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Abstract

Background: Although originally thought to be less frequent in plants than in animals, alternative
splicing (AS) is now known to be widespread in plants. Here we report the characteristics of AS in
legumes, one of the largest and most important plant families, based on EST alignments to the
genome sequences of Medicago truncatula (Mt) and Lotus japonicus (Lj).

Results: Based on cognate EST alignments alone, the observed frequency of alternatively spliced
genes is lower in Mt (~10%, 1,107 genes) and Lj (~3%, 92 genes) than in Arabidopsis and rice (both
around 20%). However, AS frequencies are comparable in all four species if EST levels are
normalized. Intron retention is the most common form of AS in all four plant species (~50%), with
slightly lower frequency in legumes compared to Arabidopsis and rice. This differs notably from
vertebrates, where exon skipping is most common. To uncover additional AS events, we aligned
ESTs from other legume species against the Mt genome sequence. In this way, 248 additional Mt
genes were predicted to be alternatively spliced. We also identified 22 AS events completely
conserved in two or more plant species.

Conclusion: This study extends the range of plant taxa shown to have high levels of AS, confirms
the importance of intron retention in plants, and demonstrates the utility of using ESTs from
related species in order to identify novel and conserved AS events. The results also indicate that
the frequency of AS in plants is comparable to that observed in mammals. Finally, our results
highlight the importance of normalizing EST levels when estimating the frequency of alternative
splicing.

Background

Alternative splicing (AS) is an important cellular process
that leads to multiple mRNA isoforms from a single pre-
mRNA in eukaryotic organisms. Plant AS events used to be
regarded as rare. However, a growing number of compu-
tational studies have now demonstrated that the fre-

quency of alternatively spliced genes in plants is higher
than previously estimated [1,2]. 20-30% of expressed
genes are alternatively spliced in Arabidopsis thaliana (At)
and rice (Oryza sativa, Os) as revealed by large scale EST-
genome alignments [1,2]. A recent study using EST pairs
gapped alignments (EST-EST) surveyed 11 plant species
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and suggested that overall AS frequencies vary greatly in
different plant species, with some rates comparable to
those observed in animals [3]. In mammals, exon skip-
ping (ExonS$) is the most common type of AS [4,5], but in
At and Os, intron retention (IntronR) is most abundant
[1]. Alternative acceptor site (AltA) and alternative donor
site (AltD) are also common in these two model plants
[1,2]. A rare type of AS event is alternative position (AltP),
where an alternative intron differs from its constitutive
form in both donor and acceptor sites [1]. Examples of all
five types of AS events are shown in Additional file 1 (Sup-
plementary Figure S1). Recently, a novel approach involv-
ing whole-genome microarray data revealed that IntronR
can be detected in ~8% of At genes [6]. The prevalent
IntronR events suggest that an intron recognition mecha-
nism is predominant in At and Os [1]. A small fraction of
conserved AS events have also been discovered and con-
firmed between At and Os, strongly indicating the func-
tional importance of AS in plants [1].

Most computational studies on AS in mammals and
plants use transcript sequences from the same species as
their genome sequences. For species with relatively small
EST/cDNA collections, transcript sequences from closely
related species can be a valuable resource for identifica-
tion of additional AS events. Even for species with large
EST collections, including human and mouse, cross-spe-
cies EST alignment have been used to reveal novel AS
events. As many as 42% of human genes show novel AS
patterns by aligning mouse transcripts to human genome
[7], and more than 10% of human loci exhibit conserved
AS events in mouse [8]. Another study applying the cross-
species strategy to human, mouse and rat identified 758
novel cassette-on exons (ExonS) as well as 167 novel
retained introns (IntronR). RT-PCR validated 50~80% of
tested events, indicating the impressive potential of the
cross-species method in identifying novel AS events [9]. In
plants, cross-species transcripts have been used mainly for
gene annotation. For example, transcript assemblies from
185 species were mapped to the Os genome, confirming
about 90% of gene predictions plus about 500 novel
genes [10]. Similarly, approximately 850 novel genes and
1,000 novel AS events were annotated in Os by aligning
ESTs from seven plant species [11]. The AS events sup-
ported by cross-species transcripts are likely to be func-
tional, as they are conserved between species.

Experimental studies provide additional insight into the
function of AS in plants. A wide range of plant genes with
diverse functions are regulated through AS, including (but
not limited to) genes involved in transcription, splicing,
photosynthesis, disease resistance, stress, flowering and
grain quality (reviewed in [12,13]). Genes involved in
splicing, especially in splicing regulation, seem to have a
higher frequency of AS [14]. Several recent studies have
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revealed that serine/arginine-rich (SR) protein transcripts
exhibit extensive levels of AS and that some AS pattern are
conserved between At and Os [15-18]. Maize SR protein
transcripts are also alternatively spliced [19,20]. Tempera-
ture stress (cold and heat) as well as hormone treatment
can change the AS patterns of SR proteins in At, suggesting
an important role for AS in the stress response [15]. One
At U2AF35 homolog (atU2AF35a) is alternatively spliced
by removing non-canonical introns with repeated borders
in the 3'-end of the coding region. Changing the expres-
sion of U2AF35 homologs alters the splicing pattern of
the FCA gene and, in turn, causes variation in flowering
time [21]. The U1-70K gene encodes a core protein in U1
small nuclear ribonucleoproteins (snRNP). The sixth
intron of U1-70K can be retained in At [22], an event con-
served between At and Os [1]. Recently, the IntronR event
was experimentally confirmed in Os and maize [23].

Over 400 genes in 54 plant species are now known to be
alternatively spliced [24]. Only a few AS events, however,
have been reported in legumes (Fabaceae), one of the larg-
est and most important plant families. In Lotus japonicus
(Lj), a phytochelatin synthase gene (LjPCS2) can be alter-
natively spliced, with one isoform present in nodules
(LjPCS2-7N) and another isoform in roots (LjPCS2-7R).
The two isoforms encode proteins differing only in five
amino acids, where one protein (LjPCS2-7N) confers cad-
mium (Cd) tolerance while the other does not, at least not
when ectopically expressed in yeast cells [25]. A nodule
specific gene (LjNOD70) shows an IntronR event in Lj,
where the spliced isoform is less abundant in nodules
[26]. Six sucrose synthase genes exist in At, Os and Lj, but
only the Lj homolog (LjSUS2) is alternatively spliced [27].
In soybean (Glycine max,Gm), a nodule specific gene
(GmPGN) has been identified through EST data mining.
Experiments confirmed the tissue specificity and also
revealed AS events for this gene [28]. In kidney bean (Pha-
seolus vulgaris), a single gene (PvSBE2) can be alternatively
spliced to produce two starch-branching enzyme iso-
forms, each with distinct characteristics and subcellular
localization [29]. A highly abundant novel giant retroele-
ment (Orge) of pea (Pisum sativum) is partially spliced,
probably regulating the ratio of full-length protein, as the
retained intron causes truncation [30].

Two legume plants, Medicago truncatula (Mt) and L. japon-
icus (Lj), have large-scale genome sequencing projects in
progress [31]. In late 2006, the Medicago genome
sequence consortium (MGSC) constructed a partial
genome assembly based on 1,996 Bacterial Artificial
Chromosome (BAC) clone sequences as a basis for con-
structing draft pseudochromosomes. A total of 42,358
genes were annotated by the International Medicago
Genome Annotation Group (IMGAG) [32], representing
~60% of all Mt genes. The data has been released as Mt1.0,
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available at [33]. In parallel, Lj has 1,394 Transformation-
competent Artificial Chromosomes (TACs) in GenBank
(as of mid-2006), with 488 of them at phase 3 (finished).
Both legume model plants have relatively large EST collec-
tions (over 150,000 sequences). There are also large num-
bers of transcript sequences from other legume species,
especially soybean. These features make Mt and Lj ideal
for computational comparison of AS events in legume
and other plants.

In this study, all available transcript sequences from leg-
umes were aligned to Mt and Lj BAC/TAC sequences. At
and Os transcript sequences were also aligned to their own
genome sequences for comparison purpose. The fre-
quency of alternatively spliced genes is very similar across
the different plant species as long as the number of ESTs
used as a basis for analysis is standardized across different
species. In the case of Mt, about 10% of expressed genes
are alternatively spliced at current EST coverage, with
IntronR the most abundant type. Novel and conserved AS
events can be identified if cross-species ESTs are aligned to
the genome. These results provide a basis for analyzing AS
events conserved in all plants as well as those found in leg-
umes only. This is the first large-scale analysis of AS using
EST-genome alignments in plants other than At and Os,
and it is also the first detailed comparison using cross-spe-
cies transcript sequences in plants.

Results

Characteristics of legume exons and introns

Two computer programs, GeneSeder [34] and GMAP [35],
produced largely similar results for the alignment of EST
sequences to their native genomes for the Mt, Lj, At, and
Os data sets. To reduce the likelihood of alignment arti-
facts as a result of ambiguities, only the commonly pre-
dicted alignments from the two programs were used in
further analyses. Moreover, highly stringent criteria
(>95% sequence identity, >80% transcript coverage) were
used to limit the possibility of transcript mapping to non-

Table I: Transcript alignments, intron and exon features in plants
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cognate, diverged locations in the incompletely
sequenced genomes. Approximately one half and one
third of the species-specific EST sets could be aligned to
the current Mt and Lj genome sequences, respectively,
roughly reflecting the coverage of the whole genomes by
their current sequence assemblies. For Lj, ~15% of the
transcript sequences were mapped to finished (phase 3)
BAC/TACs. Unless stated otherwise, our analyses for Lj
were based solely on this subset. As shown in Table 1, a
total of 11,516 and 3,298 genes/transcription units (TU,
as defined in METHODS) were identified in Mt and Lj,
respectively, with 74% and 57% of them having multiple
EST support. The average number of ESTs per gene/TU was
10 and 7 in Mt and Lj, respectively, compared with 26 and
30 in At and Os.

We compared intron/exon features revealed by EST align-
ments in the four species. The intron size distribution was
quite similar in Mt and Lj, with a mean intron size around
460-470 nt and median approximately 220 nt in both
species. Legume introns are therefore significantly longer
than in At (mean 171 nt, median 101 nt) and slightly
longer than Os introns (mean 438 nt, median 164 nt). As
shown in Figure 1A, the intron size distributions have a
peak near 90 nt in all four species. Mt and Lj have fewer
introns shorter than 150 nt but more introns longer than
200 nt compared with At and Os. At introns are clearly the
shortest of the four plants. Fewer than 1% of introns are
longer than 1,000 nt in At, while this number is over 10%
in the other plant species. Exon size tends to be similar
among the four plant species, with legume exons slightly
shorter than At and Os exons. In Mt and Lj, the mean inter-
nal exon sizes are 140 and 127 nt, respectively, with the
median sizes about 108 nt and 100 nt. At and Os have
internal exons with a mean of 164 nt and 175 nt and a
median of 113 nt and 114 nt. Figure 1B shows that the
size distributions of exons in Mt, At and Os all display a
peak at around 80 nt. Lj data is less consistent due to its
small sample size. In contrast to introns, the frequency of

Medicago Lotus# Arabidopsis Rice

EST/cDNA total 225,920 150,855 691,516 1,009,754
Mapped to genome? 104,382 (46.2%) 22,144 (14.7%)* 589,254 (85.2%) 916,825 (90.8%)
Transcription unit (TU)/Genes 1,516 3,298 22,518 31,044
MultiEST TU/Genes 8,544 (74.2%) 1,879 (57.0%) 19,857 (88.2%) 26,859 (86.5%)
Average (Median) ESTs/gene 9.8 (4) 6.9 (2) 26.3 (11) 30.1 (10)
Number of Introns 32,860 4357 97,095 107,162
Average (Median) intron size 472 (218) 458 (215) 171 (101) 438 (164)
Long intron (>1000 nt) 12.7% 10.9% 0.7% 10.7%
Number of internal exons 24,600 2,717 78,911 83,668
Average (Median) internal exon 140 (108) 127 (100) 164 (114) 175 (113)

A Transcript sequences are required to have >95% identity and >80% coverage to be considered as mapped.

# Lotus data are based on the ESTs aligned to finished TACs (phase 3).

* A total of 48,691 (32.3% of 150,855) transcript sequences can be mapped to Lj TACs in all phases, including phase |, phase 2 and phase 3.
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Size distributions of introns and internal exons in plants. The x-axis indicates the size of either introns (A) or internal
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a detailed distribution of smaller (<300 nt) introns (A) or internal exons (B). The bin size is 10, and 100 nt comprises size 91—
100 nt for the insets.
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exons smaller than 150 nt is higher in Mt and Lj than in
At and Os, while the frequency of exons longer than 200
nt is lower in legumes. Overall, legumes have longer
introns but slightly shorter exons than At and Os. Gener-
ally speaking, plant introns are longer than exons. More
than 40% of introns in Mt, Lj and Os are longer than 300
nt, while less than 10% exons are so large.

As noted previously [1,36], the GC-content of introns and
exons is ~5% lower in At than in Os. The GC-content of
legume introns and exons is very similar to that of At
although Mt has slightly lower GC-content than either At
or Lj in both intronic and exonic regions (see Additional
file 1, Supplementary Table S1 and Supplementary Figure
S2). G-content and A-content are similar in all species
including Os, although Os introns are relatively more C-
rich and less U-rich. There is more variation in the distri-
bution of U-(T-) and A- content than in G- or C-content in
all species (see Additional file 1, Supplementary Figure
S3). The difference in GC-content between introns and
exons is about 10% in all four species, with Mt showing
the largest difference of 11.7% and Os showing the small-
est, 9.6% (see Additional file 1, Supplementary Table S1).

Different plant species have similar levels of alternatively

spliced genes

Previous studies revealed that approximately 20% of
expressed genes are alternatively spliced in At and Os, with
half of the AS events being intron retention (IntronR) [1].
When we re-examined AS frequency in At and Os for this
study, we also found a frequency of around 20%. How-
ever the total number of transcript sequences increased
80%-200% due to the increased sizes of the EST data sets
in these species. In the case of Mt and Lj, the number of
ESTs available for analysis were much lower. Consistently,
the fraction alternatively spliced genes observed was
much lower, just 9.6% in Mt and 2.8% in Lj (Table 2).
Examples of alternatively spliced genes in Mt are shown in

Table 2: Comparison of alternative splicing events and
frequencies in plants

Medicago Lotus# Arabidopsis Rice
AltD 204 (13.5%) 18 (15.7%) 818 (11.3%) 1,165 (9.6%)
AltA 350 (23.1%) 37 (32.2%) 1,785 (24.7%) 2,377 (19.5%)
AltP 21 (1.4%) 2 (1.7%) 106 (1.5%) 306 (2.5%)
ExonS 162 (10.7%) 10 (8.7%) 445 (6.2%) 1,332 (10.9%)
IntronR 778 (51.3%) 48 (41.7%) 4,062 (56.3%) 7,011 (57.5%)
Total 1,515 115 7,216 12,191
AS genes 1,107 (9.6%) 92 (2.8%) 4,497 (20.0%) 6,313 (20.3%)

Percentages in parenthesis for each alternative splicing type are the
portion relative to the total events. Percentages for AS genes are the
portion of alternatively spliced genes relative to the total number of
expressed genes (genes/TU) in Table I.

#Lotus data are based on the ESTs aligned to finished TACs (phase 3).

http://www.biomedcentral.com/1471-2229/8/17

Additional file 1, Supplementary Figure S1. All the AS data
are deposited and viewable at the ASIP site [37].

To compare the frequency of alternative splicing between
different species, earlier studies relied on 10 randomly
selected ESTs per gene as a basis for estimating AS fre-
quency [4]. Here, only a small fraction (10-20%) of leg-
ume genes were covered by 10 or more ESTs, so this
approach was not practical. Instead, we plotted the AS fre-
quency for all groups of genes with similar EST coverage
in different species, as shown in Figure 2. Mt categories
with fewer than 80 genes total were removed to reduce
noise due to small sample size, and Lj data are not
included at all, as sample size was uniformly too small.
When analyzed in this way, the fractions of alternatively
spliced genes are similar regardless of species for nearly all
size classes. For genes with four ESTs (the median EST
number per gene in Mt), the observed AS frequency is 6—
12% in Mt, At, and Os alike. For genes with nine to 11
ESTs (the median EST number per gene in Os and At), 15—
23% are alternatively spliced. In general, the fraction of
alternatively spliced genes keeps increasing with increas-
ing transcript coverage, eventually reaching 66% in Os
and 46% in At for genes with hundreds of ESTs, a levels
similar to those observed in mammals [38,39]. Interest-
ingly, the AS level in Os is consistently over 10% higher
than in At in genes with more than 40 supporting ESTs.

IntronR is the most abundant AS type in legumes

As shown in Table 2, the proportions of different AS types
are similar in Mt, At and Os. (Lj data are also listed but are
not included in the analysis as only ~100 AS events were
identified). More than half of AS events in plants are
IntronR, 6-11% are ExonS, and the remaining 30-40%
involve different splice sites (AltD/A/P). These numbers
are quite similar to those observed previously [1]. Mt has
a slightly lower ratio of IntronR (51%) and a higher ratio
of AltD (13%) compared with At and Os. Different levels
of EST coverage have little effect on the composition of AS
events. As shown in Additional file 1 (Supplementary Fig-
ure S4), the ratios of different AS types remain largely con-
stant across all EST levels, particularly in At and Os.
IntronR is the most abundant at all levels, with a relatively
lower ratio in Mt. The ExonS ratio is consistently lower in
At than in Os (and Mt), while the AltA ratio is higher.

To minimizes false AS events caused by sequencing errors
or contaminations in the EST collection, we repeated the
above analysis for the subset of AS events that are sup-
ported by at least two transcript sequences [40]. As shown
in Figure 3, the ratio of IntronR decreased ~5% in all
plants in this subset. Mt has the lowest ratio of IntronR
(45%), 6-7% lower than in At and Os. The ratio of ExonS$
remains unchanged compared with the full data set. In Mt
and Os, 10-11% AS events are ExonS compared to 7% in
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Correlation between AS frequency and EST coverage. The x-axis indicates groups of genes with certain numbers of
ESTs. The primary y-axis for the bar graph indicates total number of genes within each group. The secondary y-axis for the line
graph indicates the fraction of alternatively spliced genes for the group. Note that different bin sizes were used to keep the
number of genes in each group greater than 500 in At and Os. AS data from groups with fewer than 80 genes in Mt were
removed to reduce noise. Lj data were not shown as only the first six groups have more than 80 genes.

At. The AltD ratio in Mt increased significantly to 21% in
the subset, nearly double the ratio in At and Os. In At, the
AltA ratio is ~30% compared to 23% in Mt and Os. Similar
tendencies were observed for subset data with even more
transcripts supporting each isoform. Both the full and
subset data indicate that Mt has a lower ratio of IntronR
and a higher ratio of AltD, and that At has a lower ratio of
ExonS but a higher ratio of AltA.

Cross-species EST alignment in Medicago reveals hundreds
of novel AS events

Even "reliable" AS events (as defined above) may not nec-
essarily be functional. Because conservation is usually a
good indicator of function, we deployed a cross-species
approach similar to large-scale methods used previously
in mammals to identify functional AS events [7,9]. All
available EST sequences from Lj, Gm, and other legume
species were aligned against Mt BACs. One concern with
the cross-species approaches has been a potentially high

error rate [7]. Here, even using an identity cutoff as high
as 80%, hundreds of AS events were identified from either
GeneSeqger or GMAP alignments alone, with approxi-
mately 40% of events consistent between the programs.
Our analysis used only common events identified by the
two programs to reduce false positive events from align-
ment errors. As shown in Table 3, 10-20% of the non-Mt
legume transcript sequences could be mapped to Mt BACs
and clustered to a total of 7,896 non-redundant genes,
81% of which have also Mt EST support. Approximately
70% of the introns identified from cross-species EST align-
ments were consistent with Mt EST supported introns. The
gene structures derived from cross-species ESTs and Mt
ESTs alignments were mostly consistent, demonstrating
the value of cross-species ESTs in genome annotation
[10]. In this analysis, a total of 307 Mt genes (3.9%) were
found to be alternatively spliced, with 248 genes having
no evidence of AS from Mt ESTs alone. If these novel AS
events are included, the estimated frequency of Mt alter-
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Ratio of different AS types in a reliable subset of AS events. The reliable data set consisted of AS events with multiple
supporting ESTs for each isoform. IntronR is still the most abundant AS type in the subset. The error bar represents the ratio

for each AS type in full data set described in Table 2.

natively spliced gene increases from 9.6% to 10.4%. Inter-
estingly, many more AS events were identified from
soybean ESTs than from Lj ESTs, despite the similar evolu-
tionary distance between Mt-Gm versus Mt-Lj. At and Os
EST sequences were also applied in a comparable cross-
species analysis, but only 1% of them could be mapped
using the same criteria. No reliable AS events were
deduced from At and Os transcript sequences.

Altogether, 367 cross-species AS events were identified
from legume cross-species EST alignment, including
35.7% IntronR, 16.9% ExonS, 16.1% AltD, 29.1% AltA,
and 2.2% AItP (Table 4). Compared with AS events iden-
tified using Mt ESTs alone, the cross-species AS events dis-
play a relatively lower ratio of IntronR and higher ratios of
ExonS, AltD, and AltA. As most of the cross-species AS

Table 3: Cross-species EST alignments in Medicago

events are likely conserved between Mt and the native spe-
cies of the EST, the ratio of each AS type in cross-species
AS events could be interpreted to represent the ratio of
functional AS events. However, the ratio of IntronR could
have been underestimated by cross-species EST align-
ments because intron sequences are not as well-conserved
as exons, even in closely related species. Thus, some cross-
species ESTs retaining introns from their native species
might have been filtered by the 80% identity cutoff. The
location and outcome of cross-species AS events and
same-species AS events are compared in Additional file 1
(Supplementary Table S2).

Approximately 90% of cross-species AS events are located
in open reading frames (ORFs), much higher than the
fraction (70-75%) in same-species AS events. There seem

Species EST/cDNA Mapped to Mt BACs Genes Genes without Mt EST AS Genes Novel AS* Predicted introns Consistent introns”
Lotus 150,855 15,542 (10.3%) 2,955 367 (12.4%) 12 (3.3%) 8 5,606 4,256
Soybean 359,834 42,665 (11.9%) 5,810 925 (15.9%) 242 (4.2%) 201 16,758 11,420
Other legumes 127,684 26,547 (20.8%) 5,335 700 (13.1%) 69 (1.3%) 50 13,052 9,926
Total 638,373 84,754 (13.3%) 7,896 1,475 (18.7%) 307 (3.9%) 248 23,179 15,506
* Novel AS gene indicates genes not identified as alternative splicing by Mt EST.
A Consistent introns indicate number of introns predicted from cross-species ESTs which are also supported by Mt EST.
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Table 4: AS events predicted from cross-species EST alignment in Medicago
Species AS events AltD AltA AltP ExonS IntronR
Lotus 12 2 (16.7%) 6 (50.0%) 1 (8.3%) 2 (16.7%) 1 (8.3%)
Soybean 276 40 (14.5%) 75 (27.2%) 5(1.8%) 53 (19.2%) 103 (37.3%)
Other legume 87 20 (23%) 26 (29.9%) 2 (2.3%) 7 (8.0%) 32 (36.8%)
Total 367 59 (16.1%) 107 (29.1%) 8 (2.2%) 62 (16.9%) 131 (35.7%)

to be more cross-species and same-species AS events in the
5'-UTR than in the 3'-UTR (data not shown and [1]). For
AS events in ORFs, the fractions of translation-
readthrough events, where some amino acids are added to
or removed from the protein without changing the read-
ing frame, are similar (20-24%) in cross-species and
same-species events. AltA has the highest translation-
readthrough ratio (35-40%), and IntronR has the lowest
(2-10%). Intriguingly, the ratio of AS events producing
substrates for nonsense-mediated decay (NMD) [41] is
higher in cross-species AS events than in same-species AS
events. Nearly half of the cross-species AS events produce
NMD substrates, compared with 30-40% in same-species
AS events.

Conserved AS events identified from cross-species EST
alignments in legumes

To identify AS events with direct evidence of conservation
in multiple species, two approaches were employed: (1)
Align all legume ESTs to Lj TACs to identify conserved AS
events predicted by the same ESTs between Mt and Lj; (2)
Identify conserved AS events in Mt with EST evidence
from multiple legume species, all showing the same AS
pattern. A total of 242 AS events conserved between Mt
and Lj were identified through method (1), including 92
(38.0%) IntronR, 26 (10.7%) ExonS, 78 (32.2%) AltA, 41
(17.0%) AItD, and 5 (2.1%) AltP events. These AS events
are viewable at the ASIP website. Method (2) identified 22
completely conserved AS events in Mt (see Additional file
1, Supplementary Table S3). Nine of the 22 genes also
have At and/or Os close homologs sharing the same AS
pattern. For instance, Mt hypothetical protein
AC156627_1 has both soybean and Mt ESTs support for
an AltA event in the first ORF intron, whereby an isoform
utilizes an alternative acceptor site 5-nt upstream
(AACAG) of the constitutive acceptor site (AGCAG), pro-
ducing a substrate possibly subject to NMD. At homologs
(At5g25360.1 and Atl1gl15350.1) and Os homolog
(LOC_0s02g10720) both have exactly the same AS pat-
tern, including the alternative acceptor sites. This gene
seems to be plant-specific, as non-plant homologs can not
be identified. Another example of completely conserved
AS events is the Mt AP2 domain containing protein
AC151460_3, where the 3'-UTR intron can be retained.
One At homolog and three Os homologs also have the

same intron retained. There are also some AS events con-
served in legumes but not observed in At and Os. One
example is AC124951_11, a highly expressed carbonic
anhydrase gene with the 3'-UTR intron alternatively
spliced (AltD) in legumes species. The AltD event is con-
served in all legume species (Mt, Lj, Gm, and others), but
not in At and Os even though hundreds of ESTs exist, indi-
cating that this AS event is probably legume-specific.

One example of a completely conserved ExonS event
occurs in an enoyl-CoA hydratase/isomerase gene (Mt:
AC145449_47). As shown in Figure 4A, the IMGAG-
annotated gene structure for AC145449_47 contains 11
exons, each with strong EST support. Exon3 (65 nt) and
Exon4 (53 nt) are mutually exclusive. In one isoform,
Exon3 is retained and Exon4 is skipped (Mt: 7206545,
90656179; Lj: 45578881; Lupine: 27458685). In another
isoform, Exon4 is retained with Exon3 skipped (Mt:
7567285, 11904359, 13596489, 33106093; L;:
7719575). The two mRNA isoforms therefore encode two
proteins (418 aa and 414 aa) differing slightly in their pre-
dicted Enoyl-CoA hydratase domain (ECH, pfam00378).
No isoform contains both exons, while it is possible to
skip both (Mt: 83667352). Two genes in At (At4g13360
and At3g24360), one gene in Os (LOC_0Os06g39344) and
one in Lj (LjTC_2465, AP006370.1: 88858-94512) are
the closest homologs to AC145449_47. Exactly the same
AS pattern was observed in all the homologous genes
except for At4g13360, where the 65-nt exon (Exon3) was
retained constitutively and no trace of the 53-nt exon can
be found in the corresponding region (Figure 4C-E).
Sequence comparison revealed several nucleotide bases in
degenerate codons conserved in all four species (Figure
4B). These bases may contribute to the recognition of (or
skipping) the exon.

Discussion

Comparison of AS frequencies in different species

In this study, alignment of current EST and genomic
sequences revealed that ~10% of expressed genes are alter-
natively spliced in Mt compared with 20% in At and Os.
This difference is mainly due to the lower EST coverage
found in Mt. We demonstrated that the AS frequencies in
the three plants are essentially similar when adjusted for
genes having comparable EST numbers. This conclusion is
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Figure 4

Completely conserved ExonS event in plant enoyl-CoA hydratase/isomerase genes. A: same-species and cross-
species EST alignments in Mt gene locus AC145499_47. Filled boxes and arrows indicate exons, and lines indicate introns.
Green open or filled boxes indicate exons skipped or retained in certain ESTs. The top black scale indicates coordinates for
the gene locus on BAC (AC145499). The blue bar represents the IMGAG annotated gene model, with the green triangle rep-
resenting the protein translation start codon and the red triangle representing the stop codon. Red bars represent individual
same species EST alignments. Purple bars represent Lj ESTs, dark yellow bars represent soybean ESTs, and gray bars represent
ESTs from other legume species. B. Multiple sequence alignments of the mutual exclusive exons. E3 indicates the Exon 3 and
E4 indicates the Exon 4. At2E3 refers to the exon in the second copy of At gene (At4gl3360). Amino acids encoded by Mt
sequences are list at the top of sequence alignment. Degenerate positions (change in nucleotide will not change amino acids)
which are conserved in all exons are highlighted in colors. C. EST alignment in the second copy of At gene (At4gl 3360). Only
exon E3 exists in this gene and no ExonS can be detected. D, E. EST alignment in At and Os genes where the ExonS pattern is
completely conserved.
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different from the conclusion drawn in a recent study
based on EST pairs gapped alignments, in which a greater
degree of variation was observed for different plant spe-
cies [3]. Interpretation of EST-only data can be con-
founded by extensive gene duplication events. With more
plant genome sequences becoming available, it should
soon be possible to more precisely address the intriguing
questions concerning the extent and evolution of AS in
plants.

Alternatively spliced isoforms are usually in low abun-
dance, the chance of capturing them in a small EST collec-
tion is low, making it difficult to estimate AS frequencies
accurately. Supposing a functional event has certain per-
centage p of transcripts alternatively spliced, the probabil-
ity of observing an AS event with n ESTs covering the
alternative splice siteis 1 - (1 - p). For example, if an alter-
natively spliced isoform were generated p = 10% of the
time, n = 10 transcript sequences would give a 65% prob-
ability of observing this event, and 22 transcript sequences
would be required to have >90% probability of observing
the event. Our results show that the AS frequency for
genes with small numbers of ESTs are similar in Mt, At,
and Os, suggesting that they all have similar levels of func-
tional AS events.

In cases where AS isoforms are even lower in abundance,
greater numbers of transcripts would be clearly necessary
to detect the event. Nevertheless, Os seems to have a
higher frequency of AS in genes with >30 ESTs than either
Mt or At. Focusing on genes with >40 ESTs only, the AS
frequency in Os is consistently (>10%) higher than in At.
For this analysis, we did not include transcripts from Os
subspecies indica in order to eliminate the possibility that
the higher AS frequency is falsely caused by cross-subspe-
cies ESTs. In any case, the error rates from EST sequencing
or genome contamination are probably similar in all three
plants. Consequently, Os does seem to have higher levels
of low-abundance AS events than At (or Mt). Some of the
low-abundance events may be splicing errors captured in
EST libraries constructed from plant tissues under various
growth conditions, so the higher level of low-abundance
AS events in Os could indicate higher error rates for the Os
spliceosome.

Not surprisingly, observed AS frequency is highly corre-
lated with EST numbers in all three plants. Highly
expressed genes (genes with large numbers of ESTs) are
more likely to be detected as alternatively spliced. Over
60% and 40% genes with more than 500 ESTs are alterna-
tively spliced in Os and At, respectively. This is compara-
ble to the level in human [42]. Half of human genes are
alternatively spliced by the criterion that AS isoforms
occurs in at least 1% of the observed transcripts, but only
20% of human genes are alternatively spliced if the
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required abundance level is increased to >10% [42]. This
frequency is notably similar to the frequency in plants
under the same abundance level, suggesting that the fre-
quency of regulated AS events in plants may not be signif-
icantly lower than in mammals.

Splicing errors and functional AS events

A clear difference between AS in plants and mammals is
the predominance of IntronR in plants and ExonS in
mammals. Both model legumes, Mt and Lj, have 40-50%
of AS events as IntronR, a level noticeably lower than in At
and Os, but still much higher than in mammals. Similar
to the situation in At and Os [1], introns shorter than 70
nt are more likely to be retained in legumes (data not
shown). The spliceosome is a large dynamic RNA-protein
complex involving hundreds of proteins. If an intron is
too small, the assembly and structure transformation of
spliceosome will be constrained and may lead to ineffi-
cient splicing and IntronR [1]. As the size of introns is con-
siderably larger in Mt and Lj, fewer introns will be retained
due to steric hindrance, possibly leading to a lower fre-
quency of IntronR in legumes. These data also suggest that
some AS events may be splicing errors. As we proposed in
[1], the most common splicing error in plants is probably
a failure to recognize and splice out introns, so IntronR
should be the most common AS type. In mammals, where
introns are defined through an exon recognition mecha-
nism, a failure to recognize some exons, and therefore
skip them, is likely the most common error. Conse-
quently, ExonS is the most common AS type in human.

Observed AS events are a mixture of functional AS events
and splicing errors. Other types of error, such as sequenc-
ing errors, genome contamination, and alignment errors,
will also contribute to the predicted level of AS events.
Two alignment programs (GeneSeqer and GMAP) were
applied and only common AS events were used in this
study to minimize alignment errors. Genome contamina-
tion could be minimized by elimination of ESTs retaining
all predicted introns. Distinguishing functional AS events
from splicing errors, however, is not an easy task. We
attempted to achieve this goal by two methods. First, we
selected AS events with each isoform supported by multi-
ple transcripts. As splicing errors are expected to occur at
low frequency, the chances they will be captured in two
distinct transcripts are low. In this data set, the frequency
of IntronR is slightly lower, but still the highest among the
five AS types, indicating that IntronR is indeed the most
abundant regulated AS result. The second method is to
look for conserved AS events through cross-species EST
comparison and orthologous gene comparison. A few AS
events were completely conserved in Mt, Lj, At and Os.

Functional AS events, however, may not always be con-

served. As a dynamic process, splicing requires hundreds
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of proteins as well as some snRNAs to function accurately
[14]. Mutations in both trans- and cis-elements on target
genes will impact splicing patterns. Depending on when
the mutation and fixation event occurs, functional AS
events can be shared among closely related species or be
lineage-specific. The AltD event in 3'-UTR of the highly
expressed carbonic anhydrase gene (AC124951_11) may
be a good example shared by legume species. Lineage-spe-
cific functional AS events are difficult to define from EST
data alone.

Centralized data place and standard data set for ASIP

As more plant genomes and ESTs are being sequenced,
more AS events will be identified in the future. It is impor-
tant to have a centralized place to store and compare all
AS data. In animal systems, a comprehensive database,
ASAP [43] includes AS data from 16 sequenced animals,
which makes a comparison across different animal species
straightforward. Such a database is also needed in plants,
as the study of splicing signals and alternative splicing are
just starting. The AS data identified in this study have been
deposited in the ASIP database at PlantGDB [37], where
previous AS data are stored and can be easily compared
[1]. Moreover, a database collecting genes related to splic-
ing in At, animals and yeast is available through the SRGD
database at PlantGDB [14,44]. In the future, the database
will be expanded to Os and other sequenced plant
genomes including Mt, Lj and poplar. The analysis pro-
grams and plant genome browsers available at PlantGDB
should facilitate the deep mining of AS data in plants. A
core data set in which the AS events are conserved in all
sequenced plants will be extremely useful for understand-
ing the function of AS events, as well as the signals and
regulation of this important and intriguing phenomenon.

Conclusion

As in At and Os, AS events are also widespread in the two
model legumes Mt and Lj. Thousands of AS events were
identified in Mt through a combination of same- and
cross-species EST alignments. The frequency of alterna-
tively spliced genes is similar across different plant species
when the number of ESTs is standardized. Compared with
mammals, plants are thought to have a relatively low fre-
quency of alternatively spliced genes. Our results indicate
that this assessment may be due in part to the compara-
tively low EST coverage in plant species. Among all five AS
types discussed, IntronR is the most abundant in different
subsets of genes, as previously observed in At and Os. We
also identified hundreds of novel and conserved AS events
through cross-species ESTs alignments. This is the first
study in plants using cross-species ESTs to explore AS. For
species with large EST collections but scant genome
sequence data, including wheat and barley, aligning their
ESTs to a closely related reference genome, such as Os,
should shed light on alternative splicing in these species.

http://www.biomedcentral.com/1471-2229/8/17

Methods

Data sets

The Medicago Genome Sequence Consortium (MGSC)
release 1.0, consisting of the 1,826 BACs analyzed in this
study, were downloaded from Medicago genome sequenc-
ing project website [45]. The assembly comprises a total of
186.2 Mb of non-redundant genome sequence, an esti-
mated 38-47% of the entire genome and 55-58% of total
gene space [46]. All other sequence data sets used in this
study were current as of July 17, 2006, the cutoff date for
BACs incorporated into the Mt1.0 genome assembly. For
Lotus japonicus, 1,394 BAC/TACs were downloaded from
the NCBI [47] nucleotide database using the query
"txid34305 [ORGN:noexp|] AND HTG [KYWD]". Arabi-
dopsis genome sequences and gene annotation (TAIR
release 6.0) were downloaded from the GenBank FIP site
[48], and rice genome sequences and gene annotation
(TIGR release 4.0) were downloaded from the TIGR FTP
site [49].

All EST sequences (including full-length cDNAs) were
retrieved from GenBank nucleotide database. Sets of
225,920 Mt and 150,855 Lj transcript sequences were col-
lected using the queries (txid3880 [ORGN] AND "biomol
mrna" [PROP]) and (txid34305 [ORGN] AND "biomol
mrna" [PROP]), respectively. Soybean transcript
sequences (359,834) were retrieved using the query
(txid3847 [ORGN] AND "biomol mrna" [PROP]), and
127,684 transcript sequences from all other legumes were
retrieved by using the query (txid3803 [ORGN:exp| NOT
xid3880 [ORGN] NOT txid34305 [ORGN] NOT
txid3847 [ORGN] AND "biomol mrna" [PROP]). For At,
691,516 transcript sequences were retrieved using the
query (txid3702 [ORGN] AND "biomol mrna" [PROP]
AND srcdb_ddbj/embl/genbank [PROP]). For Os,
1,009,574 ESTs from the japonica cultivar-group were
retrieved using query (txid39947 [ORGN] AND "biomol
mrna" [PROP] AND srcdb_ddbj/embl/genbank [PROP]).
We intentionally excluded transcript sequences from the
indica cultivar-group to reduce possible false positive
alignments caused by differences between the two Os cul-
tivar-groups.

Spliced alignment of transcript to genome sequences

The legume transcript sequences were mapped to the Mt
and Lj BAC sets using the two computer programs Gen-
eSeqer [34] and GMAP [35]. The splice site models for
GeneSeqer were set to Medicago-specific parameters using
the program option "-s Medicago". Default parameters
were used for all other options. Default alignment param-
eters were used for GMAP. For At and Os, only GMAP
alignments were performed locally, and GeneSeqer align-
ments derived from a larger data set were downloaded
from PlantGDB [50].
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GMAP and GeneSeqer output alignment files were proc-
essed by a pipeline (ASpipel.0, available through Source-
Forge [51]) developed from Perl and shell scripts used in
a previous study [1]. ASpipe extracts coordinates and
scores for high-quality intron/exon/alignments from the
original program outputs and stores them in MySQL5.0
databases. For same-species EST alignments, the criteria
for high-quality alignments were >95% sequence identity
and >80% coverage (defined as the portion the transcript
sequence aligned to the genomic sequence). The high
identity (95%) cutoff minimizes false mapping of tran-
script sequences to incomplete genomes. For cross-species
transcript alignments, the identity cutoff was decreased to
80%, which selects reliable alignments from divergent
transcript sequences. Redundant EST alignments in Mt
were removed by comparison with the non-redundant
gene list provided for Mt1.0 [33]. Exons mapped with
>95% and >80% sequence identity were considered as
reliably identified exons for same-species and cross-spe-
cies mappings, respectively. Introns with reliable neigh-
boring exons on both ends were considered as reliably
identified introns. A transcription unit (TU) was defined
as a consecutive genomic region where transcript
sequences were mapped and clustered. Annotated gene
models may contain multiple TUs. For Mt, At and Os,
annotated genes were used as the base for analysis. For Lj,
where no gene annotation is available, TUs were the base
for analysis.

Identification of alternative splicing (AS) and conserved AS
events

The coordinates of reliable introns and exons were com-
pared in a pairwise fashion in order to identify candidates
for AS events. For intron/intron comparison, if two
introns had the same 3'-end but a different 5'-end, this
event was classified as AltD. If two introns differed only in
the 3'-ends, this event was classified as AltA. AltP events
refer to introns overlapping with each other but with both
5'- and 3'-ends differing. For intron/exon comparisons, if
an intron was completely covered by an exon, the event
was classified as IntronR. If an exon was completely cov-
ered by an intron, the event was classified as ExonS. ExonS
events involving terminal exons and the AltA/D/P events
related to ExonS events were removed. The process and
algorithm for identifying and analyzing AS events is
described in more detail in [1]. AS events identified from
cross-species EST alignment were labeled as "cross-species
AS events". Correspondingly, the events from same-spe-
cies EST alignment were referred to as "same-species AS
events".

Conserved AS events were identified in two ways: (1)
Comparing cross-species AS events with same-species AS
events and other cross-species AS events from different
species; (2) Identifying orthologous gene pairs between
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Mt and Lj and comparing their AS events. In the first
method, the Mt genome coordinates of the AS events pre-
dicted from multiple species ESTs were compared. Only
events with identical coordinates of an alternatively proc-
essed intron(s)/exon(s) were regarded as completely con-
served. In the second method, the orthologous genes were
identified by searching ESTs mapped in both Mt and Lj
genomes. In some cases, orthologs in At and Os were iden-
tified by reciprocal BLAST using annotated protein
sequences from At, Mt and Os. Gene structures and AS
events of orthologous genes were then compared to iden-
tify conserved AS events.
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