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Deciphering the genomic regulatory code of enhancers is a key challenge in biology because this code underlies cellular

identity. A better understanding of how enhancers work will improve the interpretation of noncoding genome variation

and empower the generation of cell type–specific drivers for gene therapy. Here, we explore the combination of deep learn-

ing and cross-species chromatin accessibility profiling to build explainable enhancer models. We apply this strategy to deci-

pher the enhancer code in melanoma, a relevant case study owing to the presence of distinct melanoma cell states. We

trained and validated a deep learning model, called DeepMEL, using chromatin accessibility data of 26 melanoma samples

across six different species. We show the accuracy of DeepMEL predictions on the CAGI5 challenge, where it significantly

outperforms existing models on the melanoma enhancer of IRF4. Next, we exploit DeepMEL to analyze enhancer architec-

tures and identify accurate transcription factor binding sites for the core regulatory complexes in the two different mela-

noma states, with distinct roles for each transcription factor, in terms of nucleosome displacement or enhancer activation.

Finally, DeepMEL identifies orthologous enhancers across distantly related species, where sequence alignment fails, and the

model highlights specific nucleotide substitutions that underlie enhancer turnover. DeepMEL can be used from the Kipoi

database to predict and optimize candidate enhancers and to prioritize enhancer mutations. In addition, our computational

strategy can be applied to other cancer or normal cell types.

[Supplemental material is available for this article.]

A cell’s phenotype arises from the expression of a unique set of

genes, which is regulated through the binding of transcription fac-

tors (TFs) to cis-regulatory regions, such as promoters and enhanc-

ers. Deciphering gene regulatory programs entails mapping the

network of TFs and cis-regulatory regions that govern the identity

of a given cell type, as well as understanding how the specificity

of such a network is encoded in the DNA sequence of genomic en-

hancers. Profiling accessible chromatin via DNase I hypersensitive

sequencing (DNase-seq) or via the assay for transposase-accessible

chromatin using sequencing (ATAC-seq) represents a useful ap-

proach for identifying putative enhancers (Song and Crawford

2010; Buenrostro et al. 2013; Klemmet al. 2019). Indeed, active en-

hancers are typically depleted of one or more nucleosomes owing

to the binding of TFs. Initial changes inDNAaccessibility canbe fa-

cilitated througha special classofTFs thatbindwithhighaffinity to

their recognition sites and thathave a long residence timeat the en-

hancer, sometimes referred to as pioneer TFs (Zaret and Carroll

2011; Klemmet al. 2019). By displacingnucleosomes or thermody-

namically outcompeting nucleosome binding, they allow other

TFs to cobind, thereby further stabilizing the nucleosome-depleted

region and/or actively enhancing transcription of target genes

(Grossman et al. 2018; Jacobs et al. 2018; Dodonova et al. 2020).

Because the presence and architecture of TF binding sites

within enhancers determines which TFs can bind with high affin-

ity, understanding this “enhancer logic” can help interpret the

functional role of enhancers within a gene regulatory network.
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Several techniques exist to study the enhancer code, including (1)

motif discovery tools (Bailey et al. 2009;Heinz et al. 2010; Thomas-

Chollier et al. 2011, 2012; Janky et al. 2014; Imrichová et al. 2015);

(2) comparative genomics (Ballester et al. 2014; Prescott et al. 2015;

Villar et al. 2015); (3) genetic screens (Gasperini et al. 2019; Kircher

et al. 2019); and (4) machine learning techniques (Park and Kellis

2015). In particular, the latter has seen a strong boost in recent

years with the advent of large training sets derived from ge-

nome-wide profiling. Three pivotal methods based on deep learn-

ing include DeepBind (Alipanahi et al. 2015), DeepSEA (Zhou and

Troyanskaya 2015), and Basset (Kelley et al. 2016), the first convo-

lutional neural networks (CNNs) applied to genomics data (Eraslan

et al. 2019). Since their emergence in the genomics field, machine

learning techniques, and especially CNNs, have been applied to

model a range of regulatory aspects, including cross-species en-

hancer predictions (Min et al. 2016; Quang and Xie 2016; Chen

et al. 2018), TF binding sites (Wang et al. 2018; Avsec et al.

2020), DNAmethylation (Angermueller et al. 2017), and 3D chro-

matin architecture (Schreiber et al. 2017).

Deciphering gene regulation and the underlying enhancer

code is not only important during dynamic processes such as de-

velopment, but also in disease contexts such as cancer, where

gene regulatory networks are typically misregulated owing to mu-

tations. Particularly in melanoma, a type of skin cancer that devel-

ops frommelanocytes, gene expression is misregulated and highly

plastic (Shain and Bastian 2016; Rambow et al. 2019). This gives

rise to two main melanoma cell states: the melanocytic (MEL)

state, which still resembles the cell of origin, expressing high levels

of the melanocyte-lineage specific transcription factors MITF,

SOX10, and TFAP2A, as well as typical pigmentation genes such

as DCT, TYR, PMEL, and MLANA; and the mesenchymal-like

(MES) state, in which the cells are more invasive and therapy resis-

tant, expressing high levels of genes involved in TGFB signaling

and epithelial-to-mesenchymal transition (EMT)-related genes

(Hoek et al. 2006, 2008; Verfaillie et al. 2015; Rambow et al.

2019; Wouters et al. 2020). These transcriptomic differences

have also been studied at the epigenomics level, with AP-1 and

TEAD factors as master regulators of the MES state and binding

sites for SOX10 and MITF significantly enriched in MEL-specific

regulatory regions (Verfaillie et al. 2015; Bravo González-Blas

et al. 2019; Wouters et al. 2020). However, it remains unclear

how these regulatory states are encoded in particular enhancer ar-

chitectures and whether such architectures are evolutionary con-

served. Besides human cell lines and human patient–derived

cultures, several animal models have been established in melano-

ma research, including mouse, pig, horse, dog, and zebrafish

(Egidy et al. 2008; Seltenhammer et al. 2014; van der Weyden

et al. 2016; van Rooijen et al. 2017; Segaoula et al. 2018;

Prouteau and André 2019). Although these models are widely

used, it is unknown whether their enhancer landscapes and regu-

latory programs are conserved with human. Here, we take advan-

tage of these animal model systems and combine cross-species

chromatin accessibility profiling with deep learning, to investigate

enhancer logic in melanoma.

Results

Melanoma chromatin accessibility landscapes are conserved

across species

We profiled chromatin accessibility using ATAC-seq on a collec-

tion of melanoma cell lines across six species, for a total of 26 sam-

ples (Fig. 1A). These include 16 human patient–derived cultures

(MM lines) (Gembarska et al. 2012; Verfaillie et al. 2015), one

mouse cell line (Dankort et al. 2009), primary melanoma cells

from the pig melanoma model MeLiM (MeLiM) (Egidy et al.

2008), two horse melanoma lines derived from a Grey Lipizzaner

horse (HoMel-L1) and from an Arabian horse (HoMel-A1)

(Seltenhammer et al. 2014), two dog melanoma cell lines from

oral and uveal sites (Dog-OralMel-18249 and Dog-IrisMel-14205,

respectively; Cani-DNA BRC: https://dog-genetics.genouest.org),

and four melanoma lines established from zebrafish (ZMEL1,

EGFP-121-1, EGFP-121-5, and EGFP-121-3) (White et al. 2008,

2011). Per sample, between 65,475 and 176,695 ATAC-seq peaks

were called, with distinct levels of conservation of accessibility

across the species (Fig. 1A; Supplemental Fig. S1A). The difference

in the number of peaks across the samples is attributable, on the

one hand, to genome size (Supplemental Fig. S1B), and on the oth-

er hand, to data quality (measured as the fraction of reads in peaks

[FRiP]) (Supplemental Fig. S1C).

Unsupervised clustering of the 16 human lines revealed two

distinct groups (Supplemental Fig. S1D), which correspond to

the two main cell states in humanmelanoma, that is, the melano-

cytic state (MEL) andmesenchymal-like state (MES), as was further

confirmed for most of the cell lines by previously generated

RNA-seq data (Supplemental Fig. S1E; Verfaillie et al. 2015) and

corroborated by previous studies using epigenomics data (Verfail-

lie et al. 2015; Wouters et al. 2020). Indeed, regulatory regions

near MEL-specific genes such as SOX10 are accessible in human

lines in the MEL state (MM001, MM011, MM031, MM034,

MM052, MM057, MM074, MM087, MM118, MM122, and

MM164), whereas they are closed in MES melanoma lines

(MM029, MM099, MM116, MM163, and MM165) (Fig. 1B). As

in Wouters et al. (2020), we observed heterogeneity between sam-

ples of the MEL state (Supplemental Fig. S1D).

To enable the comparison of chromatin accessibility between

human and other species, we first identified regulatory regions

that are alignable (i.e., have a high sequence similarity) between

species using the liftOver tool (at least 10% of bases must remap)

(Meyer et al. 2012). When such an alignable region contains an

ATAC-seq peak in the compared species, it is referred to as a “con-

served accessible” region. Between 1.1% and 40.9% of the ATAC-

seq regions in non-human lines were conserved accessible in

human (Fig. 1C), and between 0.9% and 18.4% of the human peaks

were conserved accessible in the other species (Supplemental Fig.

S1F). Accordingly, we identified 303,392 alignable and 10,592 con-

served accessible regions across all mammalian species. This num-

ber decreases when including zebrafish, to 29,619 alignable

regions and, only 116 conserved accessible regions. Nearly half

of the 10,592 conserved accessible mammalian regions were pro-

moters within 1 kb of a transcription start site (Supplemental

Fig. S1G). Indeed, high conservation of proximal promoters has

previously been reported (Villar et al. 2015). In each of the mam-

malian species, the 10,592 conserved accessible regions were

more accessible compared to all ATAC-seq regions; in addition,

they show a higher ChIP-seq signal for acetylation of histone H3

at lysine 27 (H3K27ac) in human, a mark for active regulatory re-

gions (Supplemental Fig. S1H,I; Creyghton et al. 2010), and higher

sequence conservation compared to alignable regions as measured

by phastCons and phyloP (Supplemental Fig. S1J; Siepel 2005;

Pollard et al. 2010). Nevertheless, although ATAC-seq regions are

nucleosome depleted and often bound by several TFs, they are

not necessarily active enhancers, because accessibility does not

directly translate to enhancer activity (Shlyueva et al. 2014).
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Next, we examined whether the MEL and MES melanoma

states are conserved in the other species of our cohort. Clustering

all mammalian samples based on the accessibility of the 303,392

alignable regions (Supplemental Fig. S1K), or of all samples (includ-

ing zebrafish) using the 29,619 alignable regions (Fig. 1D), revealed

two axes of variation between the samples, namely (1) the evolu-

tionary variation between species and (2) the distinction between

themelanoma states. All humanMEL samples are clustered togeth-

erwithnineof the 10non-human lines, indicating thatmost of the

non-human cell lines are epigenomically similar to the human

MEL lines. Conversely, the dog cell line Dog-IrisMel-14205 clus-

tered together with the human MES samples, which indicates

thatDog-IrisMel-14205belongs to theMESstate.This classification

of melanoma samples was reflected in their accessibility at known

MEL and MES regulatory regions such as the intronic enhancer of

MLANA, a MEL-specific gene involved in melanosome biogenesis

(De Mazière et al. 2002), and an enhancer upstream of MMP3, a

gene that increases metastatic potential in melanoma cell lines

(Fig. 1E; Shoshan et al. 2016). Classifying the cross-species samples

based on a principal component analysis (PCA) of only the con-

served accessible regions (i.e., without species-specific or clade-spe-

cific peaks) clearly revealed the MEL-MES distinction, whereas the

species variation was less outspoken (Supplemental Fig. S1L,M).

In conclusion, by using ATAC-seq on a panel of 26melanoma

lines across six species, conserved accessible regulatory regions

could be identified. These regions allowed clustering of the mela-

noma samples into two groups that correspond to the two main

melanoma cell states, indicating conservation of the MESmelano-

ma state in dog and theMELmelanoma state in pig, mouse, horse,

dog, and even zebrafish melanoma samples.

Conservation of transcription factor motifs in state-specific

enhancers

Next, we investigated whether TF binding motifs that are specific

to the MEL and MES states are conserved across species. To this

end, we performed differential motif enrichment between MEL

and MES accessible regions for human and dog, because these

were the two species in our cohort for which cell lines of both

states were identified above. Differential peak calling (log2FC>

2.5 and PAdj<0.0005), followed by motif enrichment using

HOMER (Heinz et al. 2010), revealed a highly similar enrichment

of SOX, TFAP2 family, E-box, RUNX, and ETS TF bindingmotifs in

both the human and dog MEL-specific peaks (Fig. 2A,B; for com-

plete HOMER output, see Supplemental Table S1). The enriched

motifs of the TFAP2 family can most likely be linked to TFAP2A

because this is a master regulator in human melanocytes and mel-

anoma (Seberg et al. 2017). Similarly, the observed E-box and SOX

motifs most likely represent MITF and SOX10, respectively,

because they are among the previously reported master regulators

in humanMEL lines (Hoek et al. 2006; Verfaillie et al. 2015; Bravo

González-Blas et al. 2019; Wouters et al. 2020). Likewise, motif

A B C

D E

Figure 1. Comparative epigenomics reveals conservation of two main melanoma states. (A) Evolutionary relationship between the six studied species,
represented by a phylogenetic tree (NCBI taxonomy tree). ATAC-seq profiles of the 26 melanoma cell lines are shown for three regulatory regions.
(B) ATAC-seq profiles of the human melanoma lines for the SOX10 locus. Lines are colored by the melanocytic (MEL, in blue) or mesenchymal-like
(MES, in orange) melanoma state. (C) Total number of ATAC-seq regions observed across all samples of a species are colored based on whether they
are not alignable, alignable, or conserved accessible in human. (D) PCA clustering based on the accessibility of the 29,619 alignable regions across all
six species. (E) ATAC-seq profiles of MEL and MES lines of different species for an intronic MLANA enhancer and the upstream region of MMP3.
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enrichment in theMES regions is very similar between human and

dog, revealing AP-1 and TEADmotifs as most highly enriched (Fig.

2A,B), corroborating earlier findings (Verfaillie et al. 2015).

Together, these observations indicate that the MEL and MES mel-

anoma cell states are conserved in dog and that they are likely gov-

erned by the same master regulators, based on the concordance of

motif enrichment.

To further verify the importance of the MEL-specific master

regulators in MEL cell lines of the remaining four species, we ap-

plied a different strategy because we could not contrast MEL and

MES lines for horse, pig, mouse, and zebrafish. We analyzed

9732 accessible regions that are conserved accessible across all

mammalian MEL lines to identify conserved TF binding sites.

We scanned these regions using the cisTarget motif collection

(v8) (Herrmann et al. 2012; Janky et al. 2014; Imrichová et al.

2015) containing 20,003 TF position-weight matrices (PWMs)

and used a branch length score (BLS) to calculate the level of evo-

lutionary conservation of each TF binding motif (Fig. 2C), a

A B

C D E

Figure 2. Conservation of binding motifs of master regulators of MEL and MES melanoma states. (A,B) Heatmap of differential ATAC-seq regions when
comparing human MEL versus human MES lines (A) and the MEL dog line “Dog-OralMel-18249” versus the MES dog line “Dog-IrisMel-14205” (two bi-
ological replicates each) (B), colored by normalized ATAC-seq signal. Enriched TF binding motifs in the differential peaks were identified via HOMER (Heinz
et al. 2010), and the first logo of enriched TF families is shown. The ratio of the percentage of target and background sequences with the motif is indicated
between brackets, as well as the rank of the TF class within the HOMER output (#). (C ) Schematic overview of cross-species motif analysis using the branch
length score (BLS) as a measure for the evolutionary conservation of a motif hit across conserved accessible regions. The BLS was summed across a set of
conserved accessible regions. (D,E) Histogram of the normalized summed BLS score for 20,003 motifs on 9732 conserved accessible regions across the
mammalian MEL lines (D) and on 113 conserved accessible regions across MEL lines of all six species (E). The first hit of the top recurrent TF binding motifs
within the top 4% conserved motifs is indicated as a cross and is accompanied by the logo of the motif.
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strategy applied before in other systems (Stark et al. 2007; Jacobs

et al. 2018). Among the 4% most conserved motifs were SP1, ETS,

SOX, CTCF,MITF, and TFAP2Amotifs (Fig. 2D). The top conserved

motifs were members of the SP/KLF TF family, which bind to GC-

rich motifs in promoters (Dynan and Tjian 1983). Indeed, 47% of

the 9732 conserved accessible regions in mammalian MEL lines

are proximal promoters (≤1 kbp from TSS). BLS scoring on the re-

maining 5196 more distal conserved accessible regions revealed

similar highly conserved motifs, except for SP/KLF TF family mo-

tifs, indicating that distal regions, such as enhancers, mostly con-

tain the state-specific TF binding motifs (Supplemental Fig. S1N).

In the 113 conserved accessible regions across the MEL cell lines

across all six species, BLS scoring again revealed SOX, ETS, MITF,

and TFAP2A motifs among the most conserved motifs (Fig. 2E).

In conclusion, two independent strategies of motif analysis

suggest conservation of TF binding sites for known melanoma

master regulators, with conserved SOX10, MITF, TFAP2A, and

ETS TF family motif enrichment in MEL enhancers across all six

studied species.

Deep neural network DeepMEL reveals nucleotide-resolution

enhancer logic

Although motif enrichment can predict candidate regulators, we

sought to build a more comprehensive model of the MEL enhanc-

ers, which would allow cross-species predictions and in-depth

analysis of enhancer architecture. To this end, we trained a deep

learning (DL) model on the human ATAC-seq data. First, to con-

struct an unsupervised training set, we clustered all 339,099 hu-

man ATAC-seq peaks using cisTopic—a probabilistic framework

to analyze scATAC-seq data that can also be applied to boot-

strapped bulk ATAC-seq data (Bravo González-Blas et al. 2019;

Methods)—into 24 “topics” or sets of coaccessible regions (Fig.

3A; Supplemental Fig. S2A,B). This provided a nuanced classifica-

tion, with topic 4 and topic 7 representing theMEL- andMES-spe-

cific enhancers, respectively, being accessible across all MEL or

MES samples (Fig. 3A; Supplemental Fig. S2C). In addition, we

found two topics with regions that are generally accessible across

all cell lines (topic 1 and topic 19) (Fig. 3A; Supplemental Fig.

S2C). These ubiquitously accessible regions are highly enriched

for proximal promoters (Supplemental Fig. S2D) and for known

promoter-specific TF binding motifs linked to SP and NFY TF fam-

ilies (Supplemental Fig. S2C; Dynan and Tjian 1983; Maity and de

Crombrugghe 1998). Other topics were more specific to one or a

small group of cell lines (Fig. 3A). We verified the biological rele-

vance of these topics byGeneOntology (GO) enrichment of flank-

ing genes using GREAT (McLean et al. 2010). Genes near topic 4

regions are significantly enriched for GO terms such as pigmenta-

tion (FDR=1.95×10−8) and neural crest cell differentiation (FDR=

4.26×10−7), whereas genes near topic 7 regions were enriched for

GO terms involved in cell–cell adhesion (1.56×10−13). Motif dis-

covery on the top regions assigned to each topic confirmed enrich-

ment of SOX, ETS, TFAP2A, and MITF motifs in the MEL topic

regions (topic 4) and AP-1 in the MES topic (topic 7)

(Supplemental Fig. S2C). An example topic 4 region in the promot-

er of the SOX10 target gene MIA (Graf et al. 2014) is shown in

Figure 3B, as well as two topic 7 regions upstream of SERPINE1, a

gene expressed in metastatic melanoma (Klein et al. 2012).

Using the 24 topics as classes, we trained a multiclass, multi-

label classifier using a neural network, called “DeepMEL” (Fig. 3C).

As input, we used the forward and reverse complement of 500-bp

sequences centered on the ATAC-seq summit. As topology, we

used the DanQ CNN-RNN hybrid architecture (Quang and Xie

2016) consisting of four main layers: a convolution layer to dis-

cover local patterns in sequential data, followed by a max-pooling

layer to reduce the dimensionality of the data and generalize the

model effectively, a bidirectional recurrent layer (LSTM) to detect

long-range dependencies of the local patterns discovered in the

first layer, and finally a fully connected (dense) layer just before

the output layer to help the classification after the feature extrac-

tion layers (Fig. 3C). Note that several hyperparameters, including

the number and size of the convolutional filters and the length of

the input DNA sequence, were optimized to yield the final model

(Supplemental Fig. S3; Supplemental Note). After successful train-

ing of DeepMEL—area under the receiver operating characteristic

curve (auROC)= 0.863 and area under the precision recall curve

(auPR) = 0.374 on test data for topic 4 regions (Fig. 3D,E;

Supplemental Fig. S4A)—we used the weights of the neurons

from the convolutional filters to extract local patterns learned by

the model. We transformed these convolution filters into PWMs

and found the importance of each filter for each topic

(Methods). Filters that represent SOX, MITF, TFAP2A, and RUNX

motifs were most relevant for the MEL-specific topic 4; filters

that represent AP-1, TEAD, and RUNX binding sites were assigned

to the MES-specific topic 7 (Fig. 3F). Thus, DeepMEL learned the

relevant features de novo from the sequence. The 3885 regions

classified as MEL-specific in MM001 (topic 4 scores above thresh-

old of 0.16) (Methods)were not only highly accessible inMEL lines

and closed in MES lines (Supplemental Fig. S4B), but were also ac-

cessible in human melanocytes (Supplemental Fig. S4C), indicat-

ing that MEL-specific melanoma regions are not cancer-specific

but already accessible in their cell of origin, that is, the melano-

cytes. As a consequence, we can potentially extrapolate the obser-

vations on this topic to normal melanocyte enhancers. Although

in the remainder of this work we will score accessible regions to

identify functional enhancers, it is also possible to score the entire

genome, without filtering for ATAC-seq peaks (Supplemental Fig.

S4D).

To examine the TF binding site architecture within enhanc-

ers, we used a model interpretation tool, DeepExplainer

(Lundberg and Lee 2017; Avsec et al. 2020; Lundberg et al.

2020). For a MEL enhancer located on the fourth intron of IRF4,

nucleotides important for classifying this enhancer as topic 4

emerge as motifs for SOX10, MITF, TFAP2A, and RUNX factors

(Fig. 3G, top two rows; for another example, see Supplemental

Fig. S4E,F).

It is known that enhancer accessibility does not directly trans-

late to enhancer activity (Shlyueva et al. 2014). To test whether the

same TF binding motifs contribute to the activity of MEL enhanc-

ers, we used the IRF4 enhancer as case study. For this enhancer,

Kircher et al. (2019) performed saturation mutagenesis followed

by an in vitro massively parallel reporter assay (MPRA), testing

the effect of every possible single-nucleotidemutation on enhanc-

er activity (Fig. 3G, third row). The most deleterious mutations co-

incided with the DeepMEL-predicted SOX, E-box, and RUNX-like

motifs, overlapping with nucleotides that also have the strongest

in silico effect (Fig. 3G, last row), indicating that the predictedmo-

tifs are actually contributing to enhancer activity. In addition, the

magnitude of the in silico predicted effect highly correlates with

the effect of the in vitro mutations (Spearman’s correlation of

0.60) (Fig. 3G,H). These observations indicate that, although

DeepMEL was trained to predict binary enhancer accessibility, it

is also a good predictor of enhancer activity of this specific enhanc-

er. DeepMEL predictions outperform other classifiers and deep
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Figure 3. DeepMEL classifies melanoma enhancers and predicts important TF binding motifs. (A) Cell-topic heatmap of cisTopic applied to 339,099
ATAC-seq regions across the 16 human melanoma lines, colored by normalized topic scores. (029∗) MM029_R2. (B) Example regions of a MEL-specific
(topic 4) region near MIA and MES-specific (topic 7) regions upstream of SERPINE1. (C) Schematic overview of DeepMEL. Twenty-four topics or sets of
coaccessible regions were used as input for training of a multiclass multilabel neural network. (D,E) Receiver operating characteristic curve (D) and precision
recall curve (E) for DeepMEL on training, test, and shuffled data of topic 4 and topic 7 regions. (F) Top enriched filters learned by DeepMEL to classify re-
gions as MEL (topic 4) or MES (topic 7). Normalized filter importance is shown per filter. (G) Example of a MEL-predicted enhancer near IRF4. (First and
second rows) DeepExplainer view of the forward and reverse strand, with the height of the nucleotides indicating the importance for prediction of theMEL
enhancer. (Third row) In vitro effect of point mutations on enhancer activity as measured by MPRA (Kircher et al. 2019). Colors represent the nucleotide to
which the wild-type nucleotide is mutated. (Fourth row) In silico effect of point mutations as predicted by DeepMEL. (H) Correlation between the in vitro
mutational effects on the IRF4 enhancer and the in silico mutagenesis predictions. (I) Performance of variant effect prediction of DeepMEL using topics
(black bar, model used in this paper) or using ATAC-seq signal (white bar), and several previously tested models on the IRF4 enhancer case (Kircher
et al. 2019).
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learning models that were benchmarked in Kircher et al. (2019)

(Fig. 3I). One possible explanation for this improvement is that

DeepMEL uses more nuanced topics (Fig. 3I, black bar) rather

than the ATAC-seq signal of the different MM lines as labels (Fig.

3I, white bar). Enhancer accessibility and activity cannot only be

influenced by mutations that break a motif for an activating TF,

but also by the creation of a repressor bindingmotif, as was, for in-

stance, the case for the SNP rs12203592 (Fig. 3G; Supplemental

Fig. S4G).

In conclusion, DeepMEL, trained on topics of human coac-

cessible regions, is performant in classifying melanoma regulatory

regions into different classes based on purely the DNA sequence.

Features learned by DeepMEL correspond to TF binding motifs of

master regulators of specific classes. Thesemotifs can also be locat-

ed and visualizedwithin regions using amodel interpretation tool,

allowing examination of the motif architecture within specific en-

hancers, and predicting the effect of mutations on enhancer

accessibility.

Cross-species scoring identifies orthologous melanoma enhancers

Next, we asked whether the human-trained model DeepMEL can

be used to predict MEL and MES enhancers in other species. We

started with the dog genome as a test case, because the differential

ATAC-seq peaks between the MEL (Dog-OralMel-18249) and MES

(Dog-IrisMel-14205) dog cell lines can serve as true positives (Fig.

4A). DeepMEL reached similar performance in human and dog

for predicting MEL and MES regions, and this accuracy is signifi-

cantly higher compared to using cis-regulatory module (CRM)

scoring with PWMs (Fig. 4A). Having confirmed that the human

model can identify enhancers in the dog genome, we predicted

MEL andMES enhancers across all six species. This furthermore al-

lowed us to order all samples according to the MEL-MES axis (Fig.

4B). Between 2093 and 5400 MEL enhancers were predicted, and

between 7459 and 10,743 MES enhancers, in samples of the

MEL andMES state, respectively (Fig. 4B). Themajority of these en-

hancers could not have been detected using whole-genome align-

ments (liftOver) (Supplemental Fig. S5A–E). Of note, predicted

MEL enhancers in the pig melanoma cells (MeLiM) were similarly

accessible in pig melanocytes (Supplemental Fig. S5F), again indi-

cating that MEL melanoma enhancers can be used as a model for

melanocyte enhancers.

Next, we compared the occurrence of MEL enhancers be-

tween species in relation to putative target genes. Particularly, we

looked at enhancers located near a set of 379 human genes that

are specifically expressed in the MEL state (Methods). Of these

379 genes, 217 (67%) had at least one MEL-predicted enhancer

within 200 kb upstream of and downstream from the gene.

Between 70% and 85% of the orthologousMEL genes in other spe-

cies had at least one MEL enhancer 200 kb upstream of and down-

stream from the gene (Supplemental Fig. S5G). Only a small subset

of these enhancers could have been found using liftOver (2%–

43%, depending on the species). Of these genes, 32 form a core

set of conserved MEL-specific genes throughout all species includ-

ing zebrafish, each having a MEL enhancer nearby. Examples of

genes in the core set are MITF, PMEL, and TYRP1, genes known

to be involved in melanocyte development, melanosome forma-

tion, and melanin production (D’Mello et al. 2016).

A long-standing question in enhancer studies is how to com-

pare enhancers with each other, if their sequences do not align

(Cliften et al. 2001; Arunachalam et al. 2010). Here, we tackle

this question by using the dense layer of DeepMEL as a reduced di-

mensional space to calculate the correlation between enhancers.

Using this measure we found that MEL-predicted enhancers in

proximity of orthologousMEL genes are significantlymore similar

to each other compared to bothMEL-predicted enhancers in prox-

imity of differentMEL genes within the same species (Fig. 4C), and

redundant (or shadow) (Hong et al. 2008) enhancers linked to the

sameMEL gene in a species, as well as randomnon-MEL ATAC-seq

peaks near homologous MEL genes (Supplemental Fig. S5H). This

altogether supports the idea that MEL enhancers near orthologous

genes are indeed orthologous enhancers.

Last, we studied an example of a MEL enhancer in more de-

tail, namely the enhancer near ERBB3. DeepMEL predicts a MEL

enhancer upstream or intronic of ERBB3 in each of the mammali-

an species, which were also found by liftOver of the human ERBB3

enhancer (Fig. 4D, II). However, in the zebrafish genome, liftOver

was unable to identify the homologous region, whereas DeepMEL

predicted two MEL enhancers, one upstream of the TSS of erbb3b

and another in the first intron. Both zebrafish enhancers were

highly correlated with the human ERBB3 enhancer (deep layer

Pearson’s correlation of 0.812 and 0.797 for the upstream and

intronic zebrafish enhancer, respectively), suggesting that both

enhancers are orthologous to the human ERBB3 enhancer.

Applying DeepExplainer to the multiple-aligned sequences re-

vealed a conserved motif architecture in the orthologous mamma-

lian ERBB3 enhancers containing each three SOX motifs and one

TFAP2A motif (Fig. 4D, III). In mouse, one SOX binding site was

lost, andmouse is also the mammalian species that is most distant

fromhuman, among the includedmammals in this study (Fig. 4D,

I). The two zebrafish enhancers have a highly similar motif archi-

tecture, suggesting that they arose by duplication from a common

ancestor enhancer.

In conclusion, we showed that DeepMEL is able to identify

MEL- and MES-specific enhancers in different species, which al-

lows studying evolutionary events and enhancer logic within

orthologous enhancers, even in distant species such as zebrafish.

Motif architecture of the MEL enhancer

To study the architecture of MEL enhancers in more detail,

including motif composition, motif order and distance, and rela-

tionships to the position of nucleosomes, we set out to obtain

high-confidence motif annotations in each of the 3885 MEL en-

hancers in human (MM001, the most MEL-like human cell line),

for each of the predicted core regulatory factors (SOX10, MITF,

TFAP2A, RUNX). To achieve this, we devised an optimized motif

scoringmethod that obtains precise positions of TF bindingmotifs

by multiplying DeepMEL activation scores of convolutional filters

(i.e., motifs) with the DeepExplainer profile of each enhancer (Fig.

5A; Methods; Shrikumar et al. 2019).

The first observation was that eachMEL enhancer contains at

least one SOX10 motif hit, and often two or more (Fig. 5B). This

suggests that SOX10 plays a central role in MEL enhancer accessi-

bility. Indeed, knockdown (KD) of SOX10 in MM001 significantly

decreases the accessibility of MEL enhancers (Supplemental Fig.

S6A), and the regions that close after SOX10-KD are highly en-

riched for SOX motifs (NES=28.5), possibly revealing a pioneer-

ing-role of SOX10 in MEL enhancers. Next to SOX motifs, a

combination of one or multiple TFAP2A, MITF, or RUNX-like mo-

tif hits were present in 84% of the MEL-predicted enhancers (Fig.

5B). Next, to facilitate a systematic study of theMEL enhancer log-

ic, we binarized the motif-region matrix to simplify the region

clustering (Fig. 5C). We obtained eight different enhancer classes,
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each with a different motif composition (Fig. 5C). As validation of

the clusters and the predicted TF binding sites, we used human

ChIP-seq data of SOX10, MITF, and TFAP2A in melanoma or me-

lanocytes (Fig. 5D; Laurette et al. 2015; Seberg et al. 2017). All clus-

ters were indeed highly bound by SOX10, validating the

prevalence of the SOX10 motif in MEL enhancers. In contrast,

MITF and TFAP2A ChIP-seq data revealed that MITF and TFAP2A

bind, respectively, more to enhancers withMITF and TFAP2A sites

compared to regions without a predicted MITF or TFAP2A site.

These observations indicate that the MEL enhancer architecture

does not entail indirect DNA binding of the core regulatory factors

because MITF and TFAP2A are only bound when their motifs are

present within the enhancer. We further observed that regions

containing a TFAP2A site, next to the SOX10 site(s) and possible

others, showed a modest increase in accessibility (Supplemental

Fig. S6B), which could be in line with the previously described

A B

C

D

Figure 4. Human-trained deep learning model applied to cross-species ATAC-seq data. (A) Performance of DeepMEL and Cluster-Buster (cbust) in clas-
sifyingMEL andMES differential peaks in human and dog. (B) Percentage ofMEL- andMES-predicted ATAC-seq regions across all samples in our cohort and
in human melanocytes. Samples are ordered according to the ratio of the number of MES/MEL-predicted regions. (C ) Pearson’s correlation of deep layer
scores between MEL-predicted regions near orthologous MEL genes between human and another species (Human-Species) or between MEL-predicted
regions near different MEL genes within one species (Species-Species). P-values of unpaired two-sample Wilcoxon tests are reported. (D) (I)
Evolutionary distance between human and other species in branch length units. (II) ATAC-seq profiles of the ERBB3 locus in the six species. MEL-specific
enhancers that were predicted by DeepMEL and that were also found (gray) or not found (green) via liftOver of the humanMEL enhancer are highlighted.
(III) DeepExplainer plots for the multiple-aligned MEL-predicted ERBB3 enhancers. Red and blue dots represent point and indel mutations, respectively.
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role of TFAP2A as a stabilizer of nucleosome-depleted regions

(Grossman et al. 2018). The opposite was true for regions contain-

ing RUNX-like binding sites (Supplemental Fig. S6B), suggesting a

repressive role of RUNX factors. The presence of aMITF site did not

seem to alter the accessibility of enhancers compared to SOX-only

enhancers but did increase H3K27ac signal (Supplemental Fig.

S6C), possibly indicating that MEL enhancers bound by MITF

are more active.

To validate these MEL enhancer classes in other species, we

applied the same motif scoring and binarization to DeepMEL-pre-

dicted MEL regions in the other species in our cohort. MEL en-

hancers in other species also clustered into the same eight

clusters, with a similar distribution of regions per cluster (Fig. 5E,

F; Supplemental Fig. S6D). In addition, liftOver of the clusters

showed that the regions of a human cluster correspond more to

the same cluster in the other species (Supplemental Fig. S6E), indi-

cating conservation of the MEL enhancer clusters across species.

For instance, the dog orthologs of two human MEL enhancers be-

longing to either the [SOX10+MITF] cluster (intronic enhancer of

CD9) or to the cluster containing [SOX10+TFAP2A+RUNX]

(intronic enhancer of STIM1) (Fig. 5E) were part of the correspond-

ing clusters in dog (Fig. 5F).

Altogether, these data suggest a Core Regulatory Complex

(CoRC) (Arendt et al. 2016) of SOX10, TFAP2A, MITF, and RUNX

factors in regulating melanoma MEL enhancers, encoded by a

mixed enhancer model (Long et al. 2016), with high flexibility

in the combination of binding sites for these four TFs, but with

some rigidity (or hierarchy) in the code as at least one SOX10

dimer site is required.

Putative roles of SOX10 as a pioneer and TFAP2A as a stabilizer

in melanoma MEL enhancers

Because previous results suggested a pioneering and stabilizer

function for SOX10 and TFAP2A, respectively, we wanted to fur-

ther investigate these putative roles and how they are

E F

BA C D

Figure 5. Core Regulatory Complex of MEL melanoma enhancers. (A) Schematic overview of motif scoring method in which extended convolutional
filter hits fromDeepMEL aremultiplied by DeepExplainer profiles to yield significant motif hits. (B,C ) Heatmap (B) and binarized heatmap (C ) of the number
of significant SOX, TFAP2A, MITF, and RUNX-like motif hits on the 3885 MEL-predicted regions in the human cell line MM001. (D) Aggregation plot of
normalized ChIP-seq signal of SOX10, MITF, and TFAP2A on the human enhancer clusters. (E,F ) Venn diagram of regions clusters on the 3885 MEL-pre-
dicted regions in human (in MM001) (E) and the 4194 MEL-predicted regions in dog (in Dog-OralMel-18249) (F). Example MEL-predicted enhancers in
human and dog are shown for two of the region clusters. The ATAC-seq signal of the regions is shown in gray.

Melanoma enhancer logic

Genome Research 1823
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.260844.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.260844.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.260844.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.260844.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.260844.120/-/DC1


mechanistically affecting chromatin accessibility. First, we ana-

lyzed the location of binding sites relative to the position of the

nucleosome, focusing on a human and dog MEL enhancer that

contain a combination of one SOX10 and one TFAP2A site (Fig.

6A,B). We predicted the nucleosome start and middle point using

a previously published model (Kaplan et al. 2009) and observed

that SOX10 binding sites are situated within the borders of the nu-

cleosome, near the nucleosome start point, whereas TFAP2A bind-

ing occurs preferentially near the center of the nucleosome (Fig.

6A,B). KD of TFAP2A halved the accessibility of this specific hu-

man region, whereas SOX10-KD completely abolished the ATAC-

seq peak (Fig. 6A), indicating that SOX10 is necessary for accessibil-

ity, and that TFAP2A further increases the accessibility, which is in

line with our previous observations (Supplemental Fig. S6A,B).

These example enhancers raised an interesting positional

preference of SOX10 and TFAP2A. To assess whether this occurs

globally, we centered human MEL enhancers on the SOX10 and

TFAP2A motif hits and calculated the aggregated location of the

nucleosome start and middle point (Fig. 6C–E). SOX10 shows a

consistent preference for binding within the nucleosome borders,

∼40 bp away from the nucleosome start point (Fig. 6D). Other pi-

oneering factors have also been shown to bind near the borders of

the nucleosome, for instance, FOX factorswhich bind∼60 bp from

the center of the nucleosome, displacing linker histones and desta-

bilizing the central nucleosome (Iwafuchi-Doi et al. 2016;

Grossman et al. 2018). In contrast, when centering the MEL re-

gions based on the TFAP2Amotif, we did not observe a strong pref-

erence in the location of the nucleosome start point relative to the

TFAP2A binding site (Fig. 6D), but in fact TFAP2A consistently

binds in awide range on and around the nucleosomemiddle point

(Fig. 6E). Stabilizers, such as NFIB, have been reported to directly

compete with the central nucleosomes to stabilize the accessible

chromatin configuration (Denny et al. 2016; Grossman et al.

2018). Centering based on the SOX10 or TFAP2A motif hit re-

vealed protection of Tn5 cutting on important nucleotides of the

dimer motif (Supplemental Fig. S7A,B). We did not observe strong

positional preferences ofMITF andRUNXmotifs relative to the nu-

cleosome start or middle point (Supplemental Fig. S7C,D).

Altogether these data suggest that SOX10 functions as a pio-

neer in the CoRC of MEL enhancers, leading to their accessibility

by binding to the central nucleosome, near the nucleosome start

point. Conversely, TFAP2A appears to act as stabilizer of SOX-

B

E
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D

Figure 6. Positional specificity of SOX10 and TFAP2A in MEL melanoma enhancers. (A,B, top) Example human (A) and dog (B) MEL-predicted enhancer
containing significant SOX10 and TFAP2Amotifs. The ATAC-seq signal is shown in gray. (A,middle; B, bottom) Imputed nucleosome start andmiddle point
profiles. (A, bottom) For the human example region, ATAC-seq profiles of MM001 in control condition, after 72 h of SOX10 knockdown or TFAP2A knock-
down are shown. (C ) Schematic overview of the nucleosome structure explaining the colors used in D and E. (D,E) Nucleosome start point (D) and nucle-
osomemiddle point predictions (E) onMEL-predicted regions containing one SOX10 (left) or one TFAP2Amotif (right) next to possible other motifs, where
the regions are either centered on the ATAC-seq summit (gray) or on the SOX10 or TFAP2A motif (blue).
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dependent nucleosome-depleted regions by binding around the

nucleosome middle point, possibly going in competition with

the central nucleosome.

DeepMEL predicts evolutionary changes in MEL enhancer

accessibility and activity

To further validate our findings on the MEL enhancer logic, we

compared motif architectures between species and investigated

how turnover of TF binding sites affects enhancer accessibility

and function. To this end, we compared pairs of highly probable

orthologous MEL enhancers that are only accessible in one of

the species (Methods; Supplemental Fig. S8A). For example, an en-

hancer upstream of APPL2 is predicted as a MEL enhancer in the

dog line Dog-OralMel-18249 (topic 4 DL score of 0.35), whereas

the orthologous enhancer in human is not accessible (Fig. 7A).

Not only the accessibility of the human homolog was lost, but

also its activity, as we confirmed by a luciferase assay (Fig. 7B).

The topic 4 DeepMEL score for this enhancer was six times lower

in human compared to dog (0.06 in human versus 0.35 in dog)

(Fig. 7C), falling below the topic 4 significance threshold of 0.16,

indicating that the model detected critical changes in the human

enhancer sequence that could explain the loss of accessibility and

activity of this MEL enhancer. The functional dog enhancer con-

tains a SOX10,MITF, and TFAP2Abinding site, which are all affect-

ed by substitutions in the nonfunctional human homologous

sequence andmight therefore be causal for the loss in accessibility

(and activity) (Fig. 7D,E). The SOX10 motif mutation had the

strongest effect, as it caused a 45% drop in the MEL-prediction

score (Fig. 7D).

Next, we performed this analysis on a larger scale. First, per

species pair, we observed that differences in DeepMEL predictions

between species (delta-DeepMEL score) are highly predictive for

differences in accessibility (Spearman’s correlation of 0.43)

(Supplemental Fig. S8B,C). Among the four studied regulators,

mostly the disruption or gain of one or more SOX10 binding sites
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Figure 7. Predicting causal mutations of evolutionary changes inMEL enhancers. (A,B) Example region upstream of APPL2 that is accessible (A) and active
(B) in the MEL dog line Dog-OralMel-18249 but not in human MEL lines. (C) DeepMEL prediction score of each of the 24 topics for the dog and human
APPL2 enhancer. (D) Effect on topic 4 DeepMEL score on the dog sequence when in silico simulating each of the single detected point mutations between
the dog and human APPL2 enhancer. (E) DeepExplainer plots of themiddle 120 bp of the dog and human APPL2 enhancer. In themiddle, the effect of each
possible point mutation between the dog and human sequence on the MEL DeepMEL score was in silico calculated and is represented by colored dots
depending on the nucleotide to which the original dog nucleotide was in silico mutated. Truly existing point mutations between the dog and human se-
quence are highlighted by color-coded vertical dashed lines. Four mutations that decrease the motif score of the SOX10, MITF, and TFAP2A motifs are
highlighted by a gray box and are encircled. (F) Bar plot showing the mean effect on the log2 delta ATAC-seq signal of a non-human region compared
to the human homolog depending on the number of SOX10 motif hits lost or gained. Only regions having no change in the number of significant
TFAP2A, MITF, and RUNX motifs hits were used. The y-axis is normalized to the category with no changes in the number of significant SOX10 motif
hits. The number of regions in each of the categories is mentioned (#). (G) Luciferase assay on six human or dog enhancers. Significant motif hits per en-
hancer are shown with colored crosses. For the luciferase assays: luciferase activity in MM001 is shown relative to Renilla signal and is log10 transformed.
P-values were determined using Student’s t-test, and the error bars represent the standard deviation over three biological replicates.
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between orthologous enhancers quantitatively altered the ATAC-

seq signal in a concordant way (Fig. 7F; Supplemental Fig. S8D), in-

dicating that SOX10mutations aremost causal for changes inMEL

enhancer accessibility, and possibly also in enhancer activity, as

was the case in the APPL2 enhancer above. However, concordance

between accessibility and activity was not always observed

(Supplemental Fig. S9). Furthermore, luciferase assays of six hu-

man or dog MEL-predicted enhancers suggested that enhancers

with at least one MITF motif (n=3) are significantly more active

compared to enhancers without any MITF motif (n=3) (Fig. 7G).

Although the number of tested enhancers is small, this trend, to-

gether with the fact that MEL enhancers containing a MITF bind-

ing site showed increasedH3K27ac signal (Supplemental Fig. S6C),

indicates that MITF could function as an activator in MEL

enhancers. Indeed, MITF has been shown to activate genes in-

volved in pigmentation by recruitment of cofactors and chromatin

remodeling complexes (Kawakami and Fisher 2017) andwas previ-

ously classified as a TF involved in cofactor recruitment and activa-

tion (Grossman et al. 2018). SOX10 binding is insufficient but

appears necessary for enhancer activity, because mutations in

SOX10 binding sites disrupt enhancer activity in the IRF4 case

study (Fig. 3G).

In conclusion, DeepMEL provides a suitable platform to study

the effect of evolutionary mutations on MEL enhancer accessibil-

ity and, in some cases, activity across species. Together, these re-

sults validate that SOX10 is crucial for enhancer accessibility in

MEL enhancers, and necessary but insufficient for MEL enhancer

activity, because activity appears to be mainly dependent on

MITF binding.

Discussion

Here, we present an in-depth study of melanoma enhancer logic,

especially in enhancers specific to the melanocytic (MEL) state,

by exploiting both cross-species data and machine learning.

Although the MEL and MES melanoma cell states have been

studied extensively on a transcriptomic and epigenomic level,

the combinatorial code of binding sites of their regulatory

factors in state-specific enhancers had not yet been explored.

Understanding the enhancer logic and the mechanism by which

TFs bind and direct active enhancers will become increasingly im-

portant, because it will be essential for the development of new

therapies that influence cell state-specific enhancer functions in

a targeted way (e.g., for enhancer therapy) (Johnson et al. 2008;

Hamdan and Johnsen 2019), or to prioritize noncoding variants

in whole-genome sequencing studies of personal or cancer ge-

nomes (Atak et al. 2019).

Predicting enhancers and determining their functional role

within gene regulatory networks has been an active field for years.

Despite the well-established power of cross-species approaches in

this field, to our knowledge, a large comparative epigenomics

study in melanoma has not yet been conducted, although several

non-human models are commonly used in melanoma research

(van der Weyden et al. 2016) and have been studied on an intra-

species level (Rambow et al. 2008; Rosengren Pielberg et al. 2008;

Sundström et al. 2012; Jiang et al. 2014; Seltenhammer et al.

2014; Kaufman et al. 2016; Hitte et al. 2019) or in relation to hu-

man melanoma (Egidy et al. 2008; Segaoula et al. 2018; Rahman

et al. 2019). Here, we show that the MEL and MES states are con-

served across species, as well as the key regulators of these states.

Despite their proven advantages, sequence-based compara-

tive approaches have limited power to identify orthologous regula-

tory regions in distant species, in part because of the rapid

evolution of distal enhancers (Dermitzakis and Clark 2002;

Lindblad-Toh et al. 2011). Methods, such as enhancer element

locator (EEL), try to tackle this question by aligning TF binding

sites to identify conserved enhancer elements (Hallikas et al.

2006) or by calculating the co-occurrence of sequence patterns

(Arunachalam et al. 2010). However, these methods are either su-

pervised because they require user-provided PWMs (Hallikas et al.

2006), or it is difficult to extract the important biologically rele-

vant features from thesemethods (Arunachalamet al. 2010). In ad-

dition, the identification and exact localization of important (de

novo) TF binding sites within enhancers is complex because motif

discovery tools are often dependent on user-provided databases

andmotif-specific thresholds. Recently, deep learning approaches,

which are commonly used in disciplines such as speech recogni-

tion and image analysis, found their way into the regulatory geno-

mics field to overcome these concerns (Park and Kellis 2015). Deep

learning models, such as DeepBind, are particularly powerful in

learning complex patterns by leveraging large epigenomics data

sets; therefore, they arewell suited to function as de novomotif de-

tectors, as well as to uncover more complex sequence features

(Alipanahi et al. 2015; Park and Kellis 2015). By designing

DeepMEL, a multiclass, multilabel neural network trained onmel-

anomahuman regulatory topics of coaccessible regions, and by us-

ing the model interpretation tool DeepExplainer and our newly

developed motif scoring scheme (Lundberg and Lee 2017;

Lundberg et al. 2020), wewere able to perform a thorough and un-

supervised analysis of important TF binding sites inmelanoma en-

hancers. Specifically, in MEL enhancers, our data suggest

conserved cobinding of a CoRC of three main TFs, consisting of

SOX10, TFAP2A, and MITF. DeepMEL also finds motifs for

RUNX factors, but their role in the melanocyte or melanoma is

less clear. Evidence for cobinding of SOX10, MITF, and TFAP2A

was previously observed by enrichment of both MITF and

TFAP2A motifs in SOX10 ChIP-seq data in melanoma cells

(Laurette et al. 2015). We observed high flexibility in the organiza-

tion of TF binding sites of the CoRC because eight differentmodal-

ities were found, formed by all permutations of the CoRC factors,

with the exception that all MEL enhancers contained at least one

SOX10 binding site. MEL enhancers thereby adhere to a “mixed

modes enhancer” model, a billboard-like model with mostly

high flexibility in the TF motif organization, except for the ever-

present SOX10 binding sites (Long et al. 2016). In addition,

ChIP-seq data of MITF and TFAP2A indicated no indirect DNA

binding of these CoRC factors within MEL enhancers, but that

the bound TFs are largely determined by their individual motif

presence. Although DeepMEL was trained on melanoma ATAC-

seq data, the human- and pig-predicted MEL enhancers were also

accessible in human and pig melanocytes, respectively, indicating

that we could extend these observations on theMEL enhancer log-

ic to enhancers in melanocytes, and that our methodology could

be applied to nondisease states.

It is well established that distinct functional classes of TFs ex-

ist, with respect to enhancer binding. Pioneer TFs, such as

POU5F1, SOX2, Grh-like TFs, and FOXA1, are able to bind nucleo-

somal DNA, leading to displacement of the nucleosome and facil-

itating the binding of other TFs to the accessible enhancer (Zaret

and Carroll 2011; Long et al. 2016; Jacobs et al. 2018). SOX2 and

other SOX factors have a HMG domain that interacts with the mi-

nor groove of the DNA, causing the DNA to bend in a 60°–70° an-

gle, a property that has been suggested to contribute to the

pioneering activity of SOX2, and possibly of other SOXs (Hou
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et al. 2017). Dodonova et al. (2020) indicate that SOX2 and

SOX11 can bind to their binding motif on nucleosomal DNA

and that they use their binding energy to initiate chromatin

opening. However, there is still some dispute on the pioneering

properties of SOXTFs, as another study classified SOXs as “migrant

TFs,” that is, nonpioneering TFs that only bind sporadically to

(non)-chromatinized DNA (Sherwood et al. 2014). Nonetheless,

we find strong evidence for a pioneering function of SOX10 in

MEL melanoma cells. Our current and previous study (Bravo

González-Blas et al. 2019) have shown that knockdown of

SOX10 induces closure of SOX10-bound ATAC-seq peaks contain-

ing a SOX10motif. In fact, DeepMEL predicts SOX10 binding sites

as essential forMEL enhancer accessibility. Next to pioneer factors,

other functional classes of TFs exist, including factors that stabilize

the accessibility of the nucleosome-depleted regions. TFAP2A was

previously classified as such a chromatin stabilizer (Grossman et al.

2018), and it has been shown that evolutionary divergence from

the TFAP2A consensus motif correlates with loss of chromatin ac-

cessibility and H3K27ac ChIP-seq signal (Prescott et al. 2015).

These reports support our observations of TFAP2A as a stabilizer

of SOX10-dependent accessible MEL enhancers, likely caused by

direct competition of TFAP2A with the nucleosome, because

TFAP2A binding sites were highly enriched at the predicted center

of the central nucleosome. The dependence of SOX10 for opening

MEL enhancers before TFAP2A binding is in line with the reported

classification of TFAP2A as a “settler,” a TF whose binding depends

predominantly on the accessibility of the chromatin at their bind-

ing sites (Sherwood et al. 2014).

Besides classifying accessible (orthologous) regions and pre-

dicting important TF motifs within them, DeepMEL is an accurate

predictor of the effect of mutations on enhancer accessibility and,

for some enhancers, also the activity. Thiswas for instance the case

for the IRF4 MEL enhancer, where DeepMEL outperformed exist-

ing methods tested in Kircher et al. (2019). However, the other

models in the benchmark were trained to predict the activity of a

total of 20 regulatory regions ranging across different cell types,

whereas our DL model is specialized for melanoma regulatory re-

gions. This shows the value of using case-specific training data,

such as the data set generated in this study for melanoma. Not

all predicted MEL enhancers were in fact active, as MITF binding

seems to be required to activate SOX10-dependent melanoma en-

hancers. Fufa et al. (2015) support this hypothesis, because activat-

ing SOX10-regions in mouse melanocytes showed significant

enrichment of E-box motifs (bound by the bHLH protein family,

which includes MITF), indicating that MITF cooperates with

SOX10 to execute melanocyte-specific gene activation. In addi-

tion, MITF was previously classified as a TF involved in cofactor re-

cruitment and activation (Kawakami and Fisher 2017; Grossman

et al. 2018). Although SOX10 binding is not sufficient for enhanc-

er activity, it appears to be necessary, because disruption of the

SOX10 binding site in the IRF4 enhancer had a strong effect on ac-

tivity, probably owing to the reappearance of the central

nucleosome.

In conclusion, the combination of comparative epigenomics

with deep learning allowed us to perform an in-depth analysis of

the melanoma enhancer logic. This work presents an overall

framework that can be applied to decipher the enhancer logic in

a cell type or cell state of interest, starting from the generation of

an extensive cell type–specific (cross-species) epigenomics data

set, all the way through the training and exploitation of a deep

neural network to decode enhancer features across species, and

to utilize it to assess the impact of cis-regulatory variation.

Methods

Cell culture

Human melanoma cell lines

Humanmelanoma cultures (MM lines) are short-term cultures de-

rived from patient biopsies (Gembarska et al. 2012; Verfaillie et al.

2015). Cells were cultured at 37°C with 5% CO2 and were main-

tained in Ham’s F10 nutrient mix (Thermo Fisher Scientific) sup-

plemented with 10% fetal bovine serum (FBS; Thermo Fisher

Scientific) and 100 µg mL−1 penicillin/streptomycin (Thermo

Fisher Scientific).

Zebrafish melanoma cell lines

Experiments were performed as previously outlined (Ceol et al.

2011). Briefly, 25 pg of MCR:EGFP were microinjected together

with 25 pg of Tol2 transposase mRNA into one-cell Tg

(BRAFV600E); tp53−/−; mitf−/− zebrafish embryos. Embryos were

scored for melanocyte rescue at 48–72 h post-fertilization, and

equal numbers were raised to adulthood (15–20 zebrafish per

tank) and scored weekly (from 8 to 12 wk post-fertilization) or bi-

weekly (>12 wk post-fertilization) for the emergence of raised mel-

anoma lesions (van Rooijen et al. 2017). For in vitro culture, large

tumors were isolated from MCR/MCR:EGFP (14–28 wk post-fertil-

ization). Zebrafish were maintained under IACUC-approved con-

ditions. Zebrafish primary melanoma ZMEL1 cell line was

previously described (White et al. 2008, 2011), and EGFP 121-1,

EGFP 121-2, EGFP 121-3, and EGFP 121-5, were generated as de-

scribed (Heilmann et al. 2015; Wojciechowska et al. 2016). All

cell lines were cultured in DMEM medium (Thermo Fisher

Scientific) supplemented with 10% heat-inactivated FBS (Atlanta

Biologicals), 1×GlutaMAX (Thermo Fisher Scientific), and 1%pen-

icillin/streptomycin (Thermo Fisher Scientific), at 28°C, 5% CO2.

Zebrafish melanoma lines were authenticated by qPCR and

Western for EGFP transgene expression, and periodically checked

for mycoplasma using the Universal Mycoplasma Detection Kit

(ATCC).

Horse melanoma cell lines

The horse cell lines HoMel-L1 and HoMel-A1 are melanoma cell

lines derived from a Lipizzaner stallion and Shagya-Arabian

mare, respectively, and were established in Seltenhammer et al.

(2014). Cells were cultured at 37°C with 5% CO2 in Roswell Park

Memorial Institute (RPMI)medium (Thermo Fisher Scientific) sup-

plemented with 10% FBS (Thermo Fisher Scientific) and 1% peni-

cillin/streptomycin (Thermo Fisher Scientific).

Pig melanoma and melanocyte cell line

The immortal line of pigmented melanocytes (PigMel) was previ-

ously derived (Julé et al. 2003), and the 30-d-old piglet primary

melanoma cells (MeLiM) were isolated as described (Egidy et al.

2008). PigMel cells were cultured at 37°C with 10% CO2 in MEM

medium supplemented with 1× MEM nonessential amino acids

(Thermo Fisher Scientific), 1 mM Na pyruvate, 2 mM glutamine,

100 units/mL penicilin/streptomycin (Thermo Fisher Scientific),

10% FCS and 3.7 g/mL Na bicarbonate. MeLiM cells were cultured

in DMEM high glucose (Thermo Fisher Scientific), 10% FCS, Pen/

Strep, and 5% CO2.

Dog melanoma cell lines

The dog cell lines Dog-IrisMel-14205 and Dog-OralMel-18249

were established by Aline Primot, and were derived from an uveal
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melanoma from a beagle crossed dog and an oral melanoma from

the palate of a Shih Tzu, respectively. Cells were cultured at 37°C

with 5% CO2 in Ham’s F-12 Nutrient Mixture medium (Thermo

Fisher Scientific) supplemented with 10% FBS (Thermo Fisher

Scientific) and 1% penicillin/streptomycin (Thermo Fisher

Scientific).

Mouse melanoma cell lines

Themousemelanomacell linewas generated as described (Dankort

et al. 2009). Cells were cultured at 37°Cwith 5%CO2 in Dulbecco’s

Modified Eagle Medium (DMEM) (Thermo Fisher Scientific) sup-

plemented with 10% FBS (Thermo Fisher Scientific) and 1% peni-

cillin/streptomycin (Thermo Fisher Scientific).

Knockdown experiments

SOX10, TFAP2A, and the control knockdown (KD)were performed

inMM001using a SMARTpool of four siRNAs against, respectively,

SOX10 (SMARTpool: ON-TARGETplus SOX10 siRNA, number

L017192-00-0005, Dharmacon), TFAP2A (SMARTpool: ON-

TARGETplus TFAP2A siRNA, number L-006348-02-0005,

Dharmacon), and a negative control pool (ON-TARGETplus non-

targetingpool, numberD-001810-10-05,Dharmacon) at a concen-

trationof 20nM for SOX10-KD, and 40nM for TFAP2A-KDand the

control using asmediumOpti-MEM(ThermoFisher Scientific) and

omitting antibiotics. The cells were incubated for 72 h before

processing.

OmniATAC-seq data generation, data processing, and follow-up

analyses

OmniATAC-seq on mammalian lines

Omni-assay for transposase-accessible chromatin using sequenc-

ing (OmniATAC-seq) was performed as described previously

(Corces et al. 2017). After the final amplification was done with

the additional number of cycles, samples were cleaned-up by

MinElute and libraries were prepped using the KAPA Library

Quantification Kit as previously described (Corces et al. 2017).

Samples were sequenced on a HiSeq 4000 or NextSeq 500 High

Output chip.

ATAC-seq on zebrafish lines

Fifty thousand cells per line were lysed and subjected to a tagmen-

tation reaction and library construction as described in Buenrostro

et al. (2013). Libraries were run on an Illumina HiSeq 2000.

Data processing of ATAC-seq and OmniATAC-seq samples

Paired-end or single-end readsweremapped to the humangenome

(hg19-GENCODE v18) using Bowtie 2 (v2.2.6) (Langmead and

Salzberg 2012) or STAR (v2.5.1b) (Dobin et al. 2013) to species-

specific genomes, which were downloaded from UCSC (https://

hgdownload.soe.ucsc.edu/downloads.html) (for human: hg19-

GENCODE v18; for dog: canFam3; for horse: equCab2; for pig:

susScr11; formouse:mm10; for zebrafish: danRer10) and by apply-

ing the parameters ‐‐alignIntronMax 1 and ‐‐alignIntronMin 2. For

the human data, we used hg19 as genome assembly instead of the

more recent GRCh38 assembly because i-cisTarget (Herrmann

et al. 2012; Janky et al. 2014; Imrichová et al. 2015) and GREAT

(McLean et al. 2010) are or were not (yet) available for GRCh38

at the time of the analyses. However, the use of GRCh38 instead

of hg19 would not significantly affect conclusions. We, for in-

stance, validated this by rescoring MEL-predicted regions by

DeepMEL in MM057 after liftOver (Kuhn et al. 2013) from hg19

to GRCh38, in which we observed that changing genome assem-

bly yields the same DeepMEL score for all 4244 regions except

for eight of them. Also note that for MM029, two biological repli-

cates were used. Mapped reads were sorted using SAMtools (v1.8)

(Li et al. 2009), and duplicates were removed using Picard

MarkDuplicates (v1.134). Reads were filtered by removing mito-

chondrial reads and filtering for Q> 30 using SAMtools. BAM files

of technical replicates of the same cell line were merged at this

point using SAMtools merge. Peaks were called using MACS2

(v2.1.2) (Gaspar 2018) callpeak using the parameters -q 0.05, ‐‐

nomodel, ‐‐call-summits, ‐‐shift -75 ‐‐keep-dup all and ‐‐extsize

150 per sample. Blacklisted regions (ENCODE) and peaks overlap-

ping with alternative chromosomes and ChrM were removed.

Summits were extended by 250 bp up- and downstream using

slopBed (BEDTools; v2.28.0) (Quinlan and Hall 2010), providing

human chromosome sizes. Peaks were normalized for the library

size using a custom script, and overlapping peaks were filtered us-

ing the peak score by keeping the peak with the highest score.

Normalized bigWigs were either made from normalized

bedGraphs using as scaling parameter (-scale) 1 × 106/(number of

nonmitochondrial mapping reads); or made by bamCoverage

(deepTools, v3.3.1) (Ramírez et al. 2016), using as parameters

‐‐normalizeUsing None, -bl EncodeBlackListedRegions

‐‐effectiveGenomeSize 2913022398 and as scaling parameter

(-scaleFactor) 1/(RIP/1×106), in which RIP stands for the number

of reads in peaks.

HOMER on human and dog differential accessible peaks

Count matrices were produced by featureCounts (v1.6.5) (Liao

et al. 2014) for five melanocytic (MEL) and five mesenchymal-

like (MES) lines for human, and for Dog-OralMel-18249 and

Dog-IrisMel-14205 for dog. Differential peaks were identified us-

ing DESeq2 (v1.22.2, R v3.5.2) (R Core Team 2018; Love et al.

2014) with a log2FC higher than 2.5 and a PAdj lower than

0.0005. HOMER (Heinz et al. 2010) was performed on the differen-

tially accessible regions using findMotifsGenome.pl, providing the

differential regions as a BED file and a FASTA file of the human or

dog genome, with parameters -mask, -size given, and -len

6,8,10,11,12,17,18.

Defining sets of alignable and conserved accessible ATAC-seq regions

ATAC-seq regions of non-human species were defined as alignable

regions when they could be converted to hg19 coordinates using

liftOver (Kent-tools, -minMatch=0.1) (Kuhn et al. 2013) by pro-

viding the appropriate liftOver chain (UCSC). Alignable regions

were intersected with accessible peaks in human using

intersectBed (BEDTools, v2.28.0) (Quinlan and Hall 2010) with -f

0.6 to define sets of conserved accessible regions across species.

Clustering of species based on globally alignable ATAC-seq regions

Per species, a count matrix was made on the alignable union

ATAC-seq regions by featureCounts (v1.6.5) (Liao et al. 2014).

The count matrices of different species were merged and the final

count matrix was CPM normalized (edgeR v3.22.5, R v3.5.2)

(Robinson et al. 2010; R Core Team 2018), followed by quantile

normalization. A principal component analysis (PCA) on the nor-

malized count matrix was performed using irlba (v2.3.3, R v3.5.2)

(Baglama and Reichel 2005).

Branch length scoring across species

Conserved accessible ATAC-seq regions were identified as de-

scribed above, and for each of the species, the set of conserved
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accessible regions was converted to the coordinate system per spe-

cies and FASTA sequences were retrieved. All sequences were

scored with the cisTarget motif collection (v8) (http://iregulon

.aertslab.org/collections.html) (Herrmann et al. 2012; Janky et al.

2014; Imrichová et al. 2015) containing 20,003 TF position-weight

matrices (PWMs) using Cluster-Buster (Frith et al. 2003) with pa-

rameters -m 0, -c 0, and -r 10000. For each motif, the highest cis-

regulatory module (CRM) score per conserved accessible sequence

was used to calculate the branch length score (BLS) across species

according to Stark et al. (2007) and Jacobs et al. (2018). The branch

length was taken from the phylogenetic data from http://

hgdownload.cse.ucsc.edu/goldenpath/hg19/phyloP100way/

(UCSC). The sum of the BLSs for all the conserved accessible se-

quences across the mammalian or all six species was used as a total

score for each motif. We normalized these scores by performing

BLS on a shuffled variant of all sequences by shuffleseq

(EMBOSS, v6.6.0.0), keeping the same base-pair compositions

and sequence lengths, and subtracting the shuffled BLS from the

true BLS per motif.

CisTopic analysis to obtain sets of coaccessible regions in human

OmniATAC-seq data

To apply cisTopic (BravoGonzález-Blas et al. 2019), a tool designed

for single-cell ATAC-seq analysis, we first simulated single cells

from the bulk OmniATAC-seq data of the 16 human melanoma

lines via bootstrapping. Per cell line, 50 simulated single-cell

BAM files were generated containing each 50,000 random reads

that were bootstrapped from the bulk BAM files. These simulated

single-cell BAM files were provided as input for cisTopic (v0.2.0,

R v3.4.1) (R Core Team 2017), together with the merged BED file

of ATAC-seq regions across all 16 samples, after removing blacklist-

ed regions (ENCODE). We ran cisTopic (parameters: α=50/T, β=

0.1, burn-in iterations =500, recording iterations= 1000) for mod-

els with a number of topics (sets of coaccessible regions) between 2

and 30 (2 by 2). The best model, containing 24 topics, was selected

on the basis of the highest log-likelihood. Topics were binarizedus-

ing a probability threshold of 0.995 (resulting in a total of 35,940

binarized topic regions across the 24 topics), and we performed

motif enrichment analysis with cisTarget (Imrichová et al. 2015).

Deep learning

Data preparation

The deep learning (DL)model, DeepMEL,was trained on the binar-

ized regions of the 24 topics obtained from the cisTopic analysis

explained above. To increase the amount of training data, the

500-bp regions in the merged BED file of all 339,099 ATAC-seq re-

gions across the 16 human cell lines (see “Data processing of

ATAC-seq and OmniATAC-seq samples”), were augmented by ex-

tending them to 700 bp around the summit and sliding a 500-bp

window over these elongated regions with a 10-bp stride. This aug-

mentedmaster region BED filewas intersectedwith each topic BED

file separately (using BEDTools) (Quinlan and Hall 2010), and a re-

gionwas labeledwith a topic number if therewas at least 60%over-

lap. If regions overlapped with multiple topics, they were assigned

withmultiple topic labels, allowing for a multilabel andmulticlass

DLmodel. This augmentation and intersection resulted in 696,654

training regions in total, excluding the 58,086 regions on Chr 2

that were used for testing.

DeepMEL model architecture and training parameters

The DeepMEL architecture was built with four layers between in-

put and output layer: a Conv1D layer (containing 128 filters and

setting the parameters kernel_size as 20, the strides as 1 and the ac-

tivation as relu), MaxPooling1D layer (with the pool_size 10 and

strides 10), TimeDistributed Dense layer together with Bidirec-

tional LSTM layer (with 128 unit and setting the dropout as 0.1

and the recurrent_dropout as 0.1), and Dense layer (with 256 units

and setting the activation as relu). After MaxPooling1D, Bidirec-

tional LSTM, and Dense layer, a Dropout layer was used each

timewith the fraction of dropout set as 0.2, 0.2, and 0.4, respective-

ly. For each region in the training data, DeepMEL takes the one-hot

encoded (500bp×4nt) forward and reverse strandandpasses them

separately through themodel. Tomake the final prediction, Deep-

MEL takes the average activation (average function) of the neurons

in the final Dense layer (which contains 24 units corresponding to

the 24 topics; with a sigmoid activation function). The model was

compiled using the Adam optimizer with the default learning rate,

which is 0.001. To calculate the loss, thebinary cross entropy (bina-

ry_crossentropy) was used. The model was trained for two epochs

with a batch size of 128, which took 67 min. Keras 2.2.4 (https://

keras.io)with tensorflow1.14.0 (Abadi et al. 2016)wasused.ATesla

P100-SXM2-16GBGPUwas used for training onVSC servers (Flem-

ish Supercomputer Center).

Performance evaluation

The performance of the model was evaluated for each topic sepa-

rately because it was a multilabel classifier. The auROC and auPR

were calculated for the combined training and validation data (re-

gions on all chromosomes except Chr 2), test (regions on Chr 2),

and label-shuffled regions.

Converting convolution filters to PWMs, filter-topic assignment,

and filter annotation

Filters of the convolution layer were converted to position-weight

matrices (PWMs) by the following strategy: (1) 4,000,000 unique

20-bp-long (size of the filters) sequenceswere randomly generated;

(2) the activation score of each filter for each sequence was calcu-

lated and the top 100 sequences were selected; (3) a count matrix

was generated from these 100 sequences obtained for each filter;

and (4) finally, the count matrices were converted into PWMs.

To assign the filters to topics, a similar strategy that is mentioned

in Basset (Kelley et al. 2016) was used. After setting the activation

score of a filter to its mean activation score over all the sequences,

the loss/accuracy score on the prediction was calculated for each

topic. Filters were ordered based on their effect on a certain topic.

To annotate the filters to known transcription factor binding mo-

tifs, the Tomtom motif annotation tool (Gupta et al. 2007) was

used together with our curated cisTarget motif collection (v9)

(http://iregulon.aertslab.org/collections.html) (Herrmann et al.

2012; Janky et al. 2014; Imrichová et al. 2015) of 24,453 PWMs

(cutoff for the Q-value was set to 0.3).

DeepExplainer

From the 35,940 topic regions that were obtained after binariza-

tion of the 24 topics within the selected cisTopic model (see meth-

ods on cisTopic analysis above), 500 regions were randomly

selected to initialize the DeepExplainer pipeline (Lundberg and

Lee 2017). A hypothetical importance score for each position of

the sequence of interest was calculated for any of the 24 topics.

For each sequence, these DeepExplainer-obtained importance

scores were multiplied by the one-hot encoded matrix of the se-

quences. Finally, the 500-bp sequences were visualized by adjust-

ing the nucleotide heights based on their importance score by

using the modified viz_sequence function from the DeepLift re-

pository (Shrikumar et al. 2017).
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In silico saturation mutagenesis

In silico saturation mutagenesis of a region was performed by sep-

arately changing each nucleotide on the 500-bp sequence into the

three other nucleotides and scoring these mutated sequences with

DeepMEL. The delta prediction score for each mutation was calcu-

lated for each of the 24 topics by comparing the prediction score of

themutated sequence relative to the prediction score for the initial

sequence. For the IRF4 enhancer case, the actual IRF4 enhancer se-

quence used in the in vitro saturation mutagenesis assay (Chr 6:

396,143–396,593) overlapped with a predicted MEL enhancer in

human MEL cell lines in our cohort (Chr 6: 396,135–396,636).

The delta prediction score of topic 4 (MEL topic) was calculated fol-

lowing an in silico saturation mutagenesis on this region, and a

Pearson’s correlation was calculated on the overlapping nucleo-

tides between the in silico and in vitro assays (451 bp).

Motif scoring method

We designed an optimizedmotif scoringmethod, in which activa-

tion scores of the filters on each sequence are multiplied by the

DeepExplainer importance scores of the sequence. Then, after

the output of this multiplication was normalized, a threshold

was calculated for eachmotif by comparingMEL andMES enhanc-

ers. This approach yielded significant motif hits with their precise

location.

Nucleosome positioning

Nucleosome start andmiddle point predictions were calculated by

using the executable nucleosome prediction tool Kaplan_v3

(Kaplan et al. 2009) that takes just the DNA sequence and calcu-

lates the nucleosome positioning for each nucleotide. To get

more precise results, as the authors of Kaplan_v3 suggest, enhanc-

ers were extended 3 kb from both ends. After obtaining the predic-

tions, themiddle 500-bp part of the 6.5-kb nucleosome prediction

score was used.

Tn5 footprinting

Footprints of the Tn5 were determined by inferring Tn5 cut sites

from the start point of each ATAC-seq read in a BAM file using a

custom script.

AUROC on human and dog of DeepMEL and Cluster-Buster

The performance of DeepMEL to discriminate between MEL and

MES regions in human and dog was calculated by scoring the

top 5000 differential MEL andMES regions in human and dog (de-

scribed above) with DeepMEL and calculating the precision of cor-

rect assignment (i.e., topic 4 score for the MEL regions and topic 7

scores for the MES regions). The performance of DeepMEL was

compared with the motif scoring tool Cluster-Buster (Frith et al.

2003) by scoring the same sets of regions with Cluster-Buster using

a merged motif file of (some of) the top filters identified by the

model in either topic 4 or topic 7. The obtained CRM scores were

used to estimate the performance of Cluster-Buster.

Identification of homologous MEL genes and MEL enhancers

To identify genes differentially expressed in humanMEL cell lines,

we performed DESeq2 (v1.22.2, R v3.5.2) (R Core Team 2018; Love

et al. 2014) on RNA-seq data of seven MEL (MM031, MM034,

MM057, MM074, MM087, MM118, MM164) and five MES

(MM029, MM099, MM116, MM163, MM165) human lines.

Three hundred seventy-nine genes were found differentially ex-

pressed in MEL lines (log2FC>2.5 and PAdj<0.005). We converted

the gene symbols to Ensembl gene IDs using biomaRt (v2.38.0, R

v3.5.2) (Durinck et al. 2005) and foundback the genomic locations

of the genes using GenomicFeatures (v1.34.8, R v3.5.2) (Lawrence

et al. 2013). For the humandifferentialMEL geneswith at least one

MEL-predicted peak in their extended gene locus (200 kbp up-

stream and downstream), the homologous genes in the other six

species were identified using biomaRt to convert the human

Ensembl gene IDs to Ensembl gene IDs of the other species. We

identified the MEL enhancers that overlapped with the extended

gene loci of each of the homologous genes using BEDTools inter-

sect (Quinlan and Hall 2010). liftOver (-minMatch=0.1) (Kuhn

et al. 2013) was used to calculate the number of these regions

that could be identified by performing coordinate conversion.

Correlation of MEL enhancers using deep layers of DeepMEL

Conserved accessible MEL enhancers in the extended loci of con-

served MEL-specific genes across the six species (see above) were

scored by DeepMEL. A matrix was generated consisting of a score

for each of the 256 nodes in theDense layer for each of the regions.

A Pearson’s correlation matrix was generated to calculate the pair-

wise similarity between each of the regions.

Genome-wide prediction of MEL enhancers

The first chromosome of the human genome (hg19) was tiled with

a sliding window of 500 bp and a 100-bp shift using BEDTools

makewindows (v2.28.0) (Quinlan andHall 2010). Tiles containing

“N”were deleted and the remaining tiles were scored byDeepMEL,

and the number of MEL-predicted tiles (topic 4 score > 0.16) was

calculated.

Mutations in orthologous enhancers across species

We defined highly probable orthologous MEL enhancers between

human and another species as regions that were predicted as MEL

in one species and for which there was a stringent liftOver

(-minMatch=0.995) (Kuhn et al. 2013) and high sequence identi-

ty, that is, >80% after pairwise alignment via needle (EMBOSS,

v6.6.0.0) (Madeira et al. 2019), using parameters -gapopen 10.0

-gapextend 0.5, in the other species. featureCounts (v1.6.5) (Liao

et al. 2014) was used to generate count matrices per species on

these regions, which was followed by library size normalization.

Delta ATAC-seq scores were calculated for the pairs of orthologous

regions by dividing the normalized counts of the two species (hu-

man counts/non-human counts) after adding a pseudocount.

Mutations were identified by alignment via needle, using the pa-

rameters -gapopen 10.0 and -gapextend 0.5.

Luciferase assay

Six MEL-predicted enhancers (three in the dog line Dog-OralMel-

18249 and three in the human line MM001) were synthetically

generated and cloned into a pTwist ENTR plasmid (Twist

Bioscience) via Twist Bioscience. Regions were transferred from

the Gateway entry clone into the destination vector (pGL4.23-

GW, Addgene) via a LR reaction by mixing 2 µL of the entry clone

(100 ng/µL) with 1 µL of the destination plasmid (150 ng/µL), 1 µL

TE buffer, and 1 µL LR enzyme (LR Clonase II Plus enzyme mix,

Thermo Fisher Scientific), and incubating this mixture at 25°C.

Afterwards, 1 µL of Proteinase K (Thermo Fisher Scientific) was

added and reactions were incubated for 1 h at 37°C for 10 min.

Then, 3 µL of each LR reaction was transformed into 50 µL of

Stellar competent cells (Takara Bio) via heat shock. Next, 200 µL

of SOC medium was added and the cells were incubated for 1 h

in a shake incubator at 37°C, before plating the transformed cells

Minnoye et al.
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on LB agar plates with 1/1000 carbenicillin and incubation over-

night at 37°C. The next day, one colony per construct was picked

and grown overnight in 5 mL of LB medium with 1/1000 carbeni-

cillin in a shake incubator at 37°C before plasmid extraction using

the NucleoSpin Plasmid Transfection-grade kit (Macherey-Nagel).

For each construct, three biological replicates were performed by

transfecting the plasmids into 80% confluent cells of MM001 in

a 24-well plate. Per transfection, 400 ng of the construct was trans-

fected together with 40 ng of Renilla plasmid (Promega) using lip-

ofectamine 2000 (Thermo Fisher Scientific). Luciferase activity of

each construct was measured using the Dual-Luciferase Reporter

Assay (Promega) according to the manufacturer’s instructions.

Enhancer luciferase activity was normalized against the Renilla lu-

ciferase activity.

Publicly available data used in this work

SOX10 ChIP-seq and MITF ChIP-seq data on the 501Mel melano-

ma cell lines were downloaded as raw FASTQ files from the NCBI

Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih

.gov/geo/) through accession number GSE61965 (Laurette et al.

2015) and were mapped to the human genome using Bowtie 2

(v2.1.0) (Langmead and Salzberg 2012) and peaks were called by

MACS2 (v2.1.1) (Gaspar 2018). TFAP2A ChIP-seq data on human

primary melanocytes from neonatal foreskin were retrieved from

Seberg et al. (2017) (GSE67555) as a BED file, which was converted

to a bedGraph and bigWig using the peak height from the BED file.

HistoneH3 at lysine 27 (H3K27ac) andH3monomethylation at K3

(H3K4me1) ChIP-seq data for MM001 (GSE60666); and RNA-seq

data (for MM031, MM034, MM057, MM074, MM087, MM099,

and MM118 downloaded from GSE60666; for MM029, MM116,

MM0163, MM164, and MM165 from GSE134432) were processed

as explained in Verfaillie et al. (2015). OmniATAC-seq data for the

human lines MM001, MM011, MM029, MM031, MM074,

MM057, MM087, and MM099 were obtained through

GSE134432 (Wouters et al. 2020) and were processed as described

above in “Data processing of ATAC-seq and OmniATAC-seq sam-

ples”; which was also the case for ATAC-seq data from normal hu-

manmelanocytes on foreskin (NHM1), whichwere downloaded as

raw FASTQ files from GSE94488 (GSM2476338) (Fontanals-Cirera

et al. 2017). The massively parallel reporter assay (MPRA) data on

the IRF4 enhancer was downloaded from https://mpra.gs

.washington.edu/satMutMPRA/ and was processed as described

above.

Data access

All raw and processed sequencing data generated in this study have

been submitted to the NCBI Gene Expression Omnibus (GEO;

https://www.ncbi.nlm.nih.gov/geo/) under accession number

GSE142238. This includesOmniATAC-seq data of humanmelano-

ma cell lines (MM029, MM034, MM052, MM116, MM118,

MM122, MM163, MM164, MM165; data for the other lines used

in this study were published before [see “Publicly available data

used in this work”]), two dog melanoma cell lines, two horse mel-

anoma cell lines, one pig melanoma sample, one pig melanocyte

cell line, and one mouse melanoma cell line; ATAC-seq data of

four zebrafish cell lines; and OmniATAC-seq data of SOX10 and

TFAP2A knockdown in the human melanoma cell line MM001.

The DeepMEL model was deposited in Kipoi (Avsec et al. 2019)

(http://kipoi.org/models/DeepMEL/). Code and custom scripts

for training DeepMEL, DeepMEL predictions, DeepExplainer us-

age, and BLS scoring are provided in GitHub (https://github

.com/aertslab/DeepMEL) and as Supplemental Code.
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