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PPARγ activation in type 2 diabetic patients results in a marked improvement in insulin and glucose parameters, resulting from
an improvement of whole-body insulin sensitivity. Adipose tissue is the major mediator of PPARγ action on insulin sensitivity.
PPARγ activation in mature adipocytes induces the expression of a number of genes involved in the insulin signaling cascade,
thereby improving insulin sensitivity. PPARγ is the master regulator of adipogenesis, thereby stimulating the production of small
insulin-sensitive adipocytes. In addition to its importance in adipogenesis, PPARγ plays an important role in regulating lipid,
metabolism in mature adipocytes by increasing fatty acid trapping. Finally, adipose tissue produces several cytokines that regulate
energy homeostasis, lipid and glucose metabolism. Disturbances in the production of these factors may contribute to metabolic
abnormalities, and PPARγ activation is also associated with beneficial effects on expression and secretion of a whole range of
cytokines.
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1. Introduction

As a major tissue for whole-body energy homeostasis, adi-
pose tissue integrates both central and peripheral metabolic
signals that orchestrate energy balance. An imbalance
between energy intake and energy expenditure leads to
the expansion of adipose tissue, characterized by a com-
bination of cell proliferation (hyperplasia) and cell size
increase (hypertrophy). A complex and yet incompletely
defined series of transcriptional events represents the fun-
damental biological mechanism through which multipotent
mesenchymal precursor cells become committed to the
adipocyte lineage and exhibit the typical markers of mature
fat cells. Identifying the mechanisms that control differen-
tiation of adipose cells would provide clues for designing
comprehensive therapeutic strategies for the prevention and
treatment of adipose tissue expansion and its associated
clinical disorders, including hyperlipemia, hypertension, and
type 2 diabetes. However, the mechanisms that regulate

adipose cell number and size during adipogenesis are still
poorly understood.

In recent years, it has become evident that the societies
of the developed countries are at immense risk of metabolic
diseases, the so-called civilization diseases or X syndrome. In
fact, the rise in the prevalence of specific endocrine-related
diseases such as obesity and diabetes clearly suggests an
importance of either environmental or genetic factors. The
therapy of metabolic diseases assumes the recognition and
detailed understanding of the molecular events that control
these disorders as well as the development of therapeutics
targeting the responsible factors. Recently, several different
transcriptional factors have been identified as regulators of
the expression of a set of genes involved in glucose and
lipid metabolism. Among them, peroxisome proliferator-
activated receptors (PPARs), belonging to the superfamily of
nuclear receptors (NRs), have been shown to play a central
role in the transcriptional control of genes encoding proteins
involved in the above processes.
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Figure 1: Mechanism of PPARγ activation. Upon ligand binding
to the PPAR/RXR heterodimer, a conformational change leads to
release of a corepressor and binding of a coactivator; this regulates
the kinetics of the assembly of the transcription complex, resulting
in increased affinity for the specific PPAR response element, which
modulates gene transcription. RXR; Retinoic X receptor; PPRE;
PPAR response element.

2. PPAR Nuclear Receptors

Peroxisome proliferator-activated receptors (PPARs) exist as
an obligate heterodimer with the retinoic X receptor (RXR)
[1] and are localized to the nucleus also in the unligated
state [2]. Upon ligand binding, a conformational change
leads to corepressor release and coactivator binding. The
binding pocket permits binding of ligands with quite diverse
structures [3], probably resulting in different conformational
changes which, in turn, affect the recruitment of cofactors
and regulate the kinetics of the assembly of the transcription
complex, as well as the affinity for the specific PPAR
response element (PPRE). The PPAR/RXR heterodimers can
be activated by ligands of either receptor, and simultaneous
binding of both ligands has been shown to be more efficient
in some cases [4]. After ligand binding and activation, the
heterodimers are able to either enhance or repress gene
expression through binding to PPRE in the promoter region
of target genes (Figure 1).

Three different human PPAR subtypes have been iden-
tified so far, designated as PPARα, PPARβ (also known
as PPARδ), and PPARγ. Each of them displays a distinct
pattern of tissue distribution and a specific role. PPARα is
predominantly expressed in the liver and skeletal muscles,
participating in fatty-acids catabolism. PPARα also activates
fatty-acid oxidation in the kidney, skeletal muscles, and heart
[5]. It has been established that PPARβ is present at moderate
levels in all human tissues, with a higher expression in the
placenta and the large intestine [6]. Very little is known
about the functions of PPARβ. However, recent findings
have implicated PPARβ as an important regulator of energy
expenditure as well as glucose and lipid metabolism [7]. Of
the three members of PPARs, PPARγ is the most frequently
studied nuclear receptor involved in the control of energy
balance and both lipid and glucose homeostasis [8]. PPARγ
exists as two protein isoforms, PPARγ1 and γ2, that differ in

their N-terminal end as a result of alternative promoter usage
[8]. PPARγ1 has a similar expression pattern as PPARα while
PPARγ2 is predominantly expressed in adipose tissue where
it regulates adipocyte differentiation.

3. Endogenous and Synthetic Ligands

Over the past several years, various natural and synthetic
PPARγ ligands, including PPARγ agonists, PPARγ partial
agonists, and PPARα/γ dual agonists, have been investigated.
Numerous studies have shown that polyunsaturated fatty
acids and related molecules can activate PPARγ as well as
other PPARs [9–11]. Interestingly, PPARγ responds poorly to
native fatty acids compared to PPARα and PPARδ, suggesting
that modified fatty acids may be the biological ligands. Cer-
tain prostanoids, including 15-deoxy-∆12,14 prostaglandin
J2 (15-dPGJ2), are excellent activators of PPARγ [12, 13].
However, it is unlikely that 15-dPGJ2 is present at sufficient
levels in vivo to be a biologically significant ligand. Oxi-
dized fatty acids, such as 9-hydroxy-10,12-octadecadienoic
acid and 13-hydroxy-9,11-octadecadienoic acid found in
oxidized low-density lipoprotein (LDL), activate PPARγ with
increased potency and efficacy relative to native fatty acids
and are present at significant concentrations in atheroscle-
rotic lesions [14]. Whether oxidized fatty acids serve as acti-
vators in other tissues, however, is not clear. It is possible that
different ligands for PPARγ may be of primary importance
in other contexts. For example, the ligand responsible for
PPARγ activation in adipogenesis may be distinct from those
that activate PPARγ in macrophages in the artery wall. Other
lipids, such as nitrated fatty acids and lysophosphatidic acid,
have also been reported to activate PPARγ [15, 16]. The
importance of these molecules in PPARγ biology remains to
be established.

The synthetic PPARγ agonists are thought to be factors
determining adipocyte differentiation as well as potential
antidiabetic drugs [17]. Compounds such as glitazones or
thiazolidinediones (TZDs) (pioglitazone and rosiglitazone)
are used clinically as insulin sensitizers [18]. They activate
PPARγ and decrease insulin resistance and glucose level
in the serum of patients with type 2 diabetes [18]. Many
drugs belonging to the TZD class exhibit high selectivity for
PPARγ and minimal or no activity toward subtypes-α and
-β [19]. However, despite significant antidiabetic activities,
TZDs may cause several side effects, such as increased
adiposity, oedema, and an increased rate of fractures of the
small bones of the extremities. From the therapeutic point
of view, improvement of the pharmacological profiles of
PPARγ ligands is highly required. Therefore, an alternative
approach, relying on the identification of partial agonists,
was developed. It was recently reported that a PPARγ partial
agonist similar to LSN862, that is, (S)-2 methoxy-3-{4-[5-
(4-phenoxy)pent-1-ynyl]phenyl}-propionic acid, has better
antidiabetic activity and weaker side effects than the TZDs
[20]. More recently, a novel family of PPARγ partial agonists
(pyrazol-5-yl benzenesulfonamide derivatives) with either
high potency or specificity in vitro or glucose-lowering
efficacy in vivo has been identified [21]. Interestingly, the
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X-ray structures of the PPARγ-ligand complexes revealed
a lack of hydrogen bonds between them. This is in sharp
contrast to PPARγ agonists sharing a common binding mode
in which the acidic head groups form a network of hydrogen
interactions with His-323, His-449, and Tyr-473 within
the ligand binding pocket [22]. Further molecular studies
are required to understand how PPARγ partial agonists
modulate transcriptional activity through the recruitment of
coactivator and corepressor proteins.

Recent discoveries point to ligands that could stimulate
more than one isotype of PPAR at similar concentrations.
Thus, the insulin-sensitizing effects of PPARγ and the anti-
dislipidemic effects of PPARα or β can be simultaneously
obtained by using the so-called coligands. PPARα/γ col-
igands (ragaglitazar, O-arylmandelic acid, LY465608, and
KRP-297) have been shown to have better insulin-sensitizing
and lipid-lowering potential in diabetic rodents, as compared
to standard compounds which can only stimulate one isotype
of PPAR [23–25].

4. PPARγ and Insulin Signaling

PPARγ activation through binding of the synthetic TZDs in
type 2 diabetic patients results in a marked improvement
in whole-body insulin sensitivity, leading to reduced insulin
and glucose plasma levels. The mechanisms of PPARγ-
mediated insulin sensitization are complex and are thought
to involve specific effects on fat, skeletal muscle, and liver,
even though adipose tissue appears to be the major target of
TZD-mediated effects on insulin sensitivity. At the cellular
level, PPARγ activation has been shown to affect the insulin
signaling cascade, through direct modulatory effects on
the expression and/or phosphorylation of specific signaling
molecules.

Binding of insulin to its tyrosine kinase receptor engages
a cascade of intracellular phosphorylation events, including
tyrosine phosphorylation of insulin receptor substrate (IRS)
proteins and activation of phosphatidylinositol-3-kinase (PI
3-kinase) and other downstream kinases, which promote
multiple biological responses, including glucose uptake, lipid
metabolism, survival, differentiation, and modulation of
gene transcription (Figure 2). Several groups have shown
that PPARγ activation can influence insulin signaling at
various steps in these pathways, resulting in improved whole-
body insulin sensitivity and enhanced glucose and lipid
metabolism. The effects of TZDs on activation of insulin
signaling proteins in skeletal muscle and adipose tissue from
individuals with type 2 diabetes are summarized in Figure 3.

4.1. IRS Proteins. The IRSs are a large family of docking
proteins that act as an interface between the insulin receptor
and a complex network of intracellular-signaling molecules.
Hammarstedt et al. [34] observed no change in the expres-
sion of multiple insulin signaling molecules, including
IRS-1, in adipose tissue of pioglitazone-treated nonobese,
insulin-resistant individuals [35]. However, a number of
studies have demonstrated modulatory effects of TZDs on
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Figure 2: Insulin signaling pathway in adipose cells. Binding
of insulin to its tyrosine kinase receptor engages a cascade
of intracellular phosphorylation events, including activation of
phosphatidylinositol-3-kinase and ERK-1/2, that promote multiple
biological responses, including glucose uptake, lipid metabolism,
survival, differentiation, and modulation of gene transcription.

IRS phosphorylation. In both HEK-293 cells overexpress-
ing a recombinant IRS-1 protein and 3T3-L1 adipocytes,
rosiglitazone reduces the PMA-induced inhibitory serine
phosphorylation of IRS-1 and restores downstream insulin
signaling [36]. The increased levels of IRS-1 serine phospho-
rylation seen in adipose cells of obese Zucker rats were also
found to be reduced after TZD treatment. TZDs may act
primarily by reducing the circulating levels of FFA, which
have been shown to induce serine phosphorylation of IRS-
1 through activation of the protein kinase C isoform PKCθ
[37]. In obese Zucker rats, short-term treatment with both
rosiglitazone and a non-TZD PPARγ ligand could potentiate
the insulin effect and increase the tyrosine phosphorylation
of the insulin receptor and IRS-1 as well as induce activation
of Akt/PKB [38]. Effects of PPARγ activation have also been
reported on IRS-2: in both cultured human adipocytes and
3T3-L1 adipocytes, IRS-2 was found to be increased, both at
the gene and protein level, after pioglitazone treatment [39].

4.2. The PI 3-Kinase/Akt Pathway. PI-3 kinase acts as a
critical signaling molecule triggering a number of insulin-
stimulated effects, including glucose uptake, glycogen syn-
thesis, and cell differentiation. Multiple clinical studies have
investigated the effects of TZDs on glucose disposal rates
and the insulin signal transduction system in type 2 diabetic
patients. TZDs, particularly troglitazone and rosiglitazone,
were found to markedly improve glucose disposal rates
[26, 27], whereas the effects of metformin appeared less
prominent [28, 29]. Studies in which biopsies of subcuta-
neous abdominal adipose tissue of diabetic patients were
taken before and after a period of therapy with either
metformin or troglitazone showed no significant effects
on total cellular levels of p85, p110β, or Akt proteins
with either treatment; however, the insulin effect on Akt
phosphorylation was increased with troglitazone, while it
was unaltered after metformin treatment [30]. The effects of
TZDs on insulin signaling molecules have also been investi-
gated in human skeletal muscle. Treatment with troglitazone
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Figure 3: Effects of TZDs and metformin on activation of insulin signaling proteins in tissues from individuals with type 2 diabetes. The
effects of troglitazone, pioglitazone, and rosiglitazone on various proteins involved in insulin signaling in skeletal muscle and adipose
tissue are indicated. The effects of metformin are also shown for comparison. GDR indicates the glucose disposal rate, as a measure of
insulin sensitivity. IR-PY: insulin receptor tyrosine phosphorylation; IRS1: insulin receptor substrate-1; PY: tyrosine phosphorylation; PI3K:
phosphatidylinositol 3 kinase. Adapted from [26–33].

increased insulin-stimulated IRS-1-associated PI 3-kinase
activity and Akt activity in skeletal muscle biopsies from type
2 diabetic patients [26] and enhanced Akt phosphorylation
in skeletal muscle from glucose-tolerant, insulin-resistant,
first-degree relatives of type 2 diabetic patients [31]. More
controversial appear to be the effects of rosiglitazone on PI 3-
kinase activity and Akt phosphorylation. While Miyazaki et
al. showed that the improvement in insulin-stimulated mus-
cle glucose disposal after rosiglitazone therapy was associated
with increased IRS-1 tyrosine phosphorylation and IRS-1-
associated PI 3-kinase activity [32], Karlsson et al. found
no changes in IRS-1/PI 3-kinase and Akt/AS160 signaling
in patients with newly diagnosed type 2 diabetes, thus
concluding that the insulin-sensitizing effects of rosiglitazone
were independent of enhanced insulin signaling via these
proteins [28]. Interestingly, no effect of metformin therapy
on PI 3-kinase or Akt activation in diabetic muscle has been
documented [26, 29].

4.3. 5′-AMP-Activated Protein Kinase (5′-AMP Kinase). 5′-
AMP kinase is a key regulator of both glucose and lipid
metabolism, which is associated with improved insulin
signaling and enhanced insulin sensitivity in skeletal muscle.
5′-AMP kinase activation increases fatty acid oxidation in
skeletal muscle by decreasing malonyl CoA concentrations.
Both TZDs (i.e., pioglitazone) [33] and metformin [29] have
been shown to improve glucose tolerance via adenosine 5′-
AMP kinase. Activation of AMPK by metformin decreased
the level of plasma glucose and plasma triglycerides by
promoting muscle glucose uptake and inhibiting hepatic glu-
cose output [40]. Recently, Coletta et al. have demonstrated
that pioglitazone activates 5′-AMP kinase and acetyl-CoA
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Figure 4: Cellular effects of PPARγ activation in adipocytes. TZDs
improve whole-body insulin sensitivity by modulating glucose and
lipid metabolism in adipose tissue as well as adipokine secretion by
adipocytes. FA: fatty acids.

carboxylase (ACC) in human muscle biopsies from patients
with type 2 diabetes, leading to increased expression of genes
involved in mitochondrial function and fat oxidation, and
reduced toxic burden of intracellular lipid metabolites (fatty
acyl CoA, diacylglycerol, ceramides) [33] (Figure 4).
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4.4. ERK-1/2. The ERK proteins, which belong to the family
of MAP kinases, modulate cellular responses to environ-
mental stress, cell survival, proliferation, and differentiation.
Transfection of cultured cells with a dominant negative MEK,
which is the ERK activating kinase, results in decreased
effects of both insulin and TZDs on PPARγ activity, suggest-
ing that ERK is involved in the cross-talk between insulin
and PPARγ [41]. In vitro assays demonstrate that both ERK2
and JNK are able to phosphorylate PPARγ2 [42]. The MAPK
phosphorylation site, which can be used by both ERK-
and JNK-MAPK [43], was mapped at serine 82 of mouse
PPARγ1, which corresponds to serine 112 of mouse PPARγ2
[44]. Substitution of this serine by alanine (S82A) leads to
a loss of PDGF-mediated repression of PPARγ activity [45].
Human PPARγ1 phosphorylation at this site (S84) inhibits
both its ligand-dependent and ligand-independent transac-
tivating function. The S84A mutant showed an increase in
the AF-1 transcriptional activity of PPARγ [46]. Treatment of
macrophages with TGFβ1 increases PPARγ phosphorylation
and decreases TZD-induced CD36 expression via activation
of the ERK-MAPK pathway [47]. Mutation of the main
MAPK site of phosphorylation in PPARγ2 (S112D) results
in a decreased ligand-binding affinity [41]. Limited protease
digestion shows that the unliganded PPARγ2 and the S112D
mutant have different sensitivity; thus, the phosphorylation
status of serine 112 plays a role in the conformation of the
unliganded receptor which regulates the affinity of PPARγ
for its ligands and affects its coactivator recruitment ability
[44]. It has been proposed that phosphorylation-mediated
inhibition of transcriptional activity of nuclear receptors
is an important “off-switch” of ligand-induced activity
(reviewed in [48]). Extracellular signals which activate
intracellular phosphorylation pathways can also influence
the degradation process of PPARγ [49]. As an example,
treatment of cells with an MEK inhibitor blocks the degra-
dation of PPARγ. However, not all phosphorylation events
are inhibitory and enhance proteosomal degradation, and
thus care must be taken when making a global speculation.
Substitution of proline to glutamine at position 115 renders
PPARγ constitutively active through the modulation of the
MAPK-dependent phosphorylation status of serine 114 [50].
Subjects carrying this mutation are extremely obese but
surprisingly show a lesser insulin resistance than expected.
Mice homozygous for the S112A mutant (homologous to
human S114) [51] are protected against diet-induced obesity.
This may be due to changes in adipocyte function, such
as secretion of adiponectin and leptin. Overall, preven-
tion of PPARγ phosphorylation leads to an improvement
of insulin sensitivity mainly due to increased glucose
disposal in muscle, which is similar to TZD treatment
[51].

4.5. PPARγ and the Glucose Transport System. PPAR-γ acti-
vity has been shown to directly regulate the expression of
GLUT4 [52] and c-Cbl associating protein (CAP), both
involved in regulating insulin-stimulated glucose transport
[53]. The GLUT4 (insulin-dependent) transporter is a key
modulator of glucose disposal in both muscle and fat. TZD
treatment increased the expression of the insulin-responsive

glucose transporter GLUT4. However, in another report
of the effect of rosiglitazone on freshly isolated human
adipocytes, no effect could be seen on the expression of
GLUT4 [54]. In animal models of obesity and diabetes, in
which the expression of GLUT4 in adipose cells is reduced,
treatment with troglitazone restored its expression to normal
levels [55]. Although no complete PPRE has been found in
the GLUT4 promoter, PPARγ and its heterodimer partner
RXRα have been found to bind and repress the promoter
activity of GLUT4. The repression is augmented in the pres-
ence of the natural ligand, 15D-prostaglandin J2, but com-
pletely alleviated by rosiglitazone [56]. This is a novel mecha-
nism through which a PPARγ ligand can exert an antidiabetic
effect, that is, by detaching the PPARγ transcription complex
from the promoter, thereby increasing the expression of the
target gene. It has also been demonstrated that TZDs increase
the expression of CAP either in 3T3-L1 adipocytes and in
Zucker (fa/fa) diabetic rats, resulting in the stimulation of
glucose transport [57]. The induction of CAP expression by
TZDs takes place through direct binding of activated PPAR-
γ/RXRα heterodimers to a PPRE in the CAP promoter [53].

Interestingly, experimental deletion of PPARγ results in
a decrease in insulin-stimulated glucose transport into 3T3-
L1 adipocytes, and this is due to a decrease in GLUT1 and
GLUT4 function [58]. It remains to be investigated, however,
whether similar direct effects on glucose uptake are also
operating in skeletal muscle, where much lower levels of
PPARγ expression are observed, but where the majority of
glucose disposal occurs. Unfortunately, conflicting findings
in the two existing mouse models of muscle-specific PPARγ
deletion have so far failed to resolve this issue [59, 60] (see
below).

The intracellular protein PTEN (phosphatase and tensin
homolog deleted on chromosome 10) has been recently
proposed to play a crucial role in the PPARγ-induced
regulation of glucose uptake. Kim et al. have demonstrated
that the reduction of PTEN expression in skeletal muscle cells
and adipocytes may be a primary mechanism of the PPARγ-
induced improvement in glucose uptake. Furthermore,
decreased PTEN levels, associated with reduced plasma
glucose, were observed in adipose and muscle tissues of ob/ob
mice treated with two structurally different PPARγ agonists,
thus confirming that PPARγ-induced insulin sensitization in
vivo is mediated by PTEN downregulation [61].

Several lines of evidence support an emerging role for
PPARδ in muscle for glucose and lipid metabolism. The
role of PPARδ on whole-body glucose homeostasis has been
evaluated in muscle-specific PPARδ transgenic mice [62],
which exhibit enzymatic and gene expression profiles that
promote oxidative metabolism in skeletal muscle. Moreover,
PPARδ transgenic mice have reduced body fat mass due to a
reduction of adipose cell size [63]. Given the importance of
skeletal muscle insulin resistance in the development of type
2 diabetes and other metabolic diseases, targeted activation
of PPARδ in skeletal muscle may represent a novel thera-
peutical target to enhance glucose metabolism. Indeed, there
is evidence that exposure of primary human skeletal muscle
cells and C2C12 mouse myotubes to specific PPARδ agonists
enhances basal and insulin-stimulated glucose uptake [64].
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5. Tissue-Specific PPARγ Effects

5.1. Adipose Tissue. PPARγ has the highest expression levels
in adipose tissue compared with other metabolic organs,
such as skeletal muscle, liver, and pancreas. PPARγ activation
in mature adipocytes induces the expression of a number
of genes involved in the insulin signaling cascade, thereby
improving insulin sensitivity. PPARγ is the master regulator
of adipogenesis, thereby stimulating the production of small
insulin-sensitive adipocytes. In addition to its importance in
adipogenesis, PPARγ plays an important role in regulating
lipid metabolism in mature adipocytes. The induction of
adipogenesis associated with the capability for fatty acid
trapping has been shown to be an important contributor
to the maintenance of systemic insulin sensitivity. Finally,
adipose tissue produces several hormones that regulate
energy homeostasis, lipid, and glucose metabolism such as
leptin, adiponectin, resistin, tumor necrosis factor-α, and
others. Disturbances in the production of these factors
may contribute to the development of insulin resistance
or impaired insulin secretion: PPARγ activation is also
associated with beneficial effects on the expression and
secretion of a whole range of adipokines.

5.1.1. The Role of PPARγ in Adipogenesis and Differentia-
tion. Adipogenesis refers to the differentiation process of
preadipocyte precursor cells into mature adipocytes during
which gene expression, cell morphology, and hormone sen-
sitivity change. Preadipocytes can be differentiated into white
(energy storage) and brown (energy dissipation) adipocytes.
In the differentiation of white adipocytes, numerous genes
encoding proteins participating in fatty-acid metabolism are
induced. It is known that the transcription factor PPARγ is
an important regulator of the formation of adipose tissue
[65–69], since it induces several specific adipose markers,
such as adipocyte fatty acid binding protein (aP2) [70],
phosphoenolpyruvate carboxykinase (PEPCK) [71], and
lipoprotein lipase (LPL) [72]. Moreover, the ectopic expres-
sion of PPARγ promotes adipogenesis in nonadipogenic
fibroblastic cells such as NIH-3T3 cells [73]. In addition,
PPARγ-deficient adipocytes of adult mice die within a few
days [73] and PPARγ knockout mice are unable to develop
adipose tissue [8]. Consistent with the above, several PPARγ
missense mutations (C190S, V290M, F388L, R425C, P467L)
in humans are associated with partial lipodystrophy [74].
Although all these studies indicate a pivotal role of PPARγ
in adipogenesis, it is likely one of several proteins involved in
the regulation of this multifactoral process. Indeed, besides
PPARγ, C/EBP transcription factors (C/EBP-α, -β, and
-δ) expressed in distinct phases of adipogenesis have been
shown to play important roles as well. C/EBP-β and -δ are
activated in response to insulin or glucocorticoids in the
initial stages of adipogenesis [75, 76] and they, in turn,
induce the transcription of PPARγ.

With cell differentiation, mRNA levels of PPARγ are
markedly upregulated [77]. In addition, during the early
stages of differentiation, another transcriptional factor,
namely, ADD1/SREBP1, has been found to affect the tran-
scriptional activity of PPARγ [78]. It has been suggested

that this factor can modulate PPARγ activity through the
production of endogenous ligands for PPARγ since it par-
ticipates in the regulation of cholesterol homeostasis and in
the expressions of several genes encoding proteins involved in
lipid metabolism [75]. In the terminal stages of adipogenesis,
PPARγ activates the expression of C/EBP-α; however, C/EBP-
α, in response, also induces PPARγ gene expression through
binding to the same DNA sites in the PPARγ promoter
that are induced by C/EBP-β, and -δ [79]. Thus there is a
positive feedback loop between PPARγ and C/EBP-α [80].
The positive cross-regulation between these factors has been
observed in C/EBP-α-deficient adipocytes, which accumulate
fewer lipids and do not induce endogenous PPARγ [80].

The adipogenic effect of PPARγ activation is likely related
to the known effects of glitazones to enhance bone loss and
lead to increased risk of bone fractures, which has emerged
from clinical trials. Within the bone marrow, the differen-
tiation of the resident mesenchymal stem cells (MSCs) into
adipocytes or osteoblasts is competitively balanced, so that
mechanisms that promote a given cell fate (i.e., osteogenesis)
actively suppress mechanisms that induce the alternative
lineage (adipogenesis). Elbrecht et al. [81] first showed that
PPARγ is expressed in bone marrow MSCs. Subsequently, it
was demonstrated that treatment of bone marrow stromal
cells with TZDs resulted in the differentiation of these cells
into adipocytes [82] rather than osteoblasts. It has thus been
suggested that this unbalanced marrow adipogenesis may
contribute to the increased risk of bone fractures in TZD-
treated subjects.

In addition to the above transcription factors activating
adipogenesis, there are several factors involved in the control
of this process, such as tumor necrosis factor- (TNF-) α and
leptin. TNF-α is a polypeptide hormone with pleiotropic
effects on cellular proliferation and differentiation and is a
potent inhibitor of adipogenesis. The exposure of 3T3-L1
adipocytes to TNF-α results in lipid depletion and a complete
reversal of adipocyte differentiation [83]. In addition, sup-
pression of several adipocyte genes, such as those encoding
aP2, adipsin, and insulin-responsive glucose transporter
(GLUT4), has been found [84–86]. This antiadipogenic effect
of TNF-α most likely results from the downregulation of
C/EBP-α and PPARγ expression [87]. In the case of leptin,
which induces lipolysis and glucose utilization in adipocytes,
it has been shown that TZD-activated PPARγ inhibits leptin
production [88]. This inhibition can be explained in terms
of a functional antagonism between C/EBP-α and PPARγ on
leptin promoter activity [89].

Apart from adipocyte differentiation, PPARγ activation
promotes the apoptosis of mature adipocytes [90]. It has
been reported that troglitazone, a PPARγ agonist of the TZD
class, increases the population of small adipocytes in white
adipose tissue and concomitantly decreases the population
of large adipocytes. In addition, the percentage of apoptotic
nuclei is increased by 2.5-fold in troglitazone-treated tissues,
implying that large adipocytes lost by apoptosis may be
counterbalanced by small adipocytes newly differentiated
following troglitazone treatment. PPARγ activation by TZD
thus leads to the accumulation of small adipocytes, which are
more insulin sensitive than the large adipocytes [90].
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5.1.2. Modulation of Adipokine Production. Another poten-
tial mechanism whereby activation of PPARγ in adipose
tissue may impact whole-body insulin sensitivity is by mod-
ulating the production of adipokines. Adiponectin is a multi-
meric plasma protein produced exclusively by adipose tissue
that shares homology with the c1q complement protein.
Multiple studies have shown that plasma adiponectin levels
are inversely correlated with adipose tissue mass and directly
correlated with insulin sensitivity [91]. The adiponectin
gene is a direct target for regulation by PPARγ [92].
Adiponectin mRNA and plasma protein levels are induced
in rodents and humans following TZD administration [93,
94]. Studies in mice have shown that administration of
adiponectin leads to suppression of hepatic glucose output
and improvement in glucose uptake, reminiscent of the
effects of TZDs [95]. Furthermore, mice lacking adiponectin
show impaired responses to TZDs [96]. Ligand activation
of PPARγ in adipocytes is also associated with decreased
production of proteins postulated to cause insulin resistance,
including TNF-α and resistin [97]. Knockouts of TNF, TNF
receptors, and resistin show improved insulin sensitivity,
consistent with a physiological and/or pathophysiological
role for these proteins in modulating insulin responses and
systemic metabolism [98, 99].

5.2. Skeletal Muscle. The overall improvement of insulin
sensitivity which is observed upon glitazone treatment may
potentially result from PPARγ activation also in skeletal
muscle. Even though PPARγ is expressed at a low level in
myofibers of humans and rodents, the net result of skeletal
muscle PPARγ activation is potentially relevant, because
skeletal muscle is the largest glucose utilizing organ in the
body. Mice with genetic deletion of PPARγ in skeletal muscle
showed significantly increased whole-body insulin resis-
tance [59, 60, 100], demonstrated either by insulin/glucose
tolerance tests or by hyperinsulinemic euglycemic clamp
studies, and developed dyslipidaemia, enlarged fat pads, and
obesity on high-fat diet [59, 60]. Lipid overload appears
to be a primary event in the pathogenesis of insulin
resistance, because increased adiposity is observed before
the development of overt hyperglycemia or hyperinsulinemia
and despite reduced dietary intake [59]. In addition, Hevener
et al. [60] postulated that loss of PPARγ resulted in skeletal
muscle insulin resistance followed by impaired insulin action
in adipose tissue and liver. By contrast, Norris et al. [59]
did not observe any change in muscle glucose disposal,
whereas hepatic insulin sensitivity was found to be impaired.
Regardless of the basis for these conflicting results, it appears
that the pharmacological response to TZDs is preserved, at
least under some experimental conditions, in mice lacking
PPARγ selectively in muscle. Thus, it is unlikely that a direct
action on muscle is the primary basis for the clinical effects
of PPARγ agonists, again underscoring the importance
of adipose tissue as the main mediator of TZD actions
[101].

5.3. Liver. In experimental models with ablation of white
adipose tissue, hepatic PPARγ participates in both fat regula-

tion and glucose homeostasis, and TZD treatment results in
lower triglyceride and glucose levels [102]. However, when
adipose tissue is normally expressed, the impact of PPARγ
in the liver on glucose homeostasis appears to be minimal.
Studies in rodents suggest that activation of hepatic PPARγ
signaling promotes lipid accumulation in the liver [102], and
hepatic expression of PPARγ is elevated in rodent models
of diabetes and insulin resistance that exhibit liver steatosis.
Treatment of diabetic mice with TZDs promotes hepatic lipid
accumulation, and this effect is abolished in liver-specific
PPARγ-null mice [90]. However, expression of PPARγ does
not appear to be linked to hepatic steatosis in humans [103].
In fact, studies have suggested that TZDs may be beneficial
in treating nonalcolholic fatty liver disease (NAFLD) and
nonalcoholic steatohepatitis (NASH) in patients with various
degrees of adipose tissue accumulation and metabolic abnor-
malities [104–106]. However, the ability of PPARγ to directly
drive hepatic lipid accumulation in humans treated with
TZDs is likely outweighed by the more prominent beneficial
effects on fatty acid storage in adipose tissue.

5.4. Systemic Effects. Circulating levels of free fatty acids
(FFAs) are a major determinant of insulin sensitivity [107].
The activated PPARγ receptors modulate the expression of
genes involved in lipid metabolism and promote fatty acid
uptake and storage in adipose tissue. Several studies have
shown that the antidiabetic efficacy of TZDs correlates with
their ability to lower circulating FFA levels [107]. PPARγ
activation by TZDs has been shown to reduce the amount
of circulating FFA in the body via adipocyte differentiation
and apoptosis. The number of small adipocytes, which
are able to accumulate FFA, increases at the expense of
hypertrophied adipocytes that release FFA. The distribu-
tion of adipose tissue is changed from visceral sites to
subcutaneous parts of the body. Thus, PPARγ activation
results in more efficient accumulation of fatty acids in the
subcutaneous depot [90]. Pharmacological data indicate that
PPARγ activation in adipose tissue may exert coordinated
effects on FFA flux (promoting uptake/trapping, whilst
simultaneously impairing release) through the regulation of
a panel of genes involved in FFA metabolism. Adipocyte
lipoprotein lipase expression is upregulated in response
to TZD treatment, thereby potentially enhancing release
of FFAs from circulating lipoproteins [108]. Simultaneous
upregulation of FFA transporters such as CD36 and fatty
acid transport protein on the adipocyte surface facilitates
their uptake [109]. TZDs may also reduce FFA efflux from
adipocytes through enhanced expression of genes that pro-
mote their storage in the form of triglycerides (e.g. glycerol
kinase directs the synthesis of glycerol-3-phosphate directly
from glycerol; PEPCK permits the utilization of pyruvate
to form the glycerol backbone for triglyceride synthesis)
[110, 111]. Coordinated regulation of these pathways ensures
that FFAs are stored appropriately in adipose tissue, and not
“ectopically” in other sites such as liver and skeletal muscle
where they are capable of inducing “lipotoxicity.”

As expected with PPARγ activation, a reduction in
plasma FFAs is a consistent observation across many large-
scale TZDs clinical trials [112]. This reduction in plasma
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FFAs also provides a potential mechanism to improve insulin
sensitivity in the liver and periphery, as well as reducing
lipotoxicity in the pancreatic β-cell and improving insulin
secretory function. Accordingly, TZD-induced decreases in
NEFA correlate with improvements in both muscle and
hepatic insulin sensitivity in patients with type 2 diabetes
[113]. A study in PPARγ (−/+) mice showed that PPARγ
indirectly protects pancreatic islets from lipotoxicity by
regulating triglyceride partitioning among tissues (reducing
net influx of NEFA into the islets) and that TZDs can
restore insulin secretion impaired by lipotoxicity [114]. It is
possible that β-cell protective effects of TZDs may also be
mediated indirectly through reduced β-cell stress resulting
from the amelioration of insulin resistance. However, based
on studies in isolated human islets, there is also evidence that
PPARγ activation can have direct effects on β-cell function
[115, 116].

6. Conclusions

PPARγ has emerged as a key regulator of adipocyte and
macrophage function in adipose tissue. Direct effects of
PPARγ activation on adipose tissue lipid metabolism and
endocrine function may be linked with secondary ben-
efits in liver and muscle lipid metabolism and insulin
signalling and suggest that PPARγ is an important target
for pharmacotherapy to tackle the metabolic syndrome and
obesity-related insulin resistance. Furthermore, activation
of PPARγ in adipose tissue may also have positive effects
on pancreatic β-cell function and help to minimize the
aggravated paracrine relationship between adipocytes and
macrophages seen in obesity. Thus, adipose PPARγ appears
to be an essential mediator for the maintenance of whole
body insulin sensitivity: protects nonadipose tissues against
lipid overload and guarantees appropriate production of
adipokines, such as adiponectin and leptin from adipocytes.
PPARγ ligands promote the restoration of normal levels of
adipose-derived substances, including FFA, TNF-α, leptin,
adiponectin, and PAI-1, and reverse major defects of the
insulin resistance syndrome due to their important effects on
inhibition of atherosclerosis, improvement of endothelial cell
function, and attenuation of low-grade inflammation.
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