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ABSTRACT

We address the problem of cross-speaker style transfer for text-to-
speech (TTS) using data augmentation via voice conversion. We
assume to have a corpus of neutral non-expressive data from a target
speaker and supporting conversational expressive data from different
speakers. Our goal is to build a TTS system that is expressive, while
retaining the target speaker’s identity. The proposed approach relies
on voice conversion to first generate high-quality data from the set
of supporting expressive speakers. The voice converted data is then
pooled with natural data from the target speaker and used to train
a single-speaker multi-style TTS system. We provide evidence that
this approach is efficient, flexible, and scalable. The method is eval-
uated using one or more supporting speakers, as well as a variable
amount of supporting data. We further provide evidence that this
approach allows some controllability of speaking style, when using
multiple supporting speakers. We conclude by scaling our proposed
technology to a set of 14 speakers across 7 languages. Results indi-
cate that our technology consistently improves synthetic samples in
terms of style similarity, while retaining the target speaker’s identity.

Index Terms— text-to-speech, speaking style transfer, cross-
speaker, data augmentation

1. INTRODUCTION

Text-to-speech (TTS) technology is consistently reducing the per-
ceived gap between synthetic and natural speech. This is being
achieved with the development of novel acoustic modeling [1, 2] and
waveform generation techniques [3, 4]. Leveraging these methods,
researchers have been focusing on the flexibility and controllability
of TTS systems, especially for expressive data [5, 6, 7]. The devel-
opment of flexible systems requires the ability to control speaking
style and speaker identity, among other speech attributes. Speaking
style denotes the global attributes that describe the emotion, affect,
and/or generic attitude conveyed through speech by a speaker in a
particular domain. For example, we may define speaking styles such
as read, newscaster, conversational, or emotional speech. The ability
to control these attributes is essential for TTS voices that are flexi-
ble and adaptable to multiple scenarios and domains. Traditionally,
extending TTS voices to new domains where speaking style is rele-
vant involved additional data collection from the target voice. This
method, however, does not scale well, as it is not always feasible to
record more data for a specific voice talent. An alternative approach
is to transfer speaking style from other speakers for which recorded
data is already available.

Cross-speaker style transfer involves the generation of speech
samples that are perceived to have the identity of a target speaker
and the speaking style of a supporting speaker. To control speak-
ing style, recent work proposed the inclusion of reference encoders

[8, 9]. Together with textual input, the TTS model inputs a refer-
ence speech representation that is used to condition the generated
speaking style. Frequently used methods for the reference encoder
are based on Global Style Tokens (GST) [9] or Variational Auto-
Encoders (VAEs) [10, 11]. Although these methods could be used
for cross-speaker style transfer, they have some shortcomings. They
may be dependent on similar text, where the reference waveform is
similar to the textual input to be synthesized [8, 12]. Or they might
not model the target speech attributes, especially in disjoint corpora,
without data from the target speaker in the target speaking style [13].

For these reasons, most systems for cross-speaker style trans-
fer aim to explicitly disentangle speaker identity and speaking style
from other speech attributes. This is primarily accomplished with
multi-speaker TTS models [7]. For speech generation, the model
is conditioned on the target speaker identity and the desired speak-
ing style. Recent studies proposed the usage of multiple reference
encoders, with each encoder modeling a specific speech attribute.
These systems can be trained using intercross or adversarial training
[14, 13]. Models are typically optimized on a variety of loss func-
tions, such as cycle consistency loss [15], adversarial consistency
loss [13, 16], N-pair loss [17] or other loss functions defined over
latent representations of speaker identities and/or speaking styles
[18, 16]. Instead of multiple encoders, hierarchical architectures
were also proposed [19]. Alternatively, control of speaking style
may be left to models of f0 and duration, learned separately or im-
plicitly with the TTS model [7, 6, 20].

A related area of research focuses on the development of TTS
voices for low-resource scenarios. Such methods aim to synthe-
size speech given a limited amount of training data from the target
speaker, domain, or language. Recent studies proposed to augment
small corpora with synthetic data, either via voice conversion [21,
22] or a large text-to-speech system [23]. These studies provided
evidence that high-quality synthetic data can be used efficiently to
complement natural data.

In this paper, we propose to address the problem of cross-
speaker style transfer for text-to-speech using data augmentation.
We assume to have a corpus of neutral non-expressive data from a
target speaker and some supporting conversational expressive data
from other speakers. Our goal is to build a TTS system that is ex-
pressive, while retaining the target speaker’s identity. Our method
uses voice conversion to generate high-quality data from a set of
supporting expressive speakers. The synthetic expressive data is
pooled with the natural non-expressive data to train a single-speaker
multi-style TTS system. We show that our proposed method is
flexible and capable of transferring speaking style across speakers.
Additionally, we show the effectiveness of our proposed method
when 1) using data from one or more supporting speakers; 2) using
as little as 1 hour of supporting data; 3) controlling the speaking
style via the TTS reference encoder’s latent space; and 4) applied to
a variety of languages and speakers.
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Fig. 1. Voice Conversion model architecture.

2. MODEL ARCHITECTURE

2.1. Voice Conversion

Our voice conversion approach (Figure 1) is based on CopyCat [24],
extended to be conditioned on the source utterance’s log-f0 [25].
The purpose of this architecture is to preserve linguistic content and
prosodic attributes, while modifying only speaker identity. The ref-
erence encoder inputs a source speaker’s mel-spectrogram and it in-
cludes a bottleneck layer that downsamples and upsamples the latent
representations along the time dimension [26]. The phonetic en-
coder’s architecture follows the Tacotron 2 text encoder [1]. It inputs
a categorical representation of Hidden Markov Model (HMM) states.
The HMM state sequence is found by force-aligning the training data
at the phone level to the corresponding Mel-Frequency Cepstral Co-
efficient sequence. We use 3-state left-to-right HMMs for each indi-
vidual phone. To match the time resolution of the mel-spectrogram,
each time-aligned HMM state is upsampled to the frame level. Both
reference and phonetic encoders further input a speaker embedding
defined at the utterance level, which is broadcasted to the number of
frames in each utterance [21]. Speaker embeddings are learned on
a large multi-speaker multi-lingual corpus and optimized on a Gen-
eralized End-to-End Loss [27]. The encoded reference and phonetic
sequences are concatenated with the utterance’s log-f0 and speaker
embedding. The model is optimized on data from the target and sup-
porting speakers for 100k steps using a batch size of 32 utterances.
We use a KL-divergence loss for the VAE component and an L1 loss
on the source and reconstructed mel-spectrograms. We further fine-
tune the model for 25k steps only on training data from the target
speaker.

For voice conversion, the reference and phonetic encoders input
data from the source speaker, while the decoder is conditioned on
information from the target speaker. The target speaker embedding
is the centroid of all embeddings from that speaker’s training data.
The observed source utterance’s f0 is mean-normalized to the tar-
get speaker’s mean f0. The last layer of the decoder transforms the
input frame-by-frame, using contextual information provided by the
recurrent layers. Note that there is no attention or alignment required
in this architecture, as we preserve the source utterance’s duration.
With the addition of the source f0 signal, the reconstructed mel-
spectrogram preserves the prosodic properties describing the source
style. Any other relevant information not accounted for by duration,
f0, or speaker identity, is carried-over by the reference encoder.
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Fig. 2. Text-to-Speech model architecture.

2.2. Text-to-Speech

Our TTS model (Figure 2) is a sequence-to-sequence encoder-
decoder architecture based on Tacotron 2 [1], using a single-head
location-sensitive attention mechanism [28]. The phonetic encoder
and decoder follow the architecture proposed by Shen et al [1]. The
reference encoder follows the architecture proposed by Skerry-Ryan
et al [8] with the addition of a Variational Auto-Encoding layer
[10]. TTS systems are trained for 400k steps using a batch size of
32 utterances and optimized on an L1 loss for the generated mel-
spectrograms, a KL-divergence loss for the Variational Autoencoder,
and a cross-entropy loss for the stop-token. The phonetic sequence
is extracted from language-specific front-ends and corresponds to
phone identities, word boundary tokens, and stress markers.

For style transfer TTS systems, we pool the synthetic expres-
sive mel-spectrograms generated by the voice conversion model with
the natural non-expressive mel-spectrograms from the target speaker.
Because speaker identity has been modified by voice conversion,
there is no need to train multi-speaker models or use multiple ref-
erence encoders. To generate speech samples, we condition the de-
coder on a VAE z-vector computed over the training data converted
from a single supporting speaker, corresponding to a unique speak-
ing style. We finally convert the mel-spectrograms generated by the
TTS models to time-domain waveforms using a Parallel Wavenet
universal neural vocoder [29].

3. EXPERIMENTS

Our goal is to build conversational text-to-speech systems for voices
that only have speech recordings read in a neutral speaking style.
This speaking style is characterized by flat, monotonous, and un-
expressive read speech. As supporting data, we use recordings
from different speakers in a conversational speaking style, which
aims to capture a natural, friendly, and expressive speaking style.
Throughout our experiments, we use the terms Target, Supporting,
and Source speaker. “Target speaker” denotes the speaker for which
neutral data is available, and the speaker identity we wish to preserve
in the synthetic samples. “Supporting speakers” indicates the set of
speakers from which we draw supporting conversational data used
to augment the TTS models. “Source speaker” denotes the sup-
porting speaker used to condition the TTS model when generating
speech samples. We compute a VAE z-vector centroid over the set
of voice-converted training samples from the Source speaker.



System Naturalness Speaker Sim. Style Sim.

Recordings 61.51 ± 1.53 - -
Neutral 54.76 ± 1.39 71.93 ± 1.54 38.12 ± 1.65
Augmented (1 spk) 59.07 ± 1.37 64.56 ± 1.57 58.60 ± 1.58
Augmented (4 spks) 58.98 ± 1.39 65.03 ± 1.55 60.05 ± 1.55
Augmented (8 spks) 59.51 ± 1.36 64.54 ± 1.57 59.17 ± 1.57
Source Speaker - 27.85 ± 1.61 72.81 ± 1.59

Table 1. MUSHRA evaluation in terms of Naturalness, Speaker
Similarity, and Speaking Style Similarity. Results indicate mean
score with 95% confidence interval. “Augmented” systems denote
target speaker TTS systems augmented with conversational data
from a number of supporting speakers. “Source speaker” indicates a
conversational TTS system from the source supporting speaker.

3.1. Supporting speakers

To investigate our proposed cross-speaker style transfer approach,
we use internal corpora of Brazilian Portuguese data, choosing the
target speaker to be a female speaker and supporting speakers to be
gender-balanced. Neutral denotes a system trained on 10 hours of
neutral data from the target speaker. Augmented systems indicate
models trained using data augmentation via voice conversion. For
this experiment, we convert a total of 8 hours of conversational data
to the identity of the target speaker. We keep the amount of sup-
porting data fixed and we vary the number of supporting speakers.
The system with 1 supporting speaker uses 8 hours of data from a
single speaker, while the systems using 4 and 8 supporting speakers
use 2 hours and 1 hour of data from each supporting speaker, re-
spectively. The source speaker is kept constant across all augmented
systems. For comparison, Source indicates a TTS system trained on
the 8 hours of conversational data from the source speaker. We eval-
uate our systems with a set a MUSHRA-like (MUltiple Stimuli with
Hidden Reference and Anchor) [30] listening tests. Naturalness is
evaluated omitting the reference and including a recording sample
with the competing systems. We further evaluate systems in terms
of Speaker Similarity and Style Similarity. The speaker similarity
evaluation uses a reference sample drawn from the training data of
the target speaker, while the style similarity evaluation uses a refer-
ence sample drawn from the training data of the source speaker. For
these tests, listeners were asked to rate the samples based only on
the similarity of the speaker identity or the speaking style, ignoring
all other attributes. Each listening test included 150 utterances gen-
erated by each of the competing systems. Utterances were rated by
100 native speakers using a crowdsourcing platform. Each listener
rated no more than 15 MUSHRA screens.

Results in Table 1 show MUSHRA mean scores with a 95%
confidence interval. We observe that the proposed Augmented sys-
tems improve naturalness over the Neutral system. In terms of
speaker similarity, the Augmented systems score below the Neutral
system, although this is somewhat expected due to the differences
in speaking style between competing and reference samples. On
average, however, the Augmented systems bridge the gap between
source and target speakers by 83.6%. For style similarity, the Aug-
mented systems outperform the neutral system, suggesting that
listeners are able to discern between the speaking style generated
by the competing systems. For each subjective evaluation, we
perform paired two-sided t-tests on the MUSHRA scores with a
Holm-Bonferroni correction for multiple comparisons. Across the
three evaluated dimensions, we observe no statistically significant
difference between Augmented systems at the level of p < .01.

Source
Supp. A
Supp. B
Supp. C
Supp. D
Supp. E
Supp. F
Supp. G
Target

Fig. 3. VAE space for systems augmented with voice-converted data
from 4 (top) and 8 supporting speakers (bottom), visualized with t-
SNE. The centroid of the training data converted from each speaker
is marked with X.

Reference

Centroid Target Source Supp. A Supp. B Supp. C

Target 48.28% 6.55% 14.33% 5.52% 10.74%
Source 13.45% 32.07% 28.33% 22.07% 25.19%

Supporting A 13.45% 8.28% 29.34% 7.59% 12.59%
Supporting B 10.02% 32.41% 14.67% 45.16% 17.04%
Supporting C 14.80% 20.69% 13.33% 19.66% 34.44%

Total 100% 100% 100% 100% 100%

Table 2. Accuracy of perceived speaking style in speech samples
generated from different VAE z-vector centroids.

3.2. Controllability

In this experiment, we investigate the controllability of speaking
style via the reference encoder. Figure 3 illustrates the VAE space
for the systems augmented with conversational data from 4 speakers
and 8 speakers, described in section 3.1. We achieve a reasonable
separation of speaking styles, represented by clusters correspond-
ing to individual speakers. Taking the system augmented with data
from 4 speakers, we synthesize a set of samples conditioned on each
of the VAE centroids, computed over the voice-converted training
data from each speaker. We ask listeners to rate samples in terms of
speaking style similarity against a natural reference produced by the
target or supporting speakers. For each reference speaker, 30 listen-
ers rated a total of 50 utterances in batches of 10 MUSHRA screens.
For this evaluation, we asked listeners to ignore the identity of the
voice and to focus solely on the similarity of the speaking style. To
simplify our analysis, we took the highest rated sample for each sub-
mission to be the perceived speaking style. We then computed the
accuracy for each centroid with respect to the reference speaker.

Results are summarized in Table 2 and indicate that listeners
tend to perceive the correct speaking style. However, overall accu-
racy scores are still lower than expected and show some confusion
across reference speakers. We hypothesize that this might be due
to an inherent speaking style similarity across supporting speakers.
Further work should validate these observations, evaluating systems
with styles that are more perceptually different.



System Naturalness Speaker Sim. Style Sim.

Recordings 64.69 ± 1.48 - -
Neutral 56.71 ± 1.42 72.32 ± 1.48 40.21 ± 1.69
Data (1 hour) 57.82 ± 1.35 69.25 ± 1.45 55.41 ± 1.57
Data (3 hours) 57.58 ± 1.34 69.84 ± 1.46 56.68 ± 1.57
Data (6 hours) 58.19 ± 1.35 68.84 ± 1.48 56.03 ± 1.58
Data (8 hours) 56.55 ± 1.37 69.51 ± 1.48 55.49 ± 1.59
Source Speaker - 28.33 ± 1.65 73.69 ± 1.40

Table 3. MUSHRA evaluation in terms of Naturalness, Speaker
Similarity, and Speaking Style Similarity. Results indicate mean
score with 95% confidence interval. “Data” systems denote TTS
systems augmented with n hours of conversational data distributed
equally across 4 supporting speakers. “Source Speaker” indicates
a conversational TTS system trained on 8 hours from the source
speaker.

3.3. Amount of supporting data

We investigate the amount of supporting data required for cross-
speaker style transfer. As before, we train a TTS system on 10 hours
of data in a neutral speaking style from the target speaker, termed
Neutral. We also train a system on 8 hours of conversational data
from the Source speaker. The cross-speaker style transfer systems
are augmented with conversational data from 4 supporting speakers.
We vary the total amount of available supporting conversational data,
considering 8h, 6h, 3h, and 1h of data. The amount of data is dis-
tributed equally across the 4 conversational speakers. Therefore, we
use 2 hours of data per speaker when considering a total of 8 hours
of supporting data; and we take 15 minutes of data per speaker for
the system augmented with 1 hour of data.

We follow the evaluation methodology described in section 3.1.
Results are summarized in Table 3. We conduct two-sided t-tests
on the MUSHRA scores with a Holm-Bonferroni correction on the
three evaluations. For all listening tests, we observe no statistically
significant differences between the augmented systems. For these
systems, in terms of speaker similarity, we reduce the gap between
source and target speaker systems by 93.3%. As before, augmented
systems outperform the neutral system for style similarity. These
results suggest that the proposed approach is effective with a reduced
amount of supporting data.

3.4. Does it scale?

We validate our proposed approach on 14 different speakers, dis-
tributed across 7 dialects. We restrict the training data of each target
speaker to a maximum of 10 hours of speech in a neutral reading
style. For supporting data in a conversational speaking style, we con-
sider 3 supporting speakers, each contributing with 1 hour of conver-
sational data. Augmented systems are trained following the pipeline
described in section 2. Neutral systems are trained using only the 10
hours of single-speaker neutral data. We evaluate systems in terms
of speaker and style similarity. For speaker similarity, we follow
the same paradigm as described before, although for simplicity we
replace the synthetic source speaker sample with a vocoded sample.
For style similarity, the reference is a sample from the source speaker
in a conversational speaking style, matching the text of the synthetic
utterances. We consider the neutral and augmented systems, and in-
clude as topline the corresponding voice converted sample. For each
evaluation, 100 native speakers rated a set of 150 utterances, with
each participant being assigned no more than 15 MUSHRA screens.

Lang Gend Speaker Sim Style Sim

Src Neut Aug Rel VC Neut Aug Rel

pt-PT F 24.65 74.46 59.17 69.30% 68.89 46.85 65.22 83.35%
M 15.52 78.94 74.10 92.37% 65.75 49.57 62.65 80.84%

pt-BR F 26.17 79.32 67.81 78.34% 69.58 43.25 64.55 80.90%
M 19.55 90.07 77.25 82.00% 70.12 56.41 63.98 55.22%

es-ES F 35.67 76.53 71.94 88.77% 71.14 53.20 65.89 70.74%
M 21.91 79.29 76.39 94.95% 73.41 57.75 67.89 64.75%

es-MX F 47.66 65.67 65.58 99.50% 70.98 59.61 67.91 73.00%
F 49.77 70.40 70.85 102.10% 68.95 63.07 65.61 43.20%

de-DE F 26.40 77.30 73.11 91.77% 69.02 56.64 62.12 44.26%
M 27.48 74.14 72.33 96.10% 64.68 55.73 57.20 16.42%

it-IT F 25.67 69.42 67.25 95.00% 63.23 48.38 55.36 47.00%
M 17.70 81.29 80.39 98.60% 71.22 54.19 59.20 29.42%

fr-CA F 36.87 69.47 68.12 95.85% 65.87 55.57 61.26 55.24%
F 38.10 68.75 67.31 95.30% 64.22 55.64 60.97 62.12%

Table 4. Cross-speaker style transfer for 14 speakers (9 female, 5
male). Results indicate mean MUSHRA score for speaker and style
similarity. “Rel” indicates the relative position of the Augmented
system (“Aug”) to the remaining two competing systems: Neutral
(“Neut”), source speaker (“Src”), or voice converted sample (“VC”).

Results are presented in Table 4. In terms of speaker similarity,
Augmented systems, on average, bridge the gap by 91.42% relative
to the lower-anchor Source Speaker and the upper-anchor Neutral
system (“Rel” column for speaker similarity in Table 4). We observe
that only four systems bridge the gap by less than 90%. For style
similarity, we consider the Neutral system to be the lower-anchor
and the Voice Converted samples to be the upper-anchor. In this
case, Augmented systems bridge the gap, on average, by 57.6%
(“Rel” column for style similarity in Table 4). If we instead con-
sider the Reference sample as our upper-anchor (assumed to be 100),
then the Augmented systems bridge the gap, on average, by 18.5%
over the Neutral samples. We additionally note that the difference
between Augmented and Neutral systems is statistically significant
at the level of p < .01 for all systems, except the German Male
voice. Results indicate that our proposed approach is generally suc-
cessful when transferring speaking style while preserving speaker
identity. Typically, female target speakers perform better than male
target speakers, which is likely due to a difference in speaking style
between supporting and target speakers. Nonetheless, our results are
extremely positive, in particular considering that we use only 3 hours
of expressive data, with only 1 hour from the source speaker.

4. CONCLUSION AND FUTURE WORK

We addressed the problem of cross-speaker style transfer for TTS
using data augmentation. Our approach uses a voice conversion
model to generate high-quality data from a set of supporting expres-
sive speakers. The voice converted samples are pooled with natural
data from the target speaker to train a single-speaker multi-style TTS
system. Results indicate that our proposed method works well when
using a single or multiple supporting speakers, achieving good re-
sults with as little as 1 hour of expressive supporting data. Future
work will focus on the development of the respective voice conver-
sion and text-to-speech architectures. With respect to the TTS model
architecture, we will investigate better disentanglement and stronger
controllability of speaking style from the supporting conversational
data. Additionally, we aim to scale the proposed methodology to
more expressive speaking styles, such as emotions. Overall experi-
mental results show that our proposed approach is efficient and scal-
able to multiple languages when transfer speaking style.
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