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Abstract

Machine learning algorithms trained to predict the regulatory activity of nucleic acid

sequences have revealed principles of gene regulation and guided genetic variation analy-

sis. While the human genome has been extensively annotated and studied, model organ-

isms have been less explored. Model organism genomes offer both additional training

sequences and unique annotations describing tissue and cell states unavailable in humans.

Here, we develop a strategy to train deep convolutional neural networks simultaneously on

multiple genomes and apply it to learn sequence predictors for large compendia of human

and mouse data. Training on both genomes improves gene expression prediction accuracy

on held out and variant sequences. We further demonstrate a novel and powerful approach

to apply mouse regulatory models to analyze human genetic variants associated with

molecular phenotypes and disease. Together these techniques unleash thousands of non-

human epigenetic and transcriptional profiles toward more effective investigation of how

gene regulation affects human disease.

Author summary

Human population genetic studies have highlighted thousands of genomic sites that cor-

relate with traits and diseases that do not modify gene sequences directly, but instead

modify where and when those genes are expressed. To better understand how these sites

influence traits and diseases, and consider their relevance for drug development, we need

better models for how DNA sequences determine gene expression. Recently, machine

learning algorithms based on deep artificial neural networks have proven to be promising

tools toward this end. In this work, we improve upon the state of the art model accuracy

by combining training data from both humans and mice. Using these models, we can pre-

dict the effect of a genetic variant on gene expression in any tissue or cell type with avail-

able data. We further demonstrate that predictions for human variants derived from

mouse training datasets are highly informative and offer unique insight into the genetic

basis of gene expression and disease.
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Introduction

Predicting the behavior of any nucleic acid sequence in any nuclear environment is a primary

objective of gene regulation research. In recent years, machine learning approaches to directly

tackle this problem have achieved significant accuracy gains predicting transcription factor

(TF) binding, chromatin features, and gene expression from input DNA sequence [1–7].

These models have been applied to study genetic variation in populations and generate mecha-

nistic hypotheses for how noncoding variants associated with human disease exert their influ-

ence [3–8]. Estimates for how mutations influence regulatory activity have also offered novel

views into regulatory evolution and the robustness of genes to such mutations [7].

Deep convolutional neural networks have achieved state of the art performance for many

regulatory sequence activity prediction tasks in humans and other species [2, 4–7]. The com-

plexity of mammalian gene regulation and these models’ impressive but imperfect predictions

suggest room for improvement remains. In particular, distal regulation by enhancers is incom-

pletely captured by existing models, which do not attempt to consider sequence beyond ˜20 kb

of transcription start sites (TSSs) [5, 7, 9]. Obtaining more training data is a reliable strategy to

improve model accuracy. The research field continues to generate new functional genomics

profiles, but these merely deliver additional labels for the existing sequence data; fitting more

expressive and accurate models would benefit more from entirely new training sequences.

Acquiring functional profiles for more humans will provide limited new training data because

individual human genomes differ only slightly from each other. In reporter assays, large quan-

tities of synthetic sequences can be profiled, but they are limited to short sequences and cell

lines that cannot represent the full complexity of human tissues [10–14].

Non-human species offer a potential source of this desired additional training data. Regula-

tory sequence evolves rapidly, but TF binding preferences are highly conserved due to the

drastic effect that modifying affinity for many thousands of binding sites would confer on the

organism [15–17]. Prior work studying cross-species machine learning of TF binding and

chromatin marks indicates potential utility [18, 19]. Thus, we hypothesized that regulatory

grammars across related species have enough in common that jointly training large models on

vast data from multiple species will improve regulatory sequence activity models derived by

machine learning. To explore this data source, we chose the mouse as a distant mammal with

substantial functional genomics data available [20].

In addition to serving as a source of more genomic sequences, mouse experiments can

explore biological states that are difficult or unethical to acquire in humans, e.g. profiling

mouse development, disease, and genome modifications. If context-specific regulatory gram-

mars are sufficiently conserved across species, then models trained to predict these mouse data

may be able to impute human genome profiles to study human regulatory sequences and

genetic variation. Although models trained on mouse will not match the performance of anal-

ogous human models, they may serve as useful approximations and produce novel variant

annotations when the human data are unavailable.

In this work, we trained a deep multi-task convolutional neural network to jointly learn the

complex regulatory grammars that determine TF binding, chromatin marks, and transcription

using the ENCODE and FANTOM compendia of thousands of functional genomics profiles

from hundreds of human and mouse cell types. We benchmarked single versus joint genome

training and found that jointly training on human and mouse data leads to more accurate

models for both species, particularly for predicting CAGE RNA abundance. We demonstrated

that mouse regulatory grammars can be transferred across species to human where they con-

tinue to make accurate tissue-specific predictions. Applying this procedure to predict human
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genetic variant effects revealed significant correspondence with eQTL statistics and proved

insightful for studying human disease.

Results

Multi-genome training improves gene expression prediction accuracy

We applied the Basenji software and framework to predict functional genomics signal tracks

from only DNA sequence [5]. The neural network takes as input a 131,072(= 217) bp sequence,

transforms its representation with iterated convolution layers, and makes predictions in 128

bp windows across the sequence for the normalized signal derived from many datasets (Fig 1,

Methods). We applied an architecture that uses residual connections to alleviate the strain of

vanishing gradients in deep network optimization and improve generalization accuracy (S1

Fig) [21]. Training on multiple genomes required several further developments (Methods).

Most importantly, we modified the train/valid/test split of the genomic sequences to ensure

that homologous regions from different genomes did not cross splits (Methods); without this

step, we might overestimate generalization accuracy.

We assembled training data consisting of 6,956 human and mouse quantitative sequencing

assay signal tracks from the ENCODE and FANTOM consortiums (Methods). These data

describe regulatory activity across tissues and isolated cell types using several techniques—

DNase and ATAC-seq to measure DNA accessibility, which typically mark TF-bound sites,

and ChIP-seq to map TF binding sites and histone modification presence [22, 23]. The FAN-

TOM data consists of RNA abundance profiling with CAGE, where the 5’ end of the transcript

is sequenced [24]. These 5’ RNA profiles are independent of splicing and allow us to provide

input DNA sequence without gene annotations, which would not be the case for RNA-seq [5].

In addition, we added several mouse datasets describing cell states that are unavailable for

humans: (1) a single cell ATAC-seq atlas from 13 tissues clustered to 85 distinct profiles [25]

and (2) several TF and chromatin profiles obtained over 24 hour time courses in the liver to

study circadian rhythms (S1 Table).

To measure the influence of multi-genome training on generalization accuracy, we trained

three separate models on these data: one jointly fit to both human and mouse, one to human

data alone, and one to mouse data alone. For each scenario, we fit the same model architecture

and hyperparameters. We trained the models to minimize log Poisson loss and assessed accu-

racy by computing Pearson correlation between the predictions and observed signal for each

dataset.

The joint training procedure improved test set accuracy for 94% of human CAGE and 98%

of mouse CAGE datasets (binomial test p-values 1 × 10−16 and 1 × 10−16), increasing the

Fig 1. Predicting regulatory sequence activity for human and mouse genomes.We predict the regulatory activity of DNA sequences
for multiple genomes in several stages (Methods). The model takes in 131,072 bp DNA sequences, encoded as a binary matrix of four
rows representing the four nucleotides. We transform this representation with seven iterated blocks of convolution and max pooling
adjacent positions to summarize the sequence information in 128 bp windows. Green and purple heatmaps represent convolution filter
weights; red and white heatmaps represent pooled sequence vectors. To share information across the long sequence, we apply eleven
dilated residual blocks, consisting of a dilated convolution with exponentially increasing dilation rate followed by addition back into the
input representation. Finally, we apply a linear transform to predict thousands of regulatory activity signal tracks for either human or
mouse. All parameters are shared between species except for the final layer.

https://doi.org/10.1371/journal.pcbi.1008050.g001
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average correlation by .013 and .026 for human and mouse respectively (Fig 2a and 2c). For

DNase, ATAC, and ChIP, joint training improved predictions by a lesser margin relative to

single genome training; average test set correlation increased for 55% of human and 96% of

mouse datasets (binomial test p-values 3 × 10−11 and 1 × 10−16) (Fig 2b and 2d).

Comprehensive breakdown across the various classes of functional genomics experiments

revealed heterogeneous benefits across the ChIP-seq immunoprecipitation targets (S3 Fig).

Predictions for the promoter mark H3K4me3 generally improved, but accuracy for the hetero-

chromatin mark H3K9me3 decreased slightly on average across cell types (S3 Fig), perhaps

Fig 2. Training on human andmouse data improves generalization accuracy.We trained three separate models with the same
architecture on human data alone, mouse data alone, and both human and mouse data jointly. For each model, we computed the
Pearson correlation of test set predictions and observed experimental data for thousands of datasets from various experiment types.
Points in the scatter plots represent individual datasets, with single genome training accuracy on the x-axis and joint training accuracy
on the y-axis. For CAGE, training on multiple genomes increases test set accuracy on nearly all datasets for both (a) human and (c)
mouse. (b,d) For DNase/ATAC/ChIP-seq, test set accuracy improves by a smaller average margin. See S3 Fig for additional splits by
assay and ChIP immunoprecipitation target.

https://doi.org/10.1371/journal.pcbi.1008050.g002
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due to human and mouse genomes containing different repetitive elements that are silenced

by the modification. We made use of annotations assigned to the human DNase collection by

Meuleman et al. to split DNase accuracy comparisons by fifteen distinct organ systems [26].

Although several systems achieved significantly lesser or greater accuracy margins, deviations

were small, and no clarifying patterns emerged (S4 Fig). The datasets where single genome

accuracy exceeded joint tended to be consistent across a second independent batch of training

runs (S5 Fig). ChIP-seq experiments in the cancer cell lines K562 and MCF-7 were signifi-

cantly enriched in this set, suggesting that modeling these datasets may slightly suffer due to

absence of an analogue across species or somatic mutation divergence from the reference

genome.

Joint genome training delivers both more sequences and more annotations. To clarify

which factor is more important for improving accuracy, we conducted additional training

experiments in which we only modulated the number of human genome annotations. In this

regime of ample data, holding out even half of the human datasets to reduce the number

trained on did not reduce predictive performance (S6 Fig). This implies that the joint model’s

increased accuracy depends on also having the additional training sequences contributed by

the second genome.

CAGE has several properties that may explain the observed benefit of having more training

data from multiple genomes. CAGE signal has a larger dynamic range that spans orders of

magnitude and more sophisticated transcriptional regulatory mechanisms that often involve

distant sequences. Measured by gradient-based saliency analysis, the jointly trained model

makes greater use of long range activating elements (> 10 kb) to predict CAGE signal at TSSs

(S2 Fig). Altogether, these results demonstrate that regulatory grammars are sufficiently simi-

lar across the 90 million years of independent evolution separating human and mouse so that

their annotated genomic sequences provide informative multi-task training data for building

predictive models for both species.

Regulatory sequence activity models transfer across species

Regulatory activity conservation across related species has been observed in genome-wide

functional profiles of TF binding and histone modifications [15–17]. In matched tissue sam-

ples, similar TFs are typically present and those TFs have highly conserved motif preferences

[17, 27]. These findings suggest that a regulatory sequence activity model trained to predict for

one species will also make usefully accurate predictions for matched samples from the other.

This was recently demonstrated for enhancer annotations and histone modifications across a

variety of mammals [18]. To quantify this phenomenon for our models and data, we selected

several diverse and representative tissues and cell types for which we could unambiguously

match across species—cerebellum, liver, and CD4+ T cells. We extracted CAGE gene expres-

sion measurements from the TSSs for all human genes outside the training set and computed

predictions for human and mouse versions of these tissues and cell types (Fig 3a). For this

exercise, and those to follow, we used the jointly trained multi-task model and sliced out pre-

dictions of interest, but results were consistent for the model trained only on mouse data (S7

Fig).

Across human gene TSSs, we observed cross-species prediction accuracy of 0.73 Pearson

correlation for mouse predictions to human observed signal averaged across these samples.

This approaches the 0.75 correlation for human predictions to human observed signal, but

does suggest that some genome-specific activity exists (S8 Fig). To assess whether the model

further captures and transfers tissue specificity, we normalized each TSS’s data or predictions

by its mean across all CAGE datasets. Mean normalization removes correlation driven by
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accurate prediction of global cross-tissue activity. On this more challenging task, normalized

mouse predictions achieved mean 0.40 Pearson correlation with normalized human data for

the matched samples (Fig 3b and 3c). In contrast, normalized predictions compared to data

from distinct tissues/cell types resulted in negative or near zero correlations (Fig 3c). Thus, the

model has learned tissue and cell type specificity beyond a baseline level and is able to transfer

that knowledge across species.

We repeated these analyses with DNase accessibility profiles for the same tissues and cell

types to assess how general this transferability is for different data. Because most sites lack

activity, we selected the top 10% most variable. We observed the same statistical trends for

accessibility—high correlation between mouse predictions and human data for matched sam-

ples (mean 0.84) and specificity in scaled comparisons (Fig 3d and 3e).

Less correlation for the mouse predictions relative to human predictions is expected

because the human predictions are derived from training on the exact experimental sample

(but different sequences), which may have its own unique attributes and biases. To gain further

insight into this phenomenon, we plotted the human and mouse residuals against local GC%

in a 1,000 bp window around the sites (S9 Fig). Indeed, we observed correlations between GC

% and the residuals that were greater for the mouse versus human predictions. Thus, GC% cal-

ibration, or more sophisticated forms of domain adaptation, may be an interesting avenue to

explore to further improve cross-species transfer [28].

Mouse-trained models elucidate human genetic variant effects

A driving goal of regulatory sequence modeling is to predict the effect of human genetic vari-

ants on gene expression and downstream phenotypes. For any biallelic variant, we can predict

signal across the surrounding genomic sequence for each allele and derive a summary score

Fig 3. Regulatory grammars are largely conserved across species. (a) Tissue-specific regulatory grammars can be learned and
transferred across species, exemplified here by CAGE and DNase data and predictions for cerebellum and liver. The “human predicted”
tracks describe predictions for the human datasets displayed as “human observed”; “mouse predicted” tracks describe predictions for the
matched mouse dataset. We scaled coverage tracks by their genome-wide means separately within all CAGE and all DNase/ATAC data.
(b,d) Mouse predictions for cerebellum CAGE and DNase correlate strongly with human data. For CAGE, points represent the top 50%
most variable TSSs. Data or predictions were quantile normalized to align sample distributions, log transformed, and mean-normalized
across samples. For DNase, points represent the top 10%most variable genomic sites (less than CAGE because we consider the whole
genome rather than TSSs). Data or predictions were similarly quantile normalized to align sample distributions and mean-normalized
across samples. The statistical trends were robust to top variable threshold choice. Scatter plot lines represent ordinary least squares
regressions. (c,e) These correlations are specific to the matched tissues and not shared by others.

https://doi.org/10.1371/journal.pcbi.1008050.g003
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for the variant effect (Fig 4a). Here, we sum the signal across the sequence and take the differ-

ence between alleles. We can compute this score for every dataset using two forward passes of

the convolutional neural network.

Models trained on mouse data allow one to predict the difference between how two human

alleles would behave if they were present in the regulatory environment of mouse cells. Given

the evidence that analogous human and mouse cells largely share regulatory grammars, we

hypothesized that models trained on mouse data would be insightful towards understanding

human regulatory variants’ function. To test this hypothesis, we studied the Gene-Tissue

Expression (GTEx) release v7a data of genotypes and gene expression profiles for hundreds of

humans across dozens of tissues [29]. In previous work, we showed that variant scores derived

from Basenji predictions corresponded significantly with GTEx summary statistics [5]. Here,

we conducted a similar analysis using signed linkage disequilibrium profile (SLDP) regression

to measure the statistical concordance between signed variant effect predictions and GTEx

summary statistics (Methods) [8]. SLDP distributes a signed annotation (i.e. our scores)

according to a given population’s LD structure and compares to a set of summary statistics.

Using a permutation scheme, the method produces a signed Z-score that specifies the direc-

tion and magnitude of the relationship and a p-value describing its significance.

We focused on a dataset unique to the mouse—a single cell ATAC-seq atlas from 13 adult

mouse tissues that reported 85 distinct cell types after clustering analysis [25]. Merging aligned

reads for each cell type cluster produced pseudo-bulk coverage profiles, which we trained to

Fig 4. Mouse cell type accessibility predictions show a strong and specific statistical relationship with human eQTLs. (a) We
predicted the effect of human genetic variants on imputed regulatory signal trained on mouse single cell ATAC-seq (scATAC) cluster
profiles. We scored variants by subtracting the signal from the minor allele from that of the major and summing across the sequence. (b)
We used signed linkage disequilibrium profile (SLDP) regression to compare the cell type-specific variant effect predictions to tissue-
specific eQTL summary statistics from GTEx. Cell type profiles correspond best with the expected tissues. (c) GTEx tissues correspond
best with the expected cell types. (d) Clustering scATAC cell types by their Z-scores across GTEx tissues reveals the expected structure.

https://doi.org/10.1371/journal.pcbi.1008050.g004
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predict. We sliced predictions for these datasets from the model trained jointly on all human

and mouse data. We first asked whether coverage tracks derived from clustering single cell

assays are amenable to Basenji modeling. Predictions for held out sequences achieved Pearson

correlation ranging from 0.43-0.84 in 128 bp windows for these 85 profiles, which is in line

with predictions for bulk DNase/ATAC-seq.

Human variant predictions for these models generally exhibited a strong positive relation-

ship on GTEx summary statistics, in line with prior observations that accessibility correlates

with gene expression. Furthermore, cell type predictions aligned well with anatomical expecta-

tions. For example, variant predictions for cardiomyocytes have the strongest relationship

with GTEx measurements in the heart and skeletal muscle (Fig 4b). From the opposite direc-

tion, GTEx measurements for the liver have the strongest relationship with variant predictions

for hepatocytes (Fig 4c). These results further support the claim that human and mouse cells

share relevant regulatory factors and that our procedure can project these factors across species

from mouse experiments to human variants. For each pair of mouse ATAC cell types, we com-

puted the correlation between their SLDP Z-scores across GTEx tissues (Fig 4d). The correla-

tions revealed expected structure, with clusters representing the blood, endothelial cells,

neurons, among others.

Next, we asked whether these or any other mouse datasets were informative above and

beyond available human datasets. Theoretically, we can add scores for every human dataset to

the SLDP background model, forcing the statistical test for mouse dataset scores to consider

only the residual variance in GTEx summary statistics (Methods). We implemented a far more

computationally efficient close approximation, in which we added 64 principal components of

the variant by score matrix for human datasets, which explained 99.9% of variance for CAGE

and 99.3% for DNase/ATAC.

Even considering the human data, many mouse datasets still emerged as delivering orthog-

onal value by SLDP (S10 Fig). Among CAGE data, developmental heart profiles from neonate

and embryo stages had significant positive relationships with GTEx tibial artery (10 datasets

with FDR q< 0.05) and left ventricle (41 datasets with FDR q< 0.05). These suggest that

human adult heart gene expression depends on genetic variation that acts more prominently

during early development, which is recovered more effectively by current data from mice.

Among DNase/ATAC, variant predictions for the single cell hepatocytes and a 24 hour time

course to profile circadian rhythms of genome accessibility in the liver [30] showed a signifi-

cant positive relationship with the GTEx liver statistics (7 datasets with FDR q< 0.05). GTEx

samples were collected at a variety of day times, and previous work demonstrates that they can

be ordered to recover circadian cycling genes [31]. Our result suggests that available human

DNase profiles fail to recover this variance, but uniquely obtainable mouse time series do.

We hypothesized that the improved accuracy of the jointly trained models on held out

chromosome sequences would carry over to more effective variant analysis. To assess this, we

computed SLDP Z-scores to GTEx tissues for all human and mouse CAGE and DNase datasets

using models trained jointly or on single genomes. For both species, the jointly trained models

achieved greater SLDP Z-scores than their single genome counterparts (S11 Fig). Thus, multi-

genome training leads to greater concordance between variant effect predictions and GTEx

summary statistics.

Finally, we compared our variant effect prediction pipeline to an analogous state of the art

pipeline called DeepSEA via SLDP Z-scores versus GTEx summary statistics for all tissues [6].

We computed the difference between the two alleles for the same set of variant using the latest

DeepSEA “beluga” model [7]. We manually matched human DNase datasets between the two

models, arriving on 100 unambiguous matched datasets. Z-scores from our cross-species

Basenji model predictions were greater than those from the DeepSEA model predictions for
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69.7% (permuting Basenji/DeepSEA labels p-value<1 × 10−9) (S12 Fig). This result suggests

that our regulatory variant annotation pipeline represents the current state of the art among

this family of approaches for extracting information relevant to gene expression variation in

human populations.

Mendelian disease variant classification

Having established the relevance and specificity of mouse dataset predictions for expression

phenotypes, we asked whether these models could provide insight into the genetic basis of

human disease. Mouse data has proven valuable for studying human genetic variants in previ-

ous work [20, 25], but these analyses were limited to studying variants in homologous

sequences in their mouse genome context. The substantial regulatory sequence turnover

between these genomes makes this limitation severe. Our predictive framework avoids this

limitation by projecting the learned mouse regulatory grammar to the human genome setting

for all variants via machine learning.

We assembled a set of 660 validated noncoding variants implicated in human disease from

the HGMD and ClinVar databases that are> 20 bp away from mRNA splice sites (Methods)

[32, 33]. We constructed a set of negative variants that have matching nucleotide composition,

with each variant located approximately 1000 bp from a pathogenic variant to control for

genomic region (Methods). We trained random forest classifiers to distinguish variants from

these two classes based on features derived from various sets of variant effect predictions in

eight fold cross validation. We selected the default hyper-parameters of the scikit-learn 0.22

implementation after finding negligible accuracy gains were available by modifying them [34].

However, due to the large number of features derived from the training datasets, setting the

maximum features considered per decision tree split to log2 of the total number of features

greatly improved the computational efficiency.

We compared ROC curves produced by models trained on variant predictions for only

human datasets (trained jointly with mouse), only human datasets (trained alone without

mouse), only mouse datasets, and both human and mouse datasets (Fig 5a). To stabilize accu-

racy statistics, we repeated the cross validations and stochastic model fitting for 200 iterations

and compared models with Mann-Whitney U tests. Human predictions from the model

trained jointly produced more accurate classifiers than human predictions from the model

trained alone, 0.817 to 0.810 AUROC (p-value 2 × 10−10). Adding the mouse predictions as

features further improved accuracy to 0.821 (p-value 3 × 10−5). Thus, these results suggest that

both the joint training procedure and addition of mouse dataset prediction features deliver

value for classifying pathogenic noncoding variants. We provide a final random forest classi-

fier trained on the entire variant set with the human and mouse features via https://github.

com/calico/basenji for other groups to apply and make use of.

Complex traits GWAS variant classification

We further hypothesized that these variant effect predictions would deliver insight into non-

coding variants highlighted by genome-wide association studies (GWAS) of complex traits

and common diseases. We focused our analysis on fine-mapped associations for 47 pheno-

types (including 14 common diseases) measured in the UK BioBank [36, 37]. 1524 variants

had posterior probability> 0.95 of causally affecting one of the phenotypes. We sampled an

equal number of negative set variants from marginally associated variants that were deter-

mined to have low causal probability 0.001 − 0.01 in the same analysis. As above, we fit random

forest classifiers on variant feature sets derived from various sets of models and predictions.
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Fig 5. Multi-species predictions improve variant pathogenicity classification. (a) The line plots display ROC curves
derived from classifiers trained to predict 660 validated noncoding pathogenic variants curated from the HGMD and
ClinVar databases from a negative set chosen to control for nucleotide composition and genomic region. “Basenji/
human1” uses variant features produced by a model trained on human only, while all other versions use a model trained
jointly on both human and mouse. Using this jointly trained model, “Basenji/human”, “Basenji/mouse”, and “Basenji/
human+mouse” produce variant features from predictions for human datasets, mouse datasets, and both human and
mouse datasets respectively. For each feature set, we trained random forest classifiers in 200 iterations of eight fold cross
validation. (b) We performed an analogous exercise using a set of 1524 variants fine-mapped to have high causal
probability> 0.95 for complex traits in the UK BioBank relative to variants with fine-mapped causal probability 0.001
− 0.01. Below, we display three example variants causally implicated to affect LDL cholesterol levels that have large
Basenji scores for DNase-seq over a 24 hour time course in mouse liver. (c) rs12740374 creates a CEBPA binding motif in
the 3’ UTR of CELSR2, and has been experimentally validated to increased liver expression of SORT1 to alter plasma LDL
[35]. (d) rs17248748 creates an HNF4A binding motif in in the first intron 6 kb from the TSS of low-density lipoprotein
receptor LDLR. (e) rs45613943 breaks an NFI family binding motif in an intron 13 kb downstream of the TSS of PCKS9.
Coding mutations in LDLR and PCKS9 have been extensively studied in Mendelian hypercholesterolemia.

https://doi.org/10.1371/journal.pcbi.1008050.g005
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As with Mendelian disease variants, fine-mapped GWAS variants can be classified far

beyond random guessing. Similar to above, we repeated 200 eight fold cross validation itera-

tions of stochastic model fitting and compared models with Mann-Whitney U tests. Human

predictions from a model trained jointly on human and mouse exceeded the accuracy of

human predictions from a model trained alone (0.803 versus 0.800 AUROC, p-value 7 × 10−4).

Adding mouse predictions further improved AUROC to 0.805 (p-value 2 × 10−3).

Although recently fine-mapped, most of these variants remain poorly understood. Given

the insight above that mouse circadian liver profiles are informative above and beyond human

datasets for GTEx liver summary statistics, we focused on variants associated with the related

trait LDL cholesterol levels. To reveal regulatory context around these high causal probability

variants, we performed saturation mutagenesis of their surrounding region.

rs12740374 emerged as a clear top hit, creating a CEBPA binding motif in the 3’ UTR of

CELSR2 (Fig 5c). GTEx liver statistics indicate that individuals with the minor allele T have

increased expression of nearby genes CELSR2, SORT1, PSRC1, and ATXN7L2 [29]. Musu-

nuru et al. validated the differential CEBPA binding and established that increased liver

expression of SORT1 alters plasma LDL [35]. Thus, this variant offers a strong positive control

for our analysis pipeline.

We identified several other compelling variants. rs17248748 is located in the first intron 6

kb from the TSS of low-density lipoprotein receptor LDLR. The variant has minor allele fre-

quency 0.5% in the 1000 Genomes reference panel [38], which is too rare to be thoroughly

assessed by GTEx as an eQTL. The minor allele T creates a motif that matches the binding

preferences of the TF HNF4A, which is a major regulator of liver development and circadian

rhythms [39, 40]. Coding variants in LDLR are known to cause Mendelian hypercholesterol-

emia, but noncoding variants have been far less studied [41]. Another hit, rs45613943, is

located in an intron 13 kb downstream of the TSS of PCSK9. The minor allele C has 5% fre-

quency in 1000 Genomes, and GTEx identified its association with decreased PCSK9 expres-

sion in whole blood [29, 38]. The reference allele T forms a motif for the nuclear factor I

family, which are general activating TFs implicated in a variety of cellular processes. Coding

variants in PCSK9 also cause hypercholesterolemia, and their association with LDL has been

thoroughly studied and confirmed by the success of PCSK9 inhibitor therapies to lower choles-

terol [41]. Together, these variants represent intriguing potential routes by which regulatory

variation around critical Mendelian genes modulates their expression to more subtly influence

related phenotypes.

Mouse-trained models highlight mutations relevant to human
neurodevelopmental disease

Given the thorough developmental profiling in mouse, we hypothesized that these data might

also be a useful lens through which to view human developmental disorders. We retrieved a

recent dataset of 1902 quartet families from the Simons Simplex Collection with whole genome

sequencing of a mother, father, child affected by autism, and unaffected sibling [42]. In these

data, the offspring have an average of 67 de novo mutations, which have a slight enrichment in

promoters [43]. Recent work demonstrated that variant effect predictions further differentiate

autism probands from their unaffected sibling controls [44]. We hypothesized that predictions

using models trained on mouse data would also distinguish the disease and perhaps provide

additional insight via novel developmental profiles.

We applied the model to predict how each de novo mutation would influence signal in 357

mouse CAGE profiles of tissues and cell types. We filtered for variants within 50 kb of a GEN-

CODE mRNA TSS, where we observed there to be a greater difference between probands and
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siblings (S13 Fig), in line with previous analyses [43, 44]. We also observed there to be more

signal present in negative variant effect predictions, which indicate mutations that disturb

active regulatory elements, and scaled these scores by 10x before taking their absolute value

(S14 Fig). Mann-Whitney U (MWU) tests revealed significantly greater variant effect predic-

tions in the probands versus sibling variant sets for 333 CAGE profiles at FDR< 0.05 (Fig 6a,

S2 Table). Variant effect predictions did not depend on the age of either parent (S15 Fig). The

distribution of P-values for 13 datasets profiling whole body from embryonic and neonate

developmental stages was less than the distribution of p-values for the other datasets (MWU p-

value 7.7 × 10−4). These results were robust to the gene distance filter and negative variant

effect prediction weight in a large range (S13 and S14 Figs), but statistical significance was

markedly reduced without any gene distance filter. These experiments show all parameter

combinations tested, but p-value magnitudes should be interpreted cautiously given the chal-

lenge of multiple hypothesis correction in an exploratory analysis with hyperparameters.

Although many brain datasets were statistically significant by this test, these data did not col-

lectively stand out among the other CAGE profiles.

We examined the regions around variants predicted to have high impact. For example, a

proband variant upstream of ZNF644modifies a critical nucleotide in a consensus motif for

the transcription factor YY1, which the model identifies as active and relevant (Fig 6b).

ZNF644 has considerable evidence for intolerance to loss of function mutations in the Genome

Aggregation Database v2.1.1 (gnomAD) with probability 0.999 of intolerance [45]. YY1 has

been implicated in processes that determine the three-dimensional positioning of promoters

and enhancers [46]. Thus, we hypothesize that the variant modifies the enhancer regulation of

this critical protein.

We observed similar results in Zhou et al.’s independent processing of these raw sequencing

data, which resulted in nearly two fold fewer de novo variant calls due to different filters (S16

Fig) [44]. For these variants, 269 CAGE datasets were significant at FDR 0.05, whole body

embryonic and neonate developmental stages had lesser p-values (MWU p-value 4.5 × 10−3),

and brain datasets did not collectively emerge. For additional perspective, we also analyzed

DNase and activating histone modifications H3K4me3, H3K4me1, and H3K27ac. For these

data, variant effect predictions tended to be larger for proband variants, but the minimum q-

value after Benjamini-Hochberg correction of all datasets together was 0.14 (S16 Fig). How-

ever, both the set of 259 early development profiles and the set of 144 brain profiles achieved

lesser p-values than the rest (MWU p-value 7.7 × 10−4 and 1.4 × 10−12 respectively). The

reduced signal in these data is likely attributable to CAGE’s more direct measurement of gene

product. The Basenji model has no knowledge of coding sequence or ability to make predic-

tions about coding influence. Nevertheless, we verified that variants overlapping coding

sequence evaluated for their influence on gene regulation minimally affect the observations

above (S17 Fig). Finally, we also examined human predictions for context, and observed many

significant CAGE datasets after FDR correction at 0.05, but no trends for tissue or develop-

mental-specific sets (S18 Fig). Thus, as supported by the conditional SLDP regression to

GTEx, the mouse developmental profiles appear to deliver novel information to this analysis.

These significant enrichments indicate that regulatory variant effect predictions may help

classify disease at the individual level. For each individual, we computed a simple risk score by

summing predictions for a leading developmental dataset mouse CAGE whole body embry-

onic stage E16. This score suggests more deleterious de novo variants for 54.7% of the pro-

bands versus their sibling controls (binomial test p-value 2 × 10−5) (Fig 6c). Thus, this

approach is a strong candidate for inclusion with complementary feature sources from coding

mutations and structural variation to continue to characterize this incompletely understood

disorder.
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Discussion

In this work, we developed a multiple species training procedure to enable a deep convolu-

tional neural network to train multi-task on 6956 functional genomics signal tracks annotating

the human and mouse genomes. We observed that training jointly on both species produced

models that make more accurate predictions on unseen test sequences relative to models

trained on a single species. Regulatory sequence activity predictions for human sequences in

mouse tissues correlate well with datasets describing the corresponding human tissues. Model

predictions for altered regulatory activity of human genetic variants made with respect to

mouse datasets have a strong statistical concordance with tissue-specific human eQTL mea-

surements. Mouse machine learning models can be used to study human disease, exemplified

by the beneficial addition of prediction features to disease variant classifiers.

We focused here on human and mouse because both species have been comprehensively

studied with genome-wide functional genomics. Our observation that joint training on these

two genomes improves prediction accuracy opens the possibility of more complex schemes for

training on larger numbers of genomes. Given the substantial evolutionary distance between

human and mouse, regulatory annotations for all mammalian genomes are likely to provide

Fig 6. Human de novo variant predictions for mouse data enrich for autism probands versus their siblings. (a) We predicted the
influence of 234k de novo variants split between probands and sibling controls on 357 CAGE datasets in mouse. For each dataset, we
computed a Mann-Whitney U (MWU) test between proband and sibling sets and corrected for multiple hypotheses using the
Benjamini-Hochberg procedure. Predictions for many datasets were enriched for greater values in the probands, driven largely by early
developmental profiles. Each dataset’s x-axis position is the mean natural log over proband variants minus the equivalent over control
variants. (b) A proband variant at chr1:91021795 modifies a critical T in a YY1 motif to an A in the promoter region of ZNF644. (c) At
the individual level, a simple score summing variant predictions for a leading developmental dataset describing mouse CAGE whole
body at embryonic stage E16 significantly separates probands from their matched sibling controls (binomial test p-value 2 × 10−5).

https://doi.org/10.1371/journal.pcbi.1008050.g006
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similarly useful training data. Primate genomes will be particularly interesting to explore; their

tissues and cell types will more closely match those of human, but their highly similar

sequences deliver less novelty. Prediction accuracy improved more for CAGE gene expression

measurements than accessibility or ChIP-seq, which suggests that multiple genome training

will be worthwhile for data with high regulatory complexity and distal interactions. Efforts to

predict spatial contacts between chromosomes as mapped by Hi-C and its relatives fit this cri-

teria, and we hypothesize that training sequence-based models on human and mouse data

together will be fruitful [47].

Much prior work has revealed the similarity of regulatory grammars across species, but

transferring knowledge gleaned from an accessible model organism (such as mouse) to

another of interest (such as human) has remained challenging. Many existing approaches rely

on whole genome alignments to transfer annotations from one genome to the other [25, 48].

These approaches are constrained by the quality of the alignment, which is a notoriously chal-

lenging bioinformatics problem [49], and the limited proportion of each genome that aligns

(40% for human and 45% for mouse). Here, we demonstrated an alternative approach, in

which a machine learning model trained on the model organism data compresses the relevant

knowledge into its parameters. The model can then be applied to predict activity for sequences

from a different genome of interest. The strong tissue-specific statistical relationship between

human genetic variant predictions from model parameters trained to predict mouse annota-

tions and GTEx tissue-specific eQTLs highlights the successful nucleotide resolution of our

cross-species transfer of learned regulatory grammars. The Gene Expression Omnibus (GEO)

contains tens of thousands of mouse functional genomics profiles, many describing experi-

ments impossible in humans. For example, we included dozens of datasets describing mouse

liver profiles over 24 hour time courses to study the circadian rhythms of gene expression and

chromatin. Models trained to predict the data studied here, as well as open source software to

compute these predictions and train new models on users’ own data, are available in the

Basenji software package [50].

Materials andmethods

Functional genomics data

In this work, we studied quantitative sequencing assays performed on human and mouse sam-

ples. Specifically, we focused on DNase and ATAC-seq profiling DNA accessibility, ChIP-seq

profiling TF binding or histone modifications, and CAGE profiling RNA abundance derived

from 5’ transcription start sites. Preprocessing these data effectively is critical to successful

machine learning. Our primary preprocessing objective is to denoise the raw data to the rele-

vant signal at fine resolution.

We largely followed the preprocessing pipeline described in prior research introducing the

Basenji framework [5]. The standard pipeline through which experimental data flowed

follows:

1. Trim raw sequencing reads using fastp, which can automatically detect and remove

unwanted adapter nucleotides [51].

2. Align reads using BWA to hg38 or mm10 and requesting 16 multi-mapping read positions

[52].

3. Estimate nucleotide-resolution signal using an open source script (bam_cov.py) from the

Basenji software that distributes multi-mapping reads using expectation maximization,

normalizes for GC bias, and smooths across positions using a Gaussian filter [5].
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However, we diverted from this standard pipeline for all data available from the ENCODE

consortium website, which is 4,506 human and 1,019 mouse experiments. These data have

been thoughtfully processed using open source pipelines and are available for download at sev-

eral stages, including log fold change signal tracks in BigWig format [53]. Rather than repro-

cess these data without full knowledge of how replicate and control experiments match, we

chose to use these signal tracks directly. The Seattle Organismal Molecular Atlas (SOMA)

server provides a single cell mouse ATAC-seq atlas [25]. These data are also available in log

fold change BigWig format, and we similarly chose to use these rather than reprocess the single

cell data. We clipped negative values in all such BigWig tracks to zero.

We applied several transformations to these tracks to protect the training procedure from

large incorrect values. First, we collected blacklist regions from ENCODE and added all

RepeatMasker satellite repeats [54], which we found to frequently collect large false positive

signal [55]. We further defined unmappable regions of>32 bp where 24-mers align to>10

genomic sites using Umap mappability tracks [56]. We set signal values overlapping these

regions to the 25th percentile value of each dataset. Finally, we soft clipped high values with the

function f(x) =min(x, tc + sqrt(max(0, x − tc))). Above the threshold tc (chosen separately for

each experiment and source), this function includes only the square root of the residual x − tc
rather than the full difference. We manually chose tc per experiment and source by inspecting

the maximum values, aiming to reduce the contribution of rare very large values that one

would not expect to generalize to other genomic locations. Via this procedure, we decided to

clip all CAGE data with tc = 384, ENCODE with tc = 32, and GEO with tc = 64.

When replicate experiments profiling the same or related samples were available, we aver-

aged the signal tracks. Altogether, the training data includes 638 CAGE, 684 DNase/ATAC,

and 3991 ChIP datasets in human and 357 CAGE, 228 DNase/ATAC, and 1058 ChIP datasets

in mouse. S1 Table describes all data with preprocessing parameters. Code to preprocess typi-

cal functional genomics data formats into TensorFlow input formats is available from https://

github.com/calico/basenji.

Model architecture

Wemodeled genomic regulatory sequence activity signal as a function of solely DNA sequence

using a convolutional neural network. Such deep learning architectures have excelled for

many similar tasks [2, 4–6]. We follow our prior work in analyzing large 131 kbp sequences in

order to consider long range interactions.

The first stage of the architecture aims to extract the relevant sequence motifs from the

DNA sequence using the following block of operations:

1. Convolution width 5 (or 15 in first layer)

2. Batch normalization

3. Gaussian Error Linear Unit (GELU) activation

4. Max pool width 2

We applied this block seven times so that each sequence position represents 128 bp, increas-

ing the number of filters from an initial 288 by 1.1776x each block to 768 filters by the end.

The GELU activation slightly outperformed the more common ReLU in our benchmarks [57].

The second stage of the architecture aims to spread information across the sequence to

model long range interactions. In prior work, we applied densely connected dilated convolu-

tions for this task [5]. Here, we applied a related but more effective variation, which is related

to a strategy applied for DNA sequence analysis in the SpliceAI system [58]. Recent deep
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learning research has revealed that skip connections between layers where one layer’s repre-

sentation is directly added to a subsequent layer’s representation relieve vanishing gradients

and improve gradient descent training [21]. Thus, we applied the following series of

operations:

1. GELU activation

2. Dilated convolution width 3, dilation rate d, 384 filters

3. Batch normalization

4. GELU activation

5. Convolution width 1, back to 768 filters

6. Batch normalization

7. Dropout probability 0.3

8. Addition with the block input representation before step 1.

We applied this block eleven times, increasing the dilation rate d by 1.5x each time. Relative

to the densely connected version, the dilated residual blocks lead to improved generalization

accuracy (S1 Fig).

In the final stage, we first transformed this 1024x768 (length x filters) representation of 128

bp windows with an additional width 1 convolution block using 1536 filters and dropout prob-

ability 0.05. To make predictions for either 5313 human or 1643 mouse datasets, we applied a

final width one convolution followed by a softplus activation (f(x) = log(1 + ex)) to make all

predictions positive. We attached a genome indicator bit to each sequence to determine which

final layer to apply.

We trained to minimize a Poisson log likelihood in the center 896 windows, ignoring the

far sides where context beyond the sequence is missing. The Poisson model is not technically

appropriate for the log fold change tracks. However, by clipping negative values to zero, the

distribution of values resembles that from our standard processing. Clipping to zero focuses

attention on signal magnitude in regions where relevant signal is present and away from less

relevant signal fluctuations in background regions. On a subset of data, we observed that using

the log fold change track did not decrease accuracy or the utility of the model for genetic vari-

ant analysis.

We implemented the network in TensorFlow and used automatic differentiation to com-

pute gradients via back propagation [59]. We minimized with stochastic gradient descent

(SGD) on batches of 4 sequences. We stopped training when the loss on a validation set had

not improved for 30 epochs and returned to the model weights that had achieved the mini-

mum validation loss. We performed several grid searches to choose model and optimization

hyper parameters for the following sets: (1) SGD learning rate and momentum; (2) initial con-

volution filters and convolution filter scaling rate; (3) dilated convolution filters and dropout

rate; (4) final convolution filters and dropout rate.

Data augmentation describes a suite of techniques to expand the implicit size of the training

dataset from the perspective of model training by applying transformations that preserve

annotations to data examples. We tiled the 131,072 bp sequences across the chromosomes by

65,599 bp, representing a 50% overlap minus 63 bp in order to also shift the 128 window

boundaries and max pooling boundaries. During training, we cycled over combinations of two

transformations that maintain the relationship between sequence and regulatory signal while

changing the model input: (1) reverse complementing the sequence and reversing the signal;
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(2) shifting the sequence 1-3 bp left or right. Both transformations improved test accuracy and

reduce overfitting in our benchmarks.

Model implementations and instructions for re-training, predicting, and modifying them

are available from https://github.com/calico/basenji.

Multi-genome training

Training on multiple genomes containing orthologous sequence complicates construction of

holdout sets. Independently splitting each genome’s sequences would allow training on a

human promoter and testing on its mouse orthologue. If the model memorized conserved ele-

ments of the sequence, rather than learning a general function, we might overestimate general-

ization accuracy.

We used the following procedure to minimize occurrence of this potential issue:

1. Divide each genome into 1 mb regions.

2. Construct a bipartite graph where vertexes represent these regions. Place edges between

two regions if they have>100 kb of aligning sequence in a whole genome alignment.

3. Find connected components in the bipartite graph.

4. Partition the connected components into training, validation, and test sets.

We used the hg38-mm10 syntenic net format alignment downloaded from the UCSC

Genome Browser site [60]. Using this procedure, we set aside approximately 12% of each

genome into validation and test sets respectively. Stricter parameter settings created a single

large connected component that did not allow for setting aside enough validation and test

sequences. We estimated that< 1% of the validation and training set nucleotides have ortholo-

gous sequence from the other genome in the training set.

Another complication of training on multiple genomes arises from imbalance between

each genome’s sequences and datasets. We extracted 38.2k human and 33.5k mouse sequences

for analysis. We assembled batches of sequences from one genome or the other, chosen ran-

domly proportional to the number of sequences from each genome. The overall loss function

comprises a term for every target dataset summed, which leads to larger step magnitudes for

batches of human sequences that are annotated with>3 times more datasets. Explicit weight-

ing could be applied to preference training towards a particular species, but we found this to

be unnecessary in our experiments for good mouse performance.

Jointly training on both human and mouse data constrains the model slightly more than is

ideal. We found that training on only one genome or the other after the full joint procedure

improved validation set accuracy. We evaluated the model on the validation set after every

epoch and stopped training after 10 epochs without improvement, returning to the previous

model that achieved the minimum validation loss. The model studied here was fine-tuned for

8 epochs on the human data and 20 epochs on the mouse data.

GTEx SLDP

We predicted the effect of a genetic variant on various annotations by computing a forward

pass through the convolutional network using the reference and alternative alleles, subtracting

their difference, and summing across the sequence to obtain a single signed score for each

annotation. We averaged scores computed using the forward and reverse complement

sequence and small sequence shifts to the left and right. We computed scores for all 1000

Genomes SNPs, which we provide for download via instructions at https://github.com/calico/

basenji/tree/master/manuscripts/cross2020.
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Signed linkage disequilibrium profile (SLDP) regression is a technique for measuring the

statistical concordance between a signed variant annotation v and a genome-wide association

study’s marginal correlations â between variants and a phenotype [8]. The functional correla-

tion between v and the true variant effects on the phenotype describes how relevant the

annotation is for the phenotype’s heritability. Our model produces these signed variant anno-

tations. SLDP estimates this functional correlation using a generalized least-squares regression,

accounting for the population LD structure. It performs a statistical test for significance by

randomly flipping the the signs of entries in v in large consecutive blocks to obtain a null dis-

tribution. We follow previous work in conditioning on background annotations describing

minor allele frequency and binary variables for variant overlap with coding sequence (and 500

bp extension), 5’ UTR (and 500 bp extension), 3’ UTR (and 500 bp extension), and introns.

We downloaded GTEx v7a summary statistics for 48 tissues [29]. We summarized each

SNP’s effect on all cis-genes using the following transformation suggested for SLDP analysis

âm ¼
1
ffiffiffiffiffiffiffiffiffi

jGmj
p

X

k2Gm

â
ðkÞ
m

where Gm is the set of all genes for which a cis-eQTL test was performed for variantm and âðkÞ
m

is the marginal correlation of SNPm and gene k expression [8]. We passed âm to SLDP for

analysis of variant predictions.

To assess the orthogonal value of prediction scores derived from mouse datasets relative to

those from human, we added the human dataset predictions to the background annotation set.

Conditioning on thousands of annotations was computationally intractable. Instead, we

included 64 principal components of the human variant scores matrix, which explained

> 99% of the variance in all cases studied. To assess statistical significance, we performed the

Benjamini-Hochberg procedure to correct for multiple hypotheses within each GTEx tissue.

ClinVar and Human Gene Mutation Database

We acquired a set of 15,751 pathogenic noncoding variants curated by di Iulio et al. from Clin-

Var and the Human Gene Mutation Database (HGMD) [32, 33, 61]. These variants were

enriched near splice sites, and many presumably influence splicing. As we do not position our

method to predict splicing effects, we removed all variants within 20 bp of GENCODE v28

mRNA splice sites. We further noticed that the remaining variants often clustered together in

the genome. To establish a set of variants that function independently, we grouped variants

within 10 bp into sets and sampled one representative variant from each set. After applying

these filters, 660 validated noncoding variants remained.

We sought a negative set of variants for training machine learning classifiers that roughly

controlled for genomic region and nucleotide composition. Using the following procedure, we

selected a negative example corresponding to each pathogenic variant. First, we considered

positions shifted up and downstream in the genome by 1000 bp. From these anchor positions,

we located the nearest reference nucleotide that matched the reference nucleotide of the patho-

genic variant. We chose the shifted position that was closer to 1000 bp from the pathogenic

variant position and broke ties randomly. Finally, we chose the alternative allele to match the

pathogenic variant. Thus, each negative variant matches the nucleotides of a pathogenic vari-

ant, while being shifted as close to 1000 bp as possible.
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Simons Simplex Collection

We downloaded 255,106 de novo variants derived from whole-genome sequencing of 1,902

quartet families with an autistic child from the Simons Simplex Collection from the supple-

ment of [43]. For validation, we further downloaded 127,140 de novo variants derived from

1,790 families from the same collection processed by Zhou et al [44]. We filtered all variants

for SNPs (i.e. removed insertions and deletions) and computed predictions as described

above. We focused our analysis on variants within 50 kb of TSS defined by GENCODE v28.

All variant scores are available from https://console.cloud.google.com/storage/browser/

basenji_barnyard/sad/autism/.

Supporting information

S1 Fig. Dilated residual layers improve accuracy.We trained two separate models with

approximately matched parameter totals on both human and mouse data jointly. The two

models differ in how their dilated convolution layers are connected. In the first model Dense,

which achieved the previous best for these data in [5], each layer takes all previous dilated lay-

ers as input, as opposed to taking only the preceding layer. In the second model Residual,

introduced here, each layer takes only the previous layer as input, transforms it, and adds the

new representation into the input before passing on. For each model, we computed the Pear-

son correlation of test set predictions and observed experimental data for thousands of datasets

from various experiment types. (a) Training and validation loss curves for two replicates of the

two architectures with random initializations and shuffled training examples. The top curves

represent the training set and the bottom curves represent the validation set. Validation losses

are less than training losses due only to stochasticity in the sequence splitting procedure. (b)

Human and (c) mouse test set Pearson correlation for the best Dense versus Residualmodel.

(TIF)

S2 Fig. Multi-genome model assigns greater saliency scores to distal TSS regions. For

3,523 gene transcription start sites (TSS) that were not included in the training set, we com-

puted saliency maps for the surrounding region using the model trained jointly on human

and mouse (joint) and the model trained on human alone (single). The saliency map scores

annotate 128 bp segments with a function of the model predictions’ gradient with respect to

that segment’s vector representation after the convolutional layers and before the dilated con-

volutions share information across wider distances [5]. Peaks in this saliency score detect dis-

tal regulatory elements, and its sign indicates enhancing (+) versus repressing (−) influence.

(a) For each 128-bp segment, we computed the mean score across genes for liver CAGE. Pat-

terns were consistent across CAGE datasets. (b) For segments greater than 10 kb from the

TSS, the mean multi-genome model scores are greater than their single genome counterparts.

This suggests that distal enhancer elements are more effectively used to predict gene expres-

sion.

(TIF)

S3 Fig. Multi-genome training accuracy across experiment types.We trained the same

architecture on human data alone and both human and mouse data jointly. For each model,

we computed the Pearson correlation of test set predictions and observed experimental data

for human CAGE, DNase, and ChIP-seq datasets. Points in the scatter plots represent individ-

ual datasets, with single genome training accuracy on the x-axis and joint training accuracy on

the y-axis. We considered these accuracy comparisons, broken down by experiment class for

the 24 most frequent experiments. Within the various categories, the improvement differed

slightly. For example, H3K4me3 increased by 0.006, but H3K9me3 decreased by 0.007.
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Enhancer marks H3K4me1 (-0.004), H3K27ac (0), and P300 (-0.001) were stable or unim-

proved.

(TIF)

S4 Fig. Multi-genome training accuracy across DNase organ systems.We trained the same

architecture on human data alone and both human and mouse data jointly. For each model,

we computed the Pearson correlation of test set predictions and observed experimental data

for human DNase datasets. Points in the scatter plots represent individual datasets, with single

genome training accuracy on the x-axis and joint training accuracy on the y-axis. We consid-

ered these accuracy comparisons in the context of fifteen organ system annotations assigned

by Meuleman et al. [26]. Pearson R improves by an average of 0.006 across all of these DNase

datasets. Within the various categories the improvement differed slightly. “Musculoskeletal”

datasets improved by 0.008, which was significantly greater than the remainder by Mann-

Whitney U test with p-value 2e − 7. In contrast, “Connective” datasets improved by 0.004,

which was significantly less than the remainder with p-value 1e − 10. We were unable to dis-

cern a pattern that provided insight into why some categories improve more or less than others

with joint training.

(TIF)

S5 Fig. Multi-genome training harms generalization accuracy for some human ChIP-seq

datasets. To further explore human ChIP-seq datasets that performed worse during multi-

genome training relative to single genome training, we trained two independent replicates for

both training modes. For the single genome training, we took the average of the two replicates.

(a) For the multiple genome training, we plot the ChIP-seq test set PearsonR for replicate 1

minus the single genome PearsonR versus that for replicate 2. Dataset accuracy was consistent

across replicates, and some ChIP-seq datasets consistently achieved lower accuracy after

multi-genome training. (b) The table displays the 20 datasets with the largest decrease in test

set accuracy after multi-genome training. Datasets describing (a) ATF4/CREB binding

(known co-factors), (b) K562 cells, and (c) MCF-7 cells performed significantly worse accord-

ing to Mann-Whitney U comparisons of the sets of 16, 476, and 129 datasets respectively. His-

tograms consider the average of test set PearsonR for multi-genome training minus the

average for single genome training.

(TIF)

S6 Fig. Additional human datasets do not improve generalization accuracy.We designed

several experiments to explore whether more datasets alone improve the models, rather than

the datasets and novel sequence offered by the mouse genome. We split all human datasets

into eight, four, three, or two folds. For each fold, we held out those datasets and trained a

model only on the remainder. We trained four replicate models from random initializations

on the full data for comparison. For the three fold experiment, we repeated the procedure with

a unique random split twice. For the two fold experiment, we repeated the procedure with a

unique random split three times. For each dataset, we averaged test set accuracy for the train-

ing runs that did train on it, each of which had a different portion of the datasets held out.

Above, we scatter plot average test set accuracy for each of the 5,313 datasets for the full data

versus the held out data runs for each experiment. If it were true that adding more annotations

benefited model training and accuracy, then these models would suffer from the held out tar-

gets and show reduced accuracy relative to the full model. Instead, for each experiment with

hold outs up to half of the datasets, these models achieved slightly greater mean accuracy than

the full data model.

(TIF)
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S7 Fig. Cross-species prediction results are consistent across models. Tissue-specific regula-

tory programs can be learned and transferred across species, exemplified here by mouse pre-

dictions for CAGE (top row) and DNase (bottom row) for cerebellum, liver, and CD4+ T cells.

Mouse predictions correspond to mouse datasets matched and compared to human datasets

For CAGE, we considered the top 50% most variable TSSs, where data or predictions were

quantile normalized to align sample distributions, log transformed, and mean-normalized

across samples. For DNase, we considered the top 10% most variable genomic sites (less than

CAGE because we consider the whole genome rather than TSSs), where data or predictions

were similarly were quantile normalized to align sample distributions and mean-normalized

across samples. The statistical trends were robust to most variable threshold choice. Tissue-

specific cross-species accuracy depends only slightly whether the mouse model was trained

jointly with human data (left column) or alone (right column). This is expected, given that the

multi-genome model is more accurate on held out sequences (Fig 2).

(TIF)

S8 Fig. Cross-species prediction accuracy approaches that of human. Tissue-specific regula-

tory programs can be learned and transferred across species, exemplified here by mouse pre-

dictions for CAGE (a,b) and DNase (c,d) for cerebellum, liver, and CD4+ T cells. “Human

predicted” corresponds to predictions for the human datasets, referred to as “human

observed”; “mouse predicted” corresponds to predictions for the matched mouse dataset. For

CAGE, we considered the top 50% most variable TSSs, where data or predictions were quantile

normalized to align sample distributions, and log transformed. In the right column, we mean-

normalized across samples; in the left, we did not. For DNase, we considered the top 10% most

variable genomic sites (less than CAGE because we consider the whole genome rather than

TSSs), where data or predictions were similarly quantile normalized to align sample distribu-

tions and mean-normalized across samples in the right column only. The statistical trends

were robust to most variable threshold choice. (a,c) Human prediction accuracies exceed (b,d)

mouse prediction accuracies for both CAGE and DNase.

(TIF)

S9 Fig. Residuals for human and mouse predictions differ with respect to local GC content.

For the DNase sites studied across species, we computed residuals as the mean-normalized

observed signal minus predicted signal. We computed GC% in a 1,000 bp region around the

128 bp segment. Correlations between GC content and the residuals were larger for mouse

than human, indicating that mouse predictions may be slightly mis-calibrated for the human

genome.

(TIF)

S10 Fig. Variant effect predictions for mouse datasets significantly correlate with GTEx

via SLDP, even conditional on human dataset predictions.We computed variant effect pre-

dictions for all 1000 Genomes variants with respect to human and mouse datasets. We then

analyzed the CAGE and DNase/ATAC data separately. We computed the first 64 principal

components (PCs) of the variants by human predictions matrix, which explained 99.9% of the

variance for CAGE datasets and 99.3% for DNase/ATAC. We then computed the statistical

correlation between mouse predictions and GTEx summary statistics across 48 tissues using

SLDP conditioned on the 64 human PCs for either the CAGE or DNase/ATAC data (Meth-

ods). (a) For the tibial artery and (c) left ventricle GTEx summary statistics, mouse CAGE

datasets describing the developing heart in neonate and embryo stages emerged as significant

after Benjamini–Hochberg correction for multiple hypotheses. Prefix asterisks indicate FDR

q< 0.05. Additional datasets describing adult heart components and muscle also reach
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significance. (b) For liver GTEx, mouse single cell hepatocyte and DNase datasets describing a

24 hour time course to profile circadian rhythms of genome accessibility reach significance.

(TIF)

S11 Fig. Variant effect predictions from jointly trained models correlate better with GTEx

via SLDP.We computed variant effect predictions for all 1000 Genomes variants with respect

to human and mouse datasets using models trained jointly on both human and mouse or

trained alone on a single genome. We then computed the statistical correlation between these

predictions and GTEx summary statistics across 48 tissues using SLDP (Methods). The points

underlying the density maps represent every pair of model prediction dataset and GTEx tissue.

SLDP signed Z-scores indicate the expected positive statistical relationship between predic-

tions for CAGE, DNase, and ATAC-seq and gene expression. These Z-scores are clearly

greater for predictions from jointly trained models for (a) human CAGE, (c) mouse CAGE,

and (d) mouse DNAase/ATAC. (b) Human DNase/ATAC Z-scores are more similar between

the joint and single trained models, in line with their comparable accuracy on held out

sequences (Fig 2).

(TIF)

S12 Fig. Variant effect predictions from cross-species Basenji pipeline correlate better

with GTEx via SLDP than DeepSEA pipeline.We computed variant effect predictions for all

1000 Genomes variants using the DeepSEA “beluga” model. We then computed the statistical

correlation between these predictions and GTEx summary statistics across 48 tissues using

SLDP (Methods). We manually aligned all human DNase datasets between the DeepSEA and

Basenji models, arriving at 100 matched datasets. Here, we scatter plot Basenji versus DeepSEA

Z-scores for each combination of DNAse dataset and GTEx tissue. Basenji Z-scores are greater

for 69.7% of combinations (permuting Basenji/DeepSEA labels p-value<1 × 10−9).

(TIF)

S13 Fig. Autism de novo variant predictions for mouse CAGE datasets across variant TSS

distance filters.We predicted the influence of de novo variants found in proband and sibling

genomes for mouse CAGE datasets. We studied two versions of the processed whole genome

sequences by An et al. (left column) and Zhou et al. (right column) [43, 44]. In each plot,

points represent CAGE datasets, from which a predicted activity difference can be assigned to

each variant. We scaled negative variant scores by 10 before taking the absolute value. In each

row, we filtered for variants within the specified distance of a GENOCODE mRNA TSS. On

the x-axis, we plot the mean natural log score for all proband variants subtracted by the mean

natural log score for all sibling variants. On the y-axis, we plot the log10 p-value from compar-

ing proband to sibling scores using a Mann-Whitney U test. Variants nearby TSS contain

more signal than those that are very far from genes, which may nonetheless have nonzero

CAGE predictions due to enhancer RNA activity. At the most strict distance threshold of

30kb, the x-axis difference between probands and siblings continues to grow, but the y-axis

significance is decreased by the smaller number of remaining variants. The Zhou et al. datasets

are robust to the filter distance, but the An et al. datasets only reach FDR q-values< 0.1 with

TSS filters< 500 kb (which keeps 90% of variants) and decrease as the filter distance tightens

around TSS.

(TIF)

S14 Fig. Autism de novo variant predictions for mouse CAGE datasets across negative pre-

diction weights.We predicted the influence of de novo variants found in proband and sibling

genomes for mouse CAGE datasets. We studied two versions of the processed whole genome

sequences by An et al. (left column) and Zhou et al. (right column) [43, 44]. In each plot,
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points represent CAGE datasets, from which a predicted activity difference can be assigned to

each variant. We focused on variants within 50 kb of a GENCODE mRNA TSS. In each row,

we scaled negative variant scores by the specified factor, before taking the absolute value.

On the x-axis, we plot the mean natural log score for all proband variants subtracted by the

mean natural log score for all sibling variants. On the y-axis, we plot the log10 p-value from

comparing proband to sibling scores using a Mann-Whitney U test. The first row displays the

statistical tests computed for only negative values, which represents the limit as the negative

prediction weight grows to infinity. Negative predictions are more informative than positive,

so an even weighting of the two produces less significant differentiation between the probands

and their sibling controls. However, the results are very robust to the choice of the scaling fac-

tor.

(TIF)

S15 Fig. Autism de novo variant predictions do not depend on parent age.We predicted

the influence of de novo variants found in proband and sibling whole genomes sequences pro-

cessed by An et al. for mouse datasets [43]. Variant predictions are derived from a representa-

tive dataset of “whole body, embryo E16” profiled by CAGE that has significantly greater effect

score for probands relative to their sibling controls. We transformed the raw variant predic-

tions similarly to the main analyses by scaling negative variant scores by 10 before taking the

absolute value and further adding a pseudocount of one and taking the natural logarithm to

improve the stability of the scores for the visualization. Regression analysis indicates no depen-

dency of the scores on the mother or father’s age at birth. This result matches that of Zhou

et al. in their analysis of a separate processing of these data. [44].

(TIF)

S16 Fig. Autism de novo variant predictions for mouse datasets.We predicted the influence

of de novo variants found in proband and sibling genomes for mouse datasets. We studied two

versions of the processed whole genome sequences by An et al. (left column) and Zhou et al.

(right column) [43, 44]. We separated CAGE gene expression (top row) from active chromatin

modifications DNase/ATAC/H3K4me3/H3K4me1/H3K27ac (bottom row). In each plot,

points represent datasets, from which a predicted activity difference can be assigned to each

variant. We focused on variants within 50 kb of a GENCODE mRNA TSS and scaled negative

variant scores by 10 before taking the absolute value. On the x-axis, we plot the mean natural

log score for all proband variants subtracted by the mean natural log score for all sibling vari-

ants. On the y-axis, we plot the log10 p-value from comparing proband to sibling scores using a

Mann-Whitney U test. Many CAGE datasets show Benjamini-Hochberg q-values< 0.05;

chromatin datasets demonstrate a similar trend toward greater scores for proband variants,

but do not reach the same significance levels.

(TIF)

S17 Fig. Autism de novo variant predictions for mouse datasets, without coding overlap.

We predicted the influence of de novo variants found in proband and sibling genomes for

mouse datasets. We studied two versions of the processed whole genome sequences by An

et al. (left column) and Zhou et al. (right column) [43, 44]. We removed any variant overlap-

ping GENCODE coding sequence, 1.7% and 3.3% respectively. We separated CAGE gene

expression (top row) from active chromatin modifications DNase/ATAC/H3K4me3/

H3K4me1/H3K27ac (bottom row). In each plot, points represent datasets, from which a pre-

dicted activity difference can be assigned to each variant. We focused on variants within 50 kb

of a GENCODEmRNA TSS and scaled negative variant scores by 10 before taking the absolute

value. On the x-axis, we plot the mean natural log score for all proband variants subtracted by

PLOS COMPUTATIONAL BIOLOGY Cross-species regulatory sequence activity prediction

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1008050 July 20, 2020 23 / 27

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008050.s015
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008050.s016
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008050.s017
https://doi.org/10.1371/journal.pcbi.1008050


the mean natural log score for all sibling variants. On the y-axis, we plot the log10 p-value from

comparing proband to sibling scores using a Mann-Whitney U test. Many CAGE datasets

show Benjamini-Hochberg q-values< 0.05; chromatin datasets demonstrate a similar trend

toward greater scores for proband variants, but do not reach the same significance levels.

(TIF)

S18 Fig. Autism de novo variant predictions for human datasets.We predicted the influence

of de novo variants found in proband and sibling genomes for human datasets. We studied

two versions of the processed whole genome sequences by An et al. (left column) and Zhou

et al. (right column) [43, 44]. We separated CAGE gene expression (top row) from active chro-

matin modifications DNase/ATAC/H3K4me3/H3K4me1/H3K27ac (bottom row). In each

plot, points represent datasets, from which a predicted activity difference can be assigned to

each variant. We focused on variants within 50 kb of a GENCODE mRNA TSS and scaled neg-

ative variant scores by 10 before taking the absolute value. On the x-axis, we plot the mean nat-

ural log score for all proband variants subtracted by the mean natural log score for all sibling

variants. On the y-axis, we plot the log10 p-value from comparing proband to sibling scores

using a Mann-Whitney U test. Many CAGE datasets show Benjamini-Hochberg q-values

< 0.05; chromatin datasets demonstrate a similar trend toward greater scores for proband var-

iants, but do not reach the same significance levels.

(TIF)

S1 Table. Training dataset descriptions.

(XLSX)

S2 Table. Autism de novo variant enrichment statistics.

(XLSX)
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