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Abstract A large number of DNA copy number alter-

ations (CNAs) exist in human breast cancers, and thus

characterizing the most frequent CNAs is key to advancing

therapeutics because it is likely that these regions contain

breast tumor ‘drivers’ (i.e., cancer causal genes). This

study aims to characterize the genomic landscape of breast

cancer CNAs and identify potential subtype-specific dri-

vers using a large set of human breast tumors and geneti-

cally engineered mouse (GEM) mammary tumors. Using a

novel method called SWITCHplus, we identified subtype-

specific DNA CNAs occurring at a 15 % or greater fre-

quency, which excluded many well-known breast cancer-

related drivers such as amplification of ERBB2, and dele-

tions of TP53 and RB1. A comparison of CNAs between

mouse and human breast tumors identified regions with

shared subtype-specific CNAs. Additional criteria that

included gene expression-to-copy number correlation, a

DawnRank network analysis, and RNA interference func-

tional studies highlighted candidate driver genes that ful-

filled these multiple criteria. Numerous regions of shared

CNAs were observed between human breast tumors and
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GEM mammary tumor models that shared similar gene

expression features. Specifically, we identified chromo-

some 1q21-23 as a Basal-like subtype-enriched region with

multiple potential driver genes including PI4KB, SHC1,

and NCSTN. This step-wise computational approach based

on a cross-species comparison is applicable to any tumor

type for which sufficient human and model system DNA

copy number data exist, and in this instance, highlights that

a single region of amplification may in fact harbor multiple

driver genes.

Keywords Copy number alterations � Intrinsic subtypes �

Driver genes � Gene expression � Genetically engineered

mouse � Network analysis

Introduction

Breast cancer is a heterogeneous disease that is charac-

terized by distinct histological forms, genetic alterations,

and patient outcomes [1–6]. Consistent with these

observations, differential gene expression can distinguish

molecular subtypes that separate breast cancer into dis-

tinct groups including Basal-like, Claudin-low, HER2-

enriched, Luminal A, and Luminal B subtypes [2–4, 7–9].

These so called ‘‘intrinsic subtypes’’ are predictive of

relapse-free survival, overall survival, and responsiveness

to treatment [7–11]. Previous work highlighted numerous

somatic mutations [12] and DNA copy number alterations

(CNAs) [13] that are linked to specific intrinsic subtypes,

suggesting that these genetic events may be causative of

these subtypes. Beyond a few well-known drivers, the

identification of genetic drivers present in many of these

recurrent regions of DNA copy number change remains

to be determined. Specifically, numerous CNAs are

located on chromosome 1 and occur at high frequency

among various cancer types including breast and liver

[12, 14]. In breast cancer, copy number loss frequently

occurs at 1p while copy number gains are frequent at 1q

[13]. Furthermore, copy number gains at 1q often

encompass the majority of the 1q arm, which include

hundreds of genes.

To identify additional genetic drivers of breast cancer in

common regions of amplification, we have taken a cross-

species conservation approach based on the hypothesis that

important etiological events in breast tumors will occur

both in human breast cancers and mouse mammary tumor

models. Through combined DNA copy number analyses of

human breast tumors and multiple genetically engineered

mouse (GEM) mammary tumor models, we identified 662

CNA regions conserved between these two species. Our

ultimate selection strategy also incorporated gene expres-

sion data, an RNAi screen, and a network analysis to focus

the list on the most likely driver genes within CNAs.

Furthermore, using published functional studies, we pro-

vide new insights on the potential implications of Basal-

like tumor-specific chromosome 1 drivers, some of which

are therapeutically targetable.

Methods

Breast cancer tumor datasets

For these comparative studies, two human datasets and one

mouse dataset were used that contained both gene

expression and DNA copy number data (Table 1). The two

human datasets were: (1) tumors collected at the University

of North Carolina at Chapel Hill and the Oslo University

Hospital, Radiumhospitalet, Norway (‘‘UNC’’, n = 159,

GSE52173), and (2) The Cancer Genome Atlas (TCGA)

Project dataset [12] (‘‘TCGA’’, n = 485). The third dataset

contained tumors from numerous mouse mammary tumor

models including GEM mammary models with inactivation

of TP53, BRCA1, BRG1, and over-expression of cMYC,

HER2/ERBB2/Neu, PyMT, and WNT1 (‘‘mouse’’, n = 73,

GSE52173) (Supplemental Table 1). The publically avail-

able level 3 segmented copy number data for the TCGA

dataset was downloaded through the TCGA data portal and

the published PAM50 subtype calls were used [12].

9 Carl R. Woese Institute for Genomic Biology, University of
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Table 1 Copy number array sample information of (a) human and

(b) mouse tumors

(a) Subtypes Number of samples Total

Basal-like UNC: 54, TCGA: 89 143

Claudin-low UNC: 20, TCGA: 8 28

HER2-enriched UNC: 16, TCGA: 55 71

Luminal A UNC: 35, TCGA: 213 248

Luminal B UNC: 34, TCGA: 120 154

(b) Expression SigClust group Number of samples

Wap Myc 10

Neu/PyMT 11

Wnt1 16

C3Tag 8

Mixed 6

p53null-Basal 9

p53null-Luminal 13
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Demographic and clinical characteristics of the UNC

tumors are provided in Supplemental Table 2.

Cross-species assessment of subtype-specific changes

in genomic DNA copy number

To identify subtype-specific CNAs from segmentation data

generated by the various copy number array platforms (see

Supplemental File 1 for details), we produced an add-on

script to the SWITCHdna method of DNA copy number

change point detection [13]. We created an R suite of

functions called SWITCHplus, which can identify segments

of the genome with copy number changes specific for a

user-determined set of tumors, thus providing a supervised

method for analyzing copy number data. SWITCHplus is

provided as a source script in R and available for download

at: https://genome.unc.edu/SWITCHplus/. Note, that we

did not perform multiple hypothesis testing corrections as

we chose alternative biologically based filtering criteria

(Fig. 1) based upon cross-species conservation.

Computational analysis of candidate driver genes

within conserved CNAs

In order to identify putative driver alterations within

regions of copy number gains or losses, we began with all

the conserved CNAs with a subtype segment frequency of

15 % or greater. To distinguish putative drivers from pas-

sengers, three further criteria were used. We first identified

genes within a CNA that demonstrate concordance

between the DNA and RNA expression. The second cri-

terion filtered for conserved CNAs that contained genes

with a breast cell line RNAi-associated phenotype as

published in the Solimini et al. 2012 RNAi screen on

human mammary epithelial cells [15]. The third criterion

was to identify top ranking genes when scored using

DawnRank [16]. By combining all these features together,

we further decrease the false positive genes by filtering out

genes without functional implications (Supplemental

Table 3). A more extensive and detailed ‘‘Methods’’ sec-

tion can be found as Supplemental File 1.

Results

Subtype-specific breast cancer copy number

landscapes

In order to identify both known and novel genetic drivers

of breast cancer on the DNA copy number level, we

developed a multi-step and multi-platform computational

strategy (Fig. 1). This strategy is predicated on using a

‘‘cross-species’’ comparative genomics approach where we

searched for spontaneous copy number events across two

different species (human and mouse). For this study, we

created a new murine genomic resource of 73 mammary

tumors profiled by both gene expression and DNA copy

number microarray data (GSE52173); this new resource

complements our human data set that contains 644 human

breast tumors that have both gene expression and DNA

copy number data (GSE52173 and http://tcga-data.nci.nih.

gov/tcga).

We began using gene expression data to identify sub-

types, separately for human tumor samples and GEM

mammary models. For clarity, we refer to the classification

of mouse tumors as ‘‘groups’’ to distinguish them from

human classes that are termed ‘‘subtypes’’. Using the

PAM50 [8] algorithm and the Claudin-low predictor [9] we

assigned each of the human tumor samples within the

dataset to a specific intrinsic breast cancer subtype

(Table 1). However, since there is no established expres-

sion-based classifier for mouse mammary tumors, we per-

formed a supervised hierarchical cluster analysis of the

murine mRNA expression data using the Herschkowitz

et al. 2007 intrinsic mouse list of 866 genes. SigClust [17]

analysis was used to identify 7 significant mouse groups

(Supplemental Fig. 1), which were given a unique group

name based on the majority mouse model contributor in

that group (i.e., Myc, Neu/PyMT, Wnt1, C3Tag, Mixed,

p53null-Basal, and p53null-Luminal). The ‘‘Mixed’’ mouse

group lacked a single dominant mouse model contributor,

however, this group comprised mouse tumors that all

demonstrate the previously described Claudin-low gene
Fig. 1 Data analysis pipeline to identify candidate driver genes

within subtype-specific CNAs

Breast Cancer Res Treat (2015) 152:347–356 349

123

https://genome.unc.edu/SWITCHplus/
http://tcga-data.nci.nih.gov/tcga
http://tcga-data.nci.nih.gov/tcga


expression features [18, 19], and hence forth this mouse

group is referred to as ‘‘ClaudinLow’’.

To identify subtype-specific, and mouse group-specific

regions of DNA copy number gains and/or losses we

developed a new bioinformatics visualization tool called

SWITCHplus. Applying this tool to the mouse dataset

identified group-specific DNA copy number changes for

each of the seven expression-defined groups (Fig. 2). These

results suggest that most mouse groups are characterized

by numerous DNA copy number changes, many of which

are specific to a given model/group (Supplemental

Table 4). However, by comparing the copy number land-

scape between mouse groups, we also identified CNAs that

were present in multiple models (Fig. 2; Supplemental

Table 4), which can be considered as common CNAs of

murine mammary oncogenesis. Therefore, these data

a

b

c

d

e

f

g

Fig. 2 Copy number frequency landscape plots from SWITCHplus

showing mouse group-specific CNAs. Segments of group-specific

copy number gains are plotted above the x-axis in red and segments of

copy number loss are plotted below the x-axis in green. Regions

shaded gray indicate segments that are not group-specific or highly

frequent (greater than or equal to 15 %). The frequency of alterations

in each mouse group is indicated on the y-axis from 0 to 100 %.

a C3Tag, b Neu/PyMT, c p53null-Basal, d p53null-Luminal, e Myc,

f Wnt1, and g Claudin-Low copy number landscapes
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support the notion that common spontaneous events may

occur within different GEM mammary models irrespective

of the initiating genetic event (i.e., transgene). Consistent

with previous work, we identified multiple GEM mammary

p53null groups based on gene expression patterns [18, 19].

Interestingly, these p53null groups demonstrated not only

differences in mRNA expression patterns, but also exhib-

ited differences in the DNA copy number landscapes

(Fig. 2c, d). Additionally, we noticed that the p53null-

Luminal, p53null-Basal, and C3Tag groups contained more

group-specific CNAs than any of the other mouse groups

(Supplemental Table 4); this observation is likely due to

the loss of TP53 in these three groups. On average, each

mouse group exhibited nearly twice the number of group-

specific copy number gains versus losses.

We next analyzed the human DNA copy number land-

scape in the combined UNC/TCGA breast cancer dataset

(Supplemental Fig. 2; Supplemental Table 5). Our results,

not surprisingly, were consistent with previous publications

[6, 12, 13]. For example, our analyses confirmed previously

identified breast cancer copy number gains of 8q that is

common and present irrespective of breast cancer subtype,

as well as a number of subtype-specific CNAs. For

instance, we again identified Basal-like-specific DNA copy

number losses at 4q, 5q, and gains of 10p; Luminal

A-specific copy number gains at 16p; Luminal B-specific

copy number gains at 17q; and a Luminal-associated (en-

compassing both Luminal A and Luminal B) copy number

loss at 16q (Supplemental Fig. 2; Supplemental Table 5)

[6, 12, 13, 20, 21]. The HER2-enriched subtype contained

few subtype-specific CNAs, noting that the HER2/ERBB2

amplicon was not a HER2-enriched subtype-specific copy

number gain event as it also occurred in many Luminal

tumors. Additionally, the Basal-like subtype contained the

highest number of subtype-specific CNAs (Supplemental

Table 5). In contrast to what was observed in the mouse

groups, human tumors on average demonstrated more fre-

quent subtype-specific regions of copy number loss com-

pared to copy number gains (Supplemental Table 5).

Comparisons of copy number landscapes of mouse

and human breast tumors

The extent to which mouse models of breast cancer reca-

pitulate human phenotypes has been examined at the gene

expression level [18–20], as well as on the copy number

level, albeit only in a much smaller subset of these data

[20]. We examined sub-chromosomal events and compared

human subtype-specific copy number landscape plots to

mouse group-specific landscape plots and identified shared

cross-species CNA events [after re-ordering the mouse

chromosomal landscape into human chromosome order

(see ‘‘Methods’’ section)]. We first selected for ‘‘conserved

regions’’, which were DNA segments/regions that were

altered at high frequency (C15 %) and in the same direc-

tion (i.e., amplified or lost) in both human and mouse copy

number landscapes. Applying this selection criterion

reduced the search space for potential subtype-specific

drivers more than 2-fold, leaving a total of 662 conserved

regions when all mouse groups and human subtypes were

considered (Supplemental Fig. 3; Supplemental Table 7).

In comparison among subtypes, the Claudin-low subtype

had the fewest number of conserved regions (and the fewest

CNAs overall) (Supplemental Table 7). Conversely, the

Basal-like subtype contained the most conserved CNAs;

however, this may be due to the fact that the Basal-like

subtype also contained the most subtype-specific CNAs

(Supplemental Table 7). Consistent with a previous publi-

cation [20], shared Basal-like-specific and murine p53null-

Basal-specific regions of DNA copy number loss was

observed spanning human 4q31-q35.2 and encompassing

INPP4B, and also spanning 14q22.1-23.1 (Supplemental

Table 7). By comparing shared sub-chromosomal CNAs

between the humanBasal-like subtype and all mouse groups,

we noted that the C3Tag mouse group contained the most

human Basal-like-specific copy number amplified regions,

while the p53null-Basal mouse group contained the most

human Basal-like-specific copy number loss regions (Sup-

plemental Table 7). Both of these mouse models were pre-

viously shown to have the Basal-like tumor gene expression

phenotypes [18, 20], therefore, for this study, we largely

focused on copy number commonalities between human

Basal-like tumors and these two mouse groups.

Identification of Basal-like tumor chromosome 1

amplification driver genes

Across all breast tumors, amplification of human chromo-

some 1q was the most frequent copy number altered event

(not depicted). However, as can be seen in Supplemental

Figs. 2 and 3, the ‘‘shape’’ of the chromosome 1 amplifi-

cation varies by subtype, with the subtype-enriched

amplification regions being identified within this largest of

human chromosome arms. Among the 662 conserved

regions identified across the genome, chromosome 1 har-

bored 18 % of all conserved CNAs (Supplemental

Table 7). Focusing on chromosome 1, we determined that

chromosome 1q harbored more than twice the number of

conserved segments when compared to the 1p arm (Sup-

plemental Table 7). Of particular note, a number of 1q

amplified regions that were identified as human Basal-like-

specific were also altered in the mouse C3Tag and/or

p53null groups (Fig. 3b; Supplemental Table 7); thus our

results indicate that this region of human chromosome

1q21-23 is being repeatedly selected for both mouse and

human Basal-like breast cancers.

Breast Cancer Res Treat (2015) 152:347–356 351
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In order to identify the driver(s) present on chromosome

1, we next applied our filtering criteria outlined in Fig. 1.

Of the 120 chromosome 1 conserved CNAs, 79 contained

at least one gene that showed DNA–RNA concordance

(Supplemental Table 8); 25 CNAs contained at least one

RNAi-identified essential gene (Supplemental Table 9),

and 20 CNAs contained genes showing DNA–RNA

concordance and a RNAi-identified essential gene (Sup-

plemental Table 10). Interestingly, all 20 CNAs were copy

number gained segments, even among the 1p CNAs

(Supplemental Table 10).

To further study the biology of the conserved chromo-

some 1 genes, we performed a cohort-based DawnRank [16]

analysis using genes from human chromosome 1.

A

B

Fig. 3 Expanded view of a chromosome 1 Basal-like conserved copy

number frequency landscape plots from SWITCHplus. Segments of

copy number gains are plotted above the x-axis and segments of copy

number loss are plotted below the x-axis. The conserved segments are

colored according to the mouse model(s) in which they appear. The

frequency of alterations is indicated on the y-axis. Regions shaded

gray indicate segments that are any combination of either not

subtype-specific, not mouse group-specific, or not high frequent

(greater than or equal to 15 %). b View of the genomic location of

candidate chromosome 1 driver genes. Genes colored red are Basal-

like-specific or subtype-associated, demonstrate DNA and RNA

concordance in human tumors and had a top DawnRank score; genes

underlined are Basal-like-specific or Basal-like-associated, demon-

strate DNA and RNA concordance in human tumors and labeled as a

growth enhancer and oncogene (‘‘GO gene’’) in the Solimini et al.

[15] RNAi screen on human mammary epithelial cells; the remaining

genes surrounded by a box are additional potential drivers in this

region. A color bar is placed above the genes conserved for a

particular mouse group

352 Breast Cancer Res Treat (2015) 152:347–356
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DawnRank uses gene–gene interaction networks to measure

the impact of genomic alterations on the differential gene

expression of downstream genes in the network. Then,

DawnRank scores (as previously described [16]) the level of

perturbation on the gene interaction network caused by the

alteration (either amplification or deletion) of the gene of

interest.We selected human chromosome 1 gene blockswith

shared synteny with the mouse genome for the DawnRank

analysis. There were 7 such gene blocks, totaling 1509 genes

(Supplemental Table 11). Using the chromosome 1 syntenic

regions, we identified 44 chromosome 1 genes that repre-

sented the top 5 % DawnRank scores (Supplemental

Table 12) using DNA copy number changes as the input

‘‘mutation’’ features along with the gene expression for each

human tumor sample. The 44 DawnRank genes mapped to 9

copy number gained segments, which also harbored genes

with DNA–RNA concordance, or an RNAi-identified

essential gene (Supplemental Table 10).Within the 9 CNAs,

encompassing a total of 182 potential genes, only 3 genes

met all four filtering criteria of (1) subtype-specific CNA, (2)

DNA–RNA concordance, (3) a RNAi ‘‘GO’’ gene, and (4) a

DawnRank hit: these genes were phosphatidylinositol 4-ki-

nase (PI4KB), src homology 2 domain containing (SHC1),

and nicastrin (NCSTN) (Fig. 3; Supplemental Table 10).

The three chromosome 1 potential driving genes span

1q21-q23 and are altered with an average segment subtype

frequency of 47 % (Supplemental Table 10). Interestingly,

PI4KB and SHC1 span 1q21, falling less than the average

Basal-like subtype segment length apart (Fig. 3), thus

suggesting that on chromosome 1q21-23 multiple target

genes lie within a single amplicon. Furthermore, SHC1 is

in a subtype-specific high frequency altered segment

among Basal-like tumors only (Fig. 3; Supplemental

Table 5), while NCSTN and PI4KB CNAs appeared across

multiple subtypes, passing the significance threshold in the

Basal-like and Luminal A subtypes (Supplemental

Table 5). However, NCSTN and PI4KB also passed the

significance threshold for the p53null-Luminal, p53null-

Basal, and C3Tag mouse groups (Supplemental Table 7),

the last two of which are models linked to human Basal-

like disease as determined in previous gene expression

comparative studies [18, 19].

Notch pathway features in 1q21-23 amplified Basal-

like breast cancers

Numerous studies have implicated the Notch signaling

pathway in Basal-like breast and/or triple-negative breast

cancers [22, 23]. Importantly, numerous studies on the

functional role of NCSTN have already been performed

[24–26]. To evaluate the effect of 1q21-23/NCSTN

amplification, we first examined the DawnRank network

space around NCSTN and noted that when NCSTN was

amplified NOTCH1–3 were also more highly expressed

(Fig. 4). In addition, NCSTN is one of the three compo-

nents of the gamma-secretase complex (GSC), a protein

complex that cleaves and activates Notch receptors. Two

other GSC members, namely APH1A and PSEN2, were

also both altered within the network (Fig. 4), and were also

higher in NCSTN amplified samples versus not amplified

(Supplemental Fig. 4a). Also, APH1A and PSEN2 are

physically located on human chromosome 1q21.2 and

1q42, and are often co-amplified along with NCSTN

(although PSEN2 is not within a Basal-like-specific CNA).

Thus, three components of the GSC are often co-amplified

together, and are more highly expressed, and the NCSTN/

Notch network is perturbed in these NCSTN amplified

tumors. Following up on these network findings, NCSTN

amplification was also correlated with higher NOTCH1 and

NOTCH3 mRNA levels (Supplemental Fig. 4b), with this

feature showing an even greater difference when examined

just among Basal-like breast cancers (Supplemental

Fig. 4c). As expected from the previous work, Basal-like

tumors as a whole exhibited significantly lower LFNG

expression (i.e., a negative regulator of Notch signaling)

along with significantly higher expression of NOTCH1,

NCSTN, APH1A, MYC, and HEY2 mRNAs (Supplemental

Fig. 5), the latter two of which are thought to be targets of

activated Notch pathway.

Conclusion

In breast cancer, there are many copy number gains and

losses, a few of which like amplification of ERBB2, are of

known clinical and biological significance. Over the years,

many of these CNAs have been studied and candidate

genes identified [12, 13, 27–30], but there are still many

regions for which the genetic drivers remain unknown. The

simultaneous analysis of DNA copy number change in both

human and mouse tumors, and their corresponding gene

expression patterns, provides for a biologically meaningful

way to identify important regions of CNAs. The basic

hypothesis being that a CNA found to spontaneously occur

in two different mammalian species breast cancers is being

repeatedly selected and must therefore contain an impor-

tant tumor causing gene(s).

Although many studies have identified frequent CNAs

within groups of human breast tumors [13, 21], most do not

functionally narrow down the candidate genes within a

specific segment. In addition to the mere presence of a

highly frequent CNAs being identified across species, we

took a biologically based approach to refine the list of

genes within a given segment into a subset of candidate

driver genes. These analyses prompted the development of

a new bioinformatics tool (SWITCHplus) to identify and
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highlight subtype-specific DNA copy number events using

a visual display in a user-friendly format. Using this tool

and a systematic data-mining schema that includes identi-

fying regions that show: (1) shared DNA CNAs cross-

species, (2) concordance between mRNA expression and

relative DNA copy number value, (3) functional effects in

a genome-wide RNAi screen, and (4) functional effects in a

network analysis (i.e., DawnRank), we identified a limited

number of CNAs that harbored potential breast cancer

driver genes. From these analyses, we identified human

chromosome 1q21-23 as a region of amplification consis-

tently present in human and mouse Basal-like tumors, and

which contains at least three potential driver genes (Fig. 3).

The first of these three genes, PI4KB encodes for a lipid

kinase member of the phosphoinositide signaling pathway.

The phosphoinositide signaling system regulates cell

migration [31–33]and proliferation [31–33], and activation

of this signaling pathway is observed in many aggressive

tumors [33–35]. Specifically, phosphatidylinositol 4-phos-

phate is utilized by phosphoinositide kinases, such as

PI3KCA, to signal to downstream protein kinase targets

including AKT and PDK1 [33, 35, 36]. In the 2012 TCGA

publication on breast cancer, it was noted that Basal-like

cancers showed high activity of the PIK3CA/AKT path-

way, and that these tumors tended to show few PIK3CA

mutations, but frequent loss of PTEN and/or INPP4B

(negative regulators of the pathway) and amplification of

PIK3CA and AKT3 (positive regulators of the pathway)

[12]. Here we show that yet another positive regulator of

the pathway is amplified in Basal-like cancers.

SHC1 encodes for a member of the Shc family of

adapter proteins. SHC1 is composed of multiple protein

domains that can bind to multiple transmembrane

receptors including phosphorylated insulin-like growth

factor 1 receptor, and the platelet-derived growth factor

receptor (PDGFR), thus potentially activating multiple

pathways involved in cell proliferation and differentia-

tion [37, 38]. Specifically, SHC1 is a key signaling

mediator, and can act as a scaffold between an activated

receptor and downstream signaling proteins [39]. In

addition, growth factor signaling through PDGFR is

known to occur in many TNBC [40], and thus SHC1

amplification may be contributing to these key signaling

processes.

NCSTN encodes for a component of the GSC, which is a

multi-protein complex that cleaves a number of

NCSTN network

CTNNB1

APH1A

APH1B

NCSTN

PSEN1

PSEN2

PSENEN

APP

JAG2

FBXW11

TRAF6

DLL1

NOTCH3

NOTCH2

NOTCH4

NGF

NGFR

PVRL1

DLL4

NOTCH1

SORT1

ZNF274

SDC3

DNER

CNTN1

CNTN6

Fig. 4 DawnRank identified

NCSTN gene expression

network. The plot represents the

local neighborhood of NCSTN

and all direct genes

downstream. The green and red

colors represent whether the

gene is up-regulated or down-

regulated, respectively. The

intensity of the color represents

the magnitude of gene

expression change. The size of

each node indicates the

DawnRank score of that gene,

representing the gene’s impact

on downstream expression

changes in the network
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transmembrane proteins to typically activate their functions

[41, 42]; the GSC targets include Notch 1–4, ErBB4,

CD44, and E-cadherin [24, 41, 42]. Importantly, Hu et al.

2002 demonstrated, in Drosophila, that NCSTN provides

structural support and is required for GSC cleavage of

Notch receptor [43]. In our data, when Basal-like tumors

were examined, those with copy number gains at NCSTN

showed (1) perturbation/activation of the Notch pathway

via the DawnRank network analysis (Fig. 4), (2) signifi-

cantly higher expression of NOTCH1 and NOTCH3 (Sup-

plemental Fig. 4c), and (3) high expression of other

markers of the Notch pathway (Supplemental Fig. 4d).

Further support for Notch pathway importance comes from

previous mouse model experiments where genetic inacti-

vation of a negative regulator of Notch signaling (i.e.,

lunatic fringe) resulted in Basal-like mammary tumors

[22]. Interestingly, Notch activity is also higher in Basal-

like breast cancer cell lines compared with Luminal breast

cancer cell lines [44]. In vitro, by RNAi-mediated silencing

of NCSTN in the TNBC cell line MDA-MB-231, Filipović

et al. 2011 showed reduced transcription of Notch pathway

targets, and a reduction in cell motility and invasion [41].

In total, these results strongly suggest that activation of

Notch pathway signaling is occurring within Basal-like/

TNBC tumors, and we now provide additional evidence for

a mechanistic explanation for this in vivo.

Other investigators using different computational

approaches have also identified this region, but identified

other genes (i.e., NIT1 and PVRL4) as potential drivers

[45]. The observed differences in potential driver genes are

mostly likely due to the ‘‘filtering criteria’’, where we

focused on species conservation, and they focused on

somatic mutation targets. It is clear that a multitude of

targets and drivers are present, and that 1q21-23 is a region

that is the target of selection as opposed to any single gene

being the target of selection. In conclusion, our work here

provides an objective analysis path for identifying potential

driver genes using a cross-species computational approach,

which can be applied to any tumor type for which sufficient

mouse and human tumor data exist.
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