 patients, while

the L858E point mutation on exon-21 was noted in 10. All

patients were treated with gefitinib and showed a partial

response.”. Collectively, the two sentences convey

the fact that there is a ternary interaction between

the three entities in bold, which is not expressed in

either sentence alone. Namely, tumors with L858E

mutation in EGFR gene can be treated with gefitinib.

Extracting such knowledge clearly requires moving

beyond binary relations and single sentences.

N -ary relations and cross-sentence extraction have

received relatively little attention in the past. Prior

1http://www.illumina.com/systems/

hiseq-x-sequencing-system.html
2https://www.ncbi.nlm.nih.gov/pubmed

http://www.illumina.com/systems/hiseq-x-sequencing-system.html
http://www.illumina.com/systems/hiseq-x-sequencing-system.html
https://www.ncbi.nlm.nih.gov/pubmed


The deletion mutation on exon-19 of EGFR gene was present in 16 patients, while the L858E point mutation on exon-21 was noted in 10.
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Figure 1: An example document graph for a pair of sentences expressing a ternary interaction (tumors with

L858E mutation in EGFR gene respond to gefitinib treatment). For simplicity, we omit edges between

adjacent words or representing discourse relations.

work on n-ary relation extraction focused on sin-

gle sentences (Palmer et al., 2005; McDonald et al.,

2005) or entity-centric attributes that can be extracted

largely independently (Chinchor, 1998; Surdeanu

and Heng, 2014). Prior work on cross-sentence ex-

traction often used coreference to gain access to ar-

guments in a different sentence (Gerber and Chai,

2010; Yoshikawa et al., 2011), without truly model-

ing inter-sentential relational patterns. (See Section 7

for a more detailed discussion.) A notable excep-

tion is Quirk and Poon (2017), which applied distant

supervision to general cross-sentence relation extrac-

tion, but was limited to binary relations.

In this paper, we explore a general framework

for cross-sentence n-ary relation extraction, based

on graph long short-term memory networks (graph

LSTMs). By adopting the graph formulation, our

framework subsumes prior approaches based on

chain or tree LSTMs, and can incorporate a rich set of

linguistic analyses to aid relation extraction. Relation

classification takes as input the entity representations

learned from the entire text, and can be easily ex-

tended for arbitrary relation arity n. This approach

also facilitates joint learning with kindred relations

where the supervision signal is more abundant.

We conducted extensive experiments on two im-

portant domains in precision medicine. In both dis-

tant supervision and supervised learning settings,

graph LSTMs that encode rich linguistic knowledge

outperformed other neural network variants, as well

as a well-engineered feature-based classifier. Multi-

task learning with sub-relations led to further im-

provement. Syntactic analysis conferred a significant

benefit to the performance of graph LSTMs, espe-

cially when syntax accuracy was high.

In the molecular tumor board domain, PubMed-

scale extraction using distant supervision from a

small set of known interactions produced orders of

magnitude more knowledge, and cross-sentence ex-

traction tripled the yield compared to single-sentence

extraction. Manual evaluation verified that the accu-

racy is high despite the lack of annotated examples.

2 Cross-sentence n-ary relation extraction

Let e1, · · · , em be entity mentions in text T . Rela-

tion extraction can be formulated as a classification

problem of determining whether a relation R holds

for e1, · · · , em in T . For example, given a cancer

patient with mutation v in gene g, a molecular tumor

board seeks to find if this type of cancer would re-

spond to drug d. Literature with such knowledge has

been growing rapidly; we can help the tumor board

by checking if the Respond relation holds for the

(d, g, v) triple.

Traditional relation extraction methods focus on

binary relations where all entities occur in the same

sentence (i.e., m = 2 and T is a sentence), and

cannot handle the aforementioned ternary relations.

Moreover, as we focus on more complex relations

and n increases, it becomes increasingly rare that the

related entities will be contained entirely in a single

sentence. In this paper, we generalize extraction to

cross-sentence, n-ary relations, where m > 2 and T

can contain multiple sentences. As will be shown in

our experiments section, n-ary relations are crucial

for high-value domains such as biomedicine, and

expanding beyond the sentence boundary enables the

extraction of more knowledge.

In the standard binary-relation setting, the dom-

inant approaches are generally defined in terms of

the shortest dependency path between the two en-

tities in question, either by deriving rich features

from the path or by modeling it using deep neural



networks. Generalizing this paradigm to the n-ary

setting is challenging, as there are
(

n
2

)

paths. One

apparent solution is inspired by Davidsonian seman-

tics: first, identify a single trigger phrase that sig-

nifies the whole relation, then reduce the n-ary re-

lation to n binary relations between the trigger and

an argument. However, challenges remain. It is of-

ten hard to specify a single trigger, as the relation

is manifested by several words, often not contigu-

ous. Moreover, it is expensive and time-consuming

to annotate training examples, especially if triggers

are required, as is evident in prior annotation efforts

such as GENIA (Kim et al., 2009). The realistic and

widely adopted paradigm is to leverage indirect su-

pervision, such as distant supervision (Craven and

Kumlien, 1999; Mintz et al., 2009), where triggers

are not available.

Additionally, lexical and syntactic patterns signi-

fying the relation will be sparse. To handle such

sparsity, traditional feature-based approaches require

extensive engineering and large data. Unfortunately,

this challenge becomes much more severe in cross-

sentence extraction when the text spans multiple sen-

tences.

To overcome these challenges, we explore a gen-

eral relation extraction framework based on graph

LSTMs. By learning a continuous representation

for words and entities, LSTMs can handle sparsity

effectively without requiring intense feature engineer-

ing. The graph formulation subsumes prior LSTM

approaches based on chains or trees, and can incor-

porate rich linguistic analyses.

This approach also opens up opportunities for joint

learning with related relations. For example, the

Response relation over d, g, v also implies a binary

sub-relation over drug d and mutation v, with the

gene underspecified. Even with distant supervision,

the supervision signal for n-ary relations will likely

be sparser than their binary sub-relations. Our ap-

proach makes it very easy to use multi-task learning

over both the n-ary relations and their sub-relations.

3 Graph LSTMs

Learning a continuous representation can be effective

for dealing with lexical and syntactic sparsity. For se-

quential data such as text, recurrent neural networks

(RNNs) are quite popular. They resemble hidden
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Figure 2: A general architecture for cross-sentence

n-ary relation extraction based on graph LSTMs.

Markov models (HMMs), except that discrete hid-

den states are replaced with continuous vectors, and

emission and transition probabilities with neural net-

works. Conventional RNNs with sigmoid units suffer

from gradient diffusion or explosion, making train-

ing very difficult (Bengio et al., 1994; Pascanu et al.,

2013). Long short-term memory (LSTMs) (Hochre-

iter and Schmidhuber, 1997) combats these problems

by using a series of gates (input, forget and output)

to avoid amplifying or suppressing gradients during

backpropagation. Consequently, LSTMs are much

more effective in capturing long-distance dependen-

cies, and have been applied to a variety of NLP tasks.

However, most approaches are based on linear chains

and only explicitly model the linear context, which

ignores a variety of linguistic analyses, such as syn-

tactic and discourse dependencies.

In this section, we propose a general framework

that generalizes LSTMs to graphs. While there is

some prior work on learning tree LSTMs (Tai et al.,

2015; Miwa and Bansal, 2016), to the best of our

knowledge, graph LSTMs have not been applied to

any NLP task yet. Figure 2 shows the architecture of

this approach. The input layer is the word embedding

of input text. Next is the graph LSTM which learns

a contextual representation for each word. For the

entities in question, their contextual representations

are concatenated and become the input to the relation

classifiers. For a multi-word entity, we simply used

the average of its word representations and leave

the exploration of more sophisticated aggregation

approaches to future work. The layers are trained

jointly with backpropagation. This framework is



All ⇋ patients ⇋ were ⇋ treated ⇋ with ⇋ gefitinib ⇋ and ⇋ showed ⇋ a ⇋ partial ⇋ response.

◦ → ◦ → ◦ → ◦ → ◦ → ◦ → ◦ → ◦ → ◦→ ◦ → ◦ ◦ ← ◦ ← ◦ ← ◦ ← ◦ ← ◦ ← ◦ ← ◦ ← ◦ ← ◦ ← ◦

Figure 3: The graph LSTMs used in this paper. The document graph (top) is partitioned into two directed

acyclic graphs (bottom); the graph LSTMs is constructed by a forward pass (Left to Right) followed by a

backward pass (Right to Left). Note that information goes from dependency child to parent.

agnostic to the choice of classifiers. Jointly designing

classifiers with graph LSTMs would be interesting

future work.

At the core of the graph LSTM is a document

graph that captures various dependencies among the

input words. By choosing what dependencies to in-

clude in the document graph, graph LSTMs naturally

subsumes linear-chain or tree LSTMs.

Compared to conventional LSTMs, the graph for-

mulation presents new challenges. Due to potential

cycles in the graph, a straightforward implementation

of backpropagation might require many iterations to

reach a fixed point. Moreover, in the presence of a po-

tentially large number of edge types (adjacent-word,

syntactic dependency, etc.), parametrization becomes

a key problem.

In the remainder of this section, we first introduce

the document graph and show how to conduct back-

propagation in graph LSTMs. We then discuss two

strategies for parametrizing the recurrent units. Fi-

nally, we show how to conduct multi-task learning

with this framework.

3.1 Document Graph

To model various dependencies from linguistic analy-

sis at our disposal, we follow Quirk and Poon (2017)

and introduce a document graph to capture intra- and

inter-sentential dependencies. A document graph

consists of nodes that represent words and edges

that represent various dependencies such as linear

context (adjacent words), syntactic dependencies,

and discourse relations (Lee et al., 2013; Xue et al.,

2015). Figure 1 shows the document graph for our

running example; this instance suggests that tumors

with L858E mutation in EGFR gene responds to the

drug gefitinib.

This document graph acts as the backbone upon

which a graph LSTM is constructed. If it con-

tains only edges between adjacent words, we recover

linear-chain LSTMs. Similarly, other prior LSTM

approaches can be captured in this framework by re-

stricting edges to those in the shortest dependency

path or the parse tree.

3.2 Backpropagation in Graph LSTMs

Conventional LSTMs are essentially very deep feed-

forward neural networks. For example, a left-to-right

linear LSTM has one hidden vector for each word.

This vector is generated by a neural network (re-

current unit) that takes as input the embedding of

the given word and the hidden vector of the previ-

ous word. In discriminative learning, these hidden

vectors then serve as input for the end classifiers,

from which gradients are backpropagated through

the whole network.

Generalizing such a strategy to graphs with cycles

typically requires unrolling recurrence for a number

of steps (Scarselli et al., 2009; Li et al., 2016; Liang

et al., 2016). Essentially, a copy of the graph is

created for each step that serves as input for the next.

The result is a feed-forward neural network through

time, and backpropagation is conducted accordingly.

In principle, we could adopt the same strategy. Ef-

fectively, gradients are backpropagated in a manner

similar to loopy belief propagation (LBP). However,

this makes learning much more expensive as each up-

date step requires multiple iterations of backpropaga-

tion. Moreover, loopy backpropagation could suffer

from the same problems encountered to in LBP, such

as oscillation or failure to converge.

We observe that dependencies such as coreference

and discourse relations are generally sparse, so the

backbone of a document graph consists of the lin-

ear chain and the syntactic dependency tree. As in

belief propagation, such structures can be leveraged

to make backpropagation more efficient by replac-



ing synchronous updates, as in the unrolling strat-

egy, with asynchronous updates, as in linear-chain

LSTMs. This opens up opportunities for a variety of

strategies in ordering backpropagation updates.

In this paper, we adopt a simple strategy that per-

formed quite well in preliminary experiments, and

leave further exploration to future work. Specifi-

cally, we partition the document graph into two di-

rected acyclic graphs (DAGs). One DAG contains

the left-to-right linear chain, as well as other forward-

pointing dependencies. The other DAG covers the

right-to-left linear chain and the backward-pointing

dependencies. Figure 3 illustrates this strategy. Effec-

tively, we partition the original graph into the forward

pass (left-to-right), followed by the backward pass

(right-to-left), and construct the LSTMs accordingly.

When the document graph only contains linear chain

edges, the graph LSTMs is exactly a bi-directional

LSTMs (BiLSTMs).

3.3 The Basic Recurrent Propagation Unit

A standard LSTM unit consists of an input vector

(word embedding), a memory cell and an output vec-

tor (contextual representation), as well as several

gates. The input gate and output gate control the

information flowing into and out of the cell, whereas

the forget gate can optionally remove information

from the recurrent connection to a precedent unit.

In linear-chain LSTMs, each unit contains only

one forget gate, as it has only one direct precedent

(i.e., the adjacent-word edge pointing to the previous

word). In graph LSTMs, however, a unit may have

several precedents, including connections to the same

word via different edges. We thus introduce a forget

gate for each precedent, similar to the approach taken

by Tai et al. (2015) for tree LSTMs.

Encoding rich linguistic analysis introduces many

distinct edge types besides word adjacency, such as

syntactic dependencies, which opens up many possi-

bilities for parametrization. This was not considered

in prior syntax-aware LSTM approaches (Tai et al.,

2015; Miwa and Bansal, 2016). In this paper, we ex-

plore two schemes that introduce more fined-grained

parameters based on the edge types.

Full Parametrization Our first proposal simply in-

troduces a different set of parameters for each edge

type, with computation specified below.

it = σ(Wixt +
∑

j∈P (t)
U

m(t,j)
i hj + bi)

ot = σ(Woxt +
∑

j∈P (t)
Um(t,j)
o hj + bo)

c̃t = tanh(Wcxt +
∑

j∈P (t)
Um(t,j)
c hj + bc)

ftj = σ(Wfxt + U
m(t,j)
f hj + bf )

ct = it ⊙ c̃t +
∑

j∈P (t)
ftj ⊙ cj

ht = ot ⊙ tanh(ct)

As in standard chain LSTMs, xt is the input word

vector for node t, ht is the hidden state vector for

node t, W ’s are the input weight matrices, and b’s

are the bias vectors. σ, tanh, and⊙ represent the sig-

moid function, the hyperbolic tangent function, and

the Hadamard product (pointwise multiplication), re-

spectively. The main differences lie in the recurrence

terms. In graph LSTMs, a unit might have multiple

predecessors (P (t)), for each of which (j) there is

a forget gate ftj , and a typed weight matrix Um(t,j),

where m(t, j) signifies the connection type between

t and j. The input and output gates (it, ot) depend on

all predecessors, whereas the forget gate (ftj) only

depends on the predecessor with which the gate is

associated. ct and c̃t represent intermediate compu-

tation results within the memory cell, which take

into account the input and forget gates, and will be

combined with output gate to produce the hidden

representation ht.

Full parameterization is straightforward, but it re-

quires a large number of parameters when there are

many edge types. For example, there are dozens of

syntactic edge types, each corresponding to a Stan-

ford dependency label. As a result, in our exper-

iments we resort to using only the coarse-grained

types: word adjacency, syntactic dependency, etc.

Next, we will consider a more fine-grained approach

by learning an edge-type embedding.

Edge-Type Embedding To reduce the number

of parameters and leverage potential correlation

among fine-grained edge types, we learned a low-

dimensional embedding of the edge types, and con-

ducted an outer product of the predecessor’s hidden

vector and the edge-type embedding to generate a

“typed hidden representation”, which is a matrix. The

new computation is as follows:



it = σ(Wixt +
∑

j∈P (t)
Ui ×T (hj ⊗ ej) + bi)

ftj = σ(Wfxt + Uf ×T (hj ⊗ ej) + bf )

ot = σ(Woxt +
∑

j∈P (t)
Uo ×T (hj ⊗ ej) + bo)

c̃t = tanh(Wcxt +
∑

j∈P (t)
Uc ×T (hj ⊗ ej) + bc)

ct = it ⊙ c̃t +
∑

j∈P (t)
ftj ⊙ cj

ht = ot ⊙ tanh(ct)

U ’s are now l × l × d tensors (l is the dimension of

the hidden vector and d is the dimension for edge-

type embedding), and hj ⊗ ej is a tensor product

that produces an l × d matrix. ×T denotes a tensor

dot product defined as T ×T A =
∑

d(T:,:,d · A:,d),
which produces an l-dimensional vector. The edge-

type embedding ej is jointly trained with the other

parameters.

3.4 Comparison with Prior LSTM Approaches

The main advantages of a graph formulation are its

generality and flexibility. As seen in Section 3.1,

linear-chain LSTMs are a special case when the doc-

ument graph is the linear chain of adjacent words.

Similarly, Tree LSTMs (Tai et al., 2015) are a special

case when the document graph is the parse tree.

In graph LSTMs, the encoding of linguistic knowl-

edge is factored from the backpropagation strategy

(Section 3.2), making it much more flexible, includ-

ing introducing cycles. For example, Miwa and

Bansal (2016) conducted joint entity and binary re-

lation extraction by stacking a LSTM for relation

extraction on top of another LSTM for entity recog-

nition. In graph LSTMs, the two can be combined

seamlessly using a document graph comprising both

the word-adjacency chain and the dependency path

between the two entities.

The document graph can also incorporate other

linguistic information. For example, coreference

and discourse parsing are intuitively relevant for

cross-sentence relation extraction. Although existing

systems have not yet been shown to improve cross-

sentence relation extraction (Quirk and Poon, 2017),

it remains an important future direction to explore

incorporating such analyses, especially after adapting

them to the biomedical domains (Bell et al., 2016).

3.5 Multi-task Learning with Sub-relations

Multi-task learning has been shown to be beneficial in

training neural networks (Caruana, 1998; Collobert

and Weston, 2008; Peng and Dredze, 2016). By

learning contextual entity representations, our frame-

work makes it straightforward to conduct multi-task

learning. The only change is to add a separate classi-

fier for each related auxiliary relation. All classifiers

share the same graph LSTMs representation learner

and word embeddings, and can potentially help each

other by pooling their supervision signals.

In the molecular tumor board domain, we applied

this paradigm to joint learning of both the ternary rela-

tion (drug-gene-mutation) and its binary sub-relation

(drug-mutation). Experiment results show that this

provides significant gains in both tasks.

4 Implementation Details

We implemented our methods using the Theano li-

brary (Theano Development Team, 2016). We used

logistic regression for our relation classifiers. Hyper

parameters were set based on preliminary experi-

ments on a small development dataset. Training was

done using mini-batched stochastic gradient descent

(SGD) with batch size 8. We used a learning rate of

0.02 and trained for at most 30 epochs, with early

stopping based on development data (Caruana et al.,

2001; Graves et al., 2013). The dimension for the

hidden vectors in LSTM units was set to 150, and the

dimension for the edge-type embedding was set to 3.

The word embeddings were initialized with the pub-

licly available 100-dimensional GloVe word vectors

trained on 6 billion words from Wikipedia and web

text3 (Pennington et al., 2014). Other model param-

eters were initialized with random samples drawn

uniformly from the range [−1, 1].

In multi-task training, we alternated among all

tasks, each time passing through all data for one

task4, and updating the parameters accordingly. This

was repeated for 30 epochs.

3http://nlp.stanford.edu/projects/glove/
4However, drug-gene pairs have much more data, so we sub-

sampled the instances down to the same size as the main n-ary

relation task.

http://nlp.stanford.edu/projects/glove/


5 Domain: Molecular Tumor Boards

Our main experiments focus on extracting ternary

interactions over drugs, genes and mutations, which

is important for molecular tumor boards. A drug-

gene-mutation interaction is broadly construed as an

association between the drug efficacy and the muta-

tion in the given gene. There is no annotated dataset

for this problem. However, due to the importance of

such knowledge, oncologists have been painstakingly

curating known relations from reading papers. Such

a manual approach cannot keep up with the rapid

growth of the research literature, and the coverage is

generally sparse and not up to date. However, the cu-

rated knowledge can be used for distant supervision.

5.1 Datasets

We obtained biomedical literature from PubMed Cen-

tral5, consisting of approximately one million full-

text articles as of 2015. Note that only a fraction of

papers contain knowledge about drug-gene-mutation

interactions. Extracting such knowledge from the

vast body of biomedical papers is exactly the chal-

lenge. As we will see in later subsections, distant

supervision enables us to generate a sizable train-

ing set from a small number of manually curated

facts, and the learned model was able to extract or-

ders of magnitude more facts. In future work, we

will explore incorporating more known facts for dis-

tant supervision and extracting from more full-text

articles.

We conducted tokenization, part-of-speech tag-

ging, and syntactic parsing using SPLAT (Quirk et

al., 2012), and obtained Stanford dependencies (de

Marneffe et al., 2006) using Stanford CoreNLP (Man-

ning et al., 2014). We used the entity taggers from

Literome (Poon et al., 2014) to identify drug, gene

and mutation mentions.

We used the Gene Drug Knowledge Database

(GDKD) (Dienstmann et al., 2015) and the Clini-

cal Interpretations of Variants In Cancer (CIVIC)

knowledge base6 for distant supervision. The knowl-

edge bases distinguish fine-grained interaction types,

which we do not use in this paper.

5http://www.ncbi.nlm.nih.gov/pmc/
6http://civic.genome.wustl.edu

5.2 Distant Supervision

After identifying drug, gene and mutation mentions

in the text, co-occurring triples with known interac-

tions were chosen as positive examples. However,

unlike the single-sentence setting in standard dis-

tant supervision, care must be taken in selecting the

candidates. Since the triples can reside in differ-

ent sentences, an unrestricted selection of text spans

would risk introducing many obviously wrong ex-

amples. We thus followed Quirk and Poon (2017)

in restricting the candidates to those occurring in a

minimal span, i.e., we retain a candidate only if is

no other co-occurrence of the same entities in an

overlapping text span with a smaller number of con-

secutive sentences. Furthermore, we avoid picking

unlikely candidates where the triples are far apart

in the document. Specifically, we considered en-

tity triples within K consecutive sentences, ignoring

paragraph boundaries. K = 1 corresponds to the

baseline of extraction within single sentences. We

explored K ≤ 3, which captured a large fraction of

candidates without introducing many unlikely ones.

Only 59 distinct drug-gene-mutation triples from

the knowledge bases were matched in the text. Even

from such a small set of unique triples, we obtained

3,462 ternary relation instances that can serve as pos-

itive examples. For multi-task learning, we also con-

sidered drug-gene and drug-mutation sub-relations,

which yielded 137,469 drug-gene and 3,192 drug-

mutation relation instances as positive examples.

We generate negative examples by randomly sam-

pling co-occurring entity triples without known inter-

actions, subject to the same restrictions above. We

sampled the same number as positive examples to

obtain a balanced dataset7.

5.3 Automatic Evaluation

To compare the various models in our proposed

framework, we conducted five-fold cross-validation,

treating the positive and negative examples from dis-

tant supervision as gold annotation. To avoid train-

test contamination, all examples from a document

were assigned to the same fold. Since our datasets

are balanced by construction, we simply report aver-

age test accuracy on held-out folds. Obviously, the

7We will release the dataset at

http://hanover.azurewebsites.net.

http://www.ncbi.nlm.nih.gov/pmc/
http://civic.genome.wustl.edu
http://hanover.azurewebsites.net


Model Single-Sent. Cross-Sent.

Feature-Based 74.7 77.7

CNN 77.5 78.1

BiLSTM 75.3 80.1

Graph LSTM - EMBED 76.5 80.6

Graph LSTM - FULL 77.9 80.7

Table 1: Average test accuracy in five-fold cross-

validation for drug-gene-mutation ternary interac-

tions. Feature-Based used the best performing model

in (Quirk and Poon, 2017) with features derived from

shortest paths between all entity pairs.

Model Single-Sent. Cross-Sent.

Feature-Based 73.9 75.2

CNN 73.0 74.9

BiLSTM 73.9 76.0

BiLSTM-Shortest-Path 70.2 71.7

Tree LSTM 75.9 75.9

Graph LSTM-EMBED 74.3 76.5

Graph LSTM-FULL 75.6 76.7

Table 2: Average test accuracy in five-fold cross-

validation for drug-mutation binary relations, with

an extra baseline using a BiLSTM on the shortest

dependency path (Xu et al., 2015b; Miwa and Bansal,

2016).

results could be noisy (e.g., entity triples not known

to have an interaction might actually have one), but

this evaluation is automatic and can quickly evaluate

the impact of various design choices.

We evaluated two variants of graph LSTMs:

“Graph LSTM-FULL” with full parametrization and

“Graph LSTM-EMBED” with edge-type embedding.

We compared graph LSTMs with three strong base-

line systems: a well-engineered feature-based classi-

fier (Quirk and Poon, 2017), a convolutional neural

network (CNN) (Zeng et al., 2014; Santos et al.,

2015; Wang et al., 2016), and a bi-directional LSTM

(BiLSTM). Following Wang et al. (2016), we used in-

put attention for the CNN and a input window size of

5. Quirk and Poon (2017) only extracted binary rela-

tions. We extended it to ternary relations by deriving

features for each entity pair (with added annotation to

signify the two entity types), and pooling the features

from all pairs.

For binary relation extraction, prior syntax-aware

approaches are directly applicable. So we also

compared with a state-of-the-art tree LSTM system

(Miwa and Bansal, 2016) and a BiLSTM on the

shortest dependency path between the two entities

(BiLSTM-Shortest-Path) (Xu et al., 2015b).

Table 1 shows the results for cross-sentence,

ternary relation extraction. All neural-network based

models outperformed the feature-based classifier, il-

lustrating their advantage in handling sparse linguis-

tic patterns without requiring intense feature engi-

neering. All LSTMs significantly outperformed CNN

in the cross-sentence setting, verifying the impor-

tance in capturing long-distance dependencies.

The two variants of graph LSTMs perform on par

with each other, though Graph LSTM-FULL has a

small advantage, suggesting that further exploration

of parametrization schemes could be beneficial. In

particular, the edge-type embedding might improve

by pretraining on unlabeled text with syntactic parses.

Both graph variants significantly outperformed

BiLSTMs (p < 0.05 by McNemar’s chi-square test),

though the difference is small. This result is intrigu-

ing. In Quirk and Poon (2017), the best system in-

corporated syntactic dependencies and outperformed

the linear-chain variant (Base) by a large margin. So

why didn’t graph LSTMs make an equally substantial

gain by modeling syntactic dependencies?

One reason is that linear-chain LSTMs can already

captured some of the long-distance dependencies

available in syntactic parses. BiLSTMs substantially

outperformed the feature-based classifier, even with-

out explicit modeling of syntactic dependencies. The

gain cannot be entirely attributed to word embedding

as LSTMs also outperformed CNNs.

Another reason is that syntactic parsing is less

accurate in the biomedical domain. Parse errors con-

fuse the graph LSM learner, limiting the potential for

gain. In Section 6, we show supporting evidence in a

domain when gold parses are available.

We also reported accuracy on instances within

single sentences, which exhibited a broadly similar

set of trends. Note that single-sentence and cross-

sentence accuracies are not directly comparable, as

the test sets are different (one subsumes the other).

We conducted the same experiments on the binary

sub-relation between drug-mutation pairs. Table 2



Drug-Gene-Mut. Drug-Mut.

BiLSTM 80.1 76.0

+Multi-task 82.4 78.1

Graph LSTM 80.7 76.7

+Multi-task 82.0 78.5

Table 3: Multi-task learning improved accuracy for

both BiLSTMs and Graph LSTMs.

shows the results, which are similar to the ternary

case: Graph LSTM-FULL consistently performed

the best for both single sentence and cross-sentence

instances. BiLSTMs on the shortest path substan-

tially underperformed BiLSTMs or graph LSTMs,

losing between 4-5 absolute points in accuracy, which

could be attributed to the lower parsing quality in the

biomedical domain. Interestingly, the state-of-the-art

tree LSTMs (Miwa and Bansal, 2016) also under-

performed graph LSTMs, even though they encoded

essentially the same linguistic structures (word adja-

cency and syntactic dependency). We attributed the

gain to the fact that Miwa and Bansal (2016) used

separate LSTMs for the linear chain and the depen-

dency tree, whereas graph LSTMs learned a single

representation for both.

To evaluate whether joint learning with sub-

relations can help, we conducted multi-task learning

using Graph LSTM-FULL to jointly train extractors

for both the ternary interaction and the drug-mutation,

drug-gene sub-relations. Table 3 shows the results.

Multi-task learning resulted in a significant gain for

both the ternary interaction and the drug-mutation

interaction. Interestingly, the advantage of graph

LSTMs over BiLSTMs is reduced with multi-task

learning, suggesting that with more supervision sig-

nal, even linear-chain LSTMs can learn to capture

long-range dependencies that are were made evident

by parse features in graph LSTMs. Note that there are

many more instances for drug-gene interaction than

others, so we only sampled a subset of comparable

size. Therefore, we do not evaluate the performance

gain for drug-gene interaction, as in practice, one

would simply learn from all available data, and the

sub-sampled results are not competitive.

We included coreference and discourse relations

in our document graph. However, we didn’t observe

any significant gains, similar to the observation in

Single-Sent. Cross-Sent.

Candidates 10,873 57,033

p ≥ 0.5 1,408 4,279

p ≥ 0.9 530 1,461

GDKD + CIVIC 59

Table 4: Numbers of unique drug-gene-mutation in-

teractions extracted from PubMed Central articles,

compared to that from manually curated KBs used in

distant supervision. p signifies output probability.

Quirk and Poon (2017). We leave further exploration

to future work.

5.4 PubMed-Scale Extraction

Our ultimate goal is to extract all knowledge from

available text. We thus retrained our model using the

best system from automatic evaluation (i.e., Graph

LSTM-FULL) on all available data. The resulting

model was then used to extract relations from all

PubMed Central articles.

Table 4 shows the number of candidates and ex-

tracted interactions. With as little as 59 unique drug-

gene-mutation triples from the two databases8, we

learned to extract orders of magnitude more unique

interactions. The results also highlight the benefit of

cross-sentence extraction, which yields 3 to 5 times

more relations than single-sentence extraction.

Table 5 conducts a similar comparison on unique

number of drugs, genes, and mutations. Again, ma-

chine reading covers far more unique entities, espe-

cially with cross-sentence extraction.

5.5 Manual Evaluation

Our automatic evaluations are useful for comparing

competing approaches, but may not reflect the true

classifier precision as the labels are noisy. Therefore,

we randomly sampled extracted relation instances

and asked three researchers knowledgeable in pre-

cision medicine to evaluate their correctness. For

each instance, the annotators were presented with

the provenance: sentences with the drug, gene, and

mutation highlighted. The annotators determined in

8There are more in the databases, but these are the only ones

for which we found matching instances in the text. In future

work, we will explore various ways to increase the number, e.g.,

by matching underspecified drug classes to specific drugs.



Drug Gene Mut.

GDKD + CIVIC 16 12 41

Single-Sent. (p ≥ 0.9) 68 228 221

Single-Sent. (p ≥ 0.5) 93 597 476

Cross-Sent. (p ≥ 0.9) 103 512 445

Cross-Sent. (p ≥ 0.5) 144 1344 1042

Table 5: Numbers of unique drugs, genes and muta-

tions in extraction from PubMed Central articles, in

comparison with that in the manually curated Gene

Drug Knowledge Database (GDKD) and Clinical In-

terpretations of Variants In Cancer (CIVIC) used for

distant supervision. p signifies output probability.

Entity Relation

Precision Error Error

Random 17% 36% 47%

p ≥ 0.5 64% 7% 29%

p ≥ 0.9 75% 1% 24%

Table 6: Sample precision of drug-gene-mutation

interactions extracted from PubMed Central articles.

p signifies output probability.

each case whether this instance implied that the given

entities were related. Note that evaluation does not

attempt to identify whether the relationships are true

or replicated in follow-up papers; rather, it focuses

on whether the relationships are entailed by the text.

We focused our evaluation efforts on the cross-

sentence ternary-relation setting. We considered

three probability thresholds: 0.9 for a high-precision

but potentially low-recall setting, 0.5, and a random

sample of all candidates. In each case, 150 instances

were selected for a total of 450 annotations. A subset

of 150 instances were reviewed by two annotators,

and the inter-annotator agreement was 88%.

Table 6 shows that the classifier indeed filters out a

large portion of potential candidates, with estimated

instance accuracy of 64% at the threshold of 0.5, and

75% at 0.9. Interestingly, LSTMs are effective at

screening out many entity mention errors, presum-

ably because they include broad contextual features.

Model Precision Recall F1

Poon et al. (2015) 37.5 29.9 33.2

BiLSTM 37.6 29.4 33.0

Graph LSTM 41.4 30.0 34.8

Graph LSTM (GOLD) 43.3 30.5 35.8

Table 7: GENIA test results on the binary relation

of gene regulation. Graph LSTM (GOLD) used gold

syntactic parses in the document graph.

6 Domain: Genetic Pathways

We also conducted experiments on extracting genetic

pathway interactions using the GENIA Event Extrac-

tion dataset (Kim et al., 2009). This dataset contains

gold syntactic parses for the sentences, which offered

a unique opportunity to investigate the impact of syn-

tactic analysis on graph LSTMs. It also allowed us

to test our framework in supervised learning.

The original shared task evaluated on complex,

nested events for nine event types, many of which are

unary relations (Kim et al., 2009). Following Poon

et al. (2015), we focused on gene regulation and

reduced it to binary-relation classification for head-

to-head comparison. We followed their experimental

protocol by sub-sampling negative examples to be

about three times of positive examples.

Since the dataset is not entirely balanced, we re-

ported precision, recall, and F1. We used our best

performing graph LSTM from the previous experi-

ments. By default, automatic parses were used in the

document graphs, whereas in Graph LSTM (GOLD),

gold parses were used instead. Table 7 shows the re-

sults. Once again, despite the lack of intense feature

engineering, linear-chain LSTMs performed on par

with the feature-based classifier (Poon et al., 2015).

Graph LSTMs exhibited a more commanding advan-

tage over linear-chain LSTMs in this domain, sub-

stantially outperforming the latter (p < 0.01 by Mc-

Nemar’s chi-square test). Most interestingly, graph

LSTMs using gold parses significantly outperformed

that using automatic parses, suggesting that encoding

high-quality analysis is particularly beneficial.

7 Related Work

Most work on relation extraction has been applied to

binary relations of entities in a single sentence. We

first review relevant work on the single-sentence bi-



nary relation extraction task, and then review related

work on n-ary and cross-sentence relation extraction.

Binary relation extraction The traditional feature-

based methods rely on carefully designed features

to learn good models, and often integrate diverse

sources of evidence such as word sequences and syn-

tax context (Kambhatla, 2004; GuoDong et al., 2005;

Boschee et al., 2005; Suchanek et al., 2006; Chan

and Roth, 2010; Nguyen and Grishman, 2014). The

kernel-based methods design various subsequence or

tree kernels (Mooney and Bunescu, 2005; Bunescu

and Mooney, 2005; Qian et al., 2008) to capture struc-

tured information. Recently, models based on neural

networks have advanced the state of the art by auto-

matically learning powerful feature representations

(Xu et al., 2015a; Zhang et al., 2015; Santos et al.,

2015; Xu et al., 2015b; Xu et al., 2016).

Most neural architectures resemble Figure 2,

where there is a core representation learner (blue)

that takes word embeddings as input and produces

contextual entity representations. Such representa-

tions are then taken by relation classifiers to pro-

duce the final predictions. Effectively representing

sequences of words, both convolutional (Zeng et al.,

2014; Wang et al., 2016; Santos et al., 2015) and

RNN-based architectures (Zhang et al., 2015; Socher

et al., 2012; Cai et al., 2016) have been successful.

Most of these have focused on modeling either the

surface word sequences or the hierarchical syntac-

tic structure. Miwa and Bansal (2016) proposed an

architecture that benefits from both types of informa-

tion, using a surface sequence layer, followed by a

dependency-tree sequence layer.

N -ary relation extraction Early work on extract-

ing relations between more than two arguments has

been done in MUC-7, with a focus on fact/event

extraction from news articles (Chinchor, 1998). Se-

mantic role labeling in the Propbank (Palmer et al.,

2005) or FrameNet (Baker et al., 1998) style are also

instances of n-ary relation extraction, with extrac-

tion of events expressed in a single sentence. Mc-

Donald et al. (2005) extract n-ary relations in a bio-

medical domain, by first factoring the n-ary relation

into pair-wise relations between all entity pairs, and

then constructing maximal cliques of related enti-

ties. Recently, neural models have been applied to

semantic role labeling (FitzGerald et al., 2015; Roth

and Lapata, 2016). These works learned neural rep-

resentations by effectively decomposing the n-ary

relation into binary relations between the predicate

and each argument, by embedding the dependency

path between each pair, or by combining features

of the two using a feed-forward network. Although

some re-ranking or joint inference models have been

employed, the representations of the individual argu-

ments do not influence each other. In contrast, we

propose a neural architecture that jointly represents

n entity mentions, taking into account long-distance

dependencies and inter-sentential information.

Cross-sentence relation extraction Several rela-

tion extraction tasks have benefited from cross-

sentence extraction, including MUC fact and event

extraction (Swampillai and Stevenson, 2011), record

extraction from web pages (Wick et al., 2006), extrac-

tion of facts for biomedical domains (Yoshikawa et

al., 2011), and extensions of semantic role labeling to

cover implicit inter-sentential arguments (Gerber and

Chai, 2010). These prior works have either relied on

explicit co-reference annotation, or on the assump-

tion that the whole document refers to a single co-

herent event, to simplify the problem and reduce the

need for powerful representations of multi-sentential

contexts of entity mentions. Recently, cross-sentence

relation extraction models have been learned with

distant supervision, and used integrated contextual

evidence of diverse types without reliance on these

assumptions (Quirk and Poon, 2017), but that work

focused on binary relations only and explicitly engi-

neered sparse indicator features.

Relation extraction using distant supervision

Distant supervision has been applied to extraction

of binary (Mintz et al., 2009; Poon et al., 2015) and

n-ary (Reschke et al., 2014; Li et al., 2015) relations,

traditionally using hand-engineered features. Neural

architectures have recently been applied to distantly

supervised extraction of binary relations (Zeng et al.,

2015). Our work is the first to propose a neural archi-

tecture for n-ary relation extraction, where the repre-

sentation of a tuple of entities is not decomposable

into independent representations of the individual

entities or entity pairs, and which integrates diverse

information from multi-sentential context. To utilize

training data more effectively, we show how multi-

task learning for component binary sub-relations can



improve performance. Our learned representation

combines information sources within a single sen-

tence in a more integrated and generalizable fashion

than prior approaches, and can also improve perfor-

mance on single-sentence binary relation extraction.

8 Conclusion

We explore a general framework for cross-sentence n-

ary relation extraction based on graph LSTMs. The

graph formulation subsumes linear-chain and tree

LSTMs and makes it easy to incorporate rich linguis-

tic analysis. Experiments on biomedical domains

showed that extraction beyond the sentence bound-

ary produced far more knowledge, and encoding rich

linguistic knowledge provided consistent gain.

While there is much room to improve in both recall

and precision, our results indicate that machine read-

ing can already be useful in precision medicine. In

particular, automatically extracted facts (Section 5.4)

can serve as candidates for manual curation. Instead

of scanning millions of articles to curate from scratch,

human curators would just quickly vet thousands of

extractions. The errors identified by curators offer

direct supervision to the machine reading system for

continuous improvement. Therefore, the most im-

portant goal is to attain high recall and reasonable

precision. Our current models are already quite capa-

ble.

Future directions include: interactive learning

with user feedback; improving discourse modeling

in graph LSTMs; exploring other backpropagation

strategies; joint learning with entity linking; applica-

tions to other domains.
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