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Introduction

Neurogenesis in adult mammalian brains occurs throughout life. 

This process has been observed at two locations under normal 

conditions: the subventricular zone of the lateral ventricles and 

the subgranular zone of the dentate gyrus (DG) in the hippo-

campus (Zhao et al., 2008). The cellular basis for adult neuro-

genesis is adult neural stem cells (aNSCs), which exhibit the two  

essential properties of stem cells: self-renewal and multipotency. 

Adult neurogenesis is de�ned as the process of generating new 

neurons from NSCs, which consists of the proliferation and fate 

determination of aNSCs, the migration and survival of young 

neurons, and the maturation and integration of newly produced 

neurons (Ming and Song, 2005; Zhao et al., 2008). Adult neuro-

genesis is regulated at many levels by both extrinsic factors, 

such as physiological and pathological conditions, and intrinsic 

factors, such as genetic and epigenetic programs. The mainte-

nance and differentiation of stem cells is tightly controlled by 

intricate molecular networks (Li et al., 2008). Uncovering these 

regulatory mechanisms is crucial to understanding the functions 

and plasticity of adult brains.

Epigenetic regulation, including DNA methylation and 

histone modi�cation, is known to play signi�cant roles in the 

modulation of stem cell proliferation and differentiation, includ-

ing NSCs (Abel and Zukin, 2008; Zhao et al., 2008). Recent 

genome-wide analyses have demonstrated a clear role for DNA 

methylation and chromatin remodeling, particularly by the 

Polycomb group (PcG) proteins, in de�ning the properties and 

regulating the functions of stem cells (Bernstein et al., 2007).  

The importance of epigenetic regulation in brain develop-

ment and neurological disorders has been well documented 

(Shahbazian and Zoghbi, 2002; Abel and Zukin, 2008). For ex-

ample, de novo mutations in MECP2 give rise to neurodevelop-

mental disorders, including Rett syndrome (Amir et al., 1999; 

Chahrour and Zoghbi, 2007). MeCP2 belongs to a family of  

B
oth microRNAs (miRNAs) and epigenetic regula-
tion have important functions in stem cell biology, 
although the interactions between these two path-

ways are not well understood. Here, we show that 
MeCP2, a DNA methyl-CpG–binding protein, can epi-
genetically regulate specific miRNAs in adult neural stem 
cells (aNSCs). MeCP2-mediated epigenetic regulation of 
one such miRNA, miR-137, involves coregulation by Sox2, 
a core transcription factor in stem cells. miR-137 modulates 
the proliferation and differentiation of aNSCs in vitro 
and in vivo. Overexpression of miR-137 promotes the  

proliferation of aNSCs, whereas a reduction of miR-137 
enhances aNSC differentiation. We further show that 
miR-137 post-transcriptionally represses the expression of 
Ezh2, a histone methyltransferase and Polycomb group 
(PcG) protein. The miR-137–mediated repression of Ezh2 
feeds back to chromatin, resulting in a global decrease in 
histone H3 trimethyl lysine 27. Coexpression of Ezh2 can 
rescue phenotypes associated with miR-137 overexpres-
sion. These results demonstrate that cross talk between 
miRNA and epigenetic regulation contributes to the modu-
lation of adult neurogenesis.
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conditions and produce both -III tubulin (TuJ1)-positive neu-

ronal cells and glial �brillary acidic protein (GFAP)-positive 

glial cells under differentiating conditions, demonstrating that 

they possess the same essential properties as NSCs (Fig. 1 A). 

We identi�ed a subset of miRNAs that consistently displayed 

altered expression in the absence of Mecp2, relative to WT  

aNSCs (Fig. 1, C and D; and Table S1). When considering 95% 

con�dence intervals (CIs) on mean relative quantities (RQs), 

we identi�ed four miRNAs with expression decreased by ≥2.5-

fold and three miRNAs with a ≥2.5-fold increase in MeCP2-/y 

aNSCs (Fig. 1 D). These results suggest that the loss of func-

tional MeCP2 leads to the dysregulation of a subset of speci�c 

miRNAs in the context of neurogenesis.

To assess the potential for epigenetic regulation of these 

altered miRNAs, we �rst evaluated the genomic context of each 

miRNA, including CpG content and phylogenetic conservation, 

two hallmarks of functional nonprotein-coding regulatory ele-

ments. The region immediately upstream of one conserved single 

copy miRNA, miR-137, is highly conserved, contains mul-

tiple CpG-rich regions, and has a consensus binding site for Sox2, 

an Sry-related HMG-box transcription factor that plays impor-

tant roles in stem cell function and adult neurogenesis (see Fig. 3, 

A–C; Jaenisch and Young, 2008; Zhao et al., 2008). Elevated 

expression of miR-137 in the absence of Mecp2 was veri�ed 

using independent assays (Fig. 2 A). Overall, miR-137 was 

6.5-fold higher in proliferating MeCP2-/y aNSCs (Fig. 2 A). 

Furthermore, pri–/pre–miR-137 expression was signi�cantly 

increased in the absence of MeCP2, which indicates that ex-

pression of miR-137 was in fact in�uenced at the level of tran-

scription (Fig. S1 C).

The expression of miR-137 has been found to increase during 

neuronal differentiation, which suggests that the proper tempo-

ral expression of miR-137 may indeed in�uence aNSC prolifer-

ation and/or differentiation (Silber et al., 2008). Consistent with 

these �ndings, we observed a signi�cant increase in miR-137 ex-

pression upon differentiation of both WT and MeCP2-/y aNSCs  

(Fig. S1 A). However, upon aNSC differentiation, we saw no sig-

ni�cant difference in the relative increase in miR-137 expression 

between genotypes (Fig. S1 B). These results indicate that the 

absence of Mecp2 in�uences miR-137 expression before aNSC 

differentiation and that miR-137 may be prematurely expressed 

in MeCP2-/y aNSCs. We note that the absence of a MeCP2- 

mediated in�uence on miR-137 expression during differentia-

tion also suggests a role for additional regulatory factors in the 

induction of miR-137 during this process. However, in prolifer-

ating aNSCs, precocious expression of miR-137 in the absence 

of MeCP2 would expose targeted mRNAs to aberrant regula-

tion and potentially result in altered aNSC proliferation and/or 

differentiation. Based on these observations, we �rst proceeded 

to test the possibility of MeCP2-mediated epigenetic regulation 

of miR-137 in aNSCs, as well as the involvement of Sox2 in 

such regulation.

Expression of miR-137 is epigenetically 

regulated by MeCP2

To test whether MeCP2 interacts directly with genomic regions 

proximal to miR-137, we performed MeCP2-speci�c chromatin 

DNA methyl-CpG–binding proteins (MBDs) that translate  

DNA methylation into gene expression regulation (Bird, 2002). 

Two members of the MBD family of proteins, MBD1 and MeCP2, 

in�uence either the proliferation and differentiation of aNSCs or 

the maturation of young neurons (Zhao et al., 2003; Kishi and 

Macklis, 2004; Smrt et al., 2007). Nonetheless, how these epi-

genetic factors regulate adult neurogenesis is unclear because 

of the dif�culty in identifying downstream targets via classical 

gene expression analyses (Bienvenu and Chelly, 2006).

MicroRNAs (miRNAs) are small, noncoding RNAs that reg-

ulate gene expression and development by post-transcriptionally  

targeting RNA-induced silencing complex (RISC) to cognate 

messenger RNA (Bartel, 2004). The loss of components of 

the miRNA pathway, including Dicer and DGCR8, can alter 

the proliferation and differentiation of stem cells (Bernstein  

et al., 2003; Wang et al., 2007). Furthermore, speci�c miRNAs 

are known to play important roles in modulating the prolifera-

tion and differentiation of many types of stem cells (Ivey et al., 

2008; Yi et al., 2008).

Here, we show that MeCP2 could epigenetically regulate 

speci�c miRNAs in mouse aNSCs. The absence of MeCP2 

binding to the genomic region proximal to one such miRNA, 

miR-137, correlates with an altered chromatin state that is re-

�ective of miR-137 expression. In addition, we demonstrate 

that the MeCP2-mediated effect on miR-137 expression could 

be performed through a mechanism involving Sox2, a core tran-

scription factor regulating stem cell self-renewal (Zappone et al., 

2000; Avilion et al., 2003; Ferri et al., 2004). Furthermore, we 

found that miR-137 in�uences aNSC proliferation and differ-

entiation both in vitro and in vivo. Lastly, we identi�ed Ezh2, 

a histone H3 lysine 27 methyltransferase and a member of the 

PcG protein family, as one of the post-transcriptionally regulated 

targets of miR-137; and we found that the miR-137–mediated 

repression of Ezh2 subsequently caused a global decrease in 

trimethyl H3-lysine 27 (H3-K27-Tri-Me). Functionally, coexpres-

sion of Ezh2 rescued the phenotypes associated with miR-137 

overexpression. These results demonstrate that cross talk between 

epigenetic regulation and the miRNA pathway could play impor-

tant roles in the modulation of adult neurogenesis. Furthermore, 

our data suggest that the loss of functional MeCP2 could alter the 

expression of speci�c miRNAs, potentially contributing to the 

molecular pathogenesis of Rett syndrome.

Results

Identification of miRNAs with altered 

expression in Mecp2-deficient aNSCs

To identify miRNAs potentially regulated at the epigenetic level 

and determine whether Mecp2 could in�uence the expression of 

miRNAs in the context of adult neurogenesis, we pro�led the 

expression of 218 miRNAs in primary NSCs derived from wild-

type (WT) and Mecp2-de�cient mice (Chen et al., 2001) using 

multiplex reverse transcription and miRNA-speci�c TaqMan 

assays (Fig. 1 and Table S1). Nearly all cultured NSCs were 

positive for the NSC markers Nestin and Sox2, which suggests 

a relative homogeneity in these primary aNSCs. These aNSCs 

incorporate the thymidine analogue BrdU under proliferating 

http://www.jcb.org/cgi/content/full/jcb.200908151/DC1
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(H3-K9-Ac) in the 1-kb region directly surrounding miR-137 

(Fig. 2 F). Both H3-K4-Tri-Me and H3-K9-Ac associate with 

actively transcribed DNA, which correlates with the increased 

expression observed for miR-137 in the absence of Mecp2. 

In particular, the enrichment of H3K4-Tri-Me across this region 

strongly indicates that it is indeed a region of transcription ini-

tiation. Enrichment of H3-K4-Mono-Me and H3-K9-Tri-Me 

was minimal and indistinguishable between genotypes (Fig. S2, 

A and B). Although H3-K27-Tri-Me was enriched in the 2 kb 

directly surrounding miR-137, we saw no signi�cant difference 

between WT and MeCP2-/y aNSCs (Fig. S2 C).

Additionally, we found that upon differentiation of WT 

aNSCs, there was a marked increase in H3-K4-Tri-Me and  

H3-K9-Ac proximal to miR-137 (Fig. S2, D and E), whereas 

H3-K27-Tri-Me levels decreased slightly (Fig. S2 F). There-

fore, chromatin marks generally associated with active tran-

scription appear to arise prematurely in the absence of Mecp2. 

Together, these data indicate the precocious establishment of a 

chromatin state correlating with increased miR-137 expression 

in the absence of MeCP2 and support a role for MeCP2 in 

mediating the proper epigenetic regulation of miR-137 speci�-

cally in proliferating aNSCs.

We noted that the 2.5-kb upstream region also contains a 

putative binding site for Sox2, a critical factor regulating stem 

immunoprecipitation (ChIP) followed by real-time quantitative 

PCR across a 7-kb region surrounding miR-137, which included 

most of the highly conserved sequences upstream. Immuno-

precipitation (IP) of chromatin chemically cross-linked to DNA in 

WT aNSCs with a MeCP2-speci�c antibody demonstrated that 

a region 2.5 kb upstream of miR-137 was enriched approx-

imately threefold relative to MeCP2-/y aNSCs (Fig. 2, B and C). 

Between 2 kb and 4 kb upstream of miR-137, we also observed 

signi�cant levels of 5-methyl-cytosine (5-Me-C), as detected 

by IP of DNA with a 5-Me-C–speci�c antibody (MeDIP), which 

indicated the presence of methyl CpG dinucleotides to which 

MeCP2 could bind (Fig. 2 D; Weber et al., 2005). However, we 

detected no discernable difference in DNA methylation between 

different genotypes.

Given the role of MeCP2 in epigenetic regulation and its 

direct association with regions proximal to miR-137, we chose 

to examine the effect that loss of MeCP2 has on the chromatin 

state of the miR-137 locus by performing histone-speci�c ChIP 

assays in WT and MeCP2-/y aNSCs. We found that the ab-

sence of Mecp2 correlated with increased trimethyl histone H3  

lysine 4 (H3-K4-Tri-Me) in the same 2.5-kb region upstream of  

miR-137 with which MeCP2 interacted in WT NSCs, as well 

as in the 1 kb directly surrounding miR-137 (Fig. 2 E). Addi-

tionally, we observed increased acetylated histone H3 lysine 9 

Figure 1. Identification of miRNAs with  
altered expression in Mecp2-deficient adult 
NSCs. (A) Adult NSCs cultured under prolifer-
ating conditions express Sox2 (nuclear, green) 
and Nestin (cytoplasmic, red), and incorporate 
BrdU (nuclear, red). Adult NSCs used in this 
study were multipotent and, when subjected to 
differentiation, expressed neuron-specific TuJ1 
(red) and astrocyte-specific GFAP (green, DAPI 
is shown in blue), Bar, 50 µm. (B) Western blot 
showing expression of MeCP2 in WT aNSCs 
and the absence of MeCP2 in MeCP2-/y  
aNSCs (ab2828 antibody; Abcam). (C) Heat 
map of miRNA with a ≥2.5-fold change in 
expression in proliferating MeCP2-/y aNSCs. 
Quantities relative to WT aNSCs from each of 
four independent miRNA profiling experiments 
are shown. Relative quantity scale is shown 
below for reference. (D) Relative quantity of 
miRNA with ≥2.5-fold change in expression 
shown for MeCP2-/y proliferating aNSCs, cal-
ibrated to WT proliferating aNSCs. WT rela-
tive quantity = 1, mean relative quantity from 
three WT/MeCP2-/y pairs plus one pooled 
sample per genotype is plotted, with error bars 
representing a 95% CI. Dotted lines indicate a 
threshold of 2.5-fold change in expression.

http://www.jcb.org/cgi/content/full/jcb.200908151/DC1
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establishment of a chromatin state re�ective of active transcrip-

tion in the absence of MeCP2. An increase miR-137 expression 

in proliferating aNSCs would expose the distinct population 

of cellular mRNAs to aberrant miR-137 targeting, potentially 

resulting in abnormal aNSC proliferation and/or differentia-

tion. Therefore, we sought to assess the potential regulatory ef-

fects of miR-137 by introducing or blocking miR-137 function  

speci�cally in proliferating aNSCs, and then asking what the 

subsequent effects on proliferation and/or differentiation were. 

To do this, we �rst created a lentiviral vector expressing a  

miR-137 short hairpin RNA (shRNA; sh-miR-137) under a U6 

small nuclear RNA polymerase III promoter and EGFP under a 

cytomegalovirus (CMV) promoter (Li et al., 2008). Lentiviruses 

were used to infect cultured aNSCs with nearly 100% infection 

ef�ciency, as indicated by GFP expression (Figs. 4 and S3 A). 

We also veri�ed overexpression of miR-137 independently of 

changes in several other miRNAs with altered expression in 

MeCP2-/y aNSCs, such that miR-137 would exert its functional 

effect independently of other miRNAs in aNSCs (Fig. S3 F). 

Quanti�cation of BrdU-positive cells after pulse labeling indi-

cated that miR-137–overexpressing (GFP+) aNSCs had 87.4% 

higher GFP+BrdU+ cells relative to sh-control lentivirus-infected 

aNSCs (Fig. 4, A and C). This effect did not appear to be caused 

by altered cell survival because we did not observe a signi�cant 

cell self-renewal (Fig. 3 A). Because stem cell self-renewal is a 

process intricately linked with epigenetic regulation, we hypoth-

esized that Sox2 may act in conjunction with MeCP2 to regulate 

miR-137 expression. Such regulation by Sox2 would also be 

supportive of a putative regulatory role for miR-137 in aNSCs. 

Therefore, we performed additional ChIP assays and found that 

the same region bound by MeCP2 was enriched 3.3-fold in 

a Sox2-speci�c ChIP assay (Fig. 3 D). This result correlated 

with previously observed Sox2 binding at the miR-137 genomic  

locus in embryonic stem cells (Boyer et al., 2005). Interestingly, 

the enrichment of Sox2 binding to this genomic region was lost 

in MeCP2-/y aNSCs (Fig. 3 D). These results indicate that both 

MeCP2 and Sox2 bind directly to the 5 regulatory region of 

miR-137 in aNSCs. Consistent with such a mechanism, we 

also found that MeCP2 and Sox2 could be coimmunoprecipi-

tated and that their association is DNA independent (Fig. 3 E). 

Thus, concurrent binding of MeCP2 and Sox2 within the 2.5-kb  

region upstream of miR-137 could be required for proper  

transcriptional regulation of miR-137 in aNSCs.

miR-137 modulates the proliferation and 

differentiation of aNSCs in vitro

Our miRNA expression studies and ChIP assays indicated pre-

mature expression of miR-137 that was concurrent with the 

Figure 2. Expression of miR-137 is epigeneti-
cally regulated by MeCP2. (A) Verification of 
increased expression of miR-137 in MeCP2-/y 
proliferating aNSCs using independent real-
time PCR (n = 6, mean relative quantity ± SEM,  
P = 0.022). (B) Schematic of the 7 kb proximal 
to miR-137 on chromosome 3qG1 that were  
assayed in ChIP experiments. The region 2.5 kb 
upstream is indicated, along with a previously 
identified transcriptional start site that lies 2.2 kb 
upstream of miR-137 (Shiraki et al., 2003; Carninci  
et al., 2005). (C) MeCP2-specific ChIP indi-
cates the enrichment of DNA 2.5 kb upstream 
of the miR-137 genomic locus in WT aNSCs, 
but not MeCP2-/y aNSCs. Relative enrichment 
is calculated relative to IgG-only nonspecific 
control and normalized to the directly adjacent 
1.5-kb upstream region (n = 3, two-way analy-
sis of variance [ANOVA], Bonferroni post-test;  
***, P < 0.001). (D) IP of 5-Me-C (MeDIP) show-
ing enrichment of methylated cytosines between 
4.5 and 1.5 kb upstream of miR-137, with which 
MeCP2 may normally bind (n = 3). (E) H3-K4-
Tri-Me–specific ChIP indicates increased enrich-
ment of sequences 2.5 kb upstream of miR-137, 
as well as sequences in a 1-kb region directly 
surrounding miR-137 in MeCP2-/y aNSCs.  
(F) H3-K9-Ac–specific ChIP with increased en-
richment of sequences in the 1 kb surrounding 
miR-137 in MeCP2-/y aNSCs. In all histone ChIP 
experiments: n = 3, two-way ANOVA, Bonferroni 
post-test, quantities calculated from an input 
DNA-generated standard curve; **, P < 0.01; 
***, P < 0.001. Quantities in IgG-only nonspe-
cific IP control experiments in E–G are near 0. 
Error bars indicate mean ± SEM.

http://www.jcb.org/cgi/content/full/jcb.200908151/DC1
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activity (Zhao et al., 2003; Barkho et al., 2006; Smrt et al., 

2007). Sh-miR-137 lentivirus-infected aNSCs exhibited a 65.0%  

decrease in neuronal differentiation (Fig. 4, D and H) and a 

51.0% decrease in astrocyte differentiation (Fig. 4, F and H) rel-

ative to sh-control lentivirus-infected aNSCs. Consistent with 

these observations, transfection of sh-miR-137 or synthetic du-

plex miR-137 reduced the activities of both GFAP and NeuroD1 

promoters (Fig. 4, I and J). Furthermore, anti–miR-137 treat-

ment had opposite effects compared with miR-137 overexpres-

sion on neuronal and astrocyte differentiation. The number of  

TuJ1-positive cells increased by 2.13-fold, whereas GFAP-

positive cells were 2.32-fold more common relative to non-

speci�c anti–miR-control treatments (Fig. 4, E and G). Similarly, 

blocking the function of endogenous miR-137 led to enhancement 

of cotransfected NeuroD1- and GFAP-promoter-luciferase activ-

ity assayed at 24–48 h of differentiation, whereas a nonspeci�c 

difference in the apoptotic marker activated caspase-3 when 

comparing sh-control and sh-miR-137–treated cells (Fig. S4 A).  

Using a miR-137–speci�c inhibitor (anti-miR-137), we found 

that by blocking endogenous miR-137 in proliferating cells, 

GFP+BrdU+ cells were reduced by 81% relative to control, non-

speci�c anti-miR–treated cells (Fig. 4 B; Cheng et al., 2009; 

Zhao et al., 2009). Therefore, high levels of miR-137 led to a 

greater proliferative capability for aNSCs, whereas blocking 

endogenous miR-137 function reduced proliferation.

To assess the effect of precocious miR-137 expression 

on subsequent aNSC differentiation, sh-miR-137 or sh-control 

lentivirus-infected aNSCs were subjected to a differentiation 

protocol. Neuronal differentiation was assessed by both TuJ1 

immunostaining and the promoter activity of a pan-neuronal 

transcription factor, NeuroD1. Astrocyte differentiation was de-

termined by GFAP immunostaining as well as GFAP promoter 

Figure 3. Transcriptional regulation of miR-137 involves coregulation by Sox2. (A) Schematic showing the miR-137 genomic locus and the location 
of a conserved Sox2 consensus-binding site within the 2.5-kb upstream region of miR-137 with which MeCP2 was also found to interact by ChIP.  
(B and C) Genomic structure and CpG content surrounding the miR-137 genomic locus. (B) Percentage of CG content across a 7-kb region surrounding 
miR-137, with a threshold indicated at 60%. (C) Ratio of observed CpG dinucleotides to the number of CpGs expected with a normal distribution across 
the same 7-kb region surrounding miR-137. A threshold is indicated at a ratio of 0.6 (dotted line). Data for both plots were generated using EMBOSS 
CpG plot with a 100-nt window size and a 1-nt window shift increment (Larsen et al., 1992). (D) Sequences 2.5 kb upstream of miR-137 enriched in 
a Sox2-specific ChIP relative to IgG only in WT aNSCs but not MeCP2-/y aNSCs, normalized to the directly adjacent 1.5-kb upstream region (n = 3,  
error bars indicate mean ± SEM, two-way ANOVA, Bonferroni post-test; ***, P < 0.001). (E) MeCP2 and Sox2 could be coimmunoprecipitated. Either 
MeCP2 or Sox2 was immunoprecipitated and subjected to Western blots with anti-Sox2 or anti-MeCP2 antibodies, respectively. IP beads only and IP with 
normal IgG were used as negative controls.

http://www.jcb.org/cgi/content/full/jcb.200908151/DC1
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and EGFP under a chicken actin promoter (Fig. 5 A). The retro-

virus expressing sh-miR-137 was stereotaxically grafted into 

the right side of the DG, and retrovirus-expressing sh-control 

was grafted into the left side of the DG of the same animal. To 

assess proliferation of retrovirus-labeled progenitors, mice also 

received BrdU injections immediately after the surgery. At 1 wk 

after viral grafting, a time when some of the retrovirus-labeled 

NSCs were expected to differentiate, we analyzed BrdU incor-

poration and expression of the early neuronal marker double-

cortin (DCX) using triple �uorescence immunohistology and 

confocal microscopy (van Praag et al., 2002; Ge et al., 2006; 

Smrt et al., 2007). Many retrovirus-labeled aNSCs (GFP+) 

were also positively labeled with BrdU (Fig. 5 C), which indi-

cates that these infected cells were in fact dividing after surgery. 

Some of these retrovirus-labeled cells had initiated neuronal dif-

ferentiation and were, therefore, positive for DCX expression 

(Fig. 5 C). Using z-stack images of confocal microscopy at 1-µm 

resolution, we quanti�ed the percentage of retrovirus-labeled 

anti-miR had no effect (Fig. 4, I and J). These results indicate 

that the dosage of miR-137 in aNSCs is critical for modulating 

the proliferation and differentiation of aNSCs. Overexpression 

of miR-137 promoted the proliferation of aNSCs at the expense 

of aNSC differentiation, whereas antagonizing miR-137 en-

hanced aNSC differentiation and reduced proliferation.

miR-137 modulates the proliferation and 

differentiation of aNSCs in vivo

To assess the function of miR-137 in vivo, we took advantage of 

the persistent neurogenesis in the DG of the postnatal hippo-

campus, which recapitulates the neurogenic process during de-

velopment (van Praag et al., 2002; Ge et al., 2006; Smrt et al., 

2007). Recombinant retroviruses capable of infecting dividing 

cells have previously been used to label and follow the differen-

tiation of NSCs in postnatal DG (van Praag et al., 2002; Ge et al., 

2006; Smrt et al., 2007). We therefore engineered a retroviral 

vector that expresses both sh-miR-137 under an U6 promoter 

Figure 4. miR-137 modulates the prolifera-
tion and differentiation of adult NSCs in vitro.  
(A) Cell proliferation was analyzed using BrdU 
pulse labeling. Quantitative analysis by stere-
ology indicates that miR-137-overexpressing  
aNSCs (GFP positive) produced more BrdU+ 
cells, which indicates increased proliferation 
relative to control-treated cells (*, P = 0.0403;  
unpaired t test, n = 3). (B) Anti–miR-137–treated  
aNSCs produced fewer BrdU+ cells relative to 
anti–miR-control aNSCs (**, P = 0.0024; un-
paired t test, n = 3). (C) Representative images 
of WT aNSCs infected with lentivirus express-
ing either sh-control or lentivirus expressing 
sh-miR-137, which were pulse-labeled with 
BrdU. Insets show 3× enlarged views of the 
boxed regions. Bar, 50 µm. (D) sh-miR-137– 
infected cells differentiated into fewer neurons 
compared with sh-control virus-infected cells, 
as determined by the percentage of TuJ1- 
positive cells among infected, GFP-positive 
cells (**, P = 0.0037; unpaired t test, n = 3). 
(E) Anti–miR-137 treatment reduces produc-
tion of TuJ1-positive cells during differentiation 
(***, P < 0.0001; n = 3) (F) Among in-
fected, GFP-positive cells, sh-miR-137–infected 
cells differentiated into fewer GFAP-positive  
cells compared with sh-control virus-infected 
cells (**, P = 0.0046; unpaired t test, n = 3). 
(G) Anti–miR-137 treatment reduces produc-
tion of GFAP-positive cells during differentiation  
(*, P = 0.0483; n = 3). (H) Representative im-
ages of lentivirus-infected NSCs that were dif-
ferentiated into Tuj1-positive neurons (red) and 
GFAP-positive astrocytes (blue). Bar, 50 µm.  
(I) Although overexpression of miR-137 leads 
to a decrease in NeuroD1-promoter activity 
relative to control treatment and as assessed by 
a luciferase reporter (*, P = 0.0128; unpaired  
t test, n ≥ 3), anti–miR-137 treatment leads to 
increased NeuroD1-promoter-luciferase activity 
(**, P = 0.0046; unpaired t test, n = 3). Con-
trol treatments are normalized to 1.0. (J) Over-
expression of miR-137 leads to a decrease 
in GFAP promoter activity (**, P = 0.0021; 
unpaired t test, n = 3), whereas anti–miR-137 
treatment leads to increased GFAP luciferase 
activity (***, P = 0.0007; unpaired t test,  
n = 3). Data in all panels are plotted as 
mean ± SEM (error bars).
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“seed sequences,” and known ontology relevant to neurodevel-

opment. To test whether miR-137 could indeed target to any 

of these candidates, we cloned 3 untranslated regions (UTRs)  

directly from aNSC cDNA, ensuring expression of the putative 

target within aNSCs. We successfully cloned 15 3 UTRs into 

a dual luciferase 3 UTR reporter construct, allowing for the 

assessment of luciferase expression as dependent on a given  

3 UTR in response to miR-137 (Table S2). With these con-

structs, we performed a series of reporter assays in cell culture 

and found that miR-137 overexpression in HEK293T cells 

could suppress the activity of multiple 3 UTR luciferase re-

porter genes (Fig. 6 A). To determine which genes could be  

involved in miR-137–mediated modulation of adult neuro-

genesis, we then performed functional rescue experiments. 

Based on the observation that overexpression of miR-137 could  

suppress the activity of a transfected NeuroD1-promoter- 

luciferase reporter at 24 h of differentiation in WT aNSCs, we 

asked whether coexpression of any of the genes suppressed by 

miR-137 in our reporter assays could alleviate the reduction in 

NeuroD1-luciferase reporter activity. We found that coexpres-

sion of Ezh2, but not EphA7, could indeed rescue the decreased 

GFP+ cells that expressed either DCX or incorporated BrdU. 

Compared with sh-control retrovirus-infected cells, a lower per-

centage of sh-miR-137 retrovirus-infected cells expressed DCX 

(Fig. 5 B, DCX+ GFP+/GFP+) and a higher percentage of  

sh-miR-137 retrovirus-infected cells incorporated BrdU (Fig. 5 B, 

BrdU+GFP+/GFP+), which suggests that miR-137–overexpressing 

aNSCs proliferated more and exhibited reduced neuronal dif-

ferentiation capacity in vivo. Therefore, both our in vitro cell 

culture assay and in vivo single-cell genetic analyses indicate 

that a high level of miR-137 promoted aNSC proliferation, but 

repressed neuronal differentiation.

Ezh2, a histone methyltransferase, is a 

functional target of miR-137 in aNSCs

To understand the mechanisms by which miR-137 modulates 

adult neurogenesis, we cross-referenced TargetScan 4.1, PicTar, 

and miRanda to identify potential miR-137 targets (Lewis et al., 

2003; John et al., 2004; Krek et al., 2005). Given the effects of 

miR-137 on aNSC proliferation and differentiation, 20 candi-

date miR-137 targets were selected for further analyses on 

the basis of three criteria: conservation, context score of target 

Figure 5. miR-137 modulates the proliferation and differentiation of adult NSCs in vivo. (A) A schematic diagram of the retroviral vector used for in vivo 
miRNA expression. (B, left) sh-miR-137–infected cells differentiated into fewer DCX+ early neurons compared with sh-control virus-infected cells (n ≥ 3;  
*, P < 0.05; error bars indicate mean ± SEM). (B, right) A representative confocal 3D z-stack image used for quantification of DCX+GFP+ cells. (C, left) More  
sh-miR-137–infected cells proliferated than control virus-infected cells (n = 3; *, P < 0.05; error bars indicate mean ± SEM). (C, right) A representative 3D  
z-stack image used for quantification of BrdU+GFP+ cells (Bar, 5 µm). (D) A representative image of immunohistological analysis of virus-infected endog-
enous aNSCs in the subgranular zone of the DG. Arrowheads indicate a cell that is positive for GFP (green), BrdU (white), and DCX (red), which suggests 
that this cell was proliferating during the viral grafting period and has differentiated into early neurons within 1 wk of grafting. Arrows indicate a cell that 
is positive for GFP and BrdU, but not for DCX, which indicates that this cell did not differentiate. Bars: (B and C) 5 µm; (D) 20 µm.

http://www.jcb.org/cgi/content/full/jcb.200908151/DC1
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coexpression could also rescue the miR-137–mediated increase in  

aNSC proliferation. Furthermore, targeting of Ezh2 by miR-137 

was speci�c because mutating the seed sequence targeted by  

miR-137 within the luciferase-Ezh2–3 UTR reporter alleviated  

miR-137–mediated suppression (Fig. 6, D and E).

We went on to examine the effect of miR-137 on endog-

enous Ezh2 expression and saw a 35% reduction of endog-

enous Ezh2 protein in WT aNSCs infected by sh-miR-137– 

expressing lentivirus (Fig. 7 A). However, the reduction in protein 

did not correlate with a proportional reduction in steady-state 

mRNA expression, which indicates post-transcriptional regu-

lation of Ezh2 mRNA by miR-137 (Fig. 7 A). Importantly, 

Ezh2 protein expression was also reduced in MeCP2-/y aNSCs, 

where expression of miR-137 is increased similarly (Fig. 7 B). 

To further verify the miR-137–mediated repression of Ezh2, 

we transfected anti–miR-137 into MeCP2-/y cells and asked 

whether blocking miR-137 expression in MeCP2-/y aNSCs 

NeuroD1-luciferase activity caused by the overexpression of 

miR-137. Additionally, direct knockdown of Ezh2 using a spe-

ci�c short hairpin directed against the endogenous Ezh2 mRNA 

signi�cantly reduced NeuroD1 promoter luciferase activity. 

This effect was similar to that seen by miR-137 overexpres-

sion, which suggested that rescue was not simply an artifact of 

overexpression (Fig. S4, C and D). Ezh2 overexpression also 

had no effect miR-137 levels (Fig. 6 B and not depicted). To 

subsequently verify the ability of Ezh2 to rescue the miR-137– 

mediated de�cit in neuronal differentiation, we also assayed 

the effect of Ezh2 coexpression on the production of TuJ1-

positive cells by immunostaining. Indeed, Ezh2 coexpression 

signi�cantly increased the number of TuJ1-positive cells rela-

tive to control treatment (Fig. 6 C). Ezh2 expression was fur-

ther capable of signi�cantly reducing proliferation as assayed 

by BrdU incorporation, an effect opposite to the one seen with 

miR-137 overexpression (Fig. S4 B). This suggests that Ezh2  

Figure 6. Ezh2 is a functional target of miR-137. 
(A) Primary screen of predicted miR-137 targets in 
HEK293FT cells. 3 UTR–dependent luciferase assays 
were performed using both sh-control and sh-miR-137 
for each of 15 predicted miR-137 targets. For each  
3 UTR, luciferase expression was normalized (hRluc/hluc)  
to 1 for the sh-control control treatment, as indi-
cated by the dotted line. The effect of sh-miR-137 
was then calculated relative to sh-control (sh-miR-137/ 
sh-control). For all experiments, n ≥ 3, error bars indi-
cate mean ± SEM. (B) Coexpression of Ezh2 rescued 
the decreased NeuroD1-luciferase expression caused 
by the overexpression of miR-137 in aNSCs. NeuroD1 
promoter luciferase activity was normalized to coelec-
troporated E1a-Renilla luciferase activity (n ≥ 3 for all 
experiments, one-way ANOVA with Bonferroni post-
test; **, P < 0.01; ns, P > 0.05). (C) Coexpression 
of Ezh2 rescued the decreased neuronal differentiation 
caused by the overexpression of miR-137 in aNSCs, 
as determined by the percentage of TuJ1-positive cells 
among infected, GFP-positive cells (unpaired t test,  
n = 3; *, P = 0.0016). (D) The miR-137 7mer-1A target 
site in the Ezh2 3 UTR as predicted by TargetScan.  
(E) Ezh2-3 UTR–dependent expression of a luciferase 
reporter gene was suppressed by miR-137 in HEK293FT 
cells. MiR-137–mediated suppression of luciferase was 
specific, as deletion of the miR-137 target site in the 
Ezh2 3 UTR abolished repression by miR-137. Renilla 
luciferase-Ezh2–3 UTR expression was normalized to 
firefly luciferase (n = 6 for HEK293FT cells, unpaired  
t test; **, P < 0.05).
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could restore Ezh2 expression to levels similar to those seen 

in WT aNSCs. Indeed, Ezh2 protein expression recovered to 

levels comparable with those seen in WT aNSCs (Fig. S4 E). 

Together, these data demonstrate that the effect of miR-137 on 

Ezh2 protein expression is repressive, post-transcriptional, and 

speci�c. Importantly, they also suggest that Ezh2 is a functional 

target of miR-137 in the context of adult neurogenesis.

We next asked whether the functional targeting of Ezh2 by 

miR-137 correlated with an altered epigenetic state, in terms of 

chromatin, by assaying the effect of miR-137 overexpression on 

global H3-K27-Tri-Me. In both miR-137–overexpressing cells 

and MeCP2-/y cells, the miR-137–mediated decrease in Ezh2 

protein correlated with an overall reduction in H3-K27-Tri-Me 

(Fig. 7, C and D). This indicates the integration of epigenetic 

regulation in aNSCs through MeCP2-mediated control of 

miR-137, the subsequent repression of Ezh2, and the feedback to 

chromatin in the form of decreased H3-K27-Tri-Me.

Discussion

Epigenetic regulation is proposed to play important roles in 

neurogenesis. Emerging evidence implicates both chromatin re-

modeling and epigenetic modi�cations as critical to the regula-

tion of various aspects of adult neurogenesis (Zhao et al., 2003; 

Lim et al., 2009; Ma et al., 2009); however, the identi�cation of 

downstream targets has proved elusive (Hsieh and Gage, 2004; 

Cheng et al., 2005; Abel and Zukin, 2008). Our results suggest 

that one such class of targets is miRNAs, including miR-137. 

We show that miR-137 is an intrinsic modulator of adult neuro-

genesis. The �nding that overexpression and inhibition of 

miR-137 have distinctly opposite effects on aNSCs suggests 

that the dosage of miR-137 is critical to the modulation of adult 

neurogenesis. Previous studies have found that miR-137 could 

inhibit proliferation and induce differentiation of tumor cells 

(Kozaki et al., 2008; Silber et al., 2008); CDK6 was identi�ed 

as the miR-137 target relevant to the proliferation phenotype 

that was observed (Kozaki et al., 2008; Silber et al., 2008). We 

have directly assayed CDK6 expression in aNSCs overexpress-

ing miR-137 (both MeCP2-/y aNSCs and sh-miR-137–treated 

aNSCs) and observed an increase in CDK6 protein, an effect 

opposite to previous results (Fig. S5). This difference between 

primary cells and transformed tumor cells is not surprising be-

cause expression pro�les of miRNAs have been shown to distin-

guish human tumor cells of different origins from their normal 

tissue counterparts more effectively than the expression pro�les 

of mRNAs (Jay et al., 2007; Barbarotto et al., 2008). Our data 

further support the notion that miRNAs may play distinct roles 

in normal and tumor stem cells by post-transcriptionally regu-

lating different target mRNAs.

We show that the expression of miR-137 is subject to epi-

genetic regulation mediated by MeCP2. Furthermore, we ob-

serve a novel interaction between MeCP2 and Sox2, a core 

transcriptional regulator in stem cells, in the genomic region 

Figure 7. Overexpression of miR-137 suppresses the expression of Ezh2 
post-transcriptionally and results in an overall reduction in H3K27-TriMe. 
(A) Overexpression of miR-137 in WT aNSCs led to the reduction of  
endogenous Ezh2 protein expression (top, n = 4; *, P = 0.0366) without 
a proportional reduction in Ezh2 mRNA (bottom, n = 3, error bars indicate 
the mean with a 95% CI). (B) Loss of MeCP2 in aNSCs led to a similar re-
duction in endogenous Ezh2 protein expression (top, n = 4; *, P = 0.0417) 
without a proportional reduction in Ezh2 mRNA (bottom, n = 3, error bars 
indicate the mean with a 95% CI). (C) Overexpression miR-137 resulted 
in a reduction in H3K27-TriMe relative to histone H4 (*, P = 0.0379;  
n ≥ 3, unpaired t test). (D) H3K27-TriMe is also reduced relative to histone 
H4 in MeCP2-/y aNSCs (*, P = 0.0367; n ≥ 3, unpaired t test). (E) Model 
for the cross talk between MeCP2, miR-137, and Ezh2 in modulating adult 
neurogenesis. MeCP2 along with Sox2 mediates the epigenetic regulation 
of miR-137 in aNSCs, where increased expression of miR-137 promotes 
aNSC proliferation and inhibits aNSC differentiation, whereas decreased 
expression of miR-137 promotes differentiation of aNSCs. One target gene 
involved in this process is Ezh2. The miR-137–mediated suppression of 

Ezh2 feeds back to chromatin by decreasing global H3K27-TriMe. Error 
bars indicate mean ± SEM.
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altered epigenetic state of aNSCs in the form of a global decrease 

in H3-K27-Tri-Me. It is likely that altered H3-K27-Tri-Me at 

speci�c key developmental genes contributes to the phenotypes 

observed with miR-137 overexpression, and identi�cation of 

these loci will be an important question moving forward. These 

results provide direct evidence for the hypothesis that cross talk 

between epigenetic regulation and the miRNA pathway plays 

an important role in modulating adult neurogenesis, which re-

�ects the complexity of the network regulating proliferation and 

differentiation of stem cells in general.

The postnatal neurodevelopmental disorder known as Rett 

syndrome is largely caused by mutations in MECP2 (Amir et al.,  

1999). Recent studies have also shown that MeCP2 aberra-

tions result in a constellation of neuropsychiatric abnormal-

ities, wherein both loss of function and a gain in MeCP2 dosage 

lead to similar neurological phenotypes (Chahrour and Zoghbi, 

2007). One challenge in understanding the etiology of MeCP2-

related disorders is that MeCP2 processes multiple function 

domains, post-translational modi�cations, and cofactors, which 

allows the protein to be involved in numerous cellular pathways 

(Zhou et al., 2006; Chahrour et al., 2008; Ballas et al., 2009; 

Tao et al., 2009). The identi�cation of key downstream targets 

of MeCP2 is critical for understanding the molecular basis of 

MeCP2-related neurological disorders. Earlier studies have  

focused mainly on protein-coding RNAs (Chahrour and Zoghbi, 

2007). Here, we demonstrate that MeCP2 can also regulate the 

expression of small noncoding RNAs, particularly a subset of 

miRNAs, which reveals another layer of gene regulation medi-

ated by MeCP2. miRNAs are particularly abundant in the brain 

and play key roles in neuronal function and plasticity (Cheng 

et al., 2005). Although our present study focuses on miR-137, 

our results indicate that there are additional miRNAs that could 

be regulated by MeCP2. In consideration of previous studies 

suggesting a role for MeCP2 in regulating neural precursor 

maturation (Kishi and Macklis, 2004; Smrt et al., 2007), it will 

be important to further evaluate how the miRNAs regulated by 

MeCP2 could interact with each other in neurodevelopmental 

contexts, thereby contributing to the molecular pathogenesis of 

Rett syndrome and other MeCP2-related disorders.

Materials and methods

Isolation and culture of adult NSCs
All animal procedures were performed according to protocols approved 
by the University of New Mexico Animal Care and Use Committee. The 
Mecp2 mutant mice (Mecp2tm1.1Jae) used in this study were created by  
deleting exon 3 containing the MBD domain of Mecp2 (Chen et al., 2001). 
These mice have been bred over 40 generations on an ICR background. 
They begin to show neurological symptoms between 5 and 8 wk of age 
and die at 10–11 wk. Mice 7 wk of age and without severe physical 
symptoms were used for cell isolation, as were WT littermates. The isola-
tion of adult mouse brain-derived NSCs was performed according to an 
established protocol with modifications (Zhao et al., 2003). In brief, the 
forebrain without the olfactory bulb was dissociated mechanically followed 
by enzymatic digestion based on the MACS Neural Tissue Dissociation kit 
(Miltenyi Biotec). After enzymatic digestion was stopped using DME/F-12 
containing 10% FBS (Sigma-Aldrich), 2 mM L-glutamine (Invitrogen), and 
1% antibiotic-antimycotic (Invitrogen), the cell suspension was filtered 
through a 70-µm cell strainer (BD), and the single-cell suspension was 
loaded onto 50% Percoll (GE Healthcare). The NSCs were separated from 
other cells by ultracentrifugation at 127,000 rpm for 30 min at 20°C using 
a SW41 Rotor (Beckman Coulter). The fraction containing NSCs was  

proximal to miR-137. In MeCP2-/y aNSCs, we �nd a chromatin 

state re�ective of premature miR-137 expression that also cor-

related with a loss of Sox2 binding upstream of miR-137. These 

results indicate a role for MeCP2 in establishing or maintaining 

an epigenetic state in the chromatin surrounding miR-137. Such 

chromatin states may allow for proper transcriptional coordina-

tion by Sox2, which has been shown to play important roles in 

the maintenance of stem cell properties and the regulation of 

adult neurogenesis (Bylund et al., 2003; Graham et al., 2003; 

Ellis et al., 2004; Ferri et al., 2004; Taranova et al., 2006; Suh  

et al., 2007). Together, these observations reinforce the impor-

tance of controlling miRNA expression in stem cells and reveal 

epigenetic regulation as one such mechanism by which this could 

be accomplished.

Our data has clearly demonstrated that the dosage of 

miR-137 in aNSCs is important for aNSC function and that the 

transcriptional control by MeCP2 helps to retain the levels of 

miR-137 at its proper level. Overexpression of miR-137 in the 

absence of MeCP2 results in an in�uence of miR-137 on subse-

quent aNSC proliferation/differentiation that was not expected 

based on the normal expression pro�le of miR-137 during aNSC 

differentiation. This indicates that miR-137 overexpression spe-

ci�cally in proliferating aNSCs has a regulatory effect distinct 

from that which it may have during differentiation. This may 

not be surprising in light of our �ndings that miR-137 dosage is 

critical toward its regulatory role in aNSCs and the fact that pro-

liferating and differentiated aNSCs are likely to express quanti-

tatively distinct populations of mRNAs that would be subjected 

to differential miR-137 targeting. As a result, it will be interest-

ing and important to further identify miR-137 targets speci�c 

to differentiated aNSCs, or even mature neurons, as compared 

with those targets regulated in proliferating aNSCs.

We identi�ed Ezh2 as a functional miR-137 target with 

relevance to adult neurogenesis. Ezh2 is a H3-K27 methyltrans-

ferase and component of the PcG of protein complexes known 

to perform important functions in stem cells (O’Carroll et al., 

2001; Cao and Zhang, 2004; De Haan and Gerrits, 2007; Lee 

et al., 2007). PcG proteins function by forming and maintaining 

the bivalent chromatin state of stem cells (Boyer et al., 2006; 

Lee et al., 2006). This so-called “bivalent chromatin state”  

allows cell/tissue-speci�c genes to be “primed” for expres-

sion but “held in check” by opposing chromatin modi�cations 

(Boyer et al., 2006; Lee et al., 2006). Therefore, a bivalent chro-

matin state is likely a common mechanism in many types of 

stem and progenitor cells for maintaining their differentiation 

potential, with PcG proteins being critical factors in this regula-

tory mechanism. Not surprisingly, Ezh2 is found to be a critical 

regulator of neuroprogenitor cell maintenance and differentia-

tion (Shen et al., 2008; Sher et al., 2008; Ezhkova et al., 2009). Our 

�nding that miR-137 regulates the expression of Ezh2 in aNSCs 

reveals a novel interaction between PcG proteins and miRNAs; 

hence, distinct miRNAs may be involved in establishing and 

maintaining the bivalent chromatin state of stem cells. This fur-

ther suggests a potential epigenetic circuitry in the modulation 

of aNSCs, with a feedback regulatory mechanism mediated by 

miRNAs (Fig. 7 E). In this particular example, precocious over-

expression of miR-137 results in a reduction of Ezh2 and an  
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formaldehyde (Sigma-Aldrich) to culture medium for 10 min at room tem-
perature. After washing with cold PBS, cells were collected with cold 
PBS, washed, and suspended in 1 ml of cold cell lysis buffer (5 mM 
Pipes, pH 8.0, 85 mM KCl, 0.5% NP-40, and 1× complete proteinase 
inhibitor [Roche]), then incubated on ice for 5 min. Cell lysates were pel-
leted by centrifugation at 3,000 rpm for 5 min, resuspended again in  
1 ml of cold cell lysis buffer for 5 min on ice, and then repelleted to col-
lect nuclei. Nuclei were lysed at room temperature with 500 µl of nuclei 
lysis buffer (50 mM Tris, pH 8.1, 10 mM EDTA, 1% SDS, and 1× com-
plete protease inhibitor). Nuclear lysates were sonicated using a sonica-
tor (Sonicator 3000; Misonix). The size of the sonicated chromatin (mean 
size of 500–600 bp) was verified by treating 5-µl aliquots with 1 µl of 
20 mg/ml proteinase A for 20 min at 50°C and running on a 1.5% aga-
rose gel stained with ethidium bromide. For IP reactions, we used 50 µl 
of sonicated chromatin precleared with salmon sperm/tRNA-blocked pro-
tein A agarose for 60 min at 4°C in 950 µl of IP dilution buffer (0.01% 
SDS, 1.1% Triton X-100, 1.2 mM EDTA, 20 mM Tris, pH 8.1, and 500 mM 
NaCl). Precleared chromatin was rotated at 4°C overnight with 10 µg of 
the appropriate antibody.

Antibodies used were: normal rabbit IgG (Millipore), rabbit poly-
clonal to MeCP2 (ChIP grade; ab2828; Abcam), rabbit anti-Sox2 
(AB5603; Millipore), rabbit polyclonal to H3 (tri-methyl K4, ChIP grade; 
ab8580; Abcam), anti–acetyl-histone-H3 (Lys9; Millipore), anti–monomethyl-
histone H3 (Lys4; Millipore), and rabbit polyclonal to H3 (tri-methyl K9, 
ChIP grade; ab8898; Abcam).

Antibodies were pulled down with 60-µl blocked protein A–aga-
rose beads for 1 h at 4°C with rotation. The beads were washed se-
quentially two times each in IP dilution buffer, TSE-500 solution (0.1% 
SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris, pH 8.1, and 500 mM 
NaCl), freshly prepared Li/Cl wash solution (100 mM Tris, pH 8.1, 
300 mM LiCl, 1% NP-40, and 1% deoxycholic acid), and 1× Tris-EDTA 
buffer (TE) for 10 min at 4°C. Protein–DNA complexes were eluted from  
the protein A–agarose beads twice with 250 µl of IP elution buffer (50 mM 
NaHCO3 and 1% SDS) for 15 min at 37°C with rotation. Formaldehyde-
induced protein–DNA cross-linking was heat reversed by incubating 
protein–DNA complexes at 65°C overnight. DNA was purified using 
phenol/chloroform/isoamyl alcohol (25:25:1) isolations and precipi-
tated with two volumes of 100% ethanol and 10 µg linear acrylamide 
at 35°C overnight. Immunoprecipitated and purified DNA fragments 
were resuspended in nuclease-free water, concentrations were deter-
mined by NanoDrop (Thermo Fisher Scientific), and each sample was 
diluted to 1 ng/µl. We used 8 ng of DNA in 20-µl SYBR Green real-time  
PCR reactions consisting of 1× Power SYBR Green Master Mix and 0.5 µM 
forward and reverse primers. Reactions were run on an SDS 7500 Fast 
Instrument using the standard 7500 default cycling protocol and SDS 
7500 Fast System Software version 1.3.1 without the 50°C incuba-
tion. Primer sequences spaced at 1-kb intervals spanning from 4.5 kb 
upstream to 1.5 kb downstream of mmu-miR-137 were designed using 
Primer Express 3.0 software (Applied Biosystems) and were as follows. 
4.5 kb upstream: forward, 5-ACATTGCCATATCACTCCTATCAAAT-3; 
and reverse, 5-CCCTCCTCCCACCCATACA-3. 3.5 kb upstream: for-
ward, 5-TCCCTTCCCAGGGCTTGT-3; and reverse, 5-GGAGCCGCT-
GCTCTCTGA-3. 2.5 kb upstream: forward, 5-AGCTTAAGGAGGTTTG-
AATTGAATATG-3; and reverse, 5-CTTACGAGAACACCATTTCCTACGA-3.  
1.5 kb upstream: forward, 5-GGAATTCATGTTGGTTTTTCTACTTG-3; 
and reverse, 5-CACTTCTCCAGGTAGACCAACTCA-3. 0.5 kb upstream: 
forward, 5-AAAGCACTTGTCTGTTGTGTGTTAAGT-3; and reverse, 5-TGG-
CTGTTCTATTTCCAATTCTGA-3. 0.5 kb downstream: forward, 5-GCC-
GAGCTGCTCAGCAA-3; and reverse, 5-CCCCGCCCCTTCCTTAG-3. 
1.5 kb downstream: forward, 5-TGCCTTGAAGAGCAAGCTGAA-3; 
and reverse, 5-AAGGCTGTTTTTCCAGGGTTCT-3.

DNA relative enrichment was determined by taking the absolute 
quantity ratios of specific IPs to nonspecific IPs (normal rabbit IgG only), 
IP/IgG, and normalizing to a control genomic region that was not en-
riched in specific IPs relative to nonspecific IPs. Absolute quantification 
was based upon standard curves generated from four 10-fold dilutions 
ranging from 0.08–80 ng of input DNA treated in parallel with immuno-
precipitated DNA during reverse cross-linking and purification steps. 
For histone ChIP experiments, quantity was determined based upon in-
put DNA-generated standard curves and reported directly for both spe-
cific and IgG nonspecific IPs. All ChIP experiments were from obtained 
independent chromatin preparations, and all real-time PCR reactions 
were performed in triplicate for each sample on each amplicon. All primer 
sets were subjected to a dissociation curve analysis and produced single 
peaks on a derivative plot of raw fluorescence.

collected and cultured in DME/F-12 medium containing 20 ng/ml basic 
FGF (FGF-2; PeproTech), 20 ng/ml EGF (PeproTech), 1% N2 supplement 
(Invitrogen), 1% antibiotic-antimycotic, and 2 mM L-glutamine in a 5% CO2  
incubator at 37°C. We replaced half the medium every 2–3 d.

Relative quantification of mature miRNAs by real-time PCR
Profiling of mature miRNA expression was performed using TaqMan 
miRNA assays (Applied Biosystems) with 48-plex reverse transcription and 
individual TaqMan miRNA real-time PCR assays according to the manu-
facturer’s instructions (Lao et al., 2006). In brief, 8 pools of 48 reverse 
transcription primers each were used in 20-µl reactions consisting of: 20 ng 
total RNA, 1× TaqMan miRNA reverse transcription primer pool, 0.5 mM 
of each deoxyribonucleotide triphosphate (dNTP), 10.0 U/µl MultiScribe 
(Applied Biosystems) reverse transcription, 1× reverse transcription buffer, 
0.25 U/µl RNase inhibitor, and nuclease-free water. The reactions were 
incubated at 16°C for 30 min, 42°C for 30 min, and 85°C for 5 min. Re-
actions were diluted 1:10 with nuclease-free water for use in the TaqMan 
real-time PCR reactions. Individual TaqMan miRNA real-time PCR reactions 
for profiling experiments were performed on a PCR system (7900HT SDS; 
Applied Biosystems) in a 384-well format running WT and MeCP2-/y 
pairs in parallel for each cDNA pool generated in the reverse transcription 
step. PCR reactions were performed in triplicate for each sample and each 
miRNA. The 10-µl reactions consisted of 1× TaqMan Universal Master Mix, 
No AmpErase UNG, 1× TaqMan miRNA assay mix, 0.8 µl of 1:10 diluted 
cDNA, and nuclease-free water. All TaqMan PCR reactions were prepared 
and aliquoted using a custom method on an automated pipette (Biomek 
FX; Beckman Coulter). PCR reaction conditions were run according to the 
standard protocol without the 50°C incubation using version 2.3 of the 
SDS software, with reactions incubated at 95°C for 10 min, followed by 
40 cycles of 95°C for 15 s, and 60°C for 1 min. RQ of miRNA were de-
termined using the Ct method (Livak and Schmittgen, 2001). RQ values 
and the associated error were determined using SDS v1.2 RQ manager 
software (Applied Biosystems) to calculate mean RQ and RQ min/max 
values based on a 95% CI. All paired samples were incorporated into 
a single analysis within the SDS version 1.2 RQ manager to obtain the 
reported values. Reverse transcription primer pool-specific endogenous 
controls were chosen based on miRNA with the least variable expression 
among all samples tested. All relative quantity calculations were calibrated 
to WT samples.

Individual reverse transcription and TaqMan miRNA assays were 
performed on a PCR system (7500 Fast Instrument; Applied Biosystems). 
The 15-µl reverse transcription reactions consisted of 10 ng of total RNA 
isolated with TRIZOL (Invitrogen), 5 U MultiScribe Reverse transcription, 
0.5 mM of each dNTP, 1× reverse transcription buffer, 4 U RNase inhibitor, 
and nuclease-free water. Reverse transcription reactions were incubated at 
16°C for 30 min, 42°C for 30 min, and 85°C for 5 min, and then stored at 
4°C until use in TaqMan assays. The 10-µl TaqMan real-time PCR reactions 
consisted of 1× TaqMan Universal PCR Master Mix, No AmpErase UNG, 
1× TaqMan miRNA assay, 1.33 µl of undiluted cDNA, and nuclease-free 
water. Each TaqMan assay was performed in either triplicate or quadrupli-
cate for each sample tested. RQs were calculated using the Ct method 
with RNU6B TaqMan miRNA control assay as the endogenous control and 
calibrated to the WT samples (Livak and Schmittgen, 2001). Reactions 
were run with the standard 7500 default cycling protocol without the 50°C 
incubation stage using the SDS 7500 Fast Real-Time PCR System Software 
(version 1.3.1), with reactions incubated at 95°C for 10 min, followed by 
40 cycles of 95°C for 15 s, and 60°C for 1 min. Fluorescence readings 
were taken during the 60°C step.

Primary/precursor miR-137 was detected by polyadenylating total 
RNA using SuperScript III oligo-dT reverse transcription (Invitrogen) to gen-
erate first-strand cDNA and real-time PCR targeting the pri–/pre–miR-137. 
Polyadenylation and reverse transcription were performed according to 
the manufacturer’s instructions using the Ncode miRNA First-Strand cDNA 
Synthesis kit (Invitrogen), with 1 µg of total RNA isolated with TRIZOL as in-
put. Relative quantification was performed by real-time PCR using 1:10 di-
luted cDNA, 1× Power SYBR Green Master Mix (Applied Biosystems), 0.5 µM 
forward (5-GTGACGGGTATTCTTGGGT-3) and reverse primers (Univer-
sal qPCR primer provided with kit), and nuclease-free water. 18S rRNA 
was used as an endogenous control for all samples. Reactions were run in 
triplicate on four samples per genotype using an SDS 7500 Fast Instrument 
Standard 7500 default cycling protocol and SDS 7500 Fast System Soft-
ware version 1.3.1 without the 50°C incubation.

ChIP
ChIP was performed as described previously (Coffee et al., 1999). In brief, 
cells grown on 3–6 confluent 10-cm cell culture plates were fixed by 1% 
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by ligation. The lentiviral vectors expressing miR-137 or control shRNA 
were then verified by sequencing.

Production of recombinant lentivirus, differentiation and proliferation of 
lentivirus-infected NSCs
We produced lentivirus as described previously (Barkho et al., 2006). 
In brief, lentiviral transfer vector DNA and packaging plasmid DNA were 
transfected into cultured 293T cells using calcium phosphate methods. The 
medium containing lentivirus was collected at 40, 64, and 88 h after trans-
fection, then pooled, filtered through a 0.2-µm filter, and concentrated  
using an ultracentrifuge at 19,400 rpm for 2 h at 20°C using a rotor 
(SW27; Beckman Coulter). The virus was washed once and then resus-
pended in 500 µl PBS. We routinely obtained 0.5–1 × 109 infectious viral 
particles/ml. To study the effects of miR-137 on the proliferation and differ-
entiation of NSCs, 60 µl of lentivirus was added to the WT aNSCs cul-
tured under proliferating conditions on a 10-cm tissue culture plate. After a 
3-d incubation, infected aNSCs were either collected for RNA analysis or 
trypsinized and plated into chamber slides (Thermo Fisher Scientific) at a 
density of 5–7 × 104 cells per well for differentiation or proliferation analy-
ses. To assess the effects of miR-137 on cell survival, an anti-caspase 3  
(active) antibody (AB3623; Millipore) was used for immunostaining.

In vitro NSC proliferation and differentiation assays were performed 
as described previously (Zhao et al., 2003; Barkho et al., 2006). To as-
say proliferation, at 6–8 h after plating, 5 µM BrdU (Sigma-Aldrich) was 
added to the cells, incubated for 16 h, fixed with 4% paraformaldehyde 
for 30 min, and followed by immunohistochemical analysis. To detect 
BrdU incorporation, cells were pretreated with 1 M HCl for 30 min at 
37°C followed by washing with borate buffer, pH 8.5, for 30 min, be-
fore being subjected to a standard immunohistochemistry protocol. For 
the differentiation assay, at 24 h after plating, cells were transferred into 
differentiation medium, DME/F12 (1:1) containing 5 µM forskolin (Sigma-
Aldrich) and 1 µM retinoic acid (Sigma-Aldrich) and incubated for 4 d, 
followed by fixation with 4% paraformaldehyde for 30 min and wash-
ing with Dulbecco’s phosphorylated buffered saline (DPBS), pH 7.4, for  
30 min. Immunocytochemistry staining was performed as described previ-
ously (Zhao et al., 2003). In brief, cells were first pre-blocked using DPBS 
containing 5% normal goat serum (Vector Laboratories) and 0.1% Triton  
X-100 for 30 min, followed by overnight incubation with primary anti-
bodies: mouse neuron-specific type III tubulin (Tuj1, 1:4,000; G712A; Pro-
mega), rabbit GFAP (1:1,000; Z-0334; Dako), rat anti-BrdU (1:3,000; 
ab-6326; Abcam), chicken anti-GFP (1:500; A10262; Invitrogen), or rabbit 
anti-GFP (1:1,000; A11122; Invitrogen). After washing with DPBS, cells 
were incubated with secondary antibodies that included goat anti–mouse 
Alexa Fluor 568 (1:500; A11031; Invitrogen), goat anti–rabbit Alexa Fluor 
647 (1:500; A21245; Invitrogen), goat anti–rat Alexa Fluor 568 (1:500; 
A11077; Invitrogen), goat anti–rabbit Alexa Fluor 488 (1:500; A11008; 
Invitrogen), and goat anti–chicken Alexa Fluor 488 (1:500; A11039; Invi-
trogen), followed by counterstaining with the fluorescent nuclear dye DAPI 
(B2261; Sigma-Aldrich). After the cells were mounted with Vectashield 
(Vector Laboratories), the numbers of double positive cells (GFP+Tuj1+, 
GFP+GFAP+, and GFP+BrdU+) were quantified using a microscope (BX51; 
Olympus) equipped with a MicroFire digital camera (Optronics, Inc.) and 
a motorized stage. The quantification was performed using unbiased  
stereology with the aid of StereoInvestigator software (MicroBrightField, 
Inc.). The data were analyzed using a two-tailed unpaired t test.

To block the activity of endogenous miR-137, WT aNSCs were 
plated onto coated coverslips in a 24-well plate. Anti–miR-control or anti–
miR-137 were transfected at a final concentration of 0.5 µM with FuGENE 
HD transfection reagent (Roche). 24 h after transfection, cells were treated 
with 5 µM of BrdU for 3 h or cultured with differentiation medium for 3 d. 
MeCP2-/y NSCs were plated into 6-well plates and transfected with anti–
miR-control or anti–miR-137 at a final concentration of 0.5 µM, and  
collected 24 h later for analysis of Ezh2 expression by Western blotting.

For Ezh2 rescue studies, WT aNSCs were infected with lentivirus  
expressing sh-control + lentivirus expressing GFP as the control treatment or 
lentivirus expressing sh-miR-137 + lentivirus expressing Ezh2. The infected 
cells were collected and plated onto coated coverslips for proliferation or 
differentiation assays.

Electroporation and luciferase assay
miR-137, anti–miR-137, and controls were obtained from Applied Bio-
systems. NeuroD1-luciferase DNA, GFAP-luciferase, and internal control 
E1-Rluc DNA plasmids have been described previously (Barkho et al., 
2006). Ezh2 and EphA7 expression plasmids were obtained from Thermo 
Fisher Scientific. Electroporation of these RNA and DNA into aNSCs was  

5-Me-C IP (MeDIP)
MeDIP was performed as described previously (Weber et al., 2005). 4 µg 
of sheared input DNA isolated during histone-specific ChIP experiments was 
diluted into 450 µl of 1× TE. DNA was denatured for 10 min at 100°C in 
a dry heat block, then immediately placed on ice for 5–10 min in 51 µl of 
10× IP buffer (100 mM sodium-phosphate, pH 7.0, made from a 1 M stock 
solution [2 M monobasic sodium phosphate, 2 M dibasic sodium phos-
phate at a 1:1.564 ratio, and equal volume H2O], 1.4 M NaCl, and 0.5% 
Triton X-100) was added along with 10 µg 5-methylcytidine antibody  
(BI-MECY-0500; Eurogentec) or 10 µg of normal mouse IgG (Millipore).  
IP was performed at 4°C with rotation for 2 h. Antibody–DNA complexes 
were pulled down by adding 40 µl of Dynabeads (M-280) sheep anti–
mouse IgG (Invitrogen) directly to the IP reaction at 4°C for 2 h with rota-
tion. Beads were collected with a 1.5-ml microcentrifuge tube holder 
magnet and washed three times in 1× IP buffer at room temperature,  
10 min per wash with rotation. Washed beads were collected with a mag-
net and resuspended in 250 µl of proteinase K digestion buffer (50 mM 
Tris, pH 8.0, 10 mM EDTA, and 0.5% SDS). 3.5 µl of 20 mg/ml proteinase K 
was added, and digestion was performed at 50°C for 3 h in a thermo-
mixer (Eppendorf) set at 800 rpm. Beads were collected with a magnet, 
and DNA was extracted from the supernatant once with phenol and once 
with chloroform. DNA was precipitated with 400 mM NaCl, 15 µg linear 
acrylamide, and two volumes of 100% ethanol at 35°C overnight. Pre-
cipitated DNA was resuspended in 11 µl of nuclease-free H2O, and con-
centrations were determined by NanoDrop. Samples were diluted to  
1 ng/µl, and 8 ng was used in a SYBR Green real-time PCR reaction identi-
cal to the one used for ChIP experiments, including primer pairs. In the case 
of the normal mouse IgG nonspecific IPs, not enough DNA was immuno-
precipitated from each of the three individual MeDIP experiments to assay 
all seven genomic regions, and so DNA from all three experiments from 
both genotypes was pooled and diluted to 1 ng/µl. Quantities were deter-
mined against a non–immuno-enriched input DNA-generated standard curve 
and reported directly for both specific and IgG nonspecific IPs.

IP
Whole cell lysates were prepared using the Nuclear Complex Co-IP kit 
(Active Motif) according to the manufacturer’s instructions. 1 mg of nuclear 
lysate was precleared with 60 µl of anti–rabbit Ig IP beads (eBioscience). 
5% of precleared nuclear lysate was used as an input in Western blot anal-
ysis. The remaining nuclear lysate was immunoprecipitated with no anti-
body (beads alone), 2.5 µg of specific antibody, or 2.5 µg normal rabbit 
IgG. IP antibodies used were identical to those used in ChIP experiments, 
including normal rabbit IgG. 80 µl of anti–rabbit Ig IP beads were used to 
bind IP antibodies. IP incubations and IP washes were done using 1× IP 
low buffer. 50% of immunoprecipitated protein was used for Western blot 
analysis. MeCP2 was detected by Western blotting using Anti-MeCP2 
(07–013; Millipore) at a dilution of 1:1,000. Sox2 was detected by West-
ern blotting using anti-Sox2 (AB5603; Millipore) at a dilution of 1:1,000. 
Rabbit TrueBlot: HRP anti-rabbit IgG (eBioscience) was used as the second-
ary antibody at a dilution of 1:1,000. Detection of HRP was performed  
using ECL Western Blotting Detection reagents (GE Healthcare).

shRNA expression constructs
PCR-based generation of the miR-137 shRNA driven by a U6 Pol III pro-
moter was done using a PCR-shagging approach as described previously 
(Paddison et al., 2002) with the following PAGE-purified long oligos.

shRNA miR-137 (sh-miR-137): 5-TATCGATAAAAAAATTATTGCTTA-
AGAATACGCGTAGTCTCTTGAACTACGCGTATTCTTAAGCAATAAAAA-
CAAGGCTTTTCTCCAAGGGA-3; and shRNA control (sh-control):  
5-TATCGATAAAAAAAAATTCTCCGAACGTGTCACGTTCTCTTGAAACG-
TGACACGTTCGGAGAATTAAACAAGGCTTTTCTCCAAGGGA-3.

Long oligos were used as reverse primers in combination with a 
common forward primer complementary to the 5 end of the U6 promoter 
(5-AAAGTTAACTAGTGGATCCGACGCCGCCATCTC-3) to amplify the 
entire U6 promoter and shRNA in a single PCR product. Amplification was 
done using 20 ng of a previously generated U6-shRNA lentiviral construct 
(a gift from F.H. Gage, Salk Institute, La Jolla, CA) with AmpliTaq Gold PCR 
(Applied Biosystems; 1× PCR buffer, 2.2 mM MgCl2, 0.2 mM dNTP mix, 
0.2 mM forward primer, 0.2 mM reverse primer, and 1.75 U AmpliTaq 
Gold) at 95°C for 9 min, 40 cycles of 94°C for 1 min, and 60°C for 1 min, 
followed by 60°C for 10 min, then stored at 4°C. We used 2 µl of PCR 
product in a TOPO TA cloning reaction with pCR2.1 vector and chemical 
transformation of TOP-10–competent cells (Invitrogen). U6-shRNA expres-
sion cassettes were removed from the TOPO vector and transferred to lenti-
viral and retroviral vectors by HpaI and ClaI restriction digestion followed 
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TransFast Transfection reagent (Promega) according to the manufacturer’s 
instructions. As a control, psiCHECK-2 plasmid with no 3 UTR and U6- 
neg-shRNA were cotransfected with U6-mir-137-shRNA TOPO or psiCHECK-
2–3 UTR, respectively. All transfections used a total of 1 µg of plasmid DNA. 
The ratio of luciferase–3 UTR/shRNA plasmid was 1:2 for all experiments.  
Luciferase expression was detected using the Dual-Luciferase Reporter 
1000 System (Promega) according to the manufacturer’s instructions.  
48 h after transfection, hRLuc activity was normalized to hLuc+ activity to 
account for variation in transfection efficiencies, and miR-137–mediated 
knockdown of hRLuc activity was calculated as the ratio of normalized 
hRLuc activity in the U6-miR-137-shRNA treatments to normalized hRLuc 
activity in the U6-neg-shRNA treatments. All luciferase readings were taken 
from either three or four individual wells for each psiCHECK-2–3 UTR 
construct and control construct tested. Each transfection experiment was 
repeated at least three times.

The miR-137 target site in the Ezh2 3 UTR was deleted using the 
QuikChange Site-Directed Mutagenesis kit (Agilent Technologies) to delete 
5 bases (AAUAA) from the 7mer-1a miR-137 seed site in the Ezh2 3 UTR 
luciferase reporter. Target site deletion was verified by Sanger sequencing.

To confirm the specificity of miR-137 targeting the Ezh2 3 UTR, the 
Ezh2 3 UTR and Ezh2 3 UTRmiR-137 were transferred by XhoI–NotI dou-
ble digestion and T4 DNA ligation from psiCHECK2 into a pIS2 renilla 
luciferase vector modified with the addition of an XhoI restriction site and 
deletion of the SpeI restriction site. MiR-137–dependent Ezh2 3 UTR lu-
ciferase assays were performed as described previously using 10 pmol 
of miR-137 duplex RNA or control miRNA duplex, and Promega Dual Lu-
ciferase Reporter System and pIS0 firefly luciferase as a control (Yekta et al., 
2004). To test whether Ezh2 knockdown modulates NSC differentiation, 
Ezh2 shRNA plasmid was electroporated into WT NSCs along with 
NeuroD1-luciferase DNA and internal control E1-Rluc DNA plasmids. 
Both Ezh2 mRNA and NeuroD1-luciferase activity were determined after 
24 h of differentiation.

Western blot analyses
Protein samples were separated on SDS-PAGE gels and then transferred to 
polyvinylidene fluoride membranes (Millipore). Membranes were processed 
according to the ECL Western Blotting Protocol (GE Healthcare). anti-MeCP2 
(ab2828; Abcam), anti-Ezh2 (4905; Cell Signaling Technology), anti– 
tri-methyl-histone H3 (Lys27, C36B11; 9733; Cell Signaling Technology), 
and anti-histone H4 (ab10158; Abcam) were used as primary antibodies at 
a 1:1,000 dilution. HRP-labeled secondary antibodies were obtained from 
Sigma-Aldrich (A0545) and were used at a dilution of 1:5,000. For loading 
controls, membranes were stripped and re-probed with the antibody against 
glyceraldehyde 3-phosphate dehydrogenase (GAPDH; Applied Biosystems 
AM4300). All Western blot quantifications were performed using ImageJ 
software from the National Institutes of Health.

Real-time PCR relative quantification of Ezh2 mRNA
500 ng of total RNA isolated by TRIZOL from lentiviral sh-miR-137 and 
lentiviral sh-control–infected aNSCs was reverse transcribed using random 
hexamers to generate first-strand cDNA with SuperScript III according to 
the manufacturer’s instructions. 1 µl of cDNA was used directly in 20 µl  
SYBR Green real-time PCR reactions that consisted of 1× Power SYBR Green 
Master Mix, 0.5 µM forward and reverse primers, and nuclease-free water. 
18S rRNA was used as an endogenous control for all samples, with 1 µl of 
cDNA diluted 1:10 in the nuclease-free water used. Reactions were run on 
an Applied Biosystems SDS 7500 Fast Instrument using the Standard 7500 
default cycling protocol and SDS 7500 Fast System Software version 1.3.1 
without the 50°C incubation. Primers for Ezh2 mRNA and 18S rRNA were 
designed using Primer Express 3.0 software (Applied Biosystems) and were 
as follows. Ezh2: forward, 5-GGTGAAGAGTTGTTTTTTGATTACAGA-3; 
and reverse, 5-TCTCGTTCGATGCCCACATA-3. 18S: forward, 5-CGG-
CTACCACATCCAAGGAA-3; and reverse, 5-CCTGTATTGTTATTTTTCG-
TCACTACCT-3. All real-time PCR reactions were performed in triplicate, 
and RQs were calculated using the Ct method (95% CI) with calibration 
to sh-control–treated samples. All primer sets were subjected to a disso-
ciation curve analysis and produced single peaks on a derivative plot of  
raw fluorescence.

Online supplemental materials
Fig. S1 shows miR-137 and primary/precursor miR-137 expression in  
aNSCs. Fig. S2 shows determination of the epigenetic state of the miR-137 
genomic locus using additional histone ChIP assays. Fig. S3 shows efficient 
delivery of control and miR-137 shRNA constructs by lentivirus. Fig. S4 
shows verification of a functional interaction between miR-137 and Ezh2. 
Fig. S5 shows that miR-137 has distinct effects on the expression of CDK6 

performed using a nucleofector electroporator based on the manufacturer’s 
instructions (Lonza). In brief, 2 × 106 cells were trypsinized, resuspended in 
Nucleofector solution, mixed with DNA and miRNAs, and electroporated 
using a preset program for mouse aNSCs (A033). The cells were then 
plated onto polyornithin/laminin-coated 24-well plates in aNSC prolifera-
tion medium (see “Isolation and culture of adult NSCs”). 24 h after plating, 
cells were transferred into differentiation medium (see above) for 24 h. 
The cells were then collected using cell lysis buffer from a Dual-Luciferase 
Reporter Assay System kit (Promega). Luciferase activity was measured  
using a microplate luminometer (Veritas; Promega) as described previously 
(Barkho et al., 2006). The luciferase counts were then normalized to R-Luc 
counts to obtain final NeuroD1 or GFAP promoter activities.

Construction of retroviral vector expressing sh-miR-137 and in vivo 
retroviral grafting
A retroviral vector expressing both miR-137 and EGFP was engineered by 
deleting the original HpaI and ClaI sites in the CAG-EGFP vector (Zhao  
et al., 2006; Smrt et al., 2007) and inserting new HpaI and ClaI sites  
5 upstream from the CAG promoter. The U6-shRNA cassettes were then  
inserted between the HapI and ClaI sites.

Retrovirus production was performed as described previously (Zhao 
et al., 2006; Smrt et al., 2007). In brief, retroviral transfer vector DNA and 
packaging plasmid DNA were cotransfected with the packaging plasmids 
pCMV-gag-pol and pCMV-Vsvg into HEK293T cells using the calcium phos-
phate method. The medium containing retrovirus was collected at 40, 64, 
and 88 h after transfection, then pooled, filtered through a 0.2-µm filter, 
and concentrated via ultracentrifugation at 19,400 rpm for 2 h at 20°C 
(SW27 Rotor). The virus was washed once with PBS and then resus-
pended in 150 µl PBS. We routinely obtain >0.5–1 × 109 infectious viral 
particles/ml.

In vivo retroviral grating was performed as described previously 
(Zhao et al., 2006; Smrt et al., 2007). In brief, 7- to 8-wk-old C57B/L6 
male mice were anesthetized with isoflurane, and virus (1.5 µl with titer 
>5 × 105/µl) was injected stereotaxically into the DG using the following 
coordinates relative to bregma: anteroposterior, (1/2) × d mm; lateral, 
±1.8 mm (if d > 1.6), or otherwise ±1.7 mm; and ventral, 1.9 mm (from 
dura). For each mouse, the sh-control virus was injected into the left DG, 
and the miR-137 virus was injected into the right DG. Mice received two 
BrdU injections per day (50 mg/kg, i.p.) for a total of seven injections,  
immediately after viral grafting. 1 wk after viral grafting, mice were deeply 
anesthetized with pentobarbital and perfused with saline followed by 4% 
PFA. Brains were dissected out, postfixed overnight in 4% PFA, and then 
equilibrated in 30% sucrose. 40-µm brain sections were generated using 
a sliding microtome and were stored in a 20°C freezer as floating sec-
tions in 96-well plates filled with cryoprotectant solution (glycerol, ethylene 
glycol, and 0.2 M phosphate buffer, pH 7.4, 1:1:2 by volume).

Immunohistochemistry and confocal imaging analysis were per-
formed as described previously (Smrt et al., 2007). Floating brain sections 
containing EGFP+ cells were selected for staining and matched by DG 
region. Sections were pretreated with 1 M HCl, as described previously 
(Tang et al., 2007). The primary antibodies used were chicken anti-GFP 
(A10262; Invitrogen), rat anti-BrdU (ab-6326; Abcam), and rabbit anti-
DCX (4604; Cell Signaling Technology). The secondary antibodies used 
were anti–chicken Alexa Fluor 488 (A11039; Invitrogen), goat anti–rat 
Alexa Fluor 647 (A21242; Invitrogen), and goat anti–rabbit Alexa Fluor 
568 (A11036; Invitrogen). The z-stack images of GFP-BrdU-DCX staining 
were taken at 1-µm resolution using a TE2000 (Nikon) equipped with a 
spin disc confocal microscope with an oil-immersion objective lens (40×, 
NA = 1.3; Carl Zeiss, Inc.) and MetaMorph quantification software (MDS 
Analytical Technologies); we then counted the proportion of GFP+DCX+ or 
GFP+BrdU+ out of total GFP+ cells. For colocalization analysis, roughly  
70 GFP+ cells per animal were imaged. The data were analyzed using the 
Student’s t test.

3 UTR dual luciferase assays of candidate miR-137 target mRNA
3 UTR sequences of candidate mRNAs were PCR amplified directly from 
proliferating aNSC first-strand cDNA generated from 5 µg of TRIZOL- 
isolated total RNA using oligo-dT SuperScript III reverse transcription, ac-
cording to the manufacturer’s instructions (Invitrogen). All primers were 
designed incorporating XhoI and NotI restriction sites and 4 bp of extra 
random sequence to aid in restricting digestion. XhoI- and NotI-digested 
PCR products were cloned into XhoI- and NotI-digested psiCHECK-2 dual 
luciferase vector (Promega). As a primary screen of candidate miR-137 
targets, 293FT cells (3 × 103 cells per well, 96-well plate, grown over-
night before transfection) were transfected with sh-miR-137 cloned into a 
pCR2.1 TOPO vector (sh-miR-137 TOPO) and psiCHECK-2–3 UTR using 
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