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Abstract

The central nervous system receives hormonal cues (e.g., estrogens and leptin, among others) that 

influence reproduction and energy homeostasis. 17β-estradiol (E2) is known to regulate 

gonadotropin-releasing hormone (GnRH) secretion via classical steroid signaling and rapid non-

classical membrane-initiated signaling. Because GnRH neurons are void of leptin receptors, the 

actions of leptin on these neurons must be indirect. Although it is clear that the arcuate nucleus of 

the hypothalamus is the primary site of overlap between these two systems, it is still unclear which 

neural network(s) participate in the cross-talk of E2 and leptin, two hormones essential for 

reproductive function and metabolism. Herein we review the progress made in understanding the 

interactions between reproduction and energy homeostasis by focusing on the advances made to 

understand the cellular signaling of E2 and leptin on three neural networks: kisspeptin, pro-

opiomelanocortin (POMC) and neuropeptide Y (NPY). Although critical in mediating the actions 

of E2 and leptin, considerable work still remains to uncover how these neural networks interact in 

vivo.
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 Introduction

The central nervous system (CNS) regulates several physiological processes critical for 

continuation of the species (e.g., reproduction) and survival of an individual (e.g., food 

intake). In reproduction, the classical role of gonadal steroids in the mammalian CNS is the 

negative and positive feedback actions on the hypothalamic pituitary axis. In all mammalian 

species, disruption of the feedback loop by ovariectomy results in rising levels of luteinizing 

hormone (LH) and follicle stimulating hormone within 1 or 2 days. Restoring the feedback 

loop with doses of exogenous 17β-estradiol (E2), results in a rapid (<20–30 min) decline in 

plasma gonadotropin levels. Following this initial inhibition, high levels of E2 induces an LH 

surge in the ovariectomized female, the specific nature of which varies across species [1–5]. 

The effects of E2 on the hypothalamus and anterior pituitary act in concert with its effects on 

other tissues (ovary, uterus, etc.) to ensure a single ovulatory event that is precisely timed.

In addition, it has been known for a number of years that E2 has acute, membrane-initiated 

signaling actions in the brain [6–8]. A decade ago the nature and physiological significance 

of these actions were a matter of debate, but it is now widely accepted that some of the 

actions of E2 are quite rapid and cannot be attributed to the classical nuclear-initiated steroid 

signaling of estrogen receptor α (ERα) or ERβ. One explanation for the rapid steroid actions 

of E2 is that ERα and ERβ can associate with signaling complexes in the plasma membrane 

[9–14]. Many of the rapid effects of E2 can be induced by selective ERα or ERβ ligands, 

antagonized by the ER antagonist ICI 182,780 and are absent in animals bearing mutations 

in ERα and/or ERβ genes [10, 15–21]. As a second means of signaling it is also evident that 

E2 can activate bona fide G-protein-coupled receptors (GPCRs) such as GPR30 and a 

putative Gαq-coupled membrane ER (Gαq-mER) [21–29]. A substantial amount of evidence 

has been generated in the support of a novel Gαq-mER using intracellular sharp electrode 

and whole-cell patch recording from guinea pig and mouse hypothalamic slices [25, 26, 30]. 

Therefore, at least two forms of E2 signaling are known to exist: nuclear-initiated (classical) 

signaling and membrane-initiated (non-classical) signaling.

In addition to its role in the control of reproduction, E2 is involved in the regulation of 

appetite, energy expenditure, body weight, adipose tissue deposition and distribution in 

females [26, 31–34]. Elimination of E2 by removal of the ovaries induces an increase in food 

intake and decreases ambulatory and wheel running activities in rodents, which is reversed 

with estrogen replacement [26, 35–39]. In fact, hypo-estrogenic states are associated with 

decreased activity and an increase in body weight in females [26, 34, 38, 40–43]. The 

anorexigenic actions of E2 are critical throughout the lifespan of women, but are particularly 

important at the time of menopause when women often develop central adiposity, insulin 

resistance and cardiovascular disease [44]. Although E2 replacement can help reverse these 

effects, E2 also increases the risk for cancer and stroke [45, 46]. Interestingly, selective 

activation of a Gαq-mER elicits robust anorexigenic effects without the systemic risks 

associated with activating the transcription factors ERα and ERβ [25, 26], opening the door 

for the development of potential new therapeutics. The anorexigenic effects of estrogens are 

thought to be mediated through CNS actions, based on findings that injections of E2 into the 

third ventricle or directly into the paraventricular nucleus of the hypothalamus (PVH) or the 

arcuate/ventromedial nuclei are effective in reducing food intake, body weight, and 

Nestor et al. Page 2

Horm Mol Biol Clin Investig. Author manuscript; available in PMC 2016 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



increasing wheel running activity in females [35, 36, 41, 47]. Furthermore, it is evident that 

neurons within the hypothalamus regulate energy homeostasis and are affected by E2. For 

example, estrogens up-regulate the expression of β-endorphin protein in pro-

opiomelanocortin (POMC) neurons in ovariectomized female guinea pigs [48, 49]. In 

contrast, E2 reverses the ovariectomy-induced increase in neuropeptide Y (NPY) mRNA 

expression in the rat [50]. Therefore, it appears that neurons in the arcuate nucleus, more 

specifically POMC and NPY neurons, are major targets for the anorexigenic actions of 

estrogens, which emphasize their importance in energy homeostasis. The role of POMC and 

NPY neurons will be further expanded on below.

Since the middle of the last century, it has been known that a mutation in a single gene can 

lead to obesity and infertility in mice [51]. In 1994, the gene that encoded for this factor was 

cloned [52] and shortly thereafter named ‘ leptin’ [53]. This 167 amino acid protein is 

primarily expressed in white adipose tissue and circulates in its biologically active free form 

but also bound to leptin-binding proteins [54–56]. Leptin plays a key role in energy 

homeostasis and reproduction, in particular, this hormone has an important role in the 

neuroendocrine adaptation to starvation [57]. Studies reveal that low leptin concentrations 

are important for signaling energy deficits to the hypothalamic-gonadal axis, whereas high 

leptin concentrations in obesity are often associated with leptin resistance [57]. Furthermore, 

arcuate nucleus lesions result in an obese phenotype [58, 59], while chemical lesions of the 

arcuate nucleus that do not impinge on the ventromedial nucleus (VMH) result in the 

inability of leptin to reduce body weight in leptin-deficient ob/ob mice [60]. In 1995 using 

RT-PCR, Tartaglia and colleagues identified and cloned the leptin receptor [61]. Although 

there are several isoforms of the leptin receptor, leptin signaling occurs via the long isoform, 

from here on referred to as LRb [62]. LRb is expressed abundantly in the hypothalamic 

arcuate, ventromedial and dorsomedial nuclei [62–69]. Neuron-specific deletion of LRb 

leads to obesity in mice [70, 71], while neuron-specific replacement of LRb in mice globally 

lacking LRb can dramatically prevent this obese phenotype [71, 72]. LRb is a member of the 

class I cytokine receptor family and signals through activation of Janus 2 tyrosine kinase 

[61, 73]. Leptin binding to its receptor activates (phosphorylates) Jak2 tyrosine kinase, 

which mediates leptin signaling via several pathways, of which Tyr1138 phosphorylation of 

LRb and subsequent activation of signal transducer and activator of transcription 3 (STAT3) 

is particularly important for gene activation [73–78].

 17β-estradiol and leptin regulation of GnRH neurons

 17β-estradiol

Despite having been studied extensively for many years, the mechanisms by which estrogens 

regulate GnRH neurons are not well understood. It has been obvious for a number of years 

that GnRH neurons are modulated by E2 in a complex manner. For example, loss of gonadal 

steroids by ovariectomy disrupts GnRH secretion and GnRH regulation of pituitary LH 

secretion and results in elevated pulses of plasma LH that are synchronized by pulses of 

GnRH in hypophyseal portal blood [3]. This effect is caused in part by the loss of negative 

feedback actions of E2. However, both negative and positive feedback regulation of GnRH 

and LH secretion can be restored by replacement with E2 [2, 3, 79–81]. Genetic models have 
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been generated from ERα knockout (KO) animals that possess an ER-knock-in mutation, 

which allows in vivo distinction between estrogen response element (ERE)-dependent and 

ERE-independent mechanisms of E2 action [82, 83]. Given that GnRH neurons are void of 

ERα and the role of ERβ in GnRH neurons is uncertain [84–86], the ERE-dependent 

mechanisms of action presumably occur via afferent neurons. Based on studies using loose 

cell attached recordings to address the ERE-independent mechanism in GnRH neurons, it 

was concluded that an E2-induced decrease in GnRH neuronal firing during the morning 

(negative feedback model) as well as increased neuronal firing during the afternoon (positive 

feedback model) are both dependent on ERα binding to ERE [87]. In contrast, based on 

measurements of E2-induced inhibition of plasma LH in ovariectomized wildtype, ERαKO 

and ER-knock-in mutant animals, negative feedback regulation of LH (and presumably 

GnRH) is at least in part dependent on a mechanism other than ER binding to ERE [82].

In rodents, steroid positive feedback is believed to be by an action of E2 in the anteroventral 

periventricular (AVPV) nucleus [4, 88, 89]. AVPV neurons express abundant levels of 

transcription factors ERα and ERβ and the actions of E2 are mediated, in part, via nuclear-

initiated signaling mechanism [89–91]. Knockout of ERα, but not ERβ, receptor in forebrain 

neurons including neurons in the AVPV region abrogates the positive feedback effects of E2 

on GnRH neurons [84]. While E2 actions in the AVPV are in part caused by nuclear-initiated 

signaling mechanisms, these neurons also appear to be sensitive to rapid actions of E2 as 

seen with increased expression of pCREB, a neural activation marker, within as little as 30 

min of E2 administration [92]. In terms of negative feedback by E2, a rapid inhibition of 

GnRH and LH secretion (~15 min) [93, 94] is congruent with a membrane-initiated 

signaling of E2. In fact, years ago it was found that guinea pig GnRH neurons are rapidly 

hyperpolarized by E2 via activation of an G protein-coupled inwardly rectifying potassium 

(GIRK) channel conductance in the presence of tetrodotoxin, which blocks fast Na+ channel 

activity and essentially ‘electrically isolates’ GnRH neurons from synaptic inputs [95–97]. 

In mice, physiological concentrations (picomolar) of E2 rapidly augments KATP channel 

(also of the inwardly rectifying family) activity to hyperpolarize GnRH neurons (Figure 1) 

[28, 98]. E2 activates a protein kinase C (PKC)-protein kinase A signaling pathway and 

hence the selective Gαq-mER ligand STX (see below) is also able to mimic the actions of E2 

[28]. Both the effects of E2 and STX are abrogated by ICI 182,780 with a Ki of 0.5 nM [30] 

(Zhang et al., unpublished observations). These data would indicate that feedback regulation 

of E2 to inhibit or excite GnRH neurons is quite complex involving multiple receptors and 

both pre- and post-synaptic actions of E2.

 Leptin

Serum leptin concentrations have been shown to fluctuate during the menstrual cycle in 

women, with the highest concentration of leptin coinciding with the time of ovulation [99]. 

In primates an intravenous administration results in an increase in serum LH concentrations 

[100]. Furthermore, in vitro analysis of both hypothalamic explants as well as dispersed 

hypothalamic neurons reveals a stimulatory role of leptin on GnRH secretion [101]. 

Although this led to the initial hypothesis that leptin could directly regulate GnRH secretion, 

for several reasons the action of leptin is thought to be indirect via afferent neurons that 

synapse onto GnRH neurons. Firstly, it has been shown in mice that GnRH neurons are void 
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of LRb [100, 102]. Secondly, using the premise that expression of LRb might be too low to 

detect using in situ hybridization, mice genetically engineered to contain a fluorescent tag in 

the presence of LRb displayed GnRH neurons without LRb fluorescence, indicating a lack 

of LRb in GnRH cells [103]. Lastly, electrophysiological recording from the hypothalamic 

slice preparation reveals no direct action of leptin on GnRH neurons [104]. Therefore, the 

general consensus is that central actions of leptin on the hypothalamic pituitary gonadal axis 

are upstream of GnRH neurons. Therefore, there are three potential neural networks 

(kisspeptin, POMC and NPY) that mediate the actions of leptin and E2 (see below).

 Kisspeptin neurons: Regulation of GnRH neurons

Kisspeptin, also termed metastin, was discovered in 1996 [105] and became intimately 

associated with reproduction in 2003 when it was reported that mutations in the kisspeptin 

receptor, GPR54 (also known as Kiss1R), cause autosomal recessive idiopathic 

hypogonadism in humans, and deletion of GPR54 in mice results in defective sexual 

development and reproductive failure [106, 107]. The Kiss-1 gene encodes a 145 amino acid 

protein, which is proteolytically processed to Kisspeptin-54 and several other smaller 

peptide fragments collectively referred to as ‘kisspeptins’ [108]. Kisspeptin-54 is the 

endogenous ligand of GPR54, a receptor that is highly expressed in GnRH neurons [88, 

108–110] and when administered centrally, kisspeptin robustly stimulates GnRH and 

gonadotropin secretion in both prepubertal and adult animals [111–115]. All kisspeptins 

bind with low nanomolar affinities to rat and human GPR54 expressed in Chinese hamster 

ovary cells and stimulate PIP2 hydrolysis, Ca2+ mobilization, arachidonic acid release, and 

increased phosphorylation of extracellular signal-regulated protein kinase (ERK) 1, ERK2 

and p38 MAP kinase [108, 116]. In native GnRH neurons, kisspeptin causes excitation 

primarily through activation of transient receptor potential canonical (TRPC) channels and 

to a lesser extent inhibition of inwardly rectifying K+ channels [117–121]. In addition, 

kisspeptin induces a transient elevation of intracellular calcium in GnRH neurons, which is 

thought to be caused by intracellular calcium store release and has been hypothesized to play 

an important role in the kisspeptin-mediated depolarization [119]. However, the activation of 

TRPC channels by kisspeptin in GnRH neurons is not affected by buffering intracellular 

calcium levels by EGTA or BAPTA or by calcium store depletion [122]. Therefore, a rise in 

intracellular calcium does not appear to play a critical role in the kisspeptin-mediated 

activation of TRPC channels, but may be involved in Ca2+/calmodulin-dependent inhibition 

of high voltage-gated Ca2+ channels [123]. Conversely, the kisspeptin-activated TRPC 

current is attenuated by the calcium channel blockers Cd2+ and Ni2+, but not by the high 

voltage-activated calcium channel blocker amlodipine [117, 122]. This would indicate that 

T-type calcium channels may be involved. However, reducing extracellular calcium to 

nominally calcium free has no effect on the kisspeptin-activated TRPC current [117, 122], 

which is an indication that very little calcium is needed to spark the opening of TRPC 

channels in GnRH neurons. Therefore, with a sustained depolarization which exceeds that of 

classical neurotransmitters (e.g., glutamate), kisspeptin excites GnRH neurons primarily 

through the opening of a cation selective (TRPC) channel that is independent of intracellular 

calcium store release.
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Phosphatidylinositol 4,5-bisphosphate (PIP2) is an important regulator of TRPC channels 

[124–127]. Heteromeric channels expressing TRPC1 are activated by PIP2 [124, 125]. 

However, homomeric TRPC4 channels, composed of the full-length TRPC4α, but not the 

truncated TRPC4β splice variant, are inhibited by PIP2 in HEK cells and vascular smooth 

muscle cells [128]. Quanitative PCR analysis shows that TRPC4 is the main transcript in 

GnRH neurons, which is 4-fold higher than TRPC1 and TRPC5 (Figure 2) [110]. Although 

TRPC4 α is expressed in a subpopulation of GnRH neurons, intracellular dialysis with 

DiC8-PIP2 (synthesized short chain PIP2) robustly inhibits the kisspeptin-activated TRPC 

current in essentially all GnRH neurons. Therefore, one would deduce that the full-length 

isoform TRPC4α is responsible for kisspeptin activation of the TRPC current in the majority 

of GnRH neurons. In the presence of micromolar concentrations of wortmannin, which 

inhibits the regeneration of PIP2 via antagonizing PI4K [129], the recovery of TRPC 

channels following kisspeptin activation is significantly prolonged, which would indicate 

that the depletion of PIP2 is required for kisspeptin-induced TRPC channel activation in 

GnRH neurons. Therefore, PIP2 may be a critical point of physiological regulation of TRPC 

channels in GnRH neurons [130, 131]. In addition to PIP2 depletion, kisspeptin activation of 

TRPC channels is also dependent on cSrc kinase activation, as both global tyrosine kinase 

inhibitors such as genistein [132] and the specific cSrc kinase inhibitor PP2 [133, 134] 

attenuate kisspeptin currents in GnRH neurons [122]. Because cSrc kinase directly regulates 

TPRC4 channel activity through tyrosine phosphorylation, which also causes rapid insertion 

of TRPC4 channels into the plasma membrane [135], cSrc appears to be a key signaling 

molecule in the kisspeptin-mediated activation of TRPC channels in GnRH neurons (Figure 

3).

It has been shown numerous times that kisspeptin has prolonged excitatory effects on GnRH 

neuronal activity [136]. The question has been why is there very little spike frequency 

adaptation during kisspeptin-induced sustained firing? Recently it was illustrated that 

kisspeptin reduces spike frequency adaptation and prolongs firing in GnRH neurons via the 

inhibition of a calcium-activated slow after hyperpolarization current (IsAHP). GnRH 

neurons express two distinct IsAHP, a kisspeptin-sensitive and an apamin-sensitive IsAHP 

[137–139]. The kisspeptin-mediated inhibition of IsAHP is abrogated by the PKC inhibitor 

calphostin C, and the PKC activator phorbol 12,13-dibutyrate mimics and occludes any 

further effects of kisspeptin on IsAHP [139]. Therefore, in addition to increasing the firing 

rate through an overt depolarization, kisspeptin facilitates sustained firing through inhibiting 

an apamin-insensitive IsAHP in GnRH neurons via a PKC-dependent mechanism.

 Kisspeptin neurons: reproduction and energy homeostasis

 17β-estradiol regulation

Neurons expressing kisspeptin predominantly exist in two distinct areas of the forebrain: the 

AVPV and adjacent periventricular areas and the arcuate nucleus of the hypothalamus [81, 

91, 108, 140–146]. As mentioned before, neurons in the AVPV region including the more 

caudal periventricular preoptic area expresses high levels of ERα, and the actions of the 

gonadal steroids are mediated, in part, via the nuclear-initiated signaling (genomic) 

mechanism [84, 90, 147]. ERα colocalizes with the majority of both AVPV and arcuate 
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kisspeptin neurons [89, 148]. Also, kisspeptin mRNA expression is greatly increased in the 

periventricular preoptic area following E2 treatment [81, 91]. These findings combined with 

previous observations that the AVPV area is necessary for E2 positive feedback [84] has led 

to the conclusion that in rodents E2 acts on kisspeptin neurons in the AVPV to induce 

positive feedback. Conversely, kisspeptin expression in the arcuate nucleus is negatively 

regulated by estradiol. This is evident in ovariectomized adult animals with an increase in 

arcuate kisspeptin mRNA expression, which can readily be reduced by E2 replacement [81, 

91, 143, 144]. Therefore, kisspeptin neurons in the arcuate nucleus are strongly inhibited by 

E2. While this inhibition by E2 may utilize, at least in part, a non-ERE signaling pathway 

[91, 149, 150], it is now generally believed that the inhibition of arcuate kisspeptin mRNA 

expression by E2 may represent an important contribution to negative feedback, although the 

exact mechanisms remain to be elucidated.

 Leptin regulation

In addition to the E2 regulation, kisspeptin neurons are also controlled by leptin and might 

play a pivotal role in integrating energy homeostasis with reproduction. Evidence for this 

can be seen following food restriction, which results in a reduction of kisspeptin mRNA 

expression [151–156] as well as reduced GPR54 mRNA expression [154]. Also, an 

intracerebroventricular administration of leptin in food restricted sheep increases kisspeptin 

mRNA expression [156]. Furthermore, a global deletion of either leptin or LRb causes 

reduction in kisspeptin mRNA expression [157, 158]. Additionally, kisspeptin neuron-

specific deletion of LRb results in mice that fail to go through puberty and experience 

increased weight gain [159]. Unlike GnRH neurons, the action of leptin on kisspeptin 

neurons appears to be direct given that 36% of kisspeptin cells in female guinea pigs [104] 

and 40% in female mice [157] express LRb. Although one report in male mice indicates that 

activated p-STAT3 immunoreactivity, a common marker for direct leptin effects, occurs in 

only 6% of arcuate kisspeptin cells [103], this might represent a difference in leptin 

signaling between males and females. As final confirmation of direct leptin action on 

kisspeptin cells, with the use of electrophysiological recording from the hypothalamic slice, 

leptin was shown to depolarize 82% of recorded kisspeptin neurons, which occurs via 

activation of TRPC channels [104]. These findings support the hypothesis that kisspeptin 

neurons are a direct target in mediating leptin action on the hypothalamic pituitary gonadal 

axis (Figure 4).

 POMC neurons: energy homeostasis and reproduction

POMC neurons are also a prime candidate for integration of energy homeostasis and 

reproduction. POMC is a prohormone located in two areas of the brain, the arcuate nucleus 

and the nucleus tractus solitarius [160]. While fasting decreases POMC gene expression 

[161–164], mice with a congenital deletion of POMC results in significant weight gain and 

elevated plasma leptin concentrations [165]. Furthermore, ablation of POMC neurons in the 

adult mouse causes significant weight gain [166], which strengthens the argument for a 

dominant role for the POMC network in controlling energy homeostasis. As POMC is 

cleaved into multiple bioactive compounds, the one that appears to be important in energy 

homeostasis is α-melanocyte stimulating hormone (α-MSH). An intraperitoneal injection of 
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α-MSH can cause weight loss in mice [165]. Given that the anorexigenic actions of an 

MSH-like agonist, MTII, failed in mice lacking the melanocortin-4 receptor, but not in mice 

lacking the melanocortin-3 receptor, the effect of α-MSH most likely occurs via the 

melanocortin-4 receptor [167–170]. As for a role for POMC in reproduction, another 

bioactive compound produced from cleavage of POMC is an endogenous opioid, β-

endorphin, and it is also thought to be involved given that naltrexone, an opioid receptor 

antagonist, has been used to restore normal menstrual cyclicity in women with hypothalamic 

amenorrhea [171]. More specifically, in rats it has been shown that β-endorphin can both 

inhibit tonic LH secretion [172] and can block the LH surge [173]. In addition, cocaine- and 

amphetamine-regulated transcript, also expressed in POMC neurons, may be involved to 

communicate energy status to GnRH neurons [174]. Given the influence of energy 

homeostasis on POMC and the POMC influence on reproduction, this network is most likely 

a common site where leptin and estradiol overlap.

The neural networks that mediate the action of leptin have been the topic of intense debate 

for several years and POMC cells have been at the forefront of this research for several 

reasons. Leptin administration, either given by route of an intraperitoneal [163, 164, 175] or 

an intracerebroventricular injection [163] in mice lacking leptin (ob/ob mice), results in an 

increase in POMC mRNA expression. When given intrahypothalamically leptin has been 

shown to stimulate the release of α MSH in push-pull purfusate solutions of rats [176]. As 

mentioned before, the arcuate nucleus has a concentrated expression of LRb, and 

approximately 50% of POMC cells express LRb [177, 178]. Neuron-specific replacement of 

the LRb in mice lacking all forms of the leptin receptor, stimulates an increase in POMC 

mRNA expression [71]. Furthermore, LRb KO in POMC cells results in an increase in body 

weight compared to controls [179]. Electrophysiolical recordings demonstrate that leptin 

depolarizes POMC cells [180] and this effect of leptin on POMC can be abolished by 

inhibition of PI3K [181]. Subsequently it was demonstrated that leptin activation of POMC 

cells is via a Janus 2 tyrosine kinase-dependent pathway, which activates PI3 kinase and 

PLCγ to augment TRPC channel activity (Figure 5) [104, 182]. Altogether, leptin acts 

directly on POMC cells to regulate energy homeostasis.

Like leptin, E2 is also thought to act directly on POMC neurons based on several 

observations. First, E2 stimulates POMC mRNA expression in the arcuate [183] and can 

increase the number of POMC cells (as measured using β-endorphin immunocytochemistry) 

in the guinea pig arcuate nucleus [48]. Furthermore, with the use of a common marker for 

neuronal activation, c-fos, it has been shown that E2 increases POMC activity [184]. 

Therefore, E2 not only increases the number of POMC cells, but also enhances their activity. 

Evidence for direct action is seen in studies reporting that 20%–74% of POMC neurons 

express ERα [185, 186]. Although, POMC specific LRb KO results in increased body 

weight, but normal fertility [179], loss of ERα in POMC neurons causes increased weight 

gain in females as well as abnormal estrous cycles indicative of altered negative feedback 

regulation [187]. Electrophysiological studies using the hypothalamic slice have established 

that E2 acts rapidly and stereospecifically within physiologically-relevant concentrations 

(EC50=7.5 nM) to significantly reduce the potency of µ-opioid and GABAB agonists to 

activate an inwardly rectifying K+ conductance and thereby increase the activity of 

hypothalamic neurons including POMC neurons [25, 30]. Importantly, the ER antagonists 

Nestor et al. Page 8

Horm Mol Biol Clin Investig. Author manuscript; available in PMC 2016 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ICI 164,384 and ICI 182,780 block the actions of E2 with subnanomolar affinity (Ki=0.5 

nM) that is similar to Ki for antagonism of ERα [30, 188]. These pharmacological findings 

clearly argue for a novel G-protein-coupled membrane receptor with high selectivity for E2. 

About a decade ago a diphenylacrylamide compound, STX, that does not bind ERα or ERβ 

[25, 26] was developed to selectively target the Gαq-mER and its downstream signaling 

cascade – phospholipase Cβ-protein kinase Cδ-protein kinase A pathway – that mediates µ-

opioid and GABAB desensitization in hypothalamic neurons. The design arose out of studies 

in which E2 was shown to stereospecifically (17α-estradiol is not active) activate the Gαq-

mER signaling pathway, and these actions were blocked by the ER antagonist ICI 182,780 

[25, 26, 30]. Of high significance is that both STX and E2 activate this Gαq signaling 

pathway in mice lacking both ERα and ERβ and in GPR30-knockout mice [26, 189]. 

Definitive characterization (i.e., cloning) of this novel Gαq-mER is currently a work in 

progress. The importance of this membrane-initiated signaling is that estrogens and STX can 

rapidly alter the activity of neurons. including arcuate POMC neurons to quickly influence 

behaviors such as feeding and reproduction (Figure 6).

 NPY neurons: energy homeostasis and reproduction

NPY is a 36 amino acid peptide that was first identified from the porcine brain [190] and has 

been shown to significantly influence energy homeostasis. Some of the first reports of NPY 

action on energy homeostasis were in rats where an intracerebroventricle administration of 

this peptide resulted in increased food consumption [191, 192]. Since then, studies have 

shown compelling evidence for NPY action on energy homeostasis through two G-protein-

coupled receptor subtypes, Y1 and Y5. It has been shown through the central administration 

that selective agonists for these receptor subtypes cause an increase in food intake [193, 

194], while receptor antagonists have the opposite effect resulting in reduced food intake 

[195–197]. Interestingly, arcuate NPY neurons also contain another neuropeptide involved in 

energy homeostasis, agouti-related peptide (AgRP) [198] that acts as an inverse agonist to 

melanocortin-3 and -4 receptors [199, 200]. Despite this evidence, congenital deletion of 

NPY has no phenotypical effect on body weight, which is presumably due to compensatory 

mechanisms. Support of a critical role of these NPY/AgRP neurons comes from reports 

using a genetic model that inserts the diphtheria toxin receptor into NPY/AgRP neurons 

where injection of diphtheria toxin causes neuron-specific ablation in the adult mouse and 

results in rapid starvation [166, 201–203]. This phenotypic effect appears to be the result of 

GABA release from the NPY/AgRP neurons in the brainstem, given that an infusion of a 

GABAA receptor partial agonist, bretazenil, into the parabrachial nucleus prevents the 

starvation induced response caused by NPY/AgRP ablation [203]. In most of these studies, 

reproductive viability was not assessed, but one can envision that with a 20% reduction in 

body weight occurring within as little as 6 days, the reproductive function will undoubtedly 

be compromised. Furthermore, the importance of NPY/AgRP neurons to stimulate feeding is 

further supported by recent studies using optogenetics and selective photostimulation of 

NPY/AgRP neurons in mice to evoke voracious feeding within minutes [204]. Collectively, 

these results clearly define NPY/AgRP neurons as orexigenic. Although the role for NPY on 

food intake is concise, the role for NPY in reproduction involves both negative and positive 

feedback. NPY (and AgRP) mRNA expression decrease with food intake across the estrous 
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cycle with the lowest level during proestrus/estrus [205]. In agreement with this, are reports 

in female rats [206, 207] and ewes [208, 209] where intracerebroventricular administration 

of NPY inhibits LH secretion. However, it is of interest to note that NPY may be partially 

responsible for the LH surge given that mice lacking NPY have an LH surge with 

dramatically reduced amplitude [210].

As would be expected for a role in energy homeostasis, leptin has profound effects on 

hypothalamic NPY neurons. First, fasting causes a reduction in circulating concentrations of 

leptin and an increase in NPY mRNA expression [161, 164]. Secondly, subcutaneous [211] 

and intraperitoneal [164, 212] administration of leptin decreases NPY mRNA expression. 

This effect is thought to be directly on NPY neurons given they express LRb [63, 178]. At 

the cellular level, leptin has been shown to hyperpolarize NPY cells in rats [213] and guinea 

pigs [104], most likely due to activation of K-ATP channels [214, 215] and inhibition of 

calcium currents [213]. This supports the idea that leptin’ s action is exerted directly on NPY 

cells.

As for an effect of estradiol on the NPY network, it has been shown that E2 suppresses NPY 

mRNA in the arcuate nucleus [183, 216], which can occur directly on these neurons as up to 

20% of NPY neurons in the arcuate nucleus express ERα (Figure 7) [217–219]. 

Electrophysiological recordings reveal that estradiol hyperpolarizes NPY neurons through 

activation of the M-current and upregulation of KCNQ potassium channel expression [21]. 

This effect can be overridden by overnight fasting (caloric restriction), which supports the 

idea that NPY is a central regulator in energy homeostasis [219]. In addition, E2 both 

enhances and attenuates the GABAB receptor-GIRK channel coupling in NPY neurons, 

while the selective Gαq-mER ligand STX always enhances the coupling in an ICI 182,780-

sensitive manner [21]. Moreover, E2 and the selective ERα agonist PPT attenuates GABAB 

receptor-GIRK channel coupling (Figure 8). These data collectively suggest that E2 

suppresses or augments GABAB-mediated currents in these orexigenic neurons through 

binding ERα or a putative Gq-mER, respectively. The pathway by which E2-ERα suppresses 

GABAB signaling in NPY neurons appears to require PI3K, specifically the catalytic p110β 

subunit [21]. Because the selective ERα agonist PPT mimics the inhibitory effects of E2 on 

the coupling, presumably increasing membrane excitability, the PI3K signaling pathway 

may underlie the stimulatory effects of NPY on GnRH and LH secretion in females [220, 

221]. Indeed, NPY mRNA expression increases in the arcuate nucleus at the time of the 

preovulatory surge in female rats [222]. The Gαq-mER signaling pathway in NPY neurons 

may be specific for the control of energy homeostasis, whereas the ERα-PI3K pathway in 

NPY neurons may be exclusive for the reproductive pathway. These data suggests that E2 

and STX via a putative Gαq-mER rapidly enhances the coupling of GABAB receptors to 

GIRK channels in NPY neurons, thereby increasing the inhibitory tone of these orexigenic 

cells. Previous work has shown that E2 and STX exerts the exact opposite effect on POMC 

neurons [25, 26], which serve an opposing role in the control of energy homeostasis.
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 Expert opinion

POMC and NPY networks form the bedrock of energy homeostasis, whereas kisspeptin and 

GnRH neurons are the centerpiece in reproduction. Importantly, kisspeptin is the most 

potent and efficacious neuropeptide/neurotransmitter to excite GnRH neurons.

E2 and leptin (and insulin) exert potent effects on kisspeptin, POMC and NPY neurons 

within the arcuate nucleus. The development of Kiss1-CreGFP knock-in mice, as well as 

mice expressing GFP-tagged GnRH, NPY and POMC neurons, have allowed the direct 

targeting of these hypothalamic neurons for electrophysiological and molecular biological 

studies.

These studies have allowed us to clearly define single cell signaling characteristics, such as 

receptor and ion channel expression and responses to various stimuli. In addition, gene 

knockout and knock-in mice models have been used to evaluate the significance of discrete 

hypothalamic neuronal populations and signaling molecules for a number of functions 

including energy homeostasis and positive and negative feedback regulation of GnRH 

neurons. Therefore, although our understanding of the convergence of E2 and leptin on 

hypothalamic functions continues to progress, many questions still remain.

 Outlook (next 5–10 years)

Within the next decade, considerable progress should be made to understand how these three 

neural networks interact and where the confluence of E2 and leptin (and insulin) actions is 

within the CNS to control energy homeostasis and reproduction. The continued use of 

genetically engineered mice combined with truly innovative techniques such as neural-

specific targeting with chemical ablation and optogenetics will aide in defining how these 

neural networks interact with one another in vivo. An even greater challenge will be to 

understand these neural networks and the confluence of E2 and leptin actions on energy 

homeostasis and reproduction in animal species such as non-human primates, which are 

more closely related to human. For example, is kisspeptin downstream of NPY and POMC 

neurons with regard to reproduction, and are NPY and POMC downstream of kisspeptin 

with regard to control of energy homeostasis in all species? Clearly, obesity with leptin and 

insulin resistance is rampant worldwide and rationale treatment strategies are needed.
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Highlights

– Feedback of E2 to inhibit or excite GnRH neurons involves multiple 

receptors and both pre- and post-synaptic actions.

– Central actions of leptin on the hypothalamic pituitary gonadal axis are 

upstream of GnRH neurons, e.g., kisspeptin neurons.

– Leptin depolarizes kisspeptin neurons via activation of TRPC channels.

– E2 both positively and negatively regulates AVPV and arcuate kisspeptin 

neurons, through altering the expression of critical ion channels.

– Kisspeptin potently excites GnRH neurons through activating TRPC 

channels and inhibiting potassium channels.

– Leptin depolarizes POMC neurons via activation of TRPC channels.

– E2 and the selective Gαq-mER ligand STX desensitize µ-opioid and 

GABAB receptors in POMC neurons to increase their excitability.

– Leptin hyperpolarizes NPY cells via activation of KATP channels.

– STX enhances the coupling of GABAB receptors to GIRK channels in NPY 

neurons, thereby increasing the inhibitory tone of these orexigenic cells.
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Figure 1. 

E2 increases the whole-cell KATP channel current in GnRH neurons. (A) A representative 

recording showing that 100 nM E2 acutely enhanced the diazoxide-induced KATP channel 

current by 2.7-fold. The 50 µm diazoxide-induced currents were measured at a holding 

potential of −60 mV. After the first applications of diazoxide for 8 min, cells were washed 

with artificial cerebrospinal fluid for 15 min and then treated with E2 for 15 min before the 

second application of diazoxide. Tolbutamide was applied at the end to verify that the 

current was from the opening of KATP (Kir6.2/SUR1) channels. (B) A representative 

recording showing that 1 nM E2 acutely enhanced the diazoxide-induced KATP channel 

current by 1.5-fold. (C) Summary of the acute effects of E2 on the diazoxide-activated KATP 
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channel currents. The potentiating effects of E2 on the KATP currents were expressed as the 

ratio of the second diazoxide application-induced current to the first one. *p<0.05, 

**p<0.01, compared with control. Cell numbers are indicated above the bars. (D) The 

concentration-response relationship from C was fitted with logistic equation (r2=0.999), 

which yielded an EC50 of 0.60 nM. From Zhang et al., 2010 [28]; reprinted with permission 

from the Endocrine Society.
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Figure 2. 

TRPC channel subtype distribution by real-time PCR. (A) qPCR assay with amplification 

curves for TRPC1, TRPC4 and TRPC5 subunits. (TRPC1 and TRPC4 were analyzed in five-

cell pools and TRPC5 in ten-cell pools). Cycle number was plotted against the normalized 

fluorescence intensity (delta Rn) to visualize the PCR amplification. The cycle threshold 

(CT, arrow) is the point in the amplification at which the sample values were calculated. (B) 

Melting curves depict single-product melting at 77, 78, and 81°C for TRPC1, TRPC4 and 

TRPC5, respectively, illustrating that only one product was formed for each transcript in 

GnRH neuronal pools. (C) Bar graphs illustrating the relative mRNA expression of TRPC1, 

TRPC4 and TRPC5 (***p<0.001, TRPC4 compared to TRPC1 and TRPC5). The number of 

animals is indicated. From Bosch et al., 2013 [110]; reprinted with permission from Elsevier.

Nestor et al. Page 28

Horm Mol Biol Clin Investig. Author manuscript; available in PMC 2016 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 

Src kinase inhibitors abrogate the kisspeptin activation of TRPC channels in GnRH neurons. 

(A–D) Representative recordings showing that the kisspeptin (Kp-10)-activated inward 

currents were inhibited by tyrosine kinase inhibitor genistein (30 µM) and the cSrc kinase 

inhibitor PP2 (10 µM) but not by MAPK inhibitor U0126. Vhold =−65 mV. E, Summary of 

the effects of genistein, PP2, PP3, and the MAPK inhibitor U0126 on the kisspeptin-induced 

currents. The control represents kisspeptin in the presence of vehicle. **p<0.01, genistein 
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vs. control and PP2 vs. control (one-way ANOVA). From Zhang et al., 2013 [122]; reprinted 

with permission from the Endocrine Society.
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Figure 4. 

Leptin activation of nonselective cation current. (A) The I–V relationship for the leptin-

induced current was obtained by digital subtraction of the control I–V from the I–V in the 

presence of leptin (100 nM) using a Cs+-based internal solution and K+ channel blockers in 

the extracellular cerebrospinal fluid. The reversal potential of the nonselective cation current 

was −15 mV. B, Representative traces of the leptin-induced currents in the presence or 

absence of the TRPC4,5 activator La3+ (100 µM) or the relatively selective TRPC channel 

blocker 2-APB (100 µM). In voltage clamp, leptin induced an inward current in kisspeptin 

neurons (upper trace, 10.4 ±1.3 pA), which was potentiated by La3+ (middle trace, 16.4±2.4 

pA). In another kisspeptin neuron, leptin induced an inward current that was abrogated by 2-

APB (lower trace, 1.9±0.5 pA), applied 15 min before the application of leptin (100 nM). 

(C) Summary of the effects of 2-APB and La3+ on the leptin-induced inward currents in 

guinea pig arcuate (including kisspeptin) neurons. *p<0.05, **p<0.01, significantly different 

from the maximum current induced by leptin alone. Cell numbers are indicated. (D) 

Representative gel illustrating LRb mRNA expression in kisspeptin neurons. −RT cell and 
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BH+, BH− represent controls processed with (+) without (−) RT. From Qiu et al., 2011 

[104]; reprinted with permission from the Endocrine Society.
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Figure 5. 

The leptin response requires Jak2, PI3 Kinase and PLCγ activation. (A–D) Representative 

traces of the leptin-induced currents in the presence or absence of kinase inhibitors. (E) 

Summary of the effects of the Jak2 inhibitor AG490 (10 µM), PI3 kinase inhibitor 

wortmannin (100 nM), PLC inhibitor U73,122 (20 µM) and its inactive analog U73,343 (20 

µM), and the PLCγ inhibitor ET-18-OCH3 (15 µM) on the leptin-induced inward current. 

Blockers were applied for 15 min before the application of leptin (100 nM). Vhold =−60 

mV. **p<0.01, U73122 vs. U73343 group; ***p<0.001, significantly different from the 

leptin control group. Cell numbers tested are indicated. (F) Representative gel illustrating 

PLCγ1 mRNA expression in POMC neurons.−RT cell and BH+, processed without and with 

RT. (G) A cellular model of leptin ′s signaling and TRPC channel activation in the POMC 

neurons. Based on our findings and other published data, we propose that leptin binds to its 
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receptor (LRb) to activate Jak2, which phosphorylates IRS proteins and in turn activates PI3 

kinase. PI3 kinase subsequently activates PLC γ 1 to augment TRPC channel activity. PI3 

kinase also stimulates rapid incorporation of functional TRPC channels into the plasma 

membrane. All of these signaling events enhance POMC neuronal excitability. From Qiu et 

al., 2010 [182]; reprinted with permission from the Society for Neuroscience.
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Figure 6. 

(A) Estrogen and (B) STX significantly attenuate the body weight gain in female guinea pigs 

after ovariectomy. The female guinea pigs were ovariectomized (on day 0) and allowed to 

recover for 1 week before being given bi-daily subcutaneous injections of oil (OIL), 

estradiol benzoate (EB), or STX (see Materials and methods). A two-way ANOVA (repeated 

measures) revealed an overall significant effect of both estrogen and STX (p <0.001), and 

post-hoc Newman-Keuls analysis revealed daily significant differences between estrogen 

and oil-treated, and STX and oil-treated groups (**p<0.01). Bars represent the mean±SEM 
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of six and four animals per group for estrogen and STX treatment, respectively. (C) Uteri are 

enlarged after estradiol, but not after STX or oil-vehicle treatment (inset). After the 

treatment period, the uteri of the guinea pigs were harvested and examined. There was a 

significant increase in uterine size after EB, compared with oil-vehicle or STX treatment. 

Bar graphs represent mean uterine weights. ***p<0.001, EB vs. oil-treated females; n=6 

guinea pigs/group. From Qiu et al., 2006 [26]; reprinted with permission from the Society 

for Neuroscience.
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Figure 7. 

17β-estradiol regulation of KCNQ5 expression is ERα-dependent and a small population of 

NPY neurons express ERα. (A) E2 treatment in ovariectomized, wild-type females increased 

the mRNA expression of KCNQ5 in the arcuate nucleus but failed to regulate KCNQ5 

expression in ERα knockout mice. *p<0.05. The number in the column equals the number of 

animals per treatment. (B) A representative gel illustrating the expression of ERα in NPY 

neurons harvested from ovariectomized females and the co-expression of KCNQ5. (C) 

Immunocytochemistry showed a small population of GFP-NPY neurons co-localizing ERα: 

NPY-GFP neurons to the left and ERα-immunoreactive neurons in the middle with an 

overlay illustrating co-localization (indicated by arrows) to the right. 99% of GFP-labeled 

neurons express NPY mRNA. 3V demarks the third ventricle. White bar in the overlay 

represents 25 µm. From Roepke et al., 2011 [219]; reprinted with permission from the 

Society for Neuroscience.
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Figure 8. 

The ERα ligand PPT and the Gq-mER ligand, STX, differentially modulate the GABAB 

response in NPY/AgRP cells from intact male mice. (A–F) Representative traces of GABAB 

responses before and after application of E2, PPT or STX, with or without additional 

pharmacological manipulations (see below). The dotted line represents the baseline current. 

Vhold =− 50 mV. All vertical scale bars represent 20 pA, and all horizontal bars represent 5 

min. For illustrative purposes, most of the 15-min vehicle or treatment period between 

GABAB responses (R1 and R2) is removed. Other small breaks in the recording signify 
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removal of slightly prolonged return to baseline current following baclofen application. (G) 

Bar graphs summarizing the effects of E2, STX or PPT (all 100 nM) on the GABAB 

response (baclofen, 10 µM) in NPY/AgRP neurons from intact males. Baclofen elicited two 

equal-amplitude responses during perfusion of vehicle (n=7), but E2 suppressed the response 

(n=8). Coperfusing general PI3K inhibitors (WRT =wortmannin, 100 nM, n=5; 

LY=LY294002, 10 µM, n=4) or the p110β inhibitor TGX-221 (TGX, 11 nM, n=6) with E2 

reversed this effect. PPT mimicked the effects of E2 (n=4). STX augmented the response 

(n=5), but was rendered ineffective by co-perfusing an estrogen receptor antagonist (ICI=ICI 

182, 780, 1 µM, n=4). **p<0.01; ***p<0.001, vs. vehicle control group. Smith et al., 2013 

[21]; reprinted with permission from the American Physiological Society.
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