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Abstract

Background: The four major RNA adenosine modifications, i.e., m6A, m1A, alternative polyadenylation, and
adenosine-to-inosine RNA editing, are mediated mostly by the “writer” enzymes and constitute critical mechanisms
of epigenetic regulation in immune response and tumorigenesis. However, the cross-talk and potential roles of
these “writers” in the tumor microenvironment (TME), drug sensitivity, and immunotherapy remain unknown.

Methods: We systematically characterized mRNA expression and genetic alterations of 26 RNA modification
“writers” in colorectal cancer (CRC), and evaluated their expression pattern in 1697 CRC samples from 8 datasets. We
used an unsupervised clustering method to assign the samples into two patterns of expression of RNA modification
“writers”. Subsequently, we constructed the RNA modification “writer” Score (WM_Score) model based on
differentially expressed genes (DEGs) responsible for the RNA modification patterns to quantify the RNA
modification-related subtypes of individual tumors. Furthermore, we performed association analysis for WM_Score
and characteristics of TME, consensus molecular subtypes (CMSs), clinical features, transcriptional and post-
transcriptional regulation, drug response, and the efficacy of immunotherapy.

Results: We demonstrated that multi-layer alterations of RNA modification “writer” are associated with patient
survival and TME cell-infiltrating characteristics. We identified two distinct RNA modification patterns, characterized
by a high and a low WM_Score. The WM_Score-high group was associated with worse patient overall survival and
with the infiltration of inhibitory immune cells, such as M2 macrophages, EMT activation, and metastasis, while the
WM_Score-low group was associated with a survival advantage, apoptosis, and cell cycle signaling pathways. WM_
Score correlated highly with the regulation of transcription and post-transcriptional events contributing to the
development of CRC. In response to anti-cancer drugs, WM_Score highly negatively correlated (drug sensitive) with
drugs which targeted oncogenic related pathways, such as MAPK, EGFR, and mTOR signaling pathways, positively
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correlated (drug resistance) with drugs which targeted in apoptosis and cell cycle. Importantly, the WM_Score was
associated with the therapeutic efficacy of PD-L1 blockade, suggesting that the development of potential drugs
targeting these “writers” to aid the clinical benefits of immunotherapy.

Conclusions: Our study is the first to provide a comprehensive analysis of four RNA modifications in CRC. We
revealed the potential function of these writers in TME, transcriptional and post-transcriptional events, and
identified their therapeutic liability in targeted therapy and immunotherapy. This work highlights the cross-talk and
potential clinical utility of RNA modification “writers” in cancer therapy.

Keywords: RNA modification “writer”, Colorectal cancer, Tumor microenvironment, WM_Score, Drug sensitivity,
Immunotherapy

Introduction
Colorectal cancer (CRC) is the third most prevalent can-

cer and the second most frequent cause of cancer-related

deaths worldwide [1]. Previous studies have suggested that

the onset of CRC results from the accumulation of muta-

tions in genes controlling key signaling pathways, such as

RAS-MAPK, WNT, and PI3K [2]. While somatic muta-

tions may be partly responsible for the development of

CRC, epigenetic changes in cancer-related genes and

genes regulating inflammatory responses are also impli-

cated in the etiology of CRC [3]. Epigenetics is a branch of

genetics that studies stable and heritable phenotypes

caused by chromosomal changes that do not alter the

nucleotide sequence of genes [4]. Recently, an increasing

number of studies have shown that RNA modification is

an important mechanism of epigenetic regulation and

plays an important role in the physiological process of the

organism as well as the in occurrence and development of

diseases [3].

In nature, RNA modification is widespread on all

nucleotides: A, U, C, and G [5]. There are over 170

modifications in RNA levels, including m5C, m3C, m7G,

Pseudouracil(ψ), Nm modification [6–10]. It is possible

that many of those modifications could interact, but so

far is impossible to include all of them in the study.

Since Adenine is the nucleotide on RNA that is most

heavily modified, and modification on one of nitrogen

atom of the Adenine base, such as m1A, carries a posi-

tive charge under physiological conditions [11], it is

likely that there is some competitively compensated

interaction between the modifications. One report

already showed that m6A modification “writer” could

negatively regulate the A-to-I modification [12]. There-

fore, we focused on adenine-related RNA modification

including m6A methylation, m1A methylation, APA, and

A-to-I RNA editing. These modifications are mainly pro-

duced by the activity of enzymes known as “writers”.

m6A is methylation at the sixth nitrogen atom of RNA

base A. It is the most abundant form of internal RNA

modifications, affecting RNA stability and translational

efficiency. This modification is written by m6A-methyl-

transferases, such as METTL3, METTL14, WTAP,

RBM15, RBM15B, ZC3H13, and KIAA1429 [13]. The

presence of m6A can cause profound changes in cellular

processes and plays a key role in pathological conditions,

including the development of cancer [14–17].

The modification of m1A affects the first nitrogen atom

of the adenine base and carries a positive charge under

physiological conditions [18]. Known m1A modification

“writers” include TRMT61A, TRMT61B, TRMT10C, and

TRMT6 [19, 20]. m1A modification affects the tertiary

structure of ribosomes and the translation of genes. It has

an essential function in regulating gene expression and

controlling cell fate, thus affecting the occurrence and

progression of diseases [21, 22].

APA is an RNA-processing mechanism that cleaves

mRNA at different sites and adds poly(A) tails to gener-

ate transcripts containing different lengths of 3′-un-

translated region (UTR) or coding regions [23, 24].

CPSF, CSTF, CFI, PCF11, CLP1, NUDT21, and PABPN1

protein complex can regulate poly(A) site selection,

shear, and poly(A) tail synthesis [24, 25]. APA mediated

by CFI is linked to the suppression of glioblastoma. In

highly proliferating cells, the proximal poly(A) site is ex-

tensively used to form mRNA with a shorter 3’UTR [26].

RNA editing is a well-documented post-transcriptional

mechanism altering nucleotide in selected transcripts

[27]. The common type of RNA editing is A-to-I, which

is catalyzed by ADAR enzymes, including ADAR,

ADARB1, and ADARB2. The A-to-I editing can change

the sequence of amino acids in the protein and affect

other transcription processes, thereby contributing to

tumorigenesis and tumor progression by site-specific

modifications of tumor-related genes [28, 29].

To fully understand the significance of post-

transcriptional modifications, the investigation of cross-

talk between different patterns of these alterations is

urgently needed. The four types of RNA modification

“writers” may form an important and complex cellular

regulatory network in CRC, and the understanding of
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this network may provide important insights into the

mechanisms underlying CRC tumorigenesis.

The immune checkpoint blockade (ICB) therapy has

been applied for cancer treatment and delivered promis-

ing clinical outcomes; however, it generally shows a low

response rate. To improve the efficacy of immunother-

apy, dissecting the tumor microenvironment (TME) and

identifying the mechanism underlying the low rate of

response rate to ICB are urgently needed [30]. Recent

studies have shown that mRNA modification and related

enzymes are highly associated with the microenviron-

ment of tumors and immune cells. METTL3-mediated

m6A modification promotes the activation and matur-

ation of dendritic cells (DCs). Specific depletion of

Mettl3 in DCs resulted in an impaired phenotypic and

functional maturation of DCs and reduced their ability

to stimulate T cell responses [31]. Distinct patterns of

3’UTR have been detected across different immune cells

or other cell types present in TME [32]. However, due

to the limitations in methodology, these studies have

been confined to only one or two RNA modification

“writers”, while the antitumor effect of RNA modifica-

tion is characterized by highly integrated interaction of

numerous regulators. Therefore, a comprehensive

understanding of how the regulatory network of multiple

RNA modification “writers” affects the TME cells will

contribute to our understanding of the immune regula-

tion in the TME and the development of immunothera-

peutic strategies.

In this study, we explored genomic alterations in 1697

CRC samples from Gene Expression Omnibus (GEO)

[33–40] and The Cancer Genome Atlas (TCGA) [41] co-

hort and evaluated the patterns of RNA modifications.

We found that RNA modification patterns were not only

associated with the infiltration of multiple immune cell

types, but also with the activation of epithelial-

mesenchymal transition (EMT), cell cycle, and apoptosis.

Next, based on differentially expressed genes (DEGs) in

the RNA modification patterns, we developed the

“writers” of RNA modification score (WM_Score) model

to quantify the efficacy of “writers” in individual patients.

Finally, we demonstrated the applicability of the WM_

Score to distinguish the transcriptional and post-

transcriptional events, and assessed its therapeutic value

in targeted therapy and immunotherapy.

Results
Genetic and transcriptional alterations of four types of

RNA modification “writers” in CRC

Based on the published data, a total of 26 RNA modifi-

cation “writers” (Table S1), including 3 A-I modification

“writers”, 7 m6A modification “writers”, 4 m1A modifica-

tion “writers”, and 12 APA modification “writers” were

included in the current study [13, 19, 24, 28].

To determine the genetic alterations in RNA modifica-

tion writers in cancer, we assessed the prevalence of

non-silent somatic mutations in 26 writers. The muta-

tion frequency of individual writers was relatively low

across LAML, PCPG, and UVM cohorts in TCGA, while

the COAD cohort showed relatively high mutation fre-

quency of “writers” (Figure S2A). Of the 404 COAD

samples, 119 (29.46%) had mutations of RNA modifica-

tion “writers” (Fig. 1a). Among them, the mutation fre-

quency of ZC3H13 was the highest (7%), followed by

PCF11 and KIAA1429, while PABPN1 and NUDT21 did

not show any mutations in CRC samples. However, CRC

patients with mutations of these “writers” had shorter

overall survival than those without mutations (Fig. 1b;

log-rank test, p = 0.021), suggested that genetic alteration

of “writer” may play functional role in CRC. Next we

performed Gene Set Variation Analysis (GSVA) of

enrichment analysis [42] using the hallmark gene sets to

compare the “writers’“mutation group with the non-

mutation group. We found that in the mutation group,

more cancer hallmarks related gene sets were enriched,

such as KRAS signaling pathway, TNFα signaling path-

way, P53 signaling pathway, and IL6/JAK/STAT3 signal-

ing pathway (Figure S2B). IL-6 is a pleiotropic cytokine

in immune and inflammatory responses and plays an

important role through the JAK3/STAT3/SOCS3 path-

way. Moreover, IL-6-mediated dysregulation of the JAK/

STAT3/SOCS3 signaling pathway is closely related to

the formation of CRC [43, 44]. This suggests that the

mutation of “writer” is likely to lead to functional

changes that affect the survival prognosis of CRC.

We then examined somatic copy number alterations

of these “writers” and found that CSTF1, CPSF1/4,

ZC3H13, and KIAA1429 had a widespread frequency of

copy number variation (CNV) gain (Fig. 1c). To ascer-

tain whether these genetic variations impacted the

expression of RNA modification “writers” in CRC

patients, we compared the mRNA alterations of regula-

tors between paired normal and CRC samples and

showed that the expression of a majority of the “writers”

was significantly increased in CRC (Fig. 1d-g). Compared

to the normal colon tissue, RNA modification “writers”

with CNV gain (e.g., CSTF1 and CPSF1) were markedly

more frequent in CRC tissues (Fig. 1c and g), suggested

CNV may be a regulator factor to mRNA expression of

“writer”. However, some “writer” showed upregulated

mRNA expression but with high frequency of CNV loss.

To investigate the discrepancy between CNV values and

mRNA expression in tumor sample, we focused on eight

writers which showed CNV loss in more than 20% of

the samples, and divided the CRC cohort into four

groups based on their CNV values, including CNV gain,

CNV loss and or non-significant alteration of CNV.

Then, we compared mRNA expression of “writer”
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between these groups (Figure S2C). Indeed, patients with

CNV gain showed higher expression than those with

CNV loss in these “writers”. METTL14, ADORB1,

CPSF2, and PABPN1 showed significant downregulation

or non-significant alteration in CNV loss group com-

pared to normal tissues. Tumorigenesis is complex

process, CNV changes could not fully explain the differ-

ential the expression of “writers” between tumor and

normal tissues. Although many of the detected expres-

sion alterations of “writers” may be explained by CNVs,

the CNV is a partial but not unique factor to regulate

mRNA expression [45]. Other features, including DNA

methylation and transcription factors, can regulate gene

expression [46–48].

This analysis demonstrated a high heterogeneity of

genetic landscape and expression of RNA modification

“writers” between normal and CRC samples, indicating

that the expression imbalance of RNA modification

“writers” has potential roles in the onset and develop-

ment of CRC.

Distinct patterns of RNA modification “writers” associated

with cancer hallmarks and immune infiltration

To gain a comprehensive understanding of the expression

pattern of the “writers” involved in tumorigenesis, 1695

CRC samples from eight datasets that contained clinical

information (GSE41568, GSE39582, GSE13294, GSE14333,

GSE18105, GSE20916, GSE21510, GSE37892) were se-

lected for further analysis (Table S2). Univariate Cox

regression showed that 10 of 26 RNA modification “wri-

ters’“correlated with CRC prognosis in the GSE39582 data-

set (Figure S3A).

To explore the relationship among writers, we calcu-

lated pairwise correlations among the expression of 26

writers in CRC and found that positive correlations were

more frequent than negative correlations (Fig. 2a). We

identified that not only the expression of RNA modifica-

tion “writers” was remarkably correlated in the same cat-

egory, but also a significant correlation was present

among different types of modification writers. Notably,

the expression of ADARB2, ZC3H13, and PABPN1 was

negatively correlated with other “writers”. While the

expressions of TRMT61B, TRMT6, KIAA1429,

TRMT10C, CSTF2/3, CPSF4, and CLP1 were positively

correlated to each other (Fig. 2a). Thus, cross-talk

among the “writers” may be important for the gener-

ation of different RNA modification patterns between

individual tumors.

Next, we applied Consensus Clustering based on the

expression profiles of 26 selected RNA modification

“writers” to classify patients with qualitatively different

RNA modification patterns (Table S3). After unsuper-

vised clustering, 727 CRC patients from the combined

datasets were identified in Cluster_1, whereas the other

968 patients were identified in Cluster_2 (Fig. 2b). In the

prognostic analysis of RNA modification patterns, sub-

types revealed a particularly prominent survival advan-

tage in the Cluster_2 modification pattern (Fig. 2c; log-

rank test, p = 3.0 × 10− 5). To identify the biological sig-

nificance of these distinct RNA modification patterns,

we performed GSVA enrichment analysis (Table S5).

Cluster_1 was markedly enriched in stromal and car-

cinogenic activation pathways such as the ECM receptor

interaction, TGF-β signaling pathway, and cell adhesion,

suggesting that RNA modification “writers” may be asso-

ciated with tumorigenesis. Cluster_2 was enriched in

pathways associated with proliferation and apoptosis,

including the activation of the cell cycle, DNA replica-

tion, and mismatch repair pathways (Fig. 2c).

A large number of studies have documented the asso-

ciation between TME-infiltrating immune cells and

RNA modification. Therefore, we attempted to investi-

gate the functional role of “writers” in TME [31, 32]. To

compare the component differences of immune cells

among the RNA modification patterns, we used the

CIBERSORT method [49], a deconvolution algorithm

that uses support vector regression to determine the

type of immune cells type in tumors (Table S6-S9). This

approach showed that RNA modification “writers” may

have a strong correlation with TME cell infiltration (Fig-

ure S3B). For example, CSTF1, CSTF3, CPSF3, TRMT6,

and TRMT61B were significantly negatively correlated

with M2 macrophage differentiation. Differences in

TME cell infiltration between the two RNA modification

clusters were also analyzed. We observed that the infil-

tration by M2 macrophages (p = 1.2 × 10− 16), T

(See figure on previous page.)
Fig. 1 Genetic and transcriptional alterations of RNA modification “writers” in CRC. a The mutation frequency of 26 RNA modification “writers” in

404 CRC patients from the TCGA cohort. Each column represents individual patients. The upper bar graph shows TMB; the number on the right
indicates the mutation frequency in each “writer”. The right bar graph shows the proportion of each variant type. The stacked bar graph below

shows the fraction of conversions in each sample. b Kaplan-Meier curves show overall survival of patients with (red) or without (blue) mutations
in RNA modification “writer” in the COAD cohort. The grouping of CRC samples is indicated at the bottom of the chart. p < 0.05 in the two-sided
log-rank test was considered statistically significant. c Bar graphs showing the frequency of CNV gain (red), loss (blue) and non_CNV (green) of

RNA modification “writers” in the TCGA-COAD/READ cohort. The height of each bar represents the alteration frequency. d-g Box plots show the
expression distribution of 26 “writers” of 4 types RNA modification between paired normal (blue) and CRC (red) tissues; the paired samples are

connected by gray dash lines. The boxes indicate the median ± 1 quartile, with the whiskers extending from the hinge to the smallest or largest
value within 1.5× IQR from the box boundaries
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regulatory cells (Tregs) (p = 2.2 × 10− 12), T follicular

helper cells (Thf cells) (p = 0.0016), and T gamma delta

cells (p = 0.0062) was higher in Cluster_1. The infiltra-

tion of activated DCs (p = 9.7× 10− 5), natural killer cells

(p = 0.015), and M1 macrophages (p = 0.0068) were

higher in Cluster_2 (Fig. 2e). Overall, the RNA modifica-

tion Cluster_1 was enriched in immunosuppressive cells,

e.g., M2 macrophages and Tregs, indicative of poor

prognosis (Fig. 2d). Notably, the distribution of the two

types of polarization of macrophages differed signifi-

cantly between the two clusters. The M2 macrophages

were significantly enriched in Cluster_1 (Fig. 2e-f), while

M1 macrophages were dominant in Cluster_2. In agree-

ment with this conclusion, the analysis of the expression

of macrophage markers indicated that M2 macrophage

marker genes IL1R1, FIZ1, TGFB1, IL10, and ARG1

were significantly upregulated in Cluster_1 compared to

Cluster_2, while M1 macrophage marker genes IL12A,

NOS2, IL23A, and IL15RA were significantly downregu-

lated (Fig. 2g). These suggest RNA modification patterns

affected the degree of infiltration by specific immune cell

types but did not alter the types of infiltrating immune

cells.

Construction of RNA modification “writer” signature

To further characterize the functional role of the two

RNA modification patterns identified above, we identified

463 RNA phenotype-related DEGs and performed enrich-

ment analysis. We found that these genes showed enrich-

ment in biological processes, particularly those related to

DNA replication, cell cycle, and tRNA metabolic process

(Figure S4A). They were also enriched in signaling path-

ways, particularly the p53 signaling pathway and IL-17 sig-

naling pathway (Figure S4B). To further validate this

differential regulation, we performed unsupervised clus-

tering analyses based on the 463 genes related to RNA

modification. This analysis classified the patients into two

genomic subtypes: gene.cluster_A and gene.cluster_B

(Table S3 and S10). Consistent with the clustering of RNA

modification patterns (Fig. 2b), 205 of 562 CRC patients

were clustered in gene.cluster_A, which is related to Clus-

ter_1, while 357 were clustered in gene.cluster_B, which is

related to Cluster_2. In addition, patients in gene.cluster_

A had a worse prognosis than patients in gene.cluster_B

(Figure S4C; p = 0.0021, log-rank test), similarly to patients

in Cluster_1 (Fig. 2d).

Given the heterogeneity and complexity of RNA modi-

fications, we constructed a DEGs-based score model

based on these phenotype-related genes to quantify the

RNA modification pattern of individual patients with

CRC; this model was termed as the WM_Score

(“Writers” of RNA Modification_Score; see Methods).

We found that WM_Score of Cluster_1 significantly

higher than Cluster_2 (Fig. 3b; Wilcoxon test, p < 2.2 ×

10− 16). In consistence, gene.cluster_A had significantly

higher WM_Score than gene.cluster_B (Fig. 3c; Wil-

coxon test, p < 2.2 × 10− 16). To assess the effect of the

WM_Score on TME, we compared the infiltration of im-

mune cells between the WM_Score-low and -high

groups. We found that the infiltration of M2 macro-

phages, Tregs, Tfh cells, and T gamma delta cells was

higher in the WM_Score-high group, and the infiltration

of activated DCs and M1 macrophages was higher in the

WM_Score-low group (Figure S4D).

We performed overlap analysis of these three different

classifiers based on the Wayne diagram and the histo-

gram of frequency distribution. As shown in Figure S4,

668 out of 838 (79.72%) samples in the WM_Score high

group overlap with the Cluster_1 sample, 798 out of 857

(93.12%) samples in the WM_Score low group overlap

with the Cluster_2 sample (Figure S4E-F). Six hundred

eleven out of eight hundred thirty-eight (72.91%) sam-

ples in the WM_Score high group overlap with samples

in the genecluster_A, and 857 (100%) samples in the

WM_Score low group overlap with samples in the gen-

e.cluster_B group (Figure S4G-H). The results suggested

that these three computational methods of classification

have a high degree of coincidence.

(See figure on previous page.)
Fig. 2 Patterns of RNA modification and biological characteristics of each pattern. a Heatmap shows a positive (red) and negative (blue)

correlation among RNA modification “writers” in CRC. *p < 0.05, **p < 0.01, and ***p < 0.001, as determined by the Spearman correlation analysis.
b Unsupervised clustering of 26 RNA modification “writers”. The clusters of CRC cohorts and RNA modification type were used as sample

annotations. Red, high expression of “writers”; blue, low expression. c A heatmap visualizing the GSVA enrichment analysis shows the activation
states of biological pathways in distinct RNA modification patterns. Red, activated pathways; blue, inhibited pathways. The names of CRC cohorts
were used as sample annotations. d Kaplan-Meier curves compare overall survival between two RNA modification patterns, Cluster_1 (red) and

Cluster_2 (blue), in GSE39582. The grouping of CRC samples is shown at the bottom of the chart. p < 0.05 in the two-sided log-rank test was
considered statistically significant. e The difference in the relative abundance of immune cell infiltration in TME between RNA modification

Cluster_1 and RNA modification Cluster_2 was calculated by the CIBERSORT algorithm. Difference > 0 indicates that the immune cells were
enriched in RNA modification Cluster_1, and the column color represents the statistical significance of the difference. f-g The difference of
immune cell infiltration (f) and expression of macrophage marker genes (g) between RNA modification patterns. The upper bar graph shows the

number of datasets that differ significantly between Cluster_1 and Cluster_2. The color of the bubble below the graph indicates the difference in
each of the distinct GEO datasets, and the bubble size indicates the statistical significance of the difference. Difference > 0 indicates that the
infiltration of immune cells (f) or expression of macrophage marker genes (g) were higher in RNA modification Cluster_1
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To further assess the clinical relevance of the WM_

Score, we divided patients into WM_Score-low and

-high group with the cutoff value determined by the

survminer package. Patients with low WM_Score dem-

onstrated a prominent survival benefit (Fig. 3d; log-rank

test, p < 1.3 × 10− 6). The AUCs of the time-dependent

ROC curves for the WM_Score were 0.64, 066, and

0.64 at, respectively, 3, 6, and 12-months overall sur-

vival (Fig. 3h). To examine whether the WM_Score

could serve as an independent prognostic factor, we

performed multivariate Cox regression analysis using

the patient clinical characteristics, including age, gen-

der, and TNM status. We found that WM_Score was

a robust and independent prognostic biomarker for

evaluating patient outcomes (Fig. 3f; HR = 0.5260, 95%

CI 0.3898–0.7097, p < 0.001). The reliability of the

WM_Score was validated using 562 samples of CRC

patients from the TCGA (Fig. 3e,g; Table S4). Con-

sistent with these findings, the WM_Score-low group

had a better overall survival advantage than the WM_

Score-high group in univariate (Fig. 3e; log-rank test,

p = 0.0025) and multivariate (Fig. 3g; HR = 0.5342,

95% CI 0.3551–0.8037, p = 0.00262) Cox regression

analysis. These results imply that the WM_Score can

reflect the RNA modification patterns and predict the

prognosis of CRC patients.

Molecular subtypes and clinical characteristics associated

with WM_Score in CRC

CRC can be divided into four consensus molecular sub-

types (CMSs), CMS1–4, with distinct molecular features

[50]. They include CMS1 (microsatellite instability) with

immune cell infiltration, hypermutated state, unstable

microsatellites, and strong immune activation, CMS2

(canonical) with marked activation of WNT and MYC

signaling, CMS3 (abnormal metabolism) with evident

metabolic dysregulation, and CMS4 (mesenchymal) with

prominent TGF-β activation, invasion of stromal cells,

and angiogenesis [50]. We have shown that Cluster_1 is

accompanied by the activation of EMT, TGF-β, and

VEGF signaling pathways (Fig. 2c). Additionally, we cal-

culated the EMT score based on the expression of 25

epithelial marker genes and 52 mesenchymal marker

genes [51] and found a positive correlation between the

WM_Score and EMT score (Figure S5A; Rs = 0.29; p =

1.7 × 10− 8). Moreover, the EMT score was significantly

higher in the WM_Score-high group than in the WM_

Score-low group in the TCGA-COAD/READ cohort

(Figure S5B; p = 5.2 × 10− 5).

To examine the association between the WM_Score

and CMS subtypes, we compared the WM_Scores of dif-

ferent CMS subtypes in four GEO datasets (GSE39582,

GSE13294, GSE14333, GSE20916) and the TCGA

Cohort, respectively (Table S3–4). We found that WM_

Scores varied significantly among CMS subtypes, with

the CMS4 group showing the highest score (Fig. 4a-b).

Also, the distribution of CMS subtypes was significantly

different between the WM_Score-high and -low groups.

The CMS4 subtype was more frequent in the WM_

Score-high group, while the CMS1/2 subtype was pre-

dominant in the WM_Score-low group (Figure S5C-D).

We further analyzed the signaling pathways characteris-

tic of the different CMS subtypes. The signaling path-

ways activated mostly in the CMS4 samples were WNT,

TGF-β, VEGF, and EMT signaling pathways, while the

characteristic signaling pathways activated in CMS1/2

were those related to the cell cycle and proteasome

(Figure S5E-F). Consistently, in both cohorts, the enrich-

ment score of CMS4-related signaling pathways was sig-

nificantly higher in the WM_Score-high group, while the

enrichment score of CMS1/2-related signaling pathways

was significantly higher in the WM_Score-low group

(Fig. 4c-d).

CMS subtypes are reflected in tumor progression and

clinical outcome. CMS4 tumors tend to be diagnosed at

more advanced stages (Figure S5G) and are associated

with worse overall survival (Figure S5H; log-rank test,

p = 0.01). We further documented that the WM_Score is

different among tumor stages and is higher in more

advanced CRC (Fig. 4e), suggesting the involvement of

parameters comprising the WM_Score in tumor pro-

gression. Although improved treatment strategies involv-

ing surgery and chemo- and radiotherapy have increased

the overall survival rates in patients with early stages of

CRC, 40–50% of CRC patients present with metastasis

either at the time of diagnosis or as a recurrent disease

(See figure on previous page.)
Fig. 3 Construction of RNA modification characteristic signature. a Unsupervised clustering of the RNA modification phenotype-related genes.

The names of CRC cohorts were used as sample annotations. Red, high expression of phenotype-related genes; blue, low expression. b-c
Differences in the WM_Score between RNA modification patterns (b) and gene clusters (c) in eight GEO-CRC cohorts. The Wilcoxon test was used

to determine the statistical significance of the difference, and p < 0.05 was considered statistically significant. d-e Kaplan-Meier curves show
overall survival in WM_Score-high (red) and -low (blue) in the GSE39582 (d) and TCGA-COAD/READ (e) cohorts. The grouping of CRC samples is
shown at the bottom of the chart. p < 0.05 in the two-sided log-rank test was considered statistically significant. f-g Multivariate Cox regression

model analysis, which included the factors of WM_Score, patient age, gender, TNM status, and patient outcomes in the GSE39582 (f) and TCGA-
COAD/READ (g) cohorts. The length of the horizontal line represents the 95% confidence interval (CI) for each group. The vertical dotted line

represents the hazard ratio (HR) of all patients shown by the forest plot. h The predictive value of WM_Score in patients among the GSE39582
cohort (AUC:0.64, 066, and 0.64; 3, 6, and 12-months overall survival)
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Fig. 4 Biological characteristics of CRC associated with the WM_Score. a-b WM_Score differences among CMS subtypes of CRC in four GEO-CRC
datasets (a) and the TCGA-COAD/READ cohort (b). c-d Heatmap shows the differences in enrichment in the characteristic signaling pathways of
CMS subtypes between WM_Score-high and -low groups in four GEO-CRC datasets (c) and the TCGA-COAD/READ cohort (d). Red, high

enrichment score; blue, low enrichment score. e WM_Score differences among TNM stages of CRC in eight GEO-CRC datasets. f Differences in the
WM_Score between metastasis (red) and non-metastasis (blue) group in the GSE39582 cohort. Wilcoxon test was used to assess the difference.

The boxes indicate the median ± 1 quartile, with the whiskers extending from the hinge to the smallest or largest value within 1.5× IQR from the
box boundaries
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after a curative therapy [52]. Most CRC patients with

distant metastasis are not suitable candidates for con-

ventional treatment and exhibit a poor 5-year survival

rate of < 10% [53]. The correlation between the WM_

Score and CMS4 subtype and between the WM_Score

and CRC stage suggests that the WM_Score might be

associated with patient survival by reflecting tumor

metastasis. WM_Score was significantly higher in meta-

static than in non-metastatic CRC patients (Fig. 4f).

These results suggest that the WM_Score correlates

closely with CMS subtypes, and a high WM score may

indicate a poor prognosis by being associated with the

activation of EMT, TGF-β, and other signaling pathways

mediating tumor metastasis.

WM_Score involved in transcriptional and post-

transcriptional regulation

WM_Score is an assessment model based on the expres-

sion of 26 RNA modification “writers”, which regulate

post-transcriptional modifications, including RNA trans-

port, localization, translation, and other biological pro-

cesses. To further assess the power of WM_Score in the

interpretation of transcriptional and post-transcriptional

events, we focused on RNA modification “writers”-re-

lated processes (e.g., APA, RNA editing). Given that

transcripts processed by APA have a short 3’UTR, thus

tolerating the regulation of miRNAs [54], we hypothe-

sized that RNA modification patterns were associated

with distinct miRNA characteristics under the action of

APA modification “writers”. We first analyzed differ-

ences in miRNAs expression among different RNA

modification patterns in the TCGA-COAD/READ co-

hort. Thirty-nine miRNAs significantly differentially

expressed between WM_Score-high and -low groups

were screened out, and enrichment analysis of the sig-

naling pathways of their target genes was performed

(Table S11). The miRNA-targeted genes were signifi-

cantly correlated with cell cycle, apoptosis, EMT, PI3K-

Akt, and other signaling pathways, and the targeted

genes were differentially expressed between the two

groups. Thirteen out of 14 miRNA-targeted-DEGs in the

EMT signaling pathway were highly expressed (Fig. 5a).

In contrast, target genes of a group of miRNAs with

lower expression in the WM_Score-low group were up-

regulated and were significantly enriched in the cell

cycle and apoptosis signaling pathway. Specifically, 48

out of 55 miRNA-targeted DEGs in the cell cycle, 24 out

of 30 miRNA-targeted DEGs in apoptosis, 25 out of 33

miRNA-targeted DEGs in the mTOR signaling path-

way showed enrichment in the WM_Score-low group

(Fig. 5a). These analyses suggested that the WM_

Score is associated with miRNA expression and the

regulation of signaling pathways.

To explore the functional role of RNA modification

writers, we analyzed the APA and A-I editing events of

each gene in the TCGA-COAD/READ cohort to observe

the post-transcription characteristics. We identified the

genes with the differences in APA between different

RNA modification patterns and compared the survival

associated with these genes to determine whether the

length of 3’UTR affects the survival of CRC patients

(Figure S6A; Table S12–13). Most of the genes with

shortening APA events were enriched in the WM_

Score-low group and were associated with shorter sur-

vival (Fig. 5b and S6A). Akt was associated with the

telomerase-reverse transcriptase catalytic subunit HEAT

R3, which may be activated by Akt in melanoma [55,

56]. A rescue study indicated that LINC00958 regulates

the proliferation, motility, and EMT of oral squamous

cell carcinoma cells through YBX2 [57]. HEATR3 (Diff =

− 0.22; p = 7.61 × 10− 7) and YBX2 (Diff = − 0.19; p =

5.67 × 10− 6) transcripts exhibited statistically significant

shortening, which was associated with worse survival of

CRC patients (Fig. 5c; HEATR3: log-rank test, p =

0.0033; YBX2: log-rank test, p = 3.0 × 10− 4). We raised

the possibility that in the WM_Score-high group, due to

the shortening of HEATR3 and YBX2, which, in turn,

shorten the 3’UTR, miRNA may not be able to target

the corresponding gene, resulting in the activation of

gene expression and contributing to the initiation and

development of CRC.

We identified the genes with differences in A-to-I edit-

ing between WM_Score-high and -low groups in 159

TCGA-READ/COAD samples (Table S14–15). The A-

to-I editing differential genes identified were less due to

relatively low read coverage of RNA-seq data in CRC,

with fewer informative editing sites [58]. An increasing

amount of evidence shows that ADAR1-mediated A-to-I

editing can modify the 3’UTR region of mRNA, affecting

the binding of miRNAs [59]. The genes with lower A-to-

I editing rate were enriched in the WM_Score-low group

and were associated with worse survival of CRC patients

(Fig. 5d and S6B). NUP43 is a stable component of the

Nup107–160 complex, which may regulate the malig-

nant transformation of aged cells by enabling the trans-

location of the phosphorylated extracellular signal-

regulated kinase (ERK) to the nucleus [60]. Reduction in

NUP107 attenuates growth factor signaling in senescent

eukaryotic cells, triggering their apoptosis [61]. The po-

tassium channel KCNE3 is a VEGFA-inducible gene se-

lectively expressed in vascular endothelial cells [62].

KCNE3 is suppressed in tumors responding to the

VEGFA blockade [63]. The A-to-I editing of NUP43

(Diff = − 0.33; p = 8.0 × 10− 6) and KCNE3 (Diff = − 0.15;

p = 0.0026) is associated with shorter survival time of

CRC patients (Fig. 5e; NUP43: log-rank test, p = 0.024;

KCNE3: log-rank test, p = 0.0077). The difference in the
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Fig. 5 (See legend on next page.)
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rate of A-to-I editing of these genes between WM_

Score-high and -low groups may be regulated by miRNA

via the editing of the 3’UTR regions, thus affecting the

occurrence and development of CRC.

Potential therapeutic value of the WM_Score

To further understand the effects of the WM_Score on

drug response, we assessed the association between the

WM_Score and the response to drugs in cancer cell lines.

Using the Spearman correlation analysis, we identified 42

significantly correlated pairs between WM_Score and drug

sensitivity in the Genomics of Drug Sensitivity in Cancer

(GDSC) database [64] (Fig. 6a,Table S16). Among them, 24

pairs showed that drug sensitivity correlated with the WM_

Score, including the MEK inhibitor Selumetinib (Rs =−

0.29, p = 1.31 × 10− 15), mTOR inhibitor LJI308 (Rs = − 0.24,

p = 8.21 × 10− 10), and EGFR inhibitor AZD3759 (Rs = −

0.26, p = 4.12 × 10− 13). Eighteen pairs exhibited drug resist-

ance correlated with the WM_Score, including cell cycle

checkpoint kinase inhibitor AZZD7662 (Rs = 0.23, p = 9.9 ×

10− 11) and Bcl-2 inhibitor AZD5991 (Rs = 0.24, p = 1.19 ×

10− 9). Further, we analyzed the signaling pathways of the

genes targeted by these drugs. We found that drugs whose

sensitivity was associated with WM_Score-high were

mostly targeting MAPK, mTOR, and VEGF signaling path-

ways. In contrast, the drug whose sensitivity was asso-

ciated with WM_Score-low were targeting apoptosis

and cell cycle signaling pathway (Fig. 6b). Together,

these results imply that RNA modification patterns

are correlated with drug sensitivity. Thus, the WM_

Score may be a potential biomarker for establishing

appropriate treatment strategies.

The WM_Score model predicts response to

immunotherapy with PD-L1 blocker

A major effort has been made to identify biomarkers

to predict the response to immunotherapy, including

tumor mutation burden (TMB) and the expression

of PD-L1 protein [65–67]. Considering that WM_

Score appears to be associated with the immune

microenvironment of the tumor (Figure S4D), we ex-

amined the power of the WM_Score to predict the

response of patients to ICB therapy. This analysis

was based on two immunotherapy cohorts (Fig. 6c-i).

We found that patients with WM_Score-low exhib-

ited significant clinical benefits and had a markedly

prolonged overall survival in both anti-PD-L1 co-

horts, including the IMvigor210 cohort [68] (Fig. 6c;

log-rank test, p = 0.022) and the bladder cancer

cohort [69] (Fig. 6i; log-rank test, p = 0.0065). The

348 patients of the IMvigor210 cohort exhibited dif-

ferent degrees of response to anti-PD-L1 blocker, in-

cluding complete response (CR), partial response

(PR), stable disease (SD), and progressive disease

(PD). The CR patients showed the lowest WM_Score

than patients with other types of responses (Fig. 6d).

The chi-squared test performed between WM_Score-

low and -high groups also showed significantly better

therapeutic outcomes in WM_Score-low patients

(Fig. 6e; p = 0.014). We analyzed the WM_Score of

the three immune subtypes of IMvigor210, including

“immune inflamed”, “immune excluded”, and “im-

mune desert” [70] (Fig. 6f), and observed that the

WM_Score of the “immune inflamed” type was lower

than in the other two groups. In addition, the TMB

and neoantigen burden were significantly higher in

the WM_Score-low group than in the WM_Score-

high group (Fig. 6g-h), which may explain, at least in

part, the survival advantage and the greater benefit

of the ICB treatment in the WM_Score-low group.

We have also found that the activation of M2 macro-

phages and TME of stromal cells was significantly higher

in WM_Score-high tumors, and these processes may me-

diate the immune tolerance of tumors. This result sug-

gested that WM_Score-high tumors may represent “cold

tumors” characterized by resistance to immunotherapy. In

summary, the performed analyses suggest that the estab-

lished “writers” of RNA modification score model might

improve the selection of drugs for CRC and the prediction

of response to anti-PD-L1 immunotherapy.

(See figure on previous page.)
Fig. 5 Transcriptional and post-transcriptional characteristics associated with the WM_Score. a Differences in miRNA-targeted signaling pathways

in the TCGA-COAD/READ cohort between the WM_Score-high and -low groups. The red line represents a low expression of miRNA in the high
WM_Score group, and the blue line represents a high expression of miRNA in the low WM_Score group. Red dots correspond to miRNA-targeted

genes highly expressed in the high WM_Score group, and blue dots correspond to miRNA-targeted genes highly expressed in the low
WM_Score group. The circle represents a signaling pathway enriched with targeted genes. b The differences in the distal poly(A) site usage index
(PDUI) of each gene between WM_Score-high and -low groups. Red, PDUI lengthening; blue, PDUI shortening; Grey, no significant change in

PDUI. c Kaplan-Meier curves show overall survival between PDUI lengthening (red) and PDUI shortening (blue) of YBX2 and HEATR3. The
grouping of CRC samples is shown at the bottom of the chart. p < 0.05 in the two-sided log-rank test was considered statistically significant. d

The frequency of A-I editing was compared between WM_Score-high and -low groups. Red, high A-I editing; blue, low A-I editing; grey, no
significant change in A-I editing. e Kaplan-Meier curves show overall survival between PDUI lengthening (red) and PDUI shortening (blue) of
NUP43 and KCNE3. The grouping of CRC samples is shown at the bottom of the chart. p < 0.05 in the two-sided log-rank test was considered

statistically significant
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Discussion
Increasing evidence shows that RNA modifications play

an indispensable role in inflammation, innate immunity,

and antitumor activity through interaction with various

“writers”. While most studies have focused on a single

type of RNA modification “writer’, the mutual relation-

ships and functions of multiple types of “writers“ in can-

cer are not fully understood. Here, We revealed global

alterations of m6A, m1A, APA, and A-to-I RNA editing

enzymes (Fig. S7A) at transcriptional and genetic levels

and their mutual correlation in CRC (Fig. S7B). Then we

identified two distinct RNA modification patterns based

on 26 RNA modification enzymes, defined two RNA-

modification-related subtypes of CRC, and constructed a

scoring model, WM_Score, to assess the efficacy of RNA

modification “writers” in individual patients (Fig. S7C).

The WM_Score-high subtype is associated with worse

prognosis (Fig. S7D). The abundance of immune cells in

the tumor microenvironment was significantly different

between the two CRC subtypes, and WM_Score-high

subtype is associated with higher infiltration of inhibi-

tory immune cells, including M2 macrophages, plasma

cells, Tregs, and Tfh cells (Fig. S7E). This CRC subtype

is also characterized by a significant activation of EMT,

TGF-β, WNT, and VEGF signaling pathways (Fig. S7F),

which are conducive to tumor invasion into the stroma

and formation of blood vessels [71].

EMT is involved in cancer cell metastasis and drug

resistance [72], and M2 macrophages suppress T cell

proliferation and differentiation, promoting the prolifer-

ation of tumor cells and tumor stromal angiogenesis

[73]. A previous study showed that the M2 polarization

of tumor-associated macrophages (TAMs) is associated

with EMT progression and increased migration and in-

vasion of tumor cells [74, 75] in later stages of cancer.

TGF-β signaling may enhance tumor progression by

promoting cell proliferation and EMT and suppressing

immune function [76, 77]. Over-activation of the WNT/

β-catenin pathway promotes EMT-associated

dedifferentiation taking place at the invasive front of

colorectal tumors [78]. The activation of TGF-β and

WNT signaling pathways in the WM_Score-high sub-

type is likely to promote the polarization of TAMs to

the M2 phenotype in the tumor microenvironment, thus

promoting the activation of EMT and VEGF signaling

pathway. These changes may increase angiogenesis in

the tumor microenvironment, potentiating the invasion

and metastasis of colorectal cancer cells. On the con-

trary, WM_Score-low subtype patients had significantly

longer survival and a higher infiltration of memory

CD4+ T cells, M1 macrophages, and DCs, also upregu-

lated signaling pathways of apoptosis, DNA damage re-

pair, and cell cycle. RNA modification writers, e.g.,

NUDT21, can switch APA sites in genes regulating the

cell cycle, apoptosis, and metabolism, resulting in the in-

hibition of tumor cell proliferation, metastasis, and

tumorigenesis [32, 79]. M1 macrophages secrete IL-12,

IL-16, INF-γ, and other proinflammatory cytokines, acti-

vating the inflammatory response and eliminating tumor

cells [73]. These properties are enriched in the WM_

Score-low group, suggesting that RNA modification

writers may regulate post-transcriptional events (Fig. S7G)

involved in immune infiltration, cell cycle, apoptosis, and

other signaling pathways, thus modulating tumorigenesis.

Additionally, RNA modifications affect regulatory

genes regulating EMT, cell cycle, and apoptosis by medi-

ating the differential expression of miRNA, e.g., let-7i-5p

and let-142-3p. Our study identified differences in

miRNA expression mediated by RNA modification pat-

terns, target genes, and signaling pathways (Fig. S7G). In

the high WM_Score subtype, the EMT and PI3K-Akt

signaling pathways targeted by the differentially

expressed miRNA were significantly activated. In con-

trast, in the WM_Score-low subtype, the signaling path-

ways targeted by differentially expressed miRNAs were

mostly related to the cell cycle and apoptosis.

The link between EMT and the drug resistance of can-

cer cells has been postulated in the early 1990s [80]. Since

(See figure on previous page.)
Fig. 6 The relationship between WM_Score and drug sensitivity and efficacy of immunotherapy. a The correlation between WM_Score and drug

sensitivity evaluated by the Spearman analysis. Each column represents a drug. The brightness of the column indicates the significance of the
correlation. The height of the column indicates the correlation, indicates that WM_Score related to drug resistance (Rs > 0) or drug sensitive (Rs <

0) to WM_Score. b Signaling pathways targeted by drugs that are resistant (red) or sensitivity (blue) to the WM_Score. Drug names are listed on
the horizontal axis and the signaling pathway targeted by the drug on the vertical axis. The bar graph on the right shows the number of drugs
targeting each signaling pathway. The size of the point indicates the significance of the correlation. c, i Kaplan-Meier curves show overall survival

in the WM_Score-high (red) and -low (blue) subgroups after the PD-L1 blockade immunotherapy in the IMvigor210 (c) and anti-PD-L1 (i) cohort.
The grouping of patients is shown at the bottom of the chart. p < 0.05 in the two-sided log-rank test was considered statistically significant. d

The difference in the WM_Score between distinct clinical outcomes of anti-PD-L1 treatment in the IMvigor210 cohort. e The proportion of
patients in the IMvigor210 cohort with different responses to PD-L1 blockade immunotherapy. The fisher.test was used to determine the
statistical significance of the difference. SD, stable disease; PD, progressive disease; CR, complete response; PR, partial response. f The difference in

the WM_Score among immune phenotypes, including the inflamed (green), excluded (blue), and desert (red) immune type in the IMvigor210
cohort. (G-H) Differences in TMB (g) and neoantigen burden (h) between WM_Score-high (red) and -low (blue) groups in the IMvigor210 cohort.
Wilcoxon test was used to assess the difference. The boxes indicate the median ± 1 quartile, with the whiskers extending from the hinge to the

smallest or largest value within 1.5× IQR from the box boundaries
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then, it has been increasingly recognized that cancer drug

resistance is frequently accompanied by EMT in diverse

types of cancer, including pancreatic, bladder, and breast

cancer [81]. For instance, TGF-β, a well-studied EMT-

related cytokine, was reported to be related with drug re-

sistance in the 1990s. Teicher and coworkers demon-

strated that TGF-β-neutralizing antibodies restore drug

sensitivity in the tumors resistant to alkylating agents [82].

Subsequent studies documented that TGF-β induces

EMT, leading, in turn, to drug resistance. TGF-β signaling

can induce EMT through GTPases, and PI3K, MAPK/

ERK, WNT, and AKT/mTOR pathways [83, 84], which ul-

timately activate EMT transcription factors (EMT-TFs).

Finally, we showed the potential therapeutic effects of

RNA modification writers in CRC (Fig. S7H). WM_

Score was associated with resistance to drugs targeting

the cell cycle and apoptosis pathways, and with sensitiv-

ity to drugs targeting ERK/MAPK, PI3K/mTOR, and

EGFR signaling pathways. These results imply that pa-

tients with higher WM_Score may benefit from drugs

targeting these signaling pathways, rather than from

drugs targeting the cell cycle or apoptosis pathways.

RNA modification patterns might be regarded as an ad-

equate “predictor” to evaluate the clinical outcome of

chemotherapy or targeted therapies. The WM_Score

could also predict the response of patients to anti-PD-L1

immunotherapy (Fig. S7H). By identifying different im-

mune phenotypes of tumors and enabling personalized

cancer immunotherapy, our findings provide new possi-

bilities for improving the outcome of immunotherapy

for CRC.

Conclusions
Our systematic, integrated analysis of four types of RNA

modification “writers” revealed an extensive regulatory

mechanism by which they affect tumor microenviron-

ment and their relationship with CRC prognosis. We

constructed WM_Score model documented the cross-

talk and regulatory roles of the “writers” in transcription

and post-transcriptional events and identified their

therapeutic utility in targeted therapy and immunother-

apy. This work highlights the crucial clinical implications

of the cross-talk of RNA modifications and helps de-

velop personalized immune therapeutic strategies for

CRC patients.

Methods
Data collection and processing

The workflow of our study was shown in Figure S1A.

Public gene expression data and complete clinical an-

notations from the same sequencing platform were re-

trieved in Gene-Expression Omnibus (GEO) and the

Cancer Genome Atlas (TCGA) database. mRNA ex-

pression, miRNA expression, somatic mutation,

SCNAs, and clinical data, including tumor stage, hist-

ology subtype, gender and overall survival times were

obtained from TCGA database (https://portal.gdc.cancer.

gov/). Eight GEO colorectal cancer cohorts (GSE41568,

GSE39582, GSE13294, GSE14333, GSE18105, GSE20916,

GSE21510, GSE37892) and TCGA-COAD/READ cohort

were included for further analysis. The data information is

summarized in Table S2. The “ComBat” algorithm of sva

Package [85] was used to correct the batch effect caused

by non-biotechnological bias. The data was analyzed using

R (version 3.6.2) and R Bioconductor packages.

We collected datasets with immunotherapy. The

IMvigor210 cohort and bladder cancer with anti-PD-L1

cohort were included in the study of the relationship

between WM_Score and immunotherapy prognosis.

The IMvigor210 cohort [68]: Intervention treatment of

advanced urinary tract transitional cell carcinoma

(atezolizumab, anti-PD-L1 antibody). IMvigor210

cohort with the expression of the data and detailed

clinical notes are downloaded from http://research-pub.

gene.com/IMvigor210CoreBiologies. Expression and

clinical information of bladder cancer with anti-PD-L1

cohort downloaded from https://doi.org/10.5281/

zenodo. 546,110 [69].

Clustering expression pattern of 26 RNA modification

“writers”

Unsupervised clustering algorithm was applied to cluster

analysis of RNA-modified “writers” in 1695 colorectal

cancer samples. RNA modification “writer” consists of 7

m6A modification enzymes (METTL3, METTL14,

WTAP, RBM15, RBM15B, ZC3H13, and KIAA1429), 4

m1A modification enzymes (TRMT61A, TRMT61B,

TRMT10C, and TRMT6),12 APA modification enzymes

(CPSF1-4, CSTF1/2/3, PCF11, CFI, CLP1, NUDT21, and

PABPN1) and 3 A-I modification enzymes (ADAR,

ADARB1, and ADARB2). Unsupervised clustering was

applied to detect the robust clustering of colorectal can-

cer. We used the Consensus-Clusterplus package for the

above steps, and conduct 1000 repetitions to ensure the

stability of the classification [86, 87].

Gene set variation analysis (GSVA) and functional

annotation

In order to study the differences of RNA modification

patterns in biological processes, we used “GSVA” R

package to conduct GSVA enrichment analysis [42].

The gene set “c2.cp.kegg.v7.1” and “ h.all.v7.2 “ for

GSVA analysis was downloaded from the MSigDB

database. The clusterProfiler R Package was used to

functionally annotate 26 RNA modification enzyme

genes [88].
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Calculation of TME cell invasion abundance

We use CIBERSORT algorithm (https://cibersort.

stanford.edu/) to quantify the relative abundance of 22

types of immune cells in colorectal cancer with parame-

ters as follows: the input mixture matrix is our gene

expression matrix, the input of gene signature reference

for 22 immune cell types from Newman et al. [49], 100

times for permutation test, and RNA-seq data without

quantile normalization, while microarray data with

quantile normalization.

Constructing the WM_Score scoring system to evaluate

individual CRC

1) Identify RNA phenotype-related DEGs. The Limma

R package estimates mean-variance relationships

prior to linear modeling by converting read count

data to log2 transformation Fragments Per Kilobase

Million (FPKM), determines the weight of each ob-

served value through the voom function, then ap-

plies the data to linear modeling, and uses empirical

Bayesian statistics to analyze the DEGs between the

RNA modification patterns. We used a univariate

Cox regression model to calculate the risk ratio

(HR) of DEGs. Then DEGs related to survival were

extracted to construct a scoring system.

2) Enrichment analysis of DEGs. Enrichment analysis

and functional annotation of DEGs were performed

using the clusterProfiler R package [88]. “org.hs.eg.db”

was used as annotation to carry out enrichment

analysis of GO and KEGG in gene set. DEGs was used

as input gene set, p value was calculated by ORA

(Over-Representation Analysis) [89], and used

Benjamini and Hochberg adjustment for false

discovery rate (FDR) and considered an FDR < 0.05.

3) Construction of scoring system. After obtaining the

prognostic value of each gene signature score, we

applied a method similar to GGI [90] to define the

WM_Score of each patient: WMScore = (betai ×

Expi ),where i means the RNA modification

phenotype-related genes.

Calculating the EMT score

We obtained epithelial-to-mesenchymal transition gene

signatures from Mak et al [51], including 25 epithelial

and 52 mesenchymal marker genes. The EMT score for

each sample was estimated as
PN

i

Mi

N
−

Pn

j

E j

n
, as described

in a previous study [51], where M and E represent the

expression of the mesenchymal gene and epithelial gene,

respectively, and N and n respectively represent the

number of mesenchymal genes and epithelial genes.

Comparison of transcription and post-transcriptional

events between WM_Score-high and -low groups

The association of WM_Score and miRNA

The expression of miRNA in CRC were obtained from

TCGA. Analyzing the differentially expressed miRNAs

between the WM_Score-high and low groups, the tar-

geted signaling pathways of differentially expressed miR-

NAs were enriched by KEGG enrichment analysis. To

compare the expression of miRNA between WM_Score-

high and low-groups, we used the Wilcoxon test and

used Benjamini and Hochberg adjustment for FDR and

considered an FDR < 0.05 as statistical significance.

The association of WM_Score and APA events

APA in CRC were obtained from The Cancer 3′ UTR

Atlas (TC3A, http://tc3a.org) [91, 92], which utilized the

well-established algorithm DaPars (https://github.com/

ZhengXia/DaPars) to identify the alternative proximal

polyA site and calculate the Percentage of Distal polyA

site Usage Index (PDUI) for each transcript. The alter-

ation of APA usage in each tumor can be quantified as a

change in PDUI, which is capable of identifying 3’UTR

lengthening (positive index) or shortening (negative

index). To compare PDUI between WM_Score-high and

-low groups, we used the t test and used Benjamini and

Hochberg adjustment for FDR and considered an FDR <

0.05 and PDUI difference > 0.1 as statistical significance.

The association of WM_Score and A-to-I editing

A-to-I RNA editing profile in CRC were obtained from

Han et al. [58]. Those editing sites with at least three

edited reads in at least 3 samples per tissue type were

considered to be detected RNA editing sites. To ensure

adequate statistical power, they were further identified

as the informative RNA editing sites among the detected

RNA editing sites by requiring at least 30 samples

(including normal samples if available) with coverage

≥10 in a tissue/tumor type. We used the t test to detect

RNA editing sites with differential editing between

WM_Score-high and -low groups and defined signifi-

cantly differential editing sites as p value < 0.05 and

difference > 5%.

The clinical outcome of WM_Score associated APA events

and A-to-I editing

To characterize the clinical relevance of APA and RNA

editing sites affected by WM_score, we performed the

univariate Cox regression analysis to identify the RNA

editing level or PDUI that was significantly correlated

with patient survival, and considered p < 0.05 as statis-

tical significance. We also divided patients into two

groups based on the PDUI of APA events or the A-to-I

editing rate, and used the Kaplan-Meier curve and the
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log-rank test to determine the significance of the

differences.

Association analysis of WM_Score and drug sensitivity

The transcription profiles for about 1000 cancer cell

lines, drug response measurements as AUC for antitu-

mor drugs in cancer cell lines, and targets/pathways of

drugs are downloaded from Genomics of Drug Sensitiv-

ity in Cancer (GDSC, http://www.cancerrxgene.org/

downloads) [64]. We performed Spearman correlation

analysis to calculate the correlation between drug sensi-

tivity and WM_Score, and considered |Rs| > 0.2 and used

Benjamini and Hochberg adjustment for FDR and con-

sidered an FDR < 0.05 as significant correlation.

Statistical analysis

Spearman and distance correlation were used to calcu-

late the correlation coefficient of RNA modification

“writers” expression. Wilcoxon test was used to compare

the differences. Receiver operating characteristic (ROC)

curve was used to verify the validity of the model.

Based on the correlation between WM_Score and pa-

tient survival, survminer package was used to determine

the cutoff point of survival information for each dataset.

The “surv-cutpoint” function was used to dichotomy

WM_Score, and all potential cutting points were repeat-

edly tested to find the maximum rank statistic, and then

the patients were divided into the WM_Score-high

group and the WM_Score-low group according to the

maximum selected log-rank statistics, so as to reduce

the calculated batch effect. Survival curves for prognostic

analysis were generated using the Kaplan-Meier method,

and the log-rank test was used to determine the signifi-

cance of the differences. Univariate Cox regression

model was used to calculate the hazard ratio (HR) be-

tween differentially expressed genes and “writers”. To as-

sess whether WM_Score is an independent predictor, we

consider age, gender, and stage as variables to perform

multivariate Cox regression model analysis. All statistical

analysis was two-side and considered p < 0.05 as statis-

tical significance.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12943-021-01322-w.

Additional file 1 : Figure S1. Overview of study design. (A) Flowchart
of the steps in the performed analyses. Figure S2. Analysis of mutation
frequency and CNV in TCGA- COAD/READ. (A) The mutation frequency of
RNA modification “writers” among 33 cancer types in the TCGA cohort.
The horizontal axis represents cancer types, and the number of samples
is given in the parentheses. The vertical axis lists the names of the genes.
(B) Comparison of GSEA enrichment analysis between “writers” mutation
samples and non-mutation samples. NES, Normalized enrichment score.
(C) The distribution of correlation coefficient between “writers” expression
and CNV in CRC. |Rs| > 0.3 and p value < 0.05 indicates that “writers”

expression is related to CNV. (C) The expression of “writers” among CNV
groups in CRC. The sample size for each group based on the CNV alter-
ation (CFI, CNV_loss/ CNV_gain/ normal/ none_CNV = 138/18/54/
305; METTL14, 143/19/54/299; RBM15: 125/17/54/319; ADARB1: 138/26/
54/297; TRMT61A: 151/33/54/277; CPSF2: 155/33/54/273; PABPN1: 146/38/
54/277; METTL3: 146/38/54/277). Wilcoxon test was used to assess the dif-
ference. The boxes indicate the median ± 1 quartile, with the whiskers ex-
tending from the hinge to the smallest or largest value within 1.5× IQR
from the box boundaries. Figure S3. Biological characteristics of RNA
modification “writers”. (A) Association of gene expression for 26 RNA
modification “writers” with patient overall survival times based on Univari-
ate Cox regression analysis in GSE39582 cohort. (B) Heatmap shows the
positive (red) and the negative (blue) correlation between TME infiltration
and WM_Score in CRC. *p < 0.05, **p < 0.01, and ***p < 0.001, as deter-
mined by the Spearman correlation analysis. Figure S4. Enrichment ana-
lysis of differentially expressed genes and the relationship between
survival and the WM_Score. (A-B) GO (A) and KEGG (B) enrichment ana-
lysis of the 463 DEGs. The x-axis indicates gene counts within each GO
term. The brightness of the column color represents the statistical signifi-
cance of enrichment. (C) Kaplan-Meier curves comparing overall survival
between two DEG clusters, gene.cluster_A (red) and gene.cluster_B (blue),
in the GSE39582 cohort. The grouping of CRC samples is shown under
the Kaplan-Meier plot. p < 0.05 in the two-sided log-rank test was consid-
ered statistically significant. (D) Heatmap shows the differences in TME in-
filtration between WM_Score-high and -low groups in the GEO-CRC
cohort. Red, high enrichment score; blue, low enrichment score. (E-F).
Overlap (E) and frequency (F) of classifiers of WM_Score-high/−low and
Cluster_1/2 in CRC. (G-H). Overlap (G) and frequency (H) of classifiers of
WM_Score-high/−low and gene.cluster_A/B in CRC. The Fisher test was
used to determine the statistical significance of the difference. Figure
S5. Relationship between the WM_Score and the molecular subtype of
CRC. (A) Correlation between the EMT score and WM_Score in the TCGA-
COAD/READ cohort by Spearman analysis. (B) The difference of EMT
scores in WM_Score-high (red) and -low (blue) groups in the TCGA-
COAD/READ cohort. (C-D) Distribution of CMS subtypes within
WM_Score-high and -low groups in four GEO-CRC datasets (C) and the
TCGA-COAD/READ cohort (D). (E-F) Enrichment in signaling pathways in
CMS subtypes in four GEO-CRC datasets (E) and the TCGA-COAD/READ
cohort (F). (G) Distribution of TNM stage within CMS subtypes in four
GEO-CRC datasets. Statistical significance (p < 0.05) was calculated using
the fisher.test. (H) Kaplan-Meier curves show the difference in overall sur-
vival between two RNA modification patterns, WM_Score-high (red) and
-low (blue), in the GSE39582 cohort. The grouping of CRC samples is
shown below. Figure S6. The length of APA PDUI gene affects the sur-
vival prognosis of CRC. (A-B) The bar graphs show the difference be-
tween WM_Score-high and -low groups in PDUI (A) and A-I editing (B).
The forest plots show univariate Cox regression analyses for PDUI differ-
ential genes (A) and A-I editing differential genes (B) between
WM_Score-high and -low group. Figure S7. Graphic summary. (A) m6A,
m1A, APA, and A-to-I RNA editing enzymes. (B) Genetic alterations (left
panel), transcriptional alterations (intermediate panel), and mutual correl-
ation (right panel) of four types of RNA modification "writers" in CRC. (C)
Two distinct RNA modification patterns based on 26 RNA modification
enzymes, and constructed a scoring model WM_Score. (D) Clinical rele-
vance of WM Score. (E) Distinct patterns of WM_Score associated with
immune infiltration. (F) Molecular subtypes associated with WM_Score in
CRC. (G) WM_Score involved in transcriptional and post-transcriptional
regulation. (H) Therapeutic ability of the WM_Score.

Additional file 2 Supplementary Table 1. Summary of RNA
Modification Writers. The annotation of 26 RNA modification “writers”
based on the published data. Supplementary Table 2. Clinical
information of CRC cohorts from GEO/TCGA. The accession number,
platform of microarray, the number of tumor and normal samples, clinical
characteristics (stage, gender), citation of CRC cohort. Supplementary

Table 3. Samples clustering in eight GEO-CRC cohorts. The detailed infor-
mation of eight GEO-CRC Cohorts with different group methods, includ-
ing clustering, CMS subtypes, and WM_Score. Supplementary Table 4.

Group information of samples in TCGA-COAD/READ cohorts. The
WM_Score and the classification of WM_Score types and CMS subtypes
in TCGA-COAD/READ cohorts. Supplementary Table 5. Enrichment
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score of KEGG pathways in eight GEO-CRC cohorts. The table shows en-
richment score of KEGG pathways performed by Gene Set Variation Ana-
lysis (GSVA) in eight GEO-CRC cohorts. Supplementary Table 6. TME
infiltration characteristics of samples in eight GEO-CRC cohorts. Table
detailly lists the infiltration of 22 immune types of each sample which
performed by CIBERSORT method in eight GEO-CRC cohorts. Supple-
mentary Table 7. Difference of TME infiltration characteristics between
Cluster_1 and Cluster_2 in Eight GEO-CRC Cohorts. The difference of TME
infiltration characteristics between Cluster_1 and Cluster_2 in eight GEO-
CRC cohorts. Supplementary Table 8. Difference of TME infiltration
characteristics between WM_Score-high and WM_Score-low in eight
GEO-CRC cohorts. The difference of TME infiltration characteristics be-
tween WM_Score-high and WM_Score-low in eight GEO-CRC cohorts.
Supplementary Table 9. The correlation of writers and TME infiltration
Characteristics. The Spearman correlation of gene expression of 26 writers
and the infiltration of 22 immune cells in eight GEO-CRC cohorts. Sup-
plementary Table 10. Differentially expressed genes between Cluster_1
and Cluters_2 associated with survival. The association of hypoxia status
differentially expressed genes between Cluster_1 and Cluters_2, with pa-
tient overall survival times based on both univariate multivariate Cox pro-
portional hazards models. Supplementary Table 11. Difference of
miRNAs and miRNAs-DEGs target pathways between WM_Score-high
and WM_Score-low in TCGA COAD/READ cohorts. The differentially
expressed miRNA between WM_Score-high and WM_Score-low groups,
and miRNA targeted mRNAs and mRNA enriched pathways. Supplemen-

tary Table 12. Difference of PDUI between WM_Score-high and
WM_Score-low in TCGA COAD/READ cohorts. To compare PDUI between
WM_Score-high and -low groups in TCGA COAD/READ cohorts, we used
the t test and used Benjamini and Hochberg adjustment for FDR and
considered an FDR < 0.05 and PDUI difference > 0.1 as statistical signifi-
cance. Supplementary Table 13. The Univariate Cox regression analysis
of PDUI and overall survival in TCGA COAD/READ cohorts. The association
of PDUI for APA events with patient overall survival times Univariate Cox
regression analysis in TCGA COAD/READ cohorts. Supplementary

Table 14. Difference of A-to-I editing rate between WM_Score-high and
WM_Score-low in TCGA COAD/READ cohorts. We used the t test to de-
tect RNA editing sites with differential editing between WM_Score-high
and -low groups in TCGA COAD/READ cohorts, and defined significantly
differential editing sites as p < 0.05 and difference > 5%. Supplementary

Table 15. The Univariate Cox regression analysis of A-to-I editing rate
and overall survival in TCGA COAD/READ cohorts. The association of A-
to-I editing rate with patient overall survival times Univariate Cox regres-
sion analysis in TCGA COAD/READ cohorts. Supplementary Table 16.

The association of WM_Score and drug sensitivity in GDSC database. The
Spearman correlation of WM_Score and drug sensitivity which quantified
by AUC in GDSC database.
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