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Using machine-learning methodologies to analyze EEG signals becomes increasingly

attractive for recognizing human emotions because of the objectivity of physiological

data and the capability of the learning principles on modeling emotion classifiers from

heterogeneous features. However, the conventional subject-specific classifiers may

induce additional burdens to each subject for preparing multiple-session EEG data

as training sets. To this end, we developed a new EEG feature selection approach,

transfer recursive feature elimination (T-RFE), to determine a set of the most robust EEG

indicators with stable geometrical distribution across a group of training subjects and

a specific testing subject. A validating set is introduced to independently determine

the optimal hyper-parameter and the feature ranking of the T-RFE model aiming at

controlling the overfitting. The effectiveness of the T-RFE algorithm for such cross-subject

emotion classification paradigm has been validated by DEAP database.With a linear least

square support vector machine classifier implemented, the performance of the T-RFE

is compared against several conventional feature selection schemes and the statistical

significant improvement has been found. The classification rate and F-score achieve

0.7867, 0.7526, 0.7875, and 0.8077 for arousal and valence dimensions, respectively,

and outperform several recent reported works on the same database. In the end,

the T-RFE based classifier is compared against two subject-generic classifiers in the

literature. The investigation of the computational time for all classifiers indicates the

accuracy improvement of the T-RFE is at the cost of the longer training time.

Keywords: emotion recognition, affective computing, physiological signals, recursive feature elimination, EEG

INTRODUCTION

To improve the satisfaction level and the reliability of the human agents who interact or collaborate
with machines and robots, intelligent human-machine (HM) systems with the capability of
accurately understanding human communications are inevitably required (Soleymani et al., 2012).
Since the human intentions and commands may carry various emotions in a verbal or a non-
verbal manner, the proper response to the human affective behaviors is essential to achieve the
self-adaptation of the machine and computers (Zeng et al., 2009; Fanelli et al., 2010). Considering
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most of the contemporary HM systems being unable to recognize
emotional clues, emotion classifiers are developed, and aimed to
provide temporal predictions of certain emotional states based on
the integration of human reactions from facial/vocal expressions
and/or physiological signals (Hanjalic and Xu, 2005; Kim and
Andre, 2008).

The output of the emotion classifier can be determined by self-
assessment techniques and the valence-arousal (VA) model. The
VA model facilitates analyzing complex emotions based on the
cores of affections (Russell, 1980; Lang, 1995). More specifically,
different emotional states are labeled as points in a 2-dimensional
space with each axis defined by arousal or valence degree so
that the emotion categories can be visualized by the locations
in the plane. Note that the VA model is closely associated with
the limbic system that regulates emotions, long-term memories
and behaviors (Zhang and Lee, 2013). In particular, the emotional
responses reflected by the valence dimension are related to
the activities of cortical networks under the insular cortex and
the anterior parietal cortex (Anders et al., 2004) while the
arousal dimension is associated with the activities in the right
supramarginal gyrus (Zhang and Lee, 2013). In particular, the
useful information from the continuous measurement of cortical
activities can be extracted and selected to indicate the variations
of the human cognitive sate. In recent study, Naseer et al. (2016)
built a novel brain-computer interface system, where the linear
discrimination analysis model is used to classify the functional
near-infrared spectroscopy (fNIR) features. Based on the optimal
feature combination, the optimal recognition rate of two mental
states is achieved.

Since the human affective responses are linked to the
cortical activities, electrophysiological measures of the central
nervous system can be used as the inputs of the emotion
classifiers. Among them, electroencephalogram (EEG) received
much attention because of its high repeatability with low-
cost, portable implementations (Birbaumer, 2006; Kim and
Andre, 2008; Brunner et al., 2011). In well-documented works,
the accessibility of EEG for estimating emotional states was
extensively explored. Verma and Tiwary (2014) reported the EEG
power spectral density features within alpha (8–13 Hz) band
are associated with different valence levels. Balconi and Mazza
(2009) reported the phase synchronization between the right and
left scalp EEG could reflect the variations of the arousal levels.
Konstantinidis et al. (2012). reported EEG power features of
theta (4–7Hz) band extracted from Cz, Fz, and Pz channels can
indicate both arousal and valence levels.

To facilitate analyzing huge-volume, high-dimensional EEG
data, themachine learning based estimators, and feature selection
methods show the effectiveness on the issue of subject-specific
emotion recognition, where a new classifier for each subject
is built. Under such paradigm, Zhang et al. (2016) extracted
EEG features for binary emotion classification by combining the
empirical mode decomposition and sample entropy methods.
Atkinson and Campos (2016) employed mutual information
minimization technique and one-against-one support vector
machines (SVMs) as the EEG based emotion classifier. Khezri
et al. (2015) used three-channel forehead EEG combined
with blood volume pressure and skin resistance to recognize

six basic emotions via SVM and k-nearest neighbors (KNN)
classifiers. Since very-high classification accuracies were found
in above works, the subject-specific feature extraction and
classification approaches are competitive when sufficient EEG
training instances are available for a single user. However, it leads
to a disadvantage that induces additional burdens to each subject
and require long time for preparing multiple-session EEG data
for reliably training classifiers since the EEG signal is known to
be non-stationary and differently distributed in different days
(Christensen et al., 2012; Zhang and Lee, 2013; Li et al., 2016).

To overcome the shortcoming of the subject-specific
paradigm for emotion recognition, a promising solution is
further generalizing the localized affective model trained on
one subject to adapt for a novel subject. In recent studies on
mental workload assessment issue, Wang et al. (2012) proposed
a cross-subject hierarchical Bayesian classifier (CHB) to achieve
the EEG based workload recognition. In their work, the classifier
was trained and tested on the EEG features extracted from eight
subjects. The classification performance of the CHB classifier
is stable when three levels of workload were estimated. The
accuracy of the CHB is also comparable to a subject-specific
classifier. In addition, Baldwin and Penaranda (2012) proposed
an adaptively trained artificial neural network (ATNN) to
recognize operator workload by using EEG features. The ATNN
classifier show stable classification accuracy across a group
of subjects that operates different human-machine tasks. The
above works focus attention on the classifier design with all
possible EEG features employed. However, the robust EEG
features from a wide variety of individuals are also important for
subject-generic emotion classifier. A basic strategy is to select
salient EEG features by the mixed data from all training subjects
together (Yin and Zhang, 2014). This is usually infeasible since
the data distributions between testing and training subjects are
different. Hence, it is more practical to derive an EEG feature
subspace that represents the training and testing data in similar
modalities across historical data from a group of subjects and
a novel subject. To this end, we attempt to develop a new EEG
feature selection approach, transfer recursive feature elimination
(T-RFE), to determining a set of the most robust EEG indicators
with stable geometrical distribution across a group of training
subjects and the specific testing subject who involved in the
affective HM systems.

The proposed T-RFE algorithm is aimed to build the subject-
generic emotion classifier. For instance, an EEG dataset of
multiple subjects is available. For a novel subject used for
testing, the conventional subject-specific classifier require a
comprehensive training set building by multiple-session EEG
data collected from the same subject. On the other hand, the
subject-generic classifier can exploit the historical data from
other subjects in the dataset. In such case, it is not necessary
to collect long-time EEG recordings from the testing subject
compared to the subject-specific classifier without the T-RFE
based feature selection.

The motivation of the study includes two aspects: (1) the
accuracy of the cross-subject, EEG-based emotion classifier is still
limited because of the heterogeneity and individual-specificity
in EEG time or frequency domain features and (2) the reliable
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cross-subject emotion recognition depends much on the proper
selection of the EEG features that has the shared information in
multiple individuals.

The standard RFE algorithm was developed based on the
SVM in which the loss of the classification margin was used as
objective function to evaluate the discriminative contributions of
each feature (Vapnik, 2000; Guyon et al., 2002). When the feature
possessing the lowest contribution is iteratively eliminated from
the training set, it elicits rankings ordering the salient to non-
salient features. Regarding to the fact that the cross-subject
emotion recognition is a typical domain adaptation problem in
transfer learning (Bishop, 2006), it is natural to generalize the
conventional RFE to the T-RFE aiming at transferring common
knowledge across two or more different subjects in a shared low-
dimensional feature space. To explore the effectiveness of the T-
RFE algorithm for cross-subject emotional feature selection, the
EEG data from the public DEAP database of 32 participants were
used. The T-RFE is also compared against the standard RFE and
combined with the linear classifier to show its effectiveness on
improving the accuracy of the cross-subject emotion recognition.

The rest of the paper is organized as follows. A short
description of the DEAP database, EEG preprocessing, feature
extraction, the methodology, and algorithms of the T-RFE are
given in Section Backgrounds and Methods. Section Results
provides the detailed results for feature selection, cross-subject
emotion classification on arousal, and valence dimensions. The
classification performance comparison is performed via non-
parametrical statistical test. Some useful discussions on the
properties of the T-RFE as well as the potential limitations of
the present work are given in Section Discussions. A short
conclusion of the contributions of the study is presented in
Section Conclusions.

BACKGROUNDS AND METHODS

Data Acquisition and Splits
The DEAP database was used to evaluate the T-RFE feature
selection algorithm for cross-subject emotion classification.
Koelstra et al. (2012) built the database of 32 healthy subjects
(19–37 years, mean = 26.9, 50% females) and made it publicly
available for exploring human emotion variations induced
by musical videos. During the data acquisition stage, each
participant performed 40 trials of the experiments. For each
trial, a video clip lasting 1 min was presented to the subject and
the physiological data were simultaneously recorded. In total,
the duration of the data acquisition of each trial lasted 63 s. It
includes 3 s baseline condition and 60 s for participant watching
the video. In the end of the trial, the participant was instructed to
accomplish the self-assessment on valence, arousal, dominance,
and liking scales from 1 to 9, where 1 and 9 indicate the lowest
and the highest levels of each affective dimension, respectively.

In this work, the VA model is used to determine the
target classes of the emotions with liking and dominance scales
excluded. For physiological data, the 60-s-length EEG signals of
32 channels sampled at 128Hz are adopted for feature extraction
without the baseline conditions. To avoid potential overfitting
in T-RFE model selection, we use the first 10 s EEG signals of

each trial to build a validating dataset for feature ranking. The
remaining 50 s EEG signals are defined as a working dataset
for feature selection, training, and testing the classifier. The
functionalities of the two non-overlapping sets are shown in
Figure 1. Note that the signal length of the validating data is
smaller than that of the working data. The scheme in the figure
is aimed to simulate a pseudo online classification environment
with limited subject-specific EEG data available for ranking
features.

EEG Data Preprocessing and Feature
Extraction
All 32 channels of EEG signals in each experimental trial are
preprocessed based on the flowchart shown in Figure 2. Note
that the EEG preprocessing is applied before the data splits. A
3-order band-pass Butterworth filter with the cutoff frequencies
of 4.0 and 45.0Hz is first used to remove the unwanted noises
originated by respiration and eye movements. Then, the filtered
EEG data is processed via independent component analysis (ICA)
to eliminate the myoelectric noise from scalp muscles.

After all EEG signals are preprocessed according to Figure 2.
We divide the last 60 s EEG data of each trial into validating
segment and training/testing segment based on Figure 1. For
each segment, EEG features are extracted with 440 dimensions.
The notations of the computed EEG features are summarized in
Figure 3. In total, 216 frequency domain features are derived by
computing the EEG power via fast Fourier transformation. For
all channels (Fp1, AF3, F3, F7, FC5, FC1, C3, T7, CP5, CP1,
P3, P7, PO3, O1, Oz, Pz, Fp2, AF4, Fz, F4, F8, FC6, FC2, Cz,
C4, T8, CP6, CP2, P4, P8, PO4, and O2), 160 power features
of five frequency bands [theta (4–8Hz), slow-alpha (8–10Hz),
alpha (8–12Hz), beta (12–30Hz), and gamma (30–45Hz)] are
computed. We also extract 56 features of power differences
between right and left cortical areas according to the reported
work (Koelstra et al., 2012). The 14 channel pairs are employed
(Fp2-Fp1, AF4-AF3, F4-F3, F8-F7, FC6-FC5, FC2-FC1, C4-C3,
T8-T7, CP6-CP5, CP2-CP1, P4-P3, P8-P7, PO4-PO3, and O2-
O1) while the power differences in four frequency bands (i.e.,
slow-alpha is excluded) are computed for each channel pair. In
addition, seven EEG time-domain features (mean, variance, zero-
crossing rate, Shannon entropy, spectral entropy, kurtosis, and
skewness) are computed for each channel. To eliminate feature
scale differences, we separately standardize features among 40
trials of each subject into mean= 0 and s.d.= 1.

Each iterative of the T-RFE feature selection requires both
of EEG data from a source domain and a target domain. For a
specific testing subject, the remaining subjects provide the EEG
data of the source domain. A small among historical data from
the testing subject build the target domain dataset, i.e., the first
1/6 trial signal of the testing subject. In the end, the remaining
5/6 trial data of the testing subject is used to investigate the
classifier performance. Therefore, the feature selection model is
predetermined only based on the training and validating data
without any testing data. That is, the overfitting of the T-RFE
model can be avoided since it performances are independently
evaluated. In addition, the linear LSSVM is used to build the
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FIGURE 1 | Definitions of validating and working data sets from the DEAP database: (A) the function of each set, (B) data splits from a trial to build two sets.

T-RFE and the parsimonious structure of the linear model can
naturally avoid the overfitting issue.

Target Emotion Classes Determination and
Classification Performance Evaluation
Both of the feature selection and the classifier design are based
on the supervised learning methodologies. Hence, the target
emotion class (or the ground truth) of each feature vector
must be predetermined before applying feature selection and
classification. In order to quantitatively measure, the valence
and arousal degrees for each participant, the technique of the
self-assessment manikins (Koelstra et al., 2012) were used. That
is, there are nine manikins with different expressions displayed
in the computer screen with the numbers 1–9. The emotions
can be easily indicated based on the manikin expressions.
Participants are instructed to move the mouse horizontally below
the numbers and clicked to indicate the arousal and valence
scales. More specifically, 1 and 9 indicate the lowest and the
highest degree of arousal or valence scales, respectively. In
recent reported works on DEAP database (Koelstra et al., 2012;
Atkinson and Campos, 2016), the binary emotional classes are
usually generated based on a fixed threshold, e.g., five and the
rating data are directly discretized into low (<5) and high (≥5)
arousal (or valence) states. However, since the subjective ratings
also possess the non-stationarity and subject-specificity (Zhang
et al., 2015), the fixed threshold may not be suitable for all
individual preferences on the video clips. Hence, a personal
threshold generating subject-specific emotional classes with self-
assessment personalities could be much proper. Motivated by
this, we determine the target classes by clustering subjective
rating data for each subject, where the threshold is computed
by the midpoint of two cluster centers. The classical k-means
clustering algorithm is repeatedly applied on 40 observations of
subjective rating data of a subject, i.e., {z1, z2, ..., z40}, zi ∈ R2.
Two entries in zi denote the values of the valence and arousal
dimensions. The cluster centers {c1, c2} are elicited by,

FIGURE 2 | Flowchart for EEG pre-processing by using the band-pass

filter and the ICA transformation for each trial.

cj = argmin g(cj) = argmin

2
∑

j=1

∑

zi∈Cj

∥

∥zi − cj
∥

∥

2
. (1)
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Then, the 2-D coordinates {τ1, τ2} of the midpoint τ of two
cluster centers are the adaptive thresholds for valence and arousal
dimensions,

τ = {τ1, τ2} =
1

2

2
∑

j=1

cj. (2)

An example of how to determine the personal thresholds and
corresponding target emotion classes for subject 1 are shown
in Figure 4. In Figure 4A, two clusters of the subjective rating
data marked by circles and squares are elicited. Two dots in the
VA plane are the cluster centers. The cross marker represents
the center midpoint with {τ1, τ2} = {5.2342, 5.6803}. That
is, the low and high arousal states can be discretized by the
threshold of 5.6803 (see Figure 4C) while that of 5.2342 defines
the same binary valence states (see Figure 4B). It is shown the
unsupervised clustering successfully learns the information for

two preferences of rating for a single subject while the cluster
interpretation can be achieved by examining cluster centers.
Table 1 summarized different threshold values for 32 subjects.
From the table, the threshold varies across all individuals but is
close to the classical fixed value of 5. Thus, the subject personality
can be reflected by the slight variations, e.g., 0.6803 and 0.2342
for arousal and valence dimensions of subject 1, respectively.

Based on the target emotion classes defined by the threshold in
Table 1, the classification performances shown in the following
sections are evaluated by the following metrics. The correct
classification rate of low arousal or valence class is,

Psen = nTP/(nTP + nFN), (3)

with nTP and nFN denoting the numbers of correct or incorrect
classified low-class instances. The classification accuracy of high
arousal or valence class is,

Pspe = nTN/(nTN + nFP), (4)

FIGURE 3 | Extracted EEG features from each data segment, the number in the parenthesis denotes the dimensionality of each feature type and

s-alpha denotes “slow alpha” frequency band.

FIGURE 4 | Determination of adaptive thresholds and target emotion classes for subject 1: (A) results of k-means clustering, (B) target classes for arousal

dimension, and (C) target classes for valence dimension.
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TABLE 1 | Personal threshold for discretizing subjective rating data of arousal and valence dimensions.

Subject index Arousal Valence Subject index Arousal Valence

1 5.6803 5.2342 17 5.1932 5.0815

2 5.6126 6.0166 18 5.5781 5.5596

3 3.7776 5.5513 19 5.4990 5.3685

4 4.5916 4.6503 20 5.6172 5.8185

5 5.1736 4.9791 21 6.0432 5.6618

6 4.6612 5.7579 22 5.3251 4.2624

7 5.0705 4.8358 23 3.6487 6.1354

8 5.6286 5.8466 24 5.8675 4.9634

9 5.6759 5.4592 25 5.9870 5.3552

10 5.0015 5.5064 26 3.8795 4.8234

11 5.1886 4.0322 27 4.6934 5.8161

12 6.3644 4.9731 28 4.7856 5.3817

13 6.6635 4.8578 29 4.3479 4.5732

14 5.4360 4.9597 30 5.1283 5.5714

15 4.7245 5.8538 31 5.6703 4.6661

16 4.7233 4.2413 32 5.6419 5.1586

Mean 5.2012 5.2111

with nTN denoting the number of correctively predicted high-
level instances and nFP denoting the number of misclassified
high-level instances. The precision for recognizing the low-class
instances is defined as Ppre,

Ppre = nTP/(nTP + nFP), (5)

The overall classification accuracy is,

Pacc = (nTN + nTP)/(nTN + nFN + nTP + nFP). (6)

We also employ F1-score of low emotion class considering the
class imbalance,

Pf = 2PprePsen/(Ppre + Psen). (7)

For all equations above, the abbreviations of SEN, SPE, PRE,
ACC, TP, TN, FP, and FN denote the Sensitivity, Specificity,
Precision, Accuracy, True Positive, True Negative, False Positive,
and False Negative, respectively.

Transfer Recursive Feature Elimination
The standard RFE algorithm is based on a binary SVM classifier.
To reduce such high computational cost, T-RFE algorithm is
implemented by least square support vector machine (LSSVM),
which is known as a SVM variant possessing fast training
speed (Suykens and Vandewalle, 1999). Moreover, the linear
LSSVM based EEG feature selection and classification approach
in our previous work has shown better performance than its
nonlinear form due to the low risk of overfitting (Yin and
Zhang, 2014). Hence, in this study we employ linear LSSVM via

the following optimization problem with constraints of linear
equality,

min
w,b,ξi

Z(w, b, ξi) =
1

2
wTw+

1

2
γ

n
∑

i=1

ξi

s.t. yi · (w · xi + b) = 1− ξi, i = 1, 2, ..., n. (8)

In Equation (8), w is the weight vector of the classification
hyperplane that classifies n training instances xi (i.e., EEG feature
vectors with xi ∈ R440). The distance between the centerline
yi · (w · xi + b) = 1 of each class yi ∈ {−1, 1} is associated with a
slack variable ξi. A hyper-parameter γ is employed for balancing

the penalty term
n
∑

i=1
ξi and the regularization term wTw. An

example of a LSSVM classification hyperplane and corresponding
class centerlines are shown in Figure 5.

The solution of Equation (9) can be derived via Karush-Kuhn-
Tucker condition and rearranged as a linear equation system, i.e.,

[

0 −YT

Y 99T + γ−1I

] [

b
α

]

=

[

0
1

]

. (9)

In Equation (9), Y = [y1, y2, ..., yn]
T , α = [α1,α2, ...,αn]

T ,

and Z = [xT1 y1, x
T
2 y2, ..., x

T
n yn]

T
are defined, where αi, 1, and I

denote Lagrangian multiplier for each training instance, a vector
with all entries equal to 1 and a 440 × 440 identity matrix,
respectively. Given a novel testing EEG feature vector x, the
estimated emotional class ỹ can be computed by,

ỹ = sign(w · x+ b) = sign(

n
∑

i=1

αiyiK(xi, x)+ b), (10)

with K(xi, x) = xi · x denoting linear kernel function.
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FIGURE 5 | Least square support vector machine based feature

recursive elimination.

The mechanism of RFE has been also shown in Figure 5.
Given a LSSVM classifier is trained by all 440 EEG features, a
largest margin of the binary classes d(0) can be quantified. Note,
that d(0) is associated with the regularization termwTwwhile the
latter can be computed via,

‖w‖2 = αT99Tα =

n
∑

i=1

n
∑

j=1

αiαjyiyjxixj. (11)

When the kth feature is eliminated from the feature set, the loss
of the classification margin 18 can be measured by,

18 =

∣

∣

∣
‖w‖2 −

∥

∥w(k)
∥

∥

2
∣

∣

∣
=

∥

∥w(k)
∥

∥

2
, (12)

where w(k) is the weight vector of the classification plane
with kth feature eliminated and w(k) is the kth component
of w. As shown in Figure 5 for a 2-dimensional case, the
loss of the margin d(0) − d2(1) with x2 eliminated is much
smaller than d(0) − d1(1) with x1 eliminated. This observation
is consistent with that of w1 > w2 and indicates x1 is a
more salient feature since the classification margin (potential
generalization capacity) has been much reduced with this feature
removed.

Considering the size of subject pool of DEAP is sufficiently
large for extracting the shared EEG features across multiple
individuals, we define training subjects and a specific testing
subject as source domain and target domain, respectively. Then,
the scheme for initializing the training set and the LSSVMmodel
for T-RFE can be organized in Figure 6. Given a testing subject
i, the labeled working EEG data of 31 training subjects that
build the source domain are available. For the target domain, the
labeled validating data are available while the emotion classes of
working data for the testing subject are unknown and required to
be predicted.

In order to achieve the source-target domain adaptation, we
compute the centers {vN , vP} of low and high emotional states for

available target domain data as follows,

vP
(i) =

1

nP

nP
∑

j=1

xj, vN
(i) =

1

nN

nN
∑

k=1

xk, xj ∈ VP
(i), xk ∈ VN

(i)

s.t.VP
(i) ∪ VN

(i) = V(i),VP
(i) ∩ VN

(i) = ∅. (13)

In Equation (13), nP and nN are the instance numbers of low
and high emotion classes, respectively. All instances are from
the validating set V with VP denoting low-class subset and VN

denoting high-class subset. Then, the derived {vN , vP} can be used
as a reference for manipulating domain adaptation via instance
selection since the EEG feature distribution of the available
source domain data from the training subjects are different
from that of the testing subject. Given a testing subject i, the
instance selection for source domain data of low emotional state
is performed via the following criterion,

HP =

NOP
(i)

∥

∥

∥
xj − vP

(i)
∥

∥

∥
−

N
OP

(i)
∑

j=1

∥

∥

∥
xj − vP

(i)
∥

∥

∥

√

√

√

√

N
OP

(i)
∑

j=1
(NOP

(i)

∥

∥xj − vP(i)
∥

∥ −

N
OP

(i)
∑

j=1

∥

∥xj − vP(i)
∥

∥)

< 0,

xj ∈ OP
(i),OP

(i) ∪ ON
(i) = O(i),

OP
(i) ∩ ON

(i) = ∅,O(i) =
⋃

l 6=i

o(l). (14)

In Equation (14), xj ∈ OP
(i) denotes an EEG feature vector

belonging to the low-class subset OP
(i) from overall working

dataset O(i), O(i) is built by the union of all working data o(l) of
subject l with l 6= i, and NOP

(i) is the cardinal number of OP
(i).

In the end, HP < 0 indicates the Euclidean distance
∥

∥

∥
xj − vP

(i)
∥

∥

∥

between the available source and target data is sufficiently small
to construct the T-RFE training set. Similarly, the HN < 0 can be
defined to eliminate instances that are far away from the high-
class center vN

(i). By incorporating the target domain data for
selecting LSSVM model, the algorithm for T-RFE initialization
is shown in Table 2, where ns denotes the number of the
subjects in DEAP database, NO(i) is the number of the instances

from the source domain, γo, Õ
(i), and A(i) denote the optimal

regularization hyper-parameter, the adaptive source domain set,
the initialized training set for T-RFE, respectively. In Table 2, the
scheme of evenly selecting 50% instances denotes the every-other
data point is selected. That is, the EEG feature vectors with the
indices of 1, 3, 5, ... are selected and the rests are remained. Inside
the loop of the algorithm, the value of p = 15 denotes the cardinal
number of the candidate set of 2(−5+j). That is, we investigate the
classification performance of the regularization parameter across
the values of 2(−4), 2(−3), ..., 210.

The objective function 18̃ of the T-RFE incorporating
the difference between the target and source domain can be
formularized as the linear combination of two different terms,
i.e., the losses of the classification margin for all domains and
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FIGURE 6 | Initialization of T-RFE training set and LSSVM model.

the reduction of the geometrical distance between source and the
target domain for each emotional class,

18̃ = λ1κ1[
∥

∥w(k)
∥

∥

2
]+ λ2κ2{[dP(k)+ dN(k)]}. (15)

In Equation (15), the term for the margin loss
∥

∥w(k)
∥

∥

2
can be

computed by Equation (12). It can be also replaced by simply
using

∣

∣w(k)
∣

∣. Moreover, dP(k)+ dN(k) is the term for quantifying
the distance between the target domain and the source domain.
For testing subject i, dP(k) and dN(k) can be computed by,

dP(k) =

∥

∥

∥

∥

∥

∥

∥

vP
(i)(k)−

1

N
Õ
(i)
P

N
Õ
(i)
P

∑

j=1

xj(k)

∥

∥

∥

∥

∥

∥

∥

, xj ∈ Õ
(i)
P . (16)

and,

dN(k) =

∥

∥

∥

∥

∥

∥

∥

vN
(i)(k)−

1

N
Õ
(i)
N

N
Õ
(i)
N

∑

j=1

xj(k)

∥

∥

∥

∥

∥

∥

∥

, xj ∈ Õ
(i)
N . (17)

In Equations (16, 17), the low and high emotion classes are
labeled as P and N, respectively. The centers of the target domain
vP

(i) and vN
(i) can be computed via Equation (14), where (k)

denotes the kth feature has been eliminated from the feature set.
Note that the subsets for the adaptive source domain Õ

(i)
P and

Õ
(i)
N are obtained from the T-RFE initialization algorithm listed

in Table 2. In addition, the function of κ1 and κ2 are used to scale
the two terms as,

w̃(k) = κ[
∥

∥w(k)
∥

∥

2
] =

D ·
∥

∥w(k)
∥

∥

2
−

D
∑

k=1

∥

∥w(k)
∥

∥

2

√

D ·
D
∑

k=1

(
∥

∥w(k)
∥

∥

2
− 1

D

D
∑

k=1

∥

∥w(k)
∥

∥

2
)2

,

(18)

and,

D̃(k) = κ[dP(k)+ dN(k)] (19)

=

D · [dP(k)+ dN(k)]−
D
∑

k=1

[dP(k)+ dN(k)]

√

D ·
D
∑

k=1

{[dP(k)+ dN(k)]−
1
D

D
∑

k=1

[dP(k)+ dN(k)]}
2

.

In Equations (18, 19),D = 440 is the dimensionality of the initial
feature set. Finally, the scaled two terms w̃(k) and D̃(k) can be
weighted and used by using λ1 and λ2. In this work, we simply
employ λ1 = λ2=0.5. That is, the weights between themargin loss
of LSSVM and the distance difference of source-target domains
are the same. From Equations (15) to (19), the classical RFE
has been generalized to T-RFE via a modified evaluation of
the feature importance. From 18 to 18̃, the principle of the
transfer learning has been suitably incorporated. The algorithm
of the T-RFE feature ranking is listed in Table 3, where q is
the step length that indicates q features are eliminated for each
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TABLE 2 | Pseudo codes of the algorithm for T-RFE initialization.

Start T− RFE initialization

for i = 1 : ns

Define availible target domain set {xk , yk} = V (i) from subject i

Evenly select 50% intancesVr
(i) fromV (i),Vr

(i) ⊆ V (i)

LSSVM model selection

for j = 1 : p

Define Z̃ (w,b, ξk ) = 1/2 ·wTw+ 1/2 · (2−5+j ) ·

n
Vr

(i)
∑

k= 1
ξk

Train LSSVM y = Gj (x) = sign (

n
Vr

(i)
∑

k= 1
αkykxkx+ b) via Z

Compute E(p) = 1/2 · (Pacc + Pf ) based on Vr
(i),Gj

End for

Selected regularization parameter γo
(i) = 2−5+arg min E(p)

Domain adaptation using instance selection

Compute vP
(i), vN

(i)

Build availible source domain set O(i) and subsets OP
(i),ON

(i)

Initialize adaptive source domain set Õ
(i)
P

= Õ
(i)
N

= ∅

for j = 1 : N
O(i)

Compute HP (xj ), xj ∈ OP
(i), or HN (xj ), xj ∈ ON

(i)

if HP (xj ) < 0 or HN (xj ) < 0

Õ
(i)
P

= Õ
(i)
P
∪ xj , or Õ

(i)
N

= Õ
(i)
N

∪ xj

else Õ
(i)
P

= Õ
(i)
P
, or Õ

(i)
N

= Õ
(i)
N

End if

End for

Õ(i) = Õ
(i)
P
∪ Õ

(i)
N
, A(i) = V (i) ∪ Õ(i)

End for, Return γo
(i), A(i)

End T− RFE initialization

iteration. Finally, the algorithm returns the ranked feature set
Ẽ while the higher ranking implies the corresponding feature is
more salient for cross-subject emotion recognition.

RESULTS

Based on the 32 channel EEG signals from DEAP database, the
binary valence and arousal states are estimated by using different
feature selection schemes and the linear LSSVM classifier. In
total, three different feature selection schemes are employed. (1)
Scheme 1, the classical RFE feature ranking is applied to 440
EEG features. The feature ranking is computed via a subject-
specific manner. That is, the validating data for each subject is
separately used to compute the feature ranking (denoted as RFE-
SS). The evaluation of classification performance of RFE-SS is
based on the 10-fold cross-validation technique. (2) Scheme 2,
the classical RFE algorithm is applied on the feature set and
the feature ranking is computed via a cross-subject manner. For
a given subject i for testing, the ranking is derived from the
working segments of all remain 31 subjects (denoted as RFE-
SG). Note that the validating data are not used in such case.
(3) Scheme 3, the RFE ranking is derived based on the T-RFE
algorithm presented in Tables 1, 2 (denoted as TRFE-SG) via the
same cross-subject manner. For both of the Schemes 2 and 3, the
working segments from the source domain are used for training

TABLE 3 | Pseudo codes of the algorithm for T-RFE feature ranking.

Start T− RFE feature ranking

for i = 1 : ns

Load target domain set V (i)from subject i

Load adaptive souce subsets Õ
(i)
P
, Õ

(i)
N

Load T-RFE training set {xk , yk} ∈ A(i), k = 1, 2, ..., n
A(i)

Load optimal regularization parameter γo
(i)

for j = 1 : D/q

Define Z̃(w,b, ξk ) = 1/2 ·wTw + 1/2 · γo
(i) ·

n
A(i)
∑

k= 1
ξk

Get Lagrangian L(w,b,αi , ei ) = 1/2 · wTw + ...

...1/2 · γo
(i)
n
A(i)
∑

k= 1
ξk −

n
A(i)
∑

k= 1
αk [yk · ((w · xi ) + b) + ξk − 1],

Get the optimal αk

Compute w =

n
A(i)
∑

k= 1
αkyk xk

for z1 = 1 : D

w̃(z1) = κ [
∥

∥w(z1)
∥

∥

2
]

Compute dP (z1) + dN (z1), D̃(z1) = κ [dP (z1) + dN (z1)]

18̃ (z1) = λ1w̃(z1) + λ2 D̃(z1)

End for

Build feature set E(j) = ∅ for elimination

for z2 = 1 : q

E(j) = E(j) ∪ arg min18̃

End for

Eliminate feature set E from Õ
(i)
P
, Õ

(i)
N
,A(i),V (i)

End for

Get the ranked feature set Ẽ =
D/q
⋃

J= 1
E(J)

End for, Return Ẽ

End T− RFE feature ranking

classifiers while that from the target domain is used for testing
and eliciting the performance metrics.

To find the optimal number of features that is adopted for
emotion classification, the performance metrics are examined
on different step indices. Note that the step lengths of all three
schemes are set to 10. Namely, for each iteration, 10 EEG
features with highest rankings are moved to the feature set.
When achieving 44 steps, all 440 EEG features are adopted for
emotion classification. In Figure 7, the variation of the arousal
classification metrics are explored for subject 1. Four metrics,
i.e., Psen, Pspe, Pacc, and Pf , are computed by using the linear
LSSVM classifier. For Scheme 1 (RFE-SS) shown in Figure 7A,
the optimal Pacc and Pf are derived when 40th step arrives.
Since 10 EEG features are iteratively added to the feature set
in each step, 40∗10 = 400 EEG features are required to achieve
the optimal classification performance when the classical RFE is
subject-specifically implemented. On the other hand, the optimal
Pacc and Pf for Scheme 2 (RFE-SG) are derived at 2nd step. It
shows that only 20 EEG features are sufficient to achieve the best
arousal classification performance when EEG data from multiple
training subjects different from the testing subject are used for
feature ranking. In particular, the optimal Pacc and Pf for Scheme
3 (TRFE-SG) is found the 1st step while 10 EEG features with
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the highest rankings elicit best performance. It indicates that the
scheme of TRFE-SG can lead to a minimum number of EEG
features for estimating arousal states of subject 1. We can also
found both values of Pacc and Pf are higher than other two
schemes.

In Figure 8, the variation of the valence classification
performance along with the step index of subject 1 is shown. For
Scheme 1, 2, and 3, the optimal Pacc and Pf values are achieved
at the 14th step, the 2nd step, and the 1st step, respectively.
It indicates for subject-specific RFE, cross-subject RFE, and
cross-subject T-RFE, 140, 20, and 10 optimal EEG features are
required to get the optimal classification performance. Note that
the performance of Scheme 3 is still comparable against the
Scheme 2. Regarding the optimal values of Pacc and Pf , both
of Schemes 2 and 3 are higher than Scheme 1. By observing
Figures 7, 8, the high number of salient EEG features are
found when feature selection is applied in a subject-specific
manner. However, most of the EEG features are redundant or
less important for cross-subject emotion recognition and can
undermine the generalization capability of the classifier.

To comprehensively evaluate the effectiveness of the TRFE-SG
scheme, we build five different emotion classifiers based on linear
LSSVM for all 32 subjects. For all classifiers, the regularization
parameter is optimized according to the algorithm shown in
Table 2. The optimal classification performance is derived for
each subject by locating the best step index. The procedure
for determining the optimal number of EEG features is as
same as those shown in Figures 7, 8. The baseline condition
is denoted as LSSVM-SS, where the subject-specific LSSVM
is employed to recognize the binary emotional states without
any feature selection schemes. The emotion classifier of RFE-
LSSVM-SS is defined when only classical RFE feature selection
is combined with linear LSSVM in subject-specific manner. Note
that the 10-fold cross validation technique is applied to compute
classification performance metrics for LSSVM-SS and RFE-
LSSVM-SS. Moreover, LSSVM-SG denotes the linear LSSVM
is implemented in a cross-subject manner without any feature
selection scheme. That is, when a testing subject i is given,
the remaining 31 subjects are used for training the classifier.
Similarly, RFE-LSSVM-SG denotes the classical RFE is applied

FIGURE 7 | Arousal classification performance vs. step index of feature elimination for different feature ranking schemes, (A) RFE-SS, (B) RFE-SG, (C)

TRFE-SG.

FIGURE 8 | Valence classification performance vs. step index of feature elimination for different feature ranking schemes, (A) RFE-SS, (B) RFE-SG, (C)

TRFE-SG.
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with LSSVM-SG classifier. Finally, TRFE-LSSVM-SG denotes the
T-RFE algorithm is combined with LSSVM-SG classifier.

As shown in Figures 9, 10, the TRFE-LSSVM-SG achieves
the best performance regarding Pacc and Pf for predicting
both of the arousal and valence dimensions. More specifically,
the highest medians are found with the smallest range across
all 32 subjects when the T-RFE feature ranking and cross-
subject emotion classifier are simultaneously applied. One
interesting observation is that the LSSVM-SG achieves the lowest
performance. Both of the performance of the LSSVM-SG and

the RFE-LSSVM-SG are lower than that of LSSVM-SS and
LSSVM-SG. The statistical comparison using the ANOVA test
is carried out. The classification performance data are merged
into five groups based on five emotion classifiers. The one-way
ANOVA is performed and themean values of Pacc and Pf for both
of the arousal and the valence dimensions are significantly varied
with p < 0.001. Then the multiple comparisons test is applied
between each two groups and the corresponding p values are
shown in Table 4. From the table, the mean values of Pacc and Pf
of TRFE-LSSVM-SG classifier for all dimensions are significantly

FIGURE 9 | Box-plots for comparing arousal classification performance across different emotion classifiers for all 32 subjects. (A) Classification

accuracy, (B) F1-score.

FIGURE 10 | Box-plots for comparing valence classification performance. (A) Classification accuracy, (B) F1-score.
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TABLE 4 | Results of multiple comparison tests using ANOVA for the five emotion classifiers.

LSSVM-SS RFE-LSSVM-SS LSSVM-SG RFE-LSSVM-SG TRFE-LSSVM-SG

AROUSAL Pacc

LSSVM-SS – p < 0.05 – p < 0.05 p < 0.05

RFE-LSSVM-SS p < 0.05 – p < 0.05 – p < 0.05

LSSVM-SG – p < 0.05 – p < 0.05 p < 0.05

RFE-LSSVM-SG p < 0.05 – p < 0.05 – p < 0.05

TRFE-LSSVM-SG p < 0.05 p < 0.05 p < 0.05 p < 0.05 –

AROUSAL Pf

LSSVM-SS – p < 0.05 – p < 0.05 p < 0.05

RFE-LSSVM-SS p < 0.05 – p < 0.05 – p < 0.05

LSSVM-SG – p < 0.05 – p < 0.05 p < 0.05

RFE-LSSVM-SG p < 0.05 – p < 0.05 – p < 0.05

TRFE-LSSVM-SG p < 0.05 p < 0.05 p < 0.05 p < 0.05 –

VALENCE Pacc

LSSVM-SS – p < 0.05 – p < 0.05 p < 0.05

RFE-LSSVM-SS p < 0.05 – p < 0.05 – p < 0.05

LSSVM-SG – p < 0.05 – p < 0.05 p < 0.05

RFE-LSSVM-SG p < 0.05 – p < 0.05 – p < 0.05

TRFE-LSSVM-SG p < 0.05 p < 0.05 p < 0.05 p < 0.05 –

VALENCE Pf

LSSVM-SS – p < 0.05 – p < 0.05 p < 0.05

RFE-LSSVM-SS p < 0.05 – p < 0.05 – p < 0.05

LSSVM-SG – p < 0.05 – p < 0.05 p < 0.05

RFE-LSSVM-SG p < 0.05 – p < 0.05 – p < 0.05

TRFE-LSSVM-SG p < 0.05 p < 0.05 p < 0.05 p < 0.05 –

superior to that of LSSVM-SS, RFE-LSSVM-SS, LSSVM-SG, and
RFE-LSSVM-SG classifiers with p < 0.05.

In Figure 11, we compare the classification performance
of the proposed TRFE-LSSVM-SG emotion classifier against
two subject-generic classifier, i.e., HB-SG and ATNN-SG. The
algorithm of HB-SG is developed based on the work (Wang
et al., 2012), where a hierarchical Bayesian (HB) classifier is
used for recognizing the change of cognitive states via EEG
features across a group of subjects. Here, the hidden variable of
the HB classifier is identified by using the principle component
analysis. The algorithm of ATNN-SG is developed by following
the scheme reported by Baldwin and Penaranda (2012) and an
adaptively trained neural network (ATNN) is proposed. For all
three classifiers, the classification performance is evaluated by six
metrics, i.e., sensitivity, specificity, accuracy, precision, negative-
predicting-value and F1-score. The six metrics are denoted by
Psen, Pspe, Pacc, Ppre, Pnpv, and Pf , respectively. From the figure,
the TRFE-LSSVM-SG classifier achieved the highest value for all
metrics. On the other hand, for HB-SG classifier, the sensitivity
and specificity are very low for arousal and valence classification,
respectively. For ATNN-SG classifier, the range between the
lowest and the highest values of each metric is much larger than
other cases.

We also compare the subject-average Pacc and Pf values
from several reported works for both of the arousal and
valence dimensions on the same database in Table 5. In the

table, Koelstra et al. (2012) combined the EEG and peripheral
features to classify binary emotional classes using SVM and
KNN classifier. Liu and Sourina (2012) proposed threshold-based
detection algorithm. Naser and Saha (2013) developed the dual-
tree wavelet transformation method. Chen et al. (2015) used C4.5
decision tree classifier. Atkinson and Campos (2016) combined
the SVM classifier with a mutual information based feature
selection approach. Yoon and Chung employed the Bayesian
weighted-log-posterior classifier. Li et al. and Wang and Shang
adopted deep belief networks for emotion classification. Yin et al.
developed an ensemble stacked autoencoder. By comparing the
above mention works on the same DEAP database, the TRFE-
LSSVM-SG classifier achieves the best classification performance.

In the end, the computational time of the six classifiers
is summarized in Table 6. For each classifier, the summation
of the training time for all 32 subjects is recorded and the
subject-average time is computed for the comparison. The
testing time of 40 EEG feature vectors from each subject is
derived in the same manner. All codes of the algorithms were
written by using Matlab R© 2011b and run on a computer with
AMD R© CPU 2.0GHZ, 8GRAM and Windows 8 R© operating
system. From the table, LSSVM-SS and TRFE-LSSVM-SG
achieve the lowest and the highest training time, respectively.
The reason is that the T-RFE algorithm requires additional
steps to evaluate the distribution difference s between the
source and target domains. Hence, the high accuracy of the
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FIGURE 11 | Classification performance comparison between three subject-generic classifiers. (A,C,E) Arousal classification results on TRFE-LSSVM-SG,

HB-SG, and ATNN-SG. (B,D,F) Valence classification results on TRFE-LSSVM-SG, HB-SG, and ATNN-SG.

TABLE 5 | Subject-average classification performance comparison

between TRFE-LSSVM-SG and several reported studies on the DEAP

database.

Arousal Valence

Pacc Pf Pacc Pf

Koelstra et al., 2012 0.6200 0.6310 0.6270 0.6520

Liu and Sourina, 2012 0.7651 – 0.5080 –

Naser and Saha, 2013 0.6620 – 0.6430 –

Chen et al., 2015 0.6909 0.6896 0.6789 0.6783

Atkinson and Campos, 2016 0.7306 – 0.7314 –

Yoon and Chung, 2013 0.7010 – 0.7090 –

Li et al., 2015 0.6420 0.5840

Wang and Shang, 2013 0.5120 0.6090

Yin et al., 2017 0.7719 0.6901 0.7617 0.7243

TRFE-LSSVM-SG 0.7867 0.7526 0.7875 0.8077

TRFE-LSSVM-SG is at the cost of the high training time.
For the testing time, HB-SG and LSSVM-SG achieve the
lowest and the highest value, respectively. Note that for all
classifiers the average testing time is smaller than 100 ms,
which indicates the trained classifiers could implement online.

TABLE 6 | Subject-average CPU time (in s) for classifier training and

testing.

Training Testing

LSSVM-SS 0.0625 0.0469

RFE-LSSVM-SS 7.4063 0.0094

LSSVM-SG 1.4688 0.0938

RFE-LSSVM-SG 19.4810 0.0104

HB-SG 0.0996 0.0016

ATNN-SG 9.6406 0.0157

TRFE-LSSVM-SG 80.8736 0.0125

In such case, the TRFE-LSSVM-SG is very competitive against
other classifiers because of the low testing time and high
classification performance.

DISCUSSIONS

Regarding the methodology, we have generalized a classical
SVM-based feature selection algorithm for solving cross-subject
emotion classification problem, where the EEG features possess
the non-stationarity and differently distributed across multiple
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individuals. The essential of the proposed T-RFE algorithm is
to introduce the transfer learning principle and quantify the
difference of high dimensional EEG feature distributions between
the source domain and the target domain. The objective function
of the T-RFE is a linear combination of the classification margin
and the geometrical distance for domain adaptation. In addition,
the instance selection has been applied to initialize a rich training
set with sufficient training samples. For the subject-specific
emotion recognition, the size of the training set of a subject
is smaller than the cross-subject paradigm. It is because the
EEG data from other subjects are not exploited. By selecting
and fusing EEG data from different individuals, a domain
adaptable set is used for ranking features, which shares common
information for multiple individuals. Note, that the ground truth
of each EEG feature vector is predetermined by subject-specific
clustering of self-assessment data. An adaptive threshold reflects
the preference and the personality for participants rating the
musical video clips and is more reasonable than using a fixed
threshold.

On the other hand, the classification performances between
the subject-specific and cross-subject emotion recognition
paradigms are compared. The first observation is that the
performance of the LSSVM-SG is lower than that of the
LSSVM-SS scheme. Based on the Wilcoxon signed rank test,
the significant decrease of the classification accuracy has been
found with (p = 0.049, z = −2.0). Moreover, the classical
RFE algorithm has also shown better performance in subject-
specific paradigm. However, there is no significant difference
of the average classification rate and F-score between the RFE-
LSSVM-SS and RFE-LSSVM-SG classifiers. It implies that fusing
the EEG data from multiple subjects together to build the
training set cannot improve the generalization capability. The
classical RFE also does not benefit from the sufficient training
instances across multiple individuals. The potential reason is the
dynamics of EEG feature in other subjects may be quite different
from the training subjects and may reduce the classification
margin. Finally, the proposed T-RFE has been combined with
the linear LSSVM classifier and the significant improvement
has been found against all other classifiers. It is also noted
that the structure of the linear LSSVM is more transparent
than neural network based classifiers and can be constructed by
fast training algorithm. The transparency indicates the model
structure of the linear LSSVM ismuch simpler than the NN based
classifier. For NN classifier, the non-linear activation function
is usually employed and the classification decision function is
combined from the hidden activation potentials. That is, the
relationship between the input EEG features and the emotional
states is modeled via a complex non-linear mapping. On the
other hand, the linear LSSVM model can be represented by
a linear hyper-plane in the feature space, where the absolute
value of its normal vector reflects classification contribution of
each EEG feature. We found that the classification performance
for both of the arousal and valence dimensions of the TRFE-
LSSVM-SG are better than several reported works on the same
DEAP database, where very complex classifiers, i.e., deep learning
primitives and variants, are applied. It indicates the proper
selection of the high dimensional EEG features may play a

more important role in a physiological feature based emotion
recognition system.

The comparison of the computational complexity indicates
the additional training time is required for TRFE-LSSVM-SG
classifier. The reason is that the T-RFE algorithm evaluates the
loss of the classification margin across the target and source
domains. Such operation is performed each iteration and takes
much longer time than the conventional RFE algorithm. Note,
that the training time of RFE-LSSVM-SG is also higher than
that of RFE-LSSVM-SS. It is because the subject-generic classifier
is built via a much larger training set. When feature selection
is not applied, LSSVM-SS achieves the shortest training time.
The reason behind is the LSSVM construction only requires
solving a linear equation system for once. The testing time of
all classifiers is much less than the training time since all model
parameters have been predetermined and only the computation
of the outputs is needed. It is also shown the RFE and T-RFE
based classifiers possess much less testing time than LSSVM-
SS and LSSVM-SG since the dimensionality of the input EEG
features has been largely reduced when applying feature selection.

Since both of the historical data from the training and testing
subjects are needed to build the T-RFE feature selection model,
we construct a validating set by using the first 10 s EEG signals
of each trial. When a subject is used for testing, its validating data
build the target domain dataset and they are non-overlapped with
the testing dataset. On the other hand, if all 60 s data are used for
T-RFE modeling as well as evaluating classifier performance, the
feature selection procedure exploits the information of the testing
dataset and the potential overfitting may arise. In addition, if
the validating data are unavailable, the information from the
target domain is unknown and the knowledge transfer becomes
impossible for the T-RFE algorithm. On the other hand, we also
employ the linear SVM based classifier to control the overfitting
of the T-RFE. The linearmodel has a parsimonious structure than
the non-linear model and the SVM follows the principle of the
structural risk minimization. Both of them are proper to tackle
the current classification task with limited instance amount and
high feature dimensionality.

There are two important parameters of the T-RFE algorithms,
i.e., lamda1 and lamda2, need to be carefully selected. These
two parameters stand for the importance of the classification
margin and the distance between data distribution of the target
and source domains when applying EEG feature elimination.
On one hand, the two parameters can be determined based
on the prior knowledge. In this study, the two factors are
treated with the same importance, i.e., λ1 = λ2. Since such
approach could lead to the suboptimal values, an alternative
way is to employ the validating set and candidate parameter
set to find the best lambda1 and lambda2 according to the
optimal classification performance. Specifically, for each pair
of (λ1, λ2) belongs to {(0.1, 0.9), (0.2, 0.8), ..., (0.9, 0.1)} with 10
candidate combinations. The feature selection results and the
classification performance on the validating set can be elicited.
Then, the optimal values of lambda1 and lambda2 correspond to
the highest performance can be determined.

The reason for selecting the hyper-parameter γ is that the
LSSVM need to balance the weights between the classification
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margin and the training error. The best gamma indicates the
optimal balance between the two terms above. In this study, the
method for the γ optimization also depends on the validating
set and a candidate parameter set of {2−4,2−3,...,210} with 15
candidate values. After examining all 15 cases, the optimal
classification performance on the validating set yields the best
value of γ .

The limitations of this work may cover the following two
aspects:

(1) The implementation of the proposed T-RFE algorithm
requires the emotion class labels of the validating set from
the target domain. The reason is that the SVM based
RFE feature ranking is naturally a supervised learning
approach. The future work should include developing the
semi-supervised version of the T-RFE, in which the feature
selection procedure can be robust against the unknown label
from the target domain.

(2) The T-RFE algorithm has lead to several additional hyper-
parameters that should be carefully selected, i.e., weight
parameter of the T-RFE objective function. In particular, the
threshold for instance selection is set to 0 in this study. The
cross-validation based model selection may further improve
the suitability of the initialized training set. However, such
optimization problem can induce additional computational
cost.

In our future work, the proposed T-RFE algorithm will be
evaluated in the mental workload and mental fatigue recognition
tasks, where the multimodal physiological features are used as
the cues of the model. It is also possible to generalize the T-RFE
method to the cross-session and cross-task operator-functional-
state estimation issue aiming at improving the stability of the
classification performance. After improving the training speed
of T-RFE method in near future, all codes will be optimized
into a MATLAB toolbox and available online. Since the EEG
signal devices may be intrusive to the users of the human-
machine system when collecting emotional clues, the T-RFE
based emotion classifier can be evaluated by using videos of the
user expressions or recording of the user speech in our future
work. To reduce the invasion degree of the EEG sensors, one
solution is to use a single-channel, wireless recording devise. The
single EEG feature can be combined with the data of the user
expression and speech to achieve amultimodal emotion classifier.
On the other hand, the emotions can be also linked to the

workload and fatigue estimation when the operator is performing
a safety critical task. For instance, the anxiety is related to the high
workload and may induce the fatigue accumulation. Since the
degradation of the human performance may arise due to negative
emotions, the employment of the physiological signal is necessary
since the cognitive state can be continuously predicted.

CONCLUSIONS

In this study, a new feature selection approach, T-RFE, has been
proposed to determine the optimal feature subset regarding a
cross subject emotion classification issue. The EEG data from

32 participants in the DEAP database have been employed to
examine the effectiveness of the proposed method. Different
from the conventional subject-specific paradigm, the training
and testing EEG data are coming from different individuals. By
properly defining a limited validating set of EEG feature set with
440 dimensions, the objective function of the T-RFE introduces a
penalty term that quantifies the difference of feature distributions
between the source the target domains. By implementing the
linear LSSVM classifier and the non-parametrical statistical test,
the significant improvement has been found for the T-RFE
feature selection in a cross-subject manner than the cases of
conventional RFE methods in both of the subject-specific and
subject-generic manners. The overall findings also indicate both
of the features and instances should be carefully selected before
implementing a cross-subject classifier for non-stationary EEG
features.
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