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Abstract 
 
In this paper, a method of mapping visual speech between 
different speakers is proposed. This approach adopts 
Hidden Markov Model (HMM) to model the basic visual 
speech element – viseme. Some mapping terms are applied 
to associate the state chains decoded for the visemes 
produced by different speakers. The HMMs configured in 
this way are trained using the Baum-Welch estimation, and 
are used to generate new visemes. Experiments are 
conducted to map the visemes produced by several 
speakers to a destination speaker. The experimental results 
show that the proposed approach provides good accuracy 
and continuity for mapping the visemes.  
 
 
 
1.  Introduction  
 
Among the possible interactions between different media 
types, the interaction between audio and video has attracted 
the attention of the multimedia community in recent years. 
It has been proven with a series of experiments that the 
visual speech information may improve the accuracy and 
robustness of a purely automatic speech recognition (ASR) 
system [1]~[4][8]. Since 1980s, much work has been 
carried out in this area [1]~[9]. Some review on the 
development of visual speech processing can be found in 
[10] and [11]. 
 
In addition to improving the accuracy of speech perception, 
investigation on visual speech can also be applied to audio-
visual mapping, cartoon animation, video games, speaker 
verification and multimedia telephony for the hearing-
impaired. With the fast development of wide-band 
communication and multimedia technology, transmission 
of video that indicate the change of the facial area during 
speech becomes possible. And thus there is increasing need 
for processing the acquired visual speech signals. In this 
paper, we focus on a specific research area of visual speech 
processing – mapping of visual features between different 
speakers during speech. Research on this area serves to 
eliminate speaker-dependency of a visual speech 

recognizer. Some relevant previous work may include the 
construction of speech-driven models. An early facial 
model was proposed by Parke [12]. In 1987, a facial model 
called “Candide” was developed at Linkoping University 
[13]. In 1990, Welch et al studied audio-to-visual mapping 
using HMM for building speech-driven models [14]. The 
approach reported in this paper is different from the work 
mentioned above. Rather than mapping the acoustic speech 
to the visual domain, the basic visual speech elements – 
visemes are mapped across different speakers. The 
computational technique adopted for this purpose is the 
Hidden Markov Model (HMM). The HMM with mapping 
terms is first configured according to the temporal features 
of the visemes, and then trained to associate a source 
viseme with a target viseme. After adjusting the symbol 
emission process to guarantee the continuity of the output 
symbol sequences, new visemes are generated using the 
HMM thus obtained.  
 
There are few researches have been conducted on cross-
speaker viseme mapping in literature. As a result, we only 
analyzed the performance of the proposed approach but did 
not compare it with the previous results. The visemes 
produced by three speakers were mapped to a destination 
speaker in our experiment. The reproduced visemes can be 
relatively accurately identified by the viseme models of the 
destination speaker and they demonstrate good continuity 
after converted into video frames.  
 
 
2.  Viseme Categorization   
 
In visual speech domain, the basic visual speech element is 
referred to as viseme. It is the smallest distinguishable 
visual speech unit. A viseme indicates a short period of lip 
movement that is repeated in different articulations. Like 
phonemes which are the basic building blocks of sound of 
a language, the visemes are the basic constituents for the 
visual representations of words.  
 
It is commonly agreed that the relationship between 
phonemes and visemes is a many-to-one mapping. For 
example, although phonemes /b/, /m/, /p/ are acoustically 
distinguishable sounds, they are grouped into one viseme 
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category as they are visually confusable, i.e. all are 
produced by a closed mouth shape. The visemes are 
grouped according to the similarities between the visual 
features of phonemes or phoneme-like sound productions. 
An early viseme grouping was suggested by Binnied et al 
[15]. Viseme grouping in [16] was proposed by analyzing 
the stimulus-response matrices of the acquired visual 
signals. The MPEG-4 multimedia standards adopt the same 
viseme grouping strategy for face animation, in which the 
visemes are clustered into 14 groups as shown in Table 1.  
 
 
 
 

Viseme 
Number 

Corresponding 
Phonemes Examples 

0 none (silence and relax) 
1 p, b, m push, bike, milk 
2 f, v find, voice 
3 T, D think, that 
4 t, d teach, dog 
5 k, g call, guess 
6 tS, dZ, S check, join, shrine 
7 s, z set, zeal 
8 n, l note, lose 
9 r read 

10 A: jar 
11 e bed 
12 I tip 
13 Q shock 
14 U good 

 
 
By modeling and identifying the visemes, it is expected to 
recognize any word that can be broken up into a sequence 
of visemes. 
 
 
3.  Viseme Classifier   
 
3.1 Feature extraction from the video 
 
In our experiments, the raw data indicating a viseme is 
video clip that is sampled at 25 frames per second. The 
image frame of the video reveals the lip area of the speaker 
during viseme production, which is shown in Fig. 1. 
Eleven geometric measures are extracted from the raw 
image to build a feature vector. These geometric measures 
give the thickness, position and curvature of the lip. They 
are chosen as they uniquely determine the lip shape and 
best characterize the dynamics of lip movement. 
 
The collected feature vectors are put through 
normalization, principal component analysis (PCA) and 
quantization. They are finally clustered into groups using 
K-means algorithm. For the experiments conducted in this 
paper, 128 clusters (code words) are used in the vector 
database (code book) for each speaker. 

 
 
3.2 Review of HMM principles 
 
The visemes are modeled by the popular probabilistic 
framework of Hidden Markov Models (HMMs). HMM is 
basically a quantization of a time process into discrete 
states. For an T-length observation sequence, say 

),,( 21 T
T xxxx L= , it is assumed to be emitted from a 

sequence of hidden states ),,( 21 T
T ssss L=  that is 

generated by an HMM, where N
i Ss ∈  and 

},,{ 21 N
N SSSS L=  is the state set. If the output takes 

discrete and finite values, say },,{ 21 M
M OOOO L= , an N-

state-M-symbol HMM ),,( BAπθ  is determined by the 
following three components:  
 
1.) The probabilities of the initial states:  

)1()]([][ 111 NiSsP NiNi ≤≤=== ××ππ , where s1 is the 
first state in the state chain. 

2.) The state transition matrix :  
NNitjtNNij SsSsPaA ×+× ==== )]|([][ 1  ),1( Nji ≤≤ , 

where st+1 and st are the t+1-th and the t-th states.  
3.) The symbol emission matrix :  

)1,1()]|([][ MjNiSOPbB MNijMNij ≤≤≤≤== ×× . 
 
If the above parameters are properly trained, the HMM can 
well model the temporal features of the observation 
sequence. One of the popular approaches of training the 
HMM is the Baum-Welch estimation. For ),,( BAπθ , we 
define the forward variables 

)|,,,()( 21 θα ittt SsxxxPi == L  and backward variables 
),|,,()( 21 θβ itTttt SsxxxPi == ++ L   for xT, the parameters 

of the HMM are then estimated through the following 
Expectation-Maximization (EM) recursion [17].  

   (a)             (b) 
Fig. 1  (a) original image (b) extracted image 
1: thickness of the upper bow 
2: thickness of the lower bow 
3: thickness of the lip corner 
4: position of the lip corner 
5: position of the upper lip 
6: position of the lower bow 
7: curvature of the upper-exterior boundary 
8: curvature of the lower-exterior boundary 
9: curvature of the upper-interior boundary 
10: curvature of the lower-interior boundary 
11: length of the tongue (if visible) 

Table 1. The visemes defined in MPEG-4 Standards 
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where Om is the m-th symbol in the symbol set. After a 
sufficient number of training epochs, a local maximum 
point of the likelihood )|( θTxPP =  is attained. 
 
3.3 HMM modeling of visemes 
 
Our study on human speaking habit reveals that while a 
speaker is articulating single phoneme (or producing a 
viseme), the lip can be assumed to experience three phases. 
The first is the initial phase, which is the course from the 
mouth is closed and relaxed to get ready to make the 
sound. During this phase, there is usually no sound 
articulated and the lip is characterized with sharp changes. 
The next is the articulation phase, which is the course that 
the lip poses to make the sound until the sound is made. 
The change of the lip shape during this phase is not so 
violent as the previous one and there is usually short stable 
moment in the phase. The third is the end phase. The 
mouth will restore from the articulation state to relaxed 
state. Fig. 2 illustrates the three phases and the lip shapes 
within each of them while the speaker is articulating the 
phoneme /u/. 

 
The HMM used for modeling viseme is the three-state left-
right HMM as shown in Fig. 3. The states of the HMM are 
denoted as the initial state, articulation state and end state.  
 
The initial values of the three states are configured 
according to the statistical features of the three phases of 

viseme production, i.e. setting the symbol emission 
probabilities of the initial state, articulation state and end 
state  approximate to that of the initial phase, articulation 
phase and end phase [18][19].  
 

 
4.  Viseme Mapping 
 
The facial features are different from person to person. The 
visual speech such as viseme thus shows strong speaker-
dependency. Our task is to map the viseme produced by 
one speaker (source speaker) to the same viseme produced 
by another speaker (destination speaker). For ease of 
subsequent explanation, we refer the viseme models 
(HMMs) of the source speaker as the source models and 
the viseme models of the destination speaker as the 
destination models. 
 
4.1 Mapping terms of the HMMs 
 
Assume that },,{ 21

s
M

ss OOO L  and },,{ 21
s
N

ss SSS L  are the 
symbol set and state set for the source models, and 

},,{ '21
d
M

dd OOO L  and },,{ '21
d
N

dd SSS L  are the symbol set 
and state set for the destination models, where N is the 
state number and M is the symbol number of the source 
model, and N’ and M’ are those of the destination model. 
For the k-th viseme as illustrated in Table 1, a source 
model s

kθ  and a destination model d
kθ  are configured with 

the approach as mentioned in 3.3. s
kθ  is then trained using 

the Baum-Welch estimation.  
 
Given a training sample of viseme k (k=1,2,…14) produced 
by the source speaker – ),,( 21

s
T

ss ooo L  (it is referred to as 
the source sequence), where s

io  denotes the i-th observed 
symbol in the sequence, the optimal state chain 

),( 21
s
T

ss sss L  is decoded using the Viterbi search [17], 
where s

is  stands for the i-th state in the decoded state 
chain. An observation sequence ),,( 21

d
T

dd ooo L  (destination 
sequence) of T-length is selected from the training samples 
of viseme k of the destination speaker. The optimal state 
chain ),( 21

d
T

dd sss L  for the destination speaker is also 
decoded using the Viterbi search, where d

io  and d
is  have 

the same meaning as in the source model. The state chains 
of the source model and destination model are associated 
with each other by the mapping terms c(1), c(2), c(3) … as 
shown in Fig. 4. 

a. 

b.   

c. 

Fig. 2. The three phases during viseme production  
(a)  Initial phase  (b)  Articulation phase  (c)  End 
phase 

…

… …

… 

Initial 

Fig. 3. The three-state left-right HMM framework 
used for modeling viseme 

Articulation End 
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state chain ),( 21
d
T

dd sss L  can be looked as the symbols 
emitted by ),( 21

s
T

ss sss L . By combining s
to  and sd

t as the t-
th observation symbol of the source sequence, training of 
the source model thus becomes the process of adjusting the 
state transition matrix and the symbol emission matrix to 
maximize the likelihood )|,,( 2211

s
k

s
T

d
T

sdsd osososP θ+++ L . 
A uniform distribution is assigned to the initial values of 
the coefficients in C.  
 

Ncij /1=     )',2,1,,2,1( NjNi LL ==  (3) 
 
The Baum-Welch estimation is carried out again for this 
purpose. After a sufficient number of EM iterations, the 
maximum-likelihood source model for dk – d

kθ , is obtained. 
The mapping terms are the “state emission” probabilities 

)|( s
i

d
j SSP  (i=1,2,…N, j=1,2,… N’).  

 
5.2 Viseme generation 
 
With the source model, a viseme produced by the source 
speaker is mapped to a destination sequence with the 
following steps.  
 
1.) Assume that ),,( 21

s
T

ss yyyy L=  is a source sequence 
indicating the production of viseme k. The optimal state 
chain ),( 21

s
T

ss sss L  of the source model is decoded using 
the Viterbi search.  

2.) A state chain ),( 21
d
T

dd sss L of the destination model, 
together with its likelihood, is generated using the mapping 
terms.  
3.) An observation sequence ),,(' 21

s
T

ss yyyy L=  is then 
generated by the state chain ),( 21

d
T

dd sss L .  
 
The mapping of the source sequence to the destination 
sequence is thus realized. However, the above approach 
does not consider the continuity of the generated 
destination sequence. The lip shape may change abruptly in 
the sequence. To solve this problem, some restricts are 
added to the destination model.  
 
For the destination model d

kθ , at time t, if the decoded state 
st= Si (i=1,2,…N’) and the symbol obtained at time t-1 is 
ot-1, the symbol emission coefficient is changed as in (4). 
 

µ

),( 1)|(
)|('

jt OoE
ij

ij

eSOb
SOb

−−

=   (4) 

where ),( 1 jt OoE −  is the Euclidean distance between ot-1 

and Oj and µ is a normalization factor to make 
)|(' ij SOb ),2,1( Mj L=  a distribution. With such 

modification, the symbol obtained at time t – ot, is more 
likely to be close to ot-1 and thus the continuity of the 
destination viseme is improved.  
 
 
5.  Experiments 
 
Experiments are conducted to test the performance of the 
proposed strategy. The visemes produced by three speakers 
are mapped to a destination speaker. The accuracy of such 
mapping is first studied. We define that, if the mapped 
destination viseme can be correctly identified by a viseme 
model, a correct classification is made; otherwise an error 
occurs. The average recognition rates are listed in Table 2. 
For example, θ1 is the average recognition rate of the 
viseme samples of the destination speaker recognized by 
the viseme models of the destination speaker, and θ2 
denotes the mapped visemes (Speaker 1 to the destination 
speaker) recognized by the viseme models of the 
destination speaker. The results show that θ1 is close to θ2. 
It indicates the generated visemes are similar to the actual 
visemes produced by the destination speaker.  
 
 
 
 

 
 
The continuity of the obtained sequence is also 
investigated. The standard we applied is relatively 

θ1/θ2 Speaker 1 Speaker 2 Speaker 3 
Destination 

Speaker 0.80/0.75 0.80/0.75 0.80/0.65 

ss
1
 

c(1) 

Source viseme model 

Destination viseme model 

ss
2
 ss

3
 ss

4 ss
5

 

c(2) c(3) c(4) c(5) 

sd
1
 sd

2
 sd

3
 sd

4
 sd

5
 

os
1 os

2 os
3 os

4 os
5 

od
1 od

2 od
3 od

4 od
5 

… 

… 

Fig. 4  Mapping of the source model to the 
destination model  

Table 2. The average recognition rates scored for 
the actual viseme samples and the mapped visemes 
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subjective. We map the vector sequence indicating viseme 
production back to the video frames. The playback of the 
video frames shows that the movement of the lip is most of 
the time stable and reasonable.  
 
 
6.  Conclusion 
 
The strategy proposed in this paper is a simple method of 
mapping visemes between two speakers. By training some 
mapping terms for the HMM, a viseme produced by the 
source speaker can be mapped to the destination speaker. 
The state chain of the source speaker is loosely associated 
with that of the destination speaker. The mapped visemes 
can thus be generated with great flexibility. Experiments 
show that the obtained visemes can be accurately identified 
by the models of the destination speaker. And by adding 
some restrictions to the symbol emission coefficients of the 
viseme model, the continuity of the mapped viseme is also 
guaranteed.  
 
 
References 
 
[1] E. D. Petajan, “Automatic lipreading to enhance speech 
recognition,” Ph.D thesis, University of Illinois at Urbana-
Champaign, 1984  
 
[2] A. Adjoudani and C. Benoit, “On the Integration of 
Auditory and Visual Parameters in an HMM-based ASR,” 
Speechreading by Humans and Machines, Edited by D. G. 
Stork and M. E. Hennecke, NATO ASI Series, pp. 461-
472, 1996 
 
[3] P. L. Silsbee and A. C. Bovik, “Computer lipreading 
for improved accuracy in automatic speech recognition,” 
IEEE Trans. on Speech and Audio Processing, Vol. 4 Issue 
5, pp. 337 -351, Sep 1996  
 
[4] M. Tomlinson, M. Russell and N. Brooke, “Integrating 
audio and visual information to provide highly robust 
speech recognition,” IEEE Int. Conf. on Acoustics, Speech, 
and Signal Processing, Vol. 2, pp. 821-824, 1996   
 
[5] A. J. Goldschen, “Continuous automatic speech 
recognition by lipreading,” Ph.D dissertation, George 
Washington University, Washington, Sep. 1993 
 
[6] B. P. Yuhas, M. H. Goldstein and T. J. Sejnowski, 
“Integration of acoustic and visual speech signals using 
neural networks,” IEEE Communication Magzine, pp. 65-
71, 1989 
 
[7] C. Bregler and S. Omohundro, “Nonlinear manifold 
learning for visual speech recognition,” IEEE International 
Conference on Computer Vision, pp. 494-499, 1995 
 
[8] P. Silsbee and A. Bovik, “Computer Lipreading for 
Improved Accuracy in Automatic Speech Recognition,” 

IEEE Trans. Speech and Audio Processing, Vol. 4, No. 5, 
pp. 337-351, 1996 
 
[9] D. G. Stork and H. L. Lu, “Speechreading by 
Boltzmann zippers,” Machines that learn, Snowbird, UT, 
1996 
 
[10] Tsuhan Chen, “Audiovisual Speech Processing,” 
IEEE Signal Processing Magazine, Jan. 2001 
 
[11] D. G. Stork and M. E. Hennecke, “Speechreading: An 
overview of image processing, feature extraction, sensory 
integration and pattern recognition techniques,” The 
Second Int. Conf. on Automatic Face Gesture Recognition, 
pp. xvi-xxvi, Oct. 1996 
 
[12] F. I. Parke, “Parameterized models for facial 
animation,” IEEE Computer Graphics and Applications, 
pp. 61-68, Nov. 1982. 
 
[13] M. Rydfalk, “CANDIDE: A parameterized face,” 
Linkoping University, Sweden, Report LiTH-ISY-I-0866, 
Oct. 1987 
 
[14] W. J. Welsh, A. D. Simon, R. A. Hutchinson and S. 
Searby, “A speech-driven ‘talking-head’ in real time,” 
Proceedings of Picture Coding Symposium, pp. 7.6-1 - 7.6-
2, Cambridge USA, 1990 
 
[15] C. Binnie, A. Montgomery and P. Jackson, “Auditory 
and visual contributions to the perception of consonants,” 
Journal of Speech Hearing and Research, Vol. 17, pp. 619-
630, 1974 
 
[16] E. Owens and B. Blazek, “Visemes Observed by 
Hearing Impaired and Normal Hearing Adult Viewers,” 
Journal of Speech Hearing and Research, Vol 28, pp. 381-
393, 1985 
 
[17] L. R. Rabiner “A tutorial on Hidden Markov Models 
and selected applications in speech recognition,” Proc. 
IEEE, Vol. 77, No. 2, pp 257-286, Feb, 1989 
 
[18] Say Wei Foo, Liang Dong, “Recognition of Visual 
Speech Elements Using Hidden Markov Models,” 
Advances in Multimedia Information Processing, The 3rd 
IEEE Pacific Rim Conf. on Multimedia, pp. 607-614, 2002 
 
[19] Say Wei Foo, Yong Lian, Liang Dong, “A two-
channel training algorithm for hidden markov model to 
identify visual speech elements”, Intel. Symposium on 
Circuits and Systems, (ISCAS '03), Vol. 2, pp. 572 -575, 
2003  
 
[20] Say Wei Foo, Liang Dong, “A boosted multi-HMM 
classifier for recognition of visual speech elements”, IEEE 
Intel. Conf. on Acoustics, Speech, and Signal Processing, 
(ICASSP '03). 2003, Vol. 2, pp. 285 -288, 2003 


