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M Madan Babu5, Stephen J Elledge4, David Toczyski2, R Scott Lokey3,6 and Nevan J Krogan1,*

1 Department of Cellular and Molecular Pharmacology, QB3 Institute, University of California, San Francisco, CA, USA, 2 Department of Biochemistry and Biophysics,
Cancer Research Institute, University of California, San Francisco, CA, USA, 3 UCSC Chemical Screening Center, University of California, Santa Cruz, CA, USA,
4 Department of Genetics, Harvard University Medical School, and Division of Genetics, Howard Hughes Medical Institute, Brigham and Women’s Hospital, Boston,
MA, USA, 5 MRC Laboratory of Molecular Biology, Cambridge, UK and 6 Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
7 These authors contributed equally to this work
* Corresponding author. Department of Cellular and Molecular Pharmacology, QB3 Institute, University of California, San Francisco, CA 94158, USA.
Tel.: þ 1 415 476 2980/3068; Fax: þ 1 415 514 9736; E-mail: krogan@cmp.ucsf.edu

Received 7.6.10; accepted 9.11.10

We present a cross-species chemogenomic screening platform using libraries of haploid deletion

mutants from two yeast species, Saccharomyces cerevisiae and Schizosaccharomyces pombe. We

screened a set of compounds of known and unknownmode of action (MoA) and derived quantitative

drug scores (or D-scores), identifying mutants that are either sensitive or resistant to particular

compounds. We found that compound–functional module relationships are more conserved than

individual compound–gene interactions between these two species. Furthermore, we observed that

combining data from both species allows for more accurate prediction of MoA. Finally, using this

platform, we identified a novel small molecule that acts as a DNA damaging agent and demonstrate

that its MoA is conserved in human cells.
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Introduction

Understanding a compound’s mode of action (MoA) is a

requirement for rational therapeutics and for the under-

standing of drug resistance. Historically, this important

endeavor has been primarily focused on case-by-case studies

of antibacterial resistance, but technological developments

have resulted in several genome-wide approaches to drug

target discovery. Examples of these include studies of gene

expression changes after treatment with a small molecule

(Hughes et al, 2000; Lamb et al, 2006), physical isolation of

a drug–target complex through affinity chromatography

(Rix and Superti-Furga, 2009) and whole-genome sequencing

of drug-resistant strains (Andries et al, 2005). In silico ligand

docking provides a computational approach to identifying

potential binding partners based on available crystallography-

and NMR-derived protein structures (Kolb et al, 2009).

Chemogenomics, or chemical genetic interaction profiling as

a means for drug target identification, has been an area of

active interest for more than a decade (Giaever, 2003; Wuster

and Babu, 2008; Hoon et al, 2008b). A chemogenomic screen

examines a drug’s mode of action (MoA) by measuring the

effect of a drug treatment on a collection of genetically distinct

strains, typically a set with modified gene expression varying

from multi-copy/overexpression to complete gene deletion.

The development of mutant libraries in several model

organisms, including Saccharomyces cerevisiae (Winzeler

et al, 1999; Giaever et al, 2002), Schizosaccharomyces pombe

(Kim et al, 2010; http://pombe.bioneer.co.kr/), Candida

albicans (Rodriguez-Suarez et al, 2007) and Escherichia coli

(Baba et al, 2006), has greatly accelerated chemogenomic

screening. Combining individual drug–mutant relationships

(i.e., resistance or sensitivity) into a profile provides a genome-

wide view of a compound’s effect on the cell. Comparing these

drug fitness profiles to genetic interaction profiles composed of

double mutant interactions can aid in the identification of drug

targets (Parsons et al, 2004; Hoon et al, 2008a; Ho et al, 2009).

Additionally, comparing drug profilesmakes it possible to infer

the MoA of a drug of interest by the similarity of its

chemogenomic profile to profiles of drugs with known MoA

(Hillenmeyer et al, 2008, 2010). Finally, fitness profile

comparison has been used to identify pharmacophores in

structurally related molecules (Giaever et al, 2004; Ericson

et al, 2008).
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In this study, we present a cross-species chemogenomic

screening platform, involving two yeast species, S. cerevisiae

and S. pombe, that we use to study the evolution of drug

mechanism of action. To aid in this analysis, we have used

genetic interaction data derived from double mutant analysis

in both species (Schuldiner et al, 2005; Collins et al, 2007;

Roguev et al, 2008; Wilmes et al, 2008; Fiedler et al, 2009) in

conjunction with the chemogenomic profiles. We find that

compound–functional module relationships are significantly

more conserved than individual compound–gene interactions,

suggesting that modularity is a key aspect of the conservation

of drug response. Finally, we identify one small molecule

predicted to be involved in inducing DNA damage and

demonstrate that its MoA is conserved in S. cerevisiae,

S. pombe and human cells.

Results

Screening of National Cancer Institute Diversity

and Mechanistic Sets in S. cerevisiae and

S. pombe

We screened the 2957-member National Cancer Institute

(NCI) Diversity and Mechanistic Sets (http://dtp.nci.nih.

gov/branches/dscb/repo_open.html) in both S. cerevisiae and

S. pombe, using a high-throughput halo assay that measures

inhibition of growth (Gassner et al, 2007; Woehrmann et al,

2010) and predicts EC50 values (see Materials and methods for

description) for each compound (Figure 1A). The NCI

Diversity Set is a collection of compounds selected for

structural diversity, and the Mechanistic Set contains com-

pounds that have been tested in the NCI human tumor 60 cell

line screen. A total of 270 compounds were found to be

bioactive in at least one species (Figure 1B), 132 of which had

an effect in both fission and budding yeasts (Supplementary

Table 1). We observed an overall B2:1 ratio between the

predicted EC50 values in S. cerevisiae versus S. pombe,

indicating that fission yeast may be globally more sensitive

to drugs (Figure 1C). For each compound, nine chemical

properties (ClogP, polar surface area (PSA), number of atoms,

molecular weight, number of hydrogen-bond donors and

acceptors, number of violations of Lipinski’s Rules, number of

rotatable bonds and molecular volume) were considered. We

found no obvious difference between the properties of small

molecules that were bioactive only in one species (see

Supplementary information). However, when we compared

the properties of compounds that were active in at least one

species to those of the inactive compounds, we observed that

the ClogP, the predicted octanol–water partition coefficient,

was more than 80% higher among bioactive compounds

(Po5.54�10�12) (see Supplementary information). Bioactive

compounds also tended to have a lower PSA, a higher

molecular weight, lower number of hydrogen bond acceptors,

a lower number of hydrogen bond donors and a higher volume

than the inactive compounds. Taken together, these data

indicate that compact molecules that are non-polar or have

intramolecular hydrogen bonding partners are the most

bioactive in both yeast species.

Next, we used a growth assay (Figure 2A) to screen 21

bioactive compounds against libraries of S. pombe and

S. cerevisiae deletion strains arrayed in agar plates (Table I).

Of these 21 compounds, 12 are well-characterized compounds

that were selected based on a wealth of previous information

for benchmarking purposes, whereas the remaining were

randomly selected from those found to be bioactive in both

species in the halo assay (Table I). Using a previously

described algorithm designed to quantitatively assign genetic

interactions based on colony size (Collins et al, 2006), we

generated drug scores (or D-scores) indicating the effects of

compounds on individual mutations, either negatively (e.g.,

sensitivity) or positively (e.g., resistance) (Figure 2B). In this

analysis, we assume a neutral model, in which the expected

growth of a treated mutant would be the product of the growth

rates of the untreated mutant and compound-treated wild-type

cells. Growth less than this represents sensitivity (Figure 2B),

and could arise when a drug negatively impacts on a

component of a pathway acting in parallel to a pathway that

has a component mutated (Figure 2C). Better than expected
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Figure 1 High-throughput yeast halo assay identified bioactive compounds and predicts EC50 values. (A) A total of 2957 compounds from the National Cancer
Institute’s Diversity Set were arrayed in 384-well plates (10mM, DMSO). These small molecules were pin transferred to agar plates seeded with yeast cells and then
incubated at 251C. The plates were read with a plate reader to identify halos of death, and the EC50 value is predicted from the volume of the death halo. (B) Of the 2957
compounds screened, we found 271 to be active in at least one organism. Eighty-four compounds are active only in S. cerevisiae, 55 are active only in S. pombe and 132
are active in both species. (C) EC50 values are predicted for each small molecule based on halo volume. On average, we observed that S. pombe is approximately
2� more sensitive to a small molecule than S. cerevisiae.
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growth, or resistance, could arise from a situation where the

drug target (or another protein functioning in the same

pathway as the target) is deleted (Figures 2B and C). Another

scenariowhere resistance could emergewould be one inwhich

a compound binds to an enzyme and causes the protein to

carry out a function that is harmful to cell viability. In this case,

deletion of the protein target would relieve the detrimental

effect, resulting in resistance (Figure 2C). An example of this

latter case would be the binding of the DNA damaging agent

camptothecin to the DNA/topoisomerase complex and

inhibiting the dissociation of Top1, an event that triggers the

DNA damage response (DDR) pathway. These examples are

intended to represent possible interpretations of the chemo-

genomic data, but many other possibilities exist. Finally,

collectively, the D-scores can be treated as a phenotypic

signature and can be compared with genetic interaction

profiles, generated from double mutations, to help identify

potential drug targets, as a profile derived from a drug and a

mutation of the target should, in principle, result in similar

profiles (Figure 2D).

The set of 21 compounds were screened against a panel of

727 and 438 gene deletion mutants, representing a wide range

of biological processes in S. cerevisiae and S. pombe,

respectively, which contained 190 1:1 orthologs (Roguev

et al, 2008; Figure 3A, see Supplementary Table 3). Two highly

reproducible, independent screens were carried out in each

species (rsc¼0.72; rsp¼0.76, P-valueo10�100; Figure 3B) and

the resulting data was averaged together to provide a final data

set (see Supplementary Table 2). This data set recapitulates

many of the previously known functional interactions for the

well-studied compounds. For example, among the strongest

negative interactions (D-scores o�10) with the DNA dama-

ging agent MMS are deletions of genes belonging to the RAD52

epistasis group (RAD52, RAD55, RAD57), as well as the

mutants of the Ubc13-Mms2 ubiquitin-conjugating enzyme,

plus its interacting RING-finger gene Rad5, all known to be

important for DNA damage repair. Also, as expected, the

strongest positive (resistance) interaction with camptothecin

was its target, topoisomerase I (TOP1), whereas the strongest

negative interactions of benomyl (D-score o�15) are with

factors involved in microtubule regulation (TUB3, CIN4, CIN1,

PAC2, GIM4).

To test the accuracy of the data set, we first checked if our

quantitative score would correctly identify known sensitive

strains. We used previously published S. cerevisiae chemical

genetic data generated in a pooled competition liquid growth

assay (Hillenmeyer et al, 2008) to define sensitive knockout

strains (those with log2 ratio 41.5) for the 12 benchmark

compounds. Additionally, compound sensitivities for MMS,

mycophenolic acid and hydroxyurea were compared with

results from previous non-competitive (i.e., not pooled in

batch culture) studies in S. cerevisiae. In all cases, sensitive

strains had much lower average D-scores than non-sensitive

strains (Supplementary information, P-value o1.7�10�13 for

small molecules screened at approximately the same concen-

tration and P-value o0.003 for other compounds). We then

compared the D-score with the log2 ratio score defined in the

study by Hillenmeyer et al (2008). For compounds appearing

in both data sets (at approximately the same concentration),

we found these two measures to be significantly correlated
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Figure 2 Cross-species, chemogenomic screening platform. (A) Deletion
strains arrayed in 1536-format on agar plates were pin transferred onto
compound containing agar plates. These plates were then incubated and
photographed. The colony sizes were measured, the raw colony sizes
processed, and each strain was given a D-score that quantifies the deviation
from an expected neutral growth model (see Materials and methods section).
(B) The expected neutral value is equal to product of the growth rate of the
deletion with the growth rate of the compound treated wild type. A negative
D-score indicates that the deletion strain has a lower fitness than expected by the
neutral combination of both perturbations. A positive one indicates that this
deletion strain grows better under this condition than expected by the neutral
model. (C) A neutral score could indicate that the compound target and the
protein corresponding to the gene deletion are in unrelated pathways (Neutral).
A negative score could indicate that the small molecule targets a cellular pathway
that works in parallel to the pathway containing the genetic deletion (e.g.,
sensitivity). The positive phenotype can come about in a variety of ways; e.g., the
query compound could target a gene that is in the same pathway as the deleted
gene (resistance I). Additionally, the drug could alter the function of a protein
(protein E in the toy example) creating a new function (function X) that is
detrimental to the cell (resistance II(i)). In the latter case, deletion of the drug-
altered protein (resistance II(ii)) would lead to resistance. (D) Chemogenomic
(D-score) profiles and genetic (S-score) profiles can be compared via hierarchical
clustering. This type of analysis can identify small molecules with similar mode of
action (drug 1, drug 3), and can potentially pair drugs with their biological targets
(drug 2, mutant 2).

Cross-species chemogenomic profiling reveals drug MoA

L Kapitzky et al

& 2010 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2010 3



Table I Compounds profiled in the chemogenomic screen with predicted EC50 value, screening concentration used, compound effect if known and structure

Compound
name

Molecular
weight
(g/mol)

Predicted EC50

S. cerevisiae
(mM)

Screening
concentration

S. cerevisiae (mM)

Predicted EC50

S. pombe
(mM)

Screening
concentration
S. pombe (mM)

Compound effect
(if known)

Benomyl 290.3 — 34.5; 51.5 — 34.5 Tubulin poison
Bleomycin sulfate 2841 1.7 3.2 0.33 0.64 Induces DSBs; inhibits

DNA synthesis
Caffeine 194.2 — 7700 — 1550 Promiscuous kinase inhibitor
Camptothecin 348.4 — 86 — 14; 43 Binds DNA/Top1 complex
Cycloheximide 281 — 0.18; 0.27 — 18; 53 Protein synthesis inhibitor
Fenpropimorph 303.5 — 16.5; 33 — 10; 20 Targets Erg2
Fluconazole 306.3 — 100; 200 — 100 Targets Erg11
Hydroxyurea 76.1 — 100 000; 200 000 — 100 000 Inhibits RnR
MMS 110.1 — 1772; 3544 — 827 Methylates DNA bases
Mycophenolic acid 320.3 — 46.8; 93.8 — 46.8; 93.8 Inhibits nucleic acid synthesis
Rapamycin 914 0.2 0.003 NA 0.4 TOR pathway; binds FPR1
Tunicamycin 840 — 0.6; 1.2 — 0.2 Protein glycosylation inhibitor
NSC-109509 371 7.3 34.5 NA 34.5 Unknown
NSC-126728 502.6 5.1 1.6 0.22 0.11 Eukaryotic translation
NSC-168597 414 0.33 0.1; 0.5 0.31 0.5 Unknown
NSC-207895 279 6 16.1 1 11.5 Antitumor/DNA damaging
NSC-268879 452 0.94 4.5 2 3.6 Unknown
NSC-301460 1189 4 3 0.59 3 Immunosuppressive
NSC-305787 481 19.8 42.2 13.4 42.2 Antimalarial
NSC-620358 346 0 66.4 0 66.4 Anti-inflammatory/unknown
NSC-638432 407 24.9 47.2 48.2 47.2 Unknown

‘—’, compound not screened in the halo assay; ‘NA’, predicted EC50 accuracy below confidence threshold.
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(r¼0.44, P-value¼2.2�10�16; Figure 3C). Finally, we used an

independent set defined by high-confidence compound–gene

interactions obtained from the STITCH (Kuhn et al, 2010)

(http://stitch.embl.de/) database to benchmark our data set

and to compare it with previously published chemogenomic

screens of S. cerevisiae. Using the area under the receiver

operating characteristic (AROC) curve as measure of discri-

minatory power, we observed that the D-scores had a similar

discriminatory power to identify these high-confidence

compound–gene interactions as previous large scale chemo-

genomic experimental studies (Supplementary information).

Together, these results argue that we have generated a robust,

reproducible data set of high quality.

Compound–module interactions show higher

cross-species conservation than compound–gene

relationships

The availability of chemogenomic data for two different yeast

species allows us to study how drug response has changed

during evolution. D-scores for 190 orthologous genes were

computed for both species and used to assess the evolutionary

conservation of compound–gene interactions (Figure 4A,

Supplementary Table 3). The low correlation between these

scores (r¼0.13), although statistically significant (P-value

o4.4�10�11), indicates a large degree of evolutionary

divergence of drug sensitivities among these genes. We have

previously observed a similar conservation level (r¼0.14,

P-valueo� 10�170) between a large set of genetic interactions

from sets of orthologous genes in these two species (Roguev

et al, 2008).

Although individual genetic interactions are generally

poorly conserved between these fungi, conservation of genetic

interactions among genes that code for physically interacting

proteins tends to be significantly higher (Roguev et al, 2008).

We reasoned that a similar principle could apply to

compound–gene relationships. If a complex is important for

the response to a small molecule in one yeast species then it

might also be important in the other, even if the individual

compound–gene interactions have diverged.

In order to address this question, we first obtained a set of

previously reported compound–gene functional interactions in

S. cerevisiae from the STITCH database (Kuhn et al, 2010;

http://stitch.embl.de/). These interactions were then used to

define a set of high-confidence compound–module interac-

tions. Modules were defined as groups of proteins that are part

of the same protein complex or share gene ontology terms (see

Materials and methods section). Next, we developed the

I-score, a metric that combines the D-score between a small

molecule and a mutant with a measure of the similarity

between the genetic and chemogenomic profiles derived from

the same mutant and compound, respectively. The I-score was

then used to quantify both compound–gene interactions and

compound–module interactions (see Materials and methods

section; Figure 4B, top).

We evaluated the ability of our data set to predict the high-

confidence functional interactions from STITCH using the
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AROC curves, a standard metric that can be defined as the

probability that the I-score will accurately discriminate a

known compound–gene or module interactions from a

random one. Using S. cerevisiae I-scores, an AROC value of

0.72 was observed for the discrimination of known com-

pound–gene interactions from random (Figure 4B, S. cerevisiae

to S. cerevisiae). These data also correctly identify known

module interactions over random with an AROC of 0.85. In

contrast to the above result, when S. pombe compound–gene

I-scores are used to predict S. cerevisiae compound–gene

associations, the prediction is only slightly better than random

(57%) (Figure 4B, S. pombe to S. cerevisiae), supporting the

idea that compound–gene interactions are poorly conserved.

However, S. pombe data can predict S. cerevisiae compound–

module interactions almost as well as S. cerevisiae data

(84%) (Figure 4B, S. pombe to S. cerevisiae). These results

suggest a greater conservation of compound–module interac-

tions when compared with compound–gene interactions.

Combined cross-species chemogenomic data

highlights relevant mode of action

To learn if using data from two different species would improve

the prediction of a small molecule’s MoA, we attempted to

predict the high-confidence S. cerevisiae compound–gene and

compound–module interactions by combining information

from both species (see Materials and methods section). From

all interactions found in STITCH, we identified 15 compound–

gene and 36 compound–module interactions, for which we

had experimental data in both yeasts. In accordance with the

evolutionary patterns observed above, the combination of data

from both species improves compound–module association

predictions (from 85 to 94%), but does not increase the

accuracy of compound–gene predictions (Figure 4B, both yeasts

to S. cerevisiae). The improvement observed for prediction of

module interactions is statistically significant (P-value o0.006)

and does not depend on the STITCH cutoffs used (see

Supplementary information for cutoff and statistics test). The

difference observed could simply result from the combination of

two imperfect predictors. To demonstrate that the improvement

is related to the data coming from two different species, we

combined our S. cerevisiae data with another larger chemoge-

nomic S. cerevisiae data set (Hillenmeyer et al, 2008). Using the

combination of both of these data sets, we observed no

significant improvement in the ability to predict compound–

gene or compound–module interactions from STITCH

(Figure 4B, S. cerevisiae liquidþ agar to S. cerevisiae).

In order to learn why combining cross-species chemoge-

nomic data might improve MoA identification, we focused our
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gene AROC¼0.75, compound–module AROC¼0.86). Finally, we use our cross-species data to predict small-molecule targets in human, and observe a predictive ability
significantly higher than random (compound–gene AROC¼0.64; compound–module AROC¼0.72). (C) Comparison of compound–gene and gene–gene interactions.
Compound–gene interactions are represented by dashed lines, gene–gene interactions are shown by solid lines. S. cerevisiae data are shown in red, and S. pombe data
are shown in blue. Only highly significant interactions with P-valueo0.005 are represented, and the line thickness is proportional to the significance of each interaction
(�log(P-value)).
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analysis on the response to benomyl, a drug known to bind to

and interfere with the function of microtubules. It is expected

that the effects of benomyl should mimic the effects of

knocking out microtubule components. For this reason, we

used the genetic interaction data available for these species to

search for modules that show strong genetic interactions with

microtubule factors (see Materials and methods section).

In Figure 4C, the benomyl–complex interactions (dashed

lines) were compared with the complex–complex genetic

interactions (solid lines) of microtubule-related factors for

both species. As expected, there is a highly significant overlap

between these two networks. Of 11 complexes that genetically

interact with microtubules, 6 show significant interactions

with benomyl. The strongest and most conserved benomyl

association identified is in fact with the primary target

(microtubules) (Davidse, 1986). In addition, we observed that

the strongest benomyl–complex associations (with the pre-

foldin complex and kinetochore components) mimic the

strong and conserved genetic interactions with microtubule

factors, whereas weaker benomyl–complex associations are

with components that have more divergent genetic interac-

tions with microtubule factors.

As noted above, the benomyl–complex interactions tend to

mirror the genetic interactions of benomyl’s primary target.

The generality of this finding was assessed by comparing the

conservation of compound–gene interactions with genetic

interactions for orthologous pairs in both species. For a given

pair of orthologs, we used the similarity of their compound–

gene score vectors and their genetic interaction scores as a

proxy for the conservation of both types of interactions. We

analyzed 89 pairs of orthologs, for which we had at least 100

genetic interaction scores in common to calculate a similarity

score. We observed that these two metrics show a modest but

significant positive correlation (r¼0.28, N¼89, P-value¼
0.0078), suggesting that the divergence of compound–gene

interactions can be explained to some extent by the divergence

of genetic interactions. Some of the small-molecule interac-

tions identified with chemogenomic screens are with compo-

nents that genetically interact with the primary targets. We

believe that, given that the most important functional
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Figure 5 Correlation analysis of small-molecule profiles in S. cerevisiae and S. pombe. (A) A plot comparing pairs of small-molecule profiles from both fission and
budding yeasts derived from the 190 orthologs. In red are profile pairs for which the compounds have a similar MoA. (B) Correlation coefficients between profile pairs,
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interactions of the primary drug targets are more likely to be

conserved across species, the availability of chemogenomic

data for multiple species allows us to identify these biologi-

cally relevant drug associations.

Finally, we wanted to test if these data from both species

could be used to make informed predictions of drug MoA in

human cells. We compiled a high-confidence list of com-

pound–gene and compound–module interactions for Homo

sapiens derived from the STITCH database (see materials and

methods). We identified 56 compound–gene and 33 com-

pound–module interactions, for which we have experimental

data from either fungi by orthology. These predictions can

discriminate a known compound–gene and a compound–

complex interactions from random with an AROC of 0.64

and 0.71, respectively (Figure 4B, both yeasts to human).

These results clearly show the potential of our platform

as a model system to study drugs’ MoAs with application to

human cells.

Prediction of MoA for uncharacterized compounds

Having shown that combining chemogenomic data from both

species improves the capacity to predict known compound–

complex associations, we set out to make predictions for the

MoAof all the small molecules screened (Table I).We used two

approaches: correlation of the small-molecule profiles and

high-confidence predictions for compound–complex associa-

tions. First, we calculated all pairwise correlations for all

compounds in each species (Figure 5A). Correlations for

compounds that are known to have a similar effect (e.g. MMS,

hydroxyurea) are higher than average (median correlation

coefficient of 0.34 versus 0.20, P-value¼0.026 with a

Kolmogorov–Smirnov test; Figure 5A, red nodes). We there-

fore reasoned that strong correlations between a well-studied

small molecule and one of unknown MoA could be used to

predict MoAs. Using this approach, we identified 17 of these

highly correlated compound pairs between an NSC compound

and one of the benchmark small molecules (see Supplemen-

tary Table 4). The most highly correlated compound profiles

are those of MMS/NSC-207895 and camptothecin/NSC-

207895, suggesting that this nitrobenzofuroxan is triggering

the DDR pathway (Figure 5A). Additionally, when one

correlates the S. cerevisiae and S. pombe profiles for the same

compound, only using D-scores for the 190 orthologs, NSC-

207895 appears as the most highly correlated pair (Figure 5B,

r¼0.48). That DNA damaging agents have the most highly

correlated profiles in both species could be related to the fact

that DNA damage response is a highly conserved biological

function. It should be noted that the genes used to determine

these profile correlations were weighted toward DNA damage

response functions (B20%) (Figure 3A).

We used the combined data from both species to predict

compound–complex interactions (Figure 5C, seeMaterials and

methods for details). Expected compound–complex associa-

tions are observed: e.g., benomyl has strong predicted

association scores with microtubules, the kinetochore and

the prefoldin complex, while the DNA damaging agents all

show strong interactions with the DNA repair and/or replica-

tion fork complexes. Some of these results highlight the

complexity in extrapolating MoA from chemogenomic data.

For example, we predict strong associations between tunica-

mycinwith both the RPD3-C(L) complex and ribosomes, while

it has been shown that tunicamycin inhibits the synthesis of

N-linked glycoproteins (Figure 5C). These seemingly unlikely

functional interactions are justified based on previous

literature; the compound-induced impairment of the secretory

pathways triggers the unfolded protein response, leading to a

decrease in ribosome production (Warner and Nierras, 1999)

that is regulated by the RPD3-C(L) complex (Sandmeier et al,

2002). This compound–complex network also allows us to

study previously uncharacterized compounds. For example,

the small-molecule NSC-109509 shows strong associations

with chromatin modifiers/remodelers COMPASS, RSC and

SET3-C (Figure 5C), suggesting that it might have an effect on

chromatin regulation. The compound NSC-207895 shows

strong functional interactions with both DNA repair and

replication fork complexes, much likeMMS and camptothecin,

suggesting a role for this compound in some aspect of DNA

metabolism.

Chemogenomic screen identifies NSC-207895

as a DNA damaging agent

Several pieces of evidence point toward NSC-207895, a

4-nitrobenzofuroxan derivative, being a DNA damaging agent.

Previously, compounds in this family were shown to inhibit

DNA and RNA synthesis in mammalian cells (Ghosh and

Whitehouse, 1968; Whitehouse and Ghosh, 1968). Further-

more, the profiles for NSC-207895 are highly correlated with

those of known DNA damaging agents, MMS and camptothe-

cin, in both yeast species (Figure 5B). Finally, Figure 5C

illustrates the similarity between compound–complex inter-

actions of those three compounds. Based on these findings we

further investigated the MoA of NSC-207895.

To determine if NSC-207895 had an effect on DNA integrity

in vivo, we measured phosphorylation of the DNA checkpoint

factor, Rad53, a hallmark of the DDR pathway. After treatment

with this uncharacterized compound, we found that the

phosphorylation levels of Rad53 had increased significantly

(Figure 6A), suggesting that it is involved in some aspect of

DNA damage in vivo. This response is specific to NSC-207895,

as eight other randomly selected compounds do not result in a

similar activation of Rad53 (Supplementary information). We

then asked whether the compound would cause physical

damage to DNA in vitro. Damaged DNA is known to have

decreased transformation efficiency. We developed a plasmid-

based transformation assay for DNA damage (see Materials

and methods section) and used it to assess the effects of MMS,

hydroxyurea or NSC-207895 as DNA damaging agents. In the

case of hydroxyurea we observed little effect, consistent with

its role as a ribonucleotide reductase inhibitor (Figure 6B).

MMS, on the other hand, showed the expected dose-dependent

decrease in transformation efficiency due to the known DNA-

methylating action of MMS. NSC-207895 showed no effect on

transformation efficiency (Figure 6B). In order to gain a better

understanding of the MoA of the NSC-207895 compound, we

tested its effect on cell cycle progression. We released

synchronized untreated cells or cells treated with MMS,

hydroxyurea or NSC-207895 and used flow cytometry (FACS)
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to follow the effect of the different conditions (Figure 6C). We

observed that NSC-207895 caused a very significant replica-

tion delay, one that was similar to the one observed in the

presence of MMS.

To determine if this response was evolutionarily conserved,

as suggested by the cross-species profiling, we monitored the

phosphorylation levels of the S. pombe ortholog of Rad53,

Cds1, and found a similar increase in its phosphorylated form

(Figure 6D). Finally, we tested the effect of this compound in

human cells and again found that the phosphorylation levels

of Chk2, the functional counterpart of budding yeast Rad53,

was increased (Figure 6E), indicating that the NSC-207895-

induced DDR is evolutionarily conserved. Whereas in budding

yeast, the Mec1 (human ATR homolog)–Rad53 (human CHK2

homolog) pathway is the major DDR pathway activated in

response to a wide range of DNA damage and DNA replication

stress (Zhou and Elledge, 2000), there are two main DDR

pathways in mammalian cells (ATM-CHK2 and ATR-CHK1).

Moreover, ATM and ATR activation is preferentially triggered

by different genomic stresses. For example, while DNA

replication stress mainly activates the ATR kinase (CHK1),

the ATM kinase (CHK2) is activated by DNA double-strand

break repair. When we continuously tested the DDR effect of

this compound in human cells, we found that the phosphor-

ylation levels of Chk2, the functional counterpart of budding

yeast Rad53, was increased in a dose-and time-dependent

manner in human U2OS cells (Figure 6E). More strikingly, a

close examination of these phosphorylation profiles revealed

that NSC-207895 triggers an immediate and early activation of

ATR kinase at 1 h, which was significantly decreased at 3 h. In

contrast, the ATM kinase activation is weak at 1 h, but is

greater at the 3 h point (Figure 6E).
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Figure 6 NSC-207895 is a DNA damaging agent. (A) We treated S. cerevisiae with known DNA damaging agents MMS and hydroxyurea, and with NSC-207895.
Rad53-phosphorylation is triggered under all three conditions, indicating that NSC-207895 does trigger the DDR pathway in S. cerevisiae (B) A LEU plasmid was treated
with DNA-methylating agent MMS, hydroxyurea or NSC-207895, and then transformed into BY4741. Decreased transformation efficiency compared with the control
indicates that DNA has been physically damaged, as demonstrated with MMS. NSC-207895, like hydroxyurea, does not show decreased transformation efficiency, and
therefore is not likely to be causing physical damage to the DNA in the plasmid environment. (C) S. cerevisiae synchronized cells were released into media containing
either no compound, MMS, hydroxyurea or NSC-207895, and flow cytometry was used to track cell cycle progression. NSC-207895 caused a significant replication delay
that was similar to the action of MMS. (D, E) To explore the conservation of compound MoA for NSC-207895, we treated S. pombe and H. sapiens U2OS cells with
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phosphorylated form, while the lower is likely a degraded species. For pCHK2 T68, the lower band is the phosphorylated form, whereas the upper band is likely pCHK2
T68 with other, as of yet, unidentified post-translational modifications.
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Taken together, these results show that NSC-207895

activates the DDR leading to a delay in cell cycle progression,

but does not covalently damage DNA in vitro. It is likely

to trigger the DDR pathway through an indirect mechanism,

such as intercalation, as it is an electron-deficient, planar

aromatic compound or requires a protein target to mediate its

effect in vivo.

Discussion

In the late 90s, Alberts (1998) and Hartwell et al (1999) both

suggested that the cell’s components are organized into

functional groups or modules, and that the reductionist

approach of studying each element of a group in isolation

was limiting. They argued that cell biologists should strive to

understand how these elements work together to perform

critical cellular functions. Previous evolutionary studies have

underscored the importance of studying these functional

groups’ interactions. For example, we have observed that

positive genetic interactions between genes coding for co-

complex members are more conserved than average in S.

cerevisiae and S. pombe (Roguev et al, 2008). Furthermore, in

concordance with this finding, Jensen et al (2006) studied the

evolution of cell cycle control of gene expression and noted

that, although the timing of cell cycle regulation of different

complexes is conserved across species, the specific genes that

are regulated in each complex have significantly diverged.

Finally, cross-species studies of phosphorylation demon-

strated that the average levels of phosphorylation of functional

modules are conserved, although the proteins that are

phosphorylated can diverge quickly (Beltrao et al, 2009; Holt

et al, 2009; Tan et al, 2009).

The evolutionary analysis of compound interactions pre-

sented here reveals a very similar pattern, whereby the

compound–module interactions show higher conservation

than the underlying compound–gene interactions. These

different observations point to a similar and intuitive trend

that could be explained by a faster change of the relative

importance of functional module subunits relative to the

slowly evolving function of the whole module. It should be

noted that this apparent difference could, at least in part, be

due the higher statistical power associated with group analysis

relative to individual scores. However, beyond the evolution-

ary interpretations, these observations have immediate

practical implications for the study of drugs’ MoAs. The

availability of similar data for a larger number of species will

further elucidate the evolutionary dynamics of these stress/

drug response functions.

Recent work has shown genetic interactions to be quite

divergent (Roguev et al, 2008; Tischler et al, 2008).With this in

mind, one should be critical when applying genetic discoveries

made in fungi to animal systems (divergence B1.4 billion

years ago; Hedges, 2002). However, fungal model systems are

very convenient for preliminary studies, and so devising a

method to add value to yeast-based predictions is highly

desirable. To improve yeast-based predictions of drugMoA,we

combine data from two model systems. We show that using

cross-species chemogenomic data result in a significant

improvement in the prediction of drug targets over those

predicted from either species alone. Collecting compound–

gene interactions data in S. cerevisiae and S. pombe allowed us

to quantitatively compare drug behavior in two yeasts. This

information lead to the observation that compound NSC-

207895 behaves like known DNA damaging agents in both

species, and allowed us to accurately predict that it would also

behave as a DNA damaging agent in human cells. It should be

noted that if two drug profiles are highly correlated in both

species, not only do they share a MoA, but they are also

probably affecting a highly conserved biological process.

Identification of compound pairs, which are highly correlated

in only one organism, provides information about biological

pathways that are not conserved. This information could, in

principle, be used to identify pathogen-specific drugs.

We believe that the strategy presented here has relevance for

the study of drug–drug interactions. Lehár et al (2009) have

shown that drug combinations tend to be synergistic only in

specific cellular contexts (i.e., species or cell types). The

availability of chemogenomic and genetic interaction data for

different species also opens the door for the study of drug

combinations and their evolutionary dynamics. Genetic

interaction data should allow for a rationalization of the

changes in drug synergy under different conditions observed

by Lehár et al (2009). This knowledge could be quite useful;

e.g., in the quest for combinatorial therapeutics, which

specifically target pathogenic microbes or diseased tissues,

leaving the host or symbiotic species unharmed.

Materials and methods

Halo assay

Compounds were taken up in DMSO at 10mM final concentration in
384-well plates. Agar plates containing YPD or YES were seeded with
an overnight culture of either wild-type S. cerevisiae or S. pombe, and
the compounds were then pin transferred to the seeded agar plates.
The compound-treated plates were incubated and the OD of the agar
was measured using a plate reader. The presence of a ‘halo of death’
indicates an active compound, and the size of this halo can be
correlated to an inhibitory growth concentration (predicted EC50) for
each compound. The compounds were defined as bioactive if they had
a measurable halo, indicative of growth inhibition. The cut-off was
chosen to maximize accuracy and still allow for prediction of EC50s on
the order of B200 mM. The statistical analysis, cut-offs and prediction
of EC50 were performed as described previously (Woehrmann et al,
2010).

Chemogenomic screen

In order to perform a comparative analysis of compound–gene
interactions, we selected a set of 21 for chemogenomic screening
(Table I). Of these 21 compounds, 9 were a random subset of the
bioactive compounds identified in the halo assay and the remaining
were selected based on the availability of previous information for
benchmarking purposes. The strains screened were selected from the
commercially available S. cerevisiae and S. pombe haploid deletion
libraries, and were chosen to represent a wide range of biological
functions. As compound availability was a concern, we attempted to
minimize the number of strains screened while maximizing the
number of overlapping 1:1 genetic orthologs. Strains were also
selected in order to maximize complementarity with previously
collected genetic interaction data for subsequent analysis. In total,
we selected 727 S. cerevisiae strains and 438 S. pombe strains, with a
190-strain overlap of orthologs, arrayed into 1536-format. In order to
guarantee that the chemogenomic data sets for the different yeasts
are comparable, profiling in both species was performed with
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approximately the same concentrations. Different screening concen-
trations around known or predicted EC50 were tested and we kept
those that would produce strong and reproducible results. Specifically,
the final concentrations were picked based on the following criteria:
(a) the resulting distribution of D-scores for a profile had to have at
least 2� the standard deviation of the D-scores from an untreated
profile, indicating that there is a signal due to the compound and (b)
the replicate profiles needed to correlate with each other with a
Pearson’s correlation r40.4, indicating that the data are reproducible.

Analysis of molecular properties of NCI library

compounds

Two data sets measuring the bioactivity of small molecules in yeast
were used. The first data set comes from the halo assay described in
Figure 1A (data set A). It describes the predicted EC50 values of 2957
NCI compounds in bothwild-type S. cerevisiae andwild-type S. pombe.
The second data set (data set B) describes the bioactivity of 87 264 NCI
compounds on S. cerevisiae strains. In the initial stage of the anticancer
drug screen that produced this data set, 87 264 small molecules were
tested against six different strains of S. cerevisiae. Of these, 12 068 had a
strong effect on yeast growth and 75196 did not (http://dtp.nci.nih.
gov/yacds/index.html). We downloaded the molecular structures of
each of the small molecules (ftp://ftp.ncbi.nih.gov/pubchem/) and
computed nine properties for each of them in order to assess whether
one of these properties was significantly distinct for the small
molecules that affect growth. Small-molecule properties were com-
puted using Molinspiration’s mib tool (http://www.molinspiration.
com/). A local version of the mib tool was kindly provided by John J
Irwin of the University of California, San Francisco.

Transformation efficiency assay

We treated plasmid pRS315 (carrying a LEU2 marker, 449 ng/ml stock
solution) with MMS (450, 112mM), hydroxyurea (200, 50mM) and
NSC-207895 (10, 2.5mM) in an equal volume of AB buffer (Stokes and
Michael, 2003) for 30min at 301C (reaction volumes B20ml). The
plasmids were then purified using a Qiagen clean-up kit; reaction
mixtures were diluted with 100ml PB buffer, agitated and filtered in a
Qiagen spin column. The precipitate was washed with 0.75ml PE
buffer, spun 1� . The filtrate was discarded, and then the column was
re-spun to remove residual buffer. Columns were transferred to clean,
dry 1.5-ml Eppendorf tubes. Fifty ml of EB was gently pipetted onto the
filters, and allowed to soak 1min, then spun down. The same filtrate
was used to re-soak the filter, and was re-spun down. Average yields
for these reactions wereB25ng/ml. These drug-treated plasmids were
transformed into S. cerevisiae (BY4741) according to the LiAc/SS
carrier DNA method (Gietz and Schiestl, 2007), and the resulting
colonies were tallied manually.

Phosphorylation of Rad53/cds1

Yeast Strains PGY1834: S. cerevisiae W303 lys2D ade2 leu2 his3 trp1
ura3 RAD53-HAHTRP1; NB2118: S. pombe h-leu1-32 ura4-D18 cds1-
2HA6his:ura4þ . All experiments were performed in rich medium:
YM-1 with 2% dextrose for S. cerevisiae and YE5S for S. pombe, at
301C. PGY1834 cells in log phasewere treatedwith no addition, DMSO,
nocodazole (0.25, 1.25, 2.5 or 7.5mg/ml), MMS (0.05, 0.25, 0.5 or
1.5mM), HU (3.75, 18.75, 37.5 or 112.5mM) or NSC-207895 (0.5, 2.5,
5 or 15mM) for 2 h. NB2118 cells in log phase were treated with
medium alone, DMSO, nocodazole (0.25, 2.5 or 25mg/ml), MMS (0.05,
0.5 or 5mM), HU (3.75, 37.5 or 375mM) or NSC-207895 (0.5, 5 or
50mM) for 4 h at 301C. Cell pellets from both species were rinsed and
frozen at�801C, and then lysed in hot SDS sample buffer. Cell extracts
from S. cerevisiae were run on a 4–20% gradient polyacrylamide
gel (BioRad), whereas S. pombe cell extracts were run on 8%
polyacrylamide gels polymerized with 25mM Phos-tag Acrylamide
reagent (NARD Institute Ltd). Gels containing Phos tagwerewashed in
transfer buffer with 5mM EDTA, and then transfer buffer alone. Both
types of gels were transferred to PVDF and blotted with anti-HA
(16B12, Covance). To control for loading, the membrane from the

S. cerevisiae experiment was stained with Ponceau S, whereas the gel
from the S. pombe experiment was stained with Coommassie.

Phosphorylation of CHK1 and CHK2

U2OS cells were plated into six-well plates and cultured to 70–80% of
confluency. Compound NSC-207895was dissolved in DMSO (1000� ),
added to each well with final concentration at 2.0, 4.0, 6.0, 8.0mM,
respectively. Control wells were treated with equal amount of DMSO.
Cells lysates were prepared at 1.0, 3.0 h treatment point by direct
addition of 1� SDS–PAGE loading buffer. About 20mg of each lysate
were separated on 4–12% SDS–PAGE gradient gels. Proteins were
transferred to PVDF membrane, followed by probing with antibodies
against Chk1 S317 (Bethyl), Chk2 T68 (Cell signaling), r-H2AX
(Millipore) and GAPDH (Santa Cruz).

Synchronization, drug treatment and FACS

For synchronized experiments, PGY1834 cells in log phase were
arrested in 10 mg/ml a-factor for 3 h (with an additional 10mg/ml
a-factor added after 2 h), then released into medium alone, 5.3mM
MMS, 48mM NSC-207895 or 300mM hydroxyurea. Aliquots were
removed at the indicated times and fixed in 70% ethanol. Samples
were subsequently treated with RNase A and proteinase K, stained
with Sytox Green, and analyzed by FACS.

High-confidence set of compound–gene and

compound–module interactions derived from

the STITCH database

The STITCH database maintains a list of compound–gene association
scores that are derived from theweighted combination of different data
source. These include information on direct protein physical interac-
tions and functional interactions obtained by literature mining. In
STITCH, each compound–gene association has a score ranging from 0
to 1 that relates to the strength of the functional association. We
defined high-confidence associations as having a STITCH score40.65.
The results obtained do not vary with the threshold selected, and we
provide in Supplementary information the analysis performed with
cut-offs of different stringency. For each small molecule, we derived a
list of module interactions using the high-confidence gene interactions
from STITCH and a set of manually curated complexes (Güldener et al,
2006; Collins et al, 2007) and Gene Ontology annotations (Ashburner
et al, 2000). We used these to search for ‘modules’ (defined here as a
complex or a Gene Ontology group) with a statistically significant
enrichment of subunits among the STITCH compound–gene interac-
tions (P-value o0.01 based on random sampling). Compound–gene
pairs defined as high-confidence interactions can be found in
Supplementary Table 5.

We obtained known compound–gene associations for both
S. cerevisiae and human; however, similar associationswere not available
in S. pombe. Orthology assignment between S. pombe and S. cerevisiae
was obtained from the Fungal Orthogroups Repository (Wapinski et al,
2007); orthology assignment between the two fungi and human was
obtained from the Inparanoid database (O’Brien et al, 2005).

Combining chemogenomic data with genetic

interaction data (I-score)

To combine all available information into a single score useful for
comparisons and prediction, we developed the two-variable I-score.
The first variable is the D-score, which is the scored interaction for a
specific small molecule/gene pair, provided by the chemogenomic
screen (see Figure 2B–D). The second variable incorporates data from
previous work in genetic–interaction screening and compares chemo-
genomic profiles with genetic interaction profiles for each small
molecule/gene pair. We have empirically observed that both tails of
the D-score distribution and the positive side of the correlation
coefficient distributions are indicative of known compound–gene
interactions. We use Pearson’s correlation to quantify the similarity
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between a compound-based D-score vector and a genetic S-score
vector for all compound/gene profile pairs in both S. cerevisiae and
S. pombe. In order to obtain a final score, we have z-score normalized
both the D-score (Z-scoreD) and correlation coefficients (Z-scoreCCs).
We have thus calculated a combined score as:

I-score ¼ absðZ-scoreDÞ þ Z-scoreCCs

I-scores were used as the measure of compound–gene association and
I-scores for both species can be found in Supplementary information
(see Supplementary Table 5).

In order to predict known S. cerevisiae compound–gene associations
based on the combined data from both fungi, the I-scores for S. pombe
are first conferred to S. cerevisiae genes based on orthology assign-
ments and summed with the corresponding I-score in S. cerevisiae.
The same was done when predicting known human compound–gene
associations. Human compound–gene pairs were annotated with data
from both yeast species by orthology and the two scores summed.

Compound–module and module–module

association scores

We used the above-defined I-score as a measure of compound–gene
association, as determined by our screening approach. In order to
predict module interactions, we calculated the average I-score of each
module (defined here as a complex or a gene ontology group) and the
probability of observing a similar or higher average score based on
random sampling of an equal number of proteins (i.e., compound–
module P-value). The strength of each compound–module association
was then defined as�log(P-value). We excluded all modules with less
than three members with a calculated I-score, as well very unspecific
modules composed of more than 200 members. When using the
experimental data from both fungi to predict compound–module
associations, the P-value for a module interaction was calculated
interdependently for each species and the final score was defined as:

� logðP-valueS:pombe�P-valueS:cerevisiaeÞ

Compound–module interaction scores for both species are provided in
Supplementary information (see Supplementary Table 5).

Figure 4C shows complexes with significant genetic interactions
with microtubules. For both species, we used previously available
genetic interaction data to obtain the average of the absolute S-score
between microtubules and other protein complexes. We then used
random sampling to calculate the likelihood of observing a similar of
higher value by chance. A cut-off of P-valueo0.005 was used and the
line thickness was set to be proportional to �log(P-value).

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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