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Background: Soft-tissue sarcoma (STS) represents a rare and diverse cohort of solid
tumors, and encompasses over 100 various histologic and molecular subtypes. In recent
years, RNAmodifications including m6A, m5C, m1A, and m7G have been demonstrated to
regulate immune response and tumorigenesis. Nevertheless, the cross-talk among these
RNA modification regulators and related effects upon the tumor microenvironment (TME),
immune infiltrates, and immunotherapy in STS remain poorly understood.

Methods: In this study, we comprehensively investigated transcriptional and genetic
alterations of 32 RNA modification regulators in STS patients from The Cancer Genome
Atlas (TCGA) cohort and validated them in the Gene Expression Omnibus (GEO) cohort.
Single-cell transcriptomes were introduced to identify regulators within specific cell types,
with own sequencing data and RT-qPCR conducted for biological validation. Distinct
regulator clusters and regulator gene subtypes were identified by using unsupervised
consensus clustering analysis. We further built the regulator score model based on the
prognostic regulator-related differentially expressed genes (DEGs), which could be used
to quantitatively assess the risk for individual STS patients. The clinical and biological
characteristics of different regulator score groups were further examined.

Results: A total of 455 patients with STS were included in this analysis. The network of 32
RNA modification regulators demonstrated significant correlations within multiple different
RNA modification types. Distinct regulator clusters and regulator gene subtypes were
characterized by markedly different prognoses and TME landscapes. The low regulator
score group in the TCGA-SARC cohort was characterized by poor prognosis. The
robustness of the scoring model was further confirmed by the external validation in
GSE30929 and GSE17674. The regulator score was negatively correlated with CD4+ T
cell, Th2 cell, and Treg cell recruitment and most immunotherapy-predicted pathways,
and was also associated with immunotherapy efficacy.
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Conclusions: Overall, our study is the first to demonstrate the cross-talk of RNA
modification regulators and the potential roles in TME and immune infiltrates in STS.
The individualized assessment based on the regulator score model could facilitate and
optimize personalized treatment.
Keywords: RNA modification regulator, soft-tissue sarcoma, tumor microenvironment, immune infiltrate, drug
sensitivity, immunotherapy
INTRODUCTION

Soft-tissue sarcoma (STS) represents a rare and diverse cohort of
solid tumors accounting for merely 1% of all adult cancers (1).
STS mainly arises from the embryonic mesoderm and
encompasses over 100 various histologic and molecular
subtypes (2, 3). Previous studies demonstrated that frequently
mutated genes including TP53, NF1, and PIK3CA were
associated with the prognosis of STS, which suggested potential
therapeutic targets (4). In addition, epigenetic regulation also
plays a crucial role in tumorigenesis of mesenchymal tumors (5).
In recent years, RNA modifications have received increased
attention due to their significant effect on gene expression,
including DNA transcription to mRNA translation (6, 7).

All RNA bases are capable of hosting different chemical
modifications, and RNA modification may contribute to the
initiation and development of human diseases (7). Currently,
there are over 170 known RNA modifications including but not
limited to N6-methyladenosine (m6A), 5-methylcytosine (m5C),
N1-methyladenosine (m1A), 7-methylguanosine (m7G),
pseudouridine (Y), and adenosine-to-inosine RNA editing (A-to-I
editing) (8). In most RNAmodifications such as m6A and m5C, the
process of modification was mediated by the regulator proteins
including writers (methyltransferases), readers (binding proteins),
and erasers (demethylase) (7, 9, 10). Due to the modulation of RNA
metabolism and protein synthesis, RNA modification regulators
mediate tumorigenesis on aspects of cell proliferation,
differentiation, and pharmacoresistance (11, 12).

The modification of m6A was first found within poly(A) RNA
fractions in the 1970s, but growing interests have been paid to
this field only from the 2010s with methylated RNA
immunoprecipitation-sequencing (MeRIP-Seq) introduced (13,
14). The combination of the next-generation sequencing
technology and immunoprecipitation could efficiently map this
RNA modification throughout the transcriptome (15). The m6A
methyltransferase complexes are mainly composed of
methyltransferase-like 3 (METTL3), METTL14, METTL16,
Wilms’ tumor 1-associated protein (WTAP), zinc finger
CCCH-type containing 13 (ZC3H13), RNA-binding motif
protein 15 (RBM15), and the corresponding paralogue
RBM15B (9). However, m6A demethylases including fat mass
and obesity-associated protein (FTO) and a-ketoglutarate-
dependent dioxygenase alkB homolog 5 (ALKBH5) were
initially reported only in the recent decade (16, 17). Reader
proteins including YT521-B homology (YTH) family and the
insulin-like growth factor 2 mRNA-binding proteins (IGF2BP)
family could bind m6A-modified mRNA to execute biological
org 2
functions (18, 19). Significantly, several m6A regulators were
reported to be abnormally expressed in human tumor tissues,
thus initiating tumorigenesis and metastasis (20).

The presence of m5C, a methylated form in the fifth carbon of
cytosine, could occur in both DNA and RNA (21). However, the
function of m5C in RNA is less studied. The formation of m5C is
primarily introduced by the methyltransferase NOP/SUN
(NSUN) protein family, including seven members in human
(22, 23). Among them, NSUN2 mainly mediates m5C formation
in mRNA (10, 24). Aly/REF export factor (ALYREF) and Y box
binding protein 1 (YBX1) act as the readers binding to the
mRNA m5C site (10, 24, 25). Increasing evidence indicates that
m5C is associated with various cellular activities and
tumorigenesis (26).

Studies on the modification of m1A in mRNA have been
gradually expanding since the advent of relevant sequencing
technologies in recent years (27, 28). Modification regulators
including tRNA methyltransferase 6/61A (TRMT6/61A),
TRMT61B, and TRMT61C are currently known writers in
m1A (29–31). Similar to the modification of m6A, YTH family
members could mediate the m1A process by binding to the
corresponding mRNA sites (32). Also, similar to ALKBH5 in
m6A, methyl groups could also be erased by m1A demethylases
including ALKBH1 and ALKBH3 (28, 33). The recent study
suggested a specific association between m1A regulators and cell
proliferation in gastrointestinal cancers (34).

Moreover, m7G is another significant RNA modification
required in most processes of the life cycle of RNA (35). The
internal m7G methylation is regulated by METTL1 and WD
repeat domain 4 (WDR4) (36). Likewise, RNA guanine-7
methyltransferase (RNMT) could also catalyze the methylation
at the guanine N7 position, which is associated with tumor
growth (7, 37).

However, the above-mentioned studies only focused solely on
specific RNA modifications, while the cross-talk among different
patterns of RNA modification regulators in STS remain unclear.
In the present study, we comprehensively investigated the cross-
talk among RNA modification regulators including m6A, m5C,
m1A, and m7G in the STS of The Cancer Genome Atlas (TCGA)
and Gene Expression Omnibus (GEO) cohort. Several RNA
modification regulator-related patterns were identified, and
relative tumor microenvironment (TME) characteristics were
intensively studied. Moreover, we established the prognostic
regulator-related scoring model for individual STS patients.
The RNA modification regulator-related score could help
predict chemoimmunotherapy response in STS patients. The
findings demonstrated that the cross-talk among different
July 2022 | Volume 13 | Article 921223
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patterns of RNA modification regulators potentially contributed
to shaping TME and immune characteristics, which had
significant implications for therapeutic guidance.
METHODS

Collection and Processing of
STS Datasets
Overall study workflow is presented in Figure 1. We downloaded
gene expression profiles of STS and clinical data corresponding
to the samples from the TCGA and GEO databases. The
expression matrices of normal adipose and muscle tissue were
derived from the Genotype-Tissue Expression (GTEx) database.
To maximize compatibility and reduce batch effects between the
TCGA and GTEx data, the RNA-Seq data from these two
databases were processed and unified following sufficiently
rigorous procedures, which consist of the uniform realignment,
the quantification of gene expression, and the correction of batch
effect (38). All TCGA datasets of RNA sequencing, somatic
mutations, copy number variations (CNVs), and clinical data
were obtained from the UCSC Xena browser (https://
xenabrowser.net/) (39). The mutation data were visualized by
Frontiers in Immunology | www.frontiersin.org 3
utilizing the package “maftools” (version 2.8.0). For the GEO
database, two eligible STS cohorts with prognosis data
(GSE30929 and GSE17674) and one cohort with single-cell
RNA-seq data (GSE131309) were collected for further
validation analysis. In total, 455 patients with STS were
included in our analysis, and basic information is summarized
in Supplementary Table 1.

For pan-cancer analysis, the TCGA pan-cancer FPKM RNA-
seq and clinical data were downloaded via the UCSC Xena
Browser. The pan-cancer mutation annotation files were
obtained from the GDC data portal (https://portal.gdc.cancer.
gov/). Furthermore, we also introduced the immunotherapy-
treated cohort. The cohort of melanoma patients treated with the
combination of anti-PD-1 and anti-CTLA-4 was used to evaluate
the association between the regulator score and prognosis after
immunotherapy (40).

Unsupervised Clustering of RNA
Modification Regulators
On the basis of prior studies (8, 9, 24, 41–43), a total of 32 RNA
modification regulators including m6A, m5C, m1A, and m7G
were included in the current study (Supplementary Table 2).
The distribution landscape of selected RNA modification
FIGURE 1 | Workflow of this study design.
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regulators on human chromosomes was plotted by the package
“Rcircos” (version 1.2.1). The unsupervised clustering analysis
was conducted to recognize RNA modification regulator and
gene-related patterns. The R package “ConsensusClusterPlus”
(version 1.56.0) was utilized with the key parameters including
maxK = 9 and repetitions = 1000, so as to stabilize the
identification (44).

Identifying Differentially Expressed Genes
Between Clusters
As distinct RNA modification regulator patterns were identified
via the unsupervised clustering, we further conducted differential
gene expression analysis. The R package “limma” (version 3.48.3)
was applied to conduct pairwise comparisons in gene expression
among distinct patterns. The lmFit and eBayes functions were
utilized to ensure accuracy. Multiple comparisons were corrected
by using the Benjamini–Hochberg method (45). The
differentially expressed genes (DEGs) were filtered with
adjusted p-value < 0.05.

Gene Set Variation Analysis and Gene
Ontology Annotation
In order to probe the biological characteristics of different RNA
modification regulator-related patterns, gene set variation
analysis (GSVA) was conducted by utilizing the R package
“GSVA” (version 1.40.1) (46). Similarly, we used GSVA to
compare potential biological differences between low and high
regulator score subgroups. The priori-defined gene sets
(h.all.v7.5.1 and c2.cp.kegg.v7.4) were downloaded from the
Molecular Signatures Database (MSigDB). For differential
expression analysis of the hallmark gene sets, GSVA output
was submitted to the R package “limma” (version 3.48.3) and
tested using moderated t-statistics. The results were further
illustrated as bar chats using the R package “ggplot2” (version
3.3.5). The GO annotation analysis was also conducted by
utilizing the R package “clusterProfiler” (version 4.0.5), with
false discovery rate (FDR) < 0.05 to determine significant
enrichments (47).

The interaction of RNA modification regulator expression in
STS was assessed by the Spearman correlation test and visualized
by the R package “corrplot” (version 0.90). The network of RNA
modification regulator combined with prognostic data was
further constructed and visualized by utilizing the R package
“igraph” (version 1.2.6).

Estimation of Cell Infiltration in TME
Single-sample gene set enrichment analysis (ssGSEA) was
utilized for quantifying specific immune cell infiltration.
Marker genes of specific immune cell types for ssGSEA were
retrieved from the published study (48). Levels of immune cell
infiltration were normalized ranging from 0 to 1. To investigate
the association between TME and potential biological
processes, we applied the robust tumor mutation burden
(TMB) signatures obtained from published data (49).
Moreover, we also calculated ESTIMATE scores of samples, a
gene signature-based algorithm that estimates stromal and
Frontiers in Immunology | www.frontiersin.org 4
immune infiltration, by using the R package “ESTIMATE”
(version 1.0.13) (50).

Furthermore, signatures related to immunotherapy-predicted
pathways and cancer-immunity cycles were extracted from
published studies (Supplementary Tables 4, 5) (51, 52). The
cancer-immunity cycles established the guiding frameworks for
cancer immunotherapy (51). The whole cycles included 7 steps:
cancer antigen release and presentation (steps 1 and 2), T-cell
priming and activation (step 3), immune cell recruitment (step
4), immune cell infiltration into tumors (step 5), T-cell
recognition of cancers (step 6), and killing of cancer cells (step
7). The method of calculating the activity of these steps was
reported previously (53). In this study, the signature scores of
immunotherapy-predicted pathways and cancer-immunity
cycles were calculated by GSVA mentioned above. We then
used the R package “ggcor” (version 0.9.4.3) to compare the
correlations between the regulator score and GSVA scores of
these gene sets.

Generation of the Regulator-Related
Scoring System
The RNA modification regulator-related scoring system was
established as follows. First, distinct RNA modification
regulator clusters were identified by the unsupervised
clustering, and the overlapping DEGs among these clusters
were filtered and selected. Then, the univariate Cox regression
analysis was used to estimate the prognostic relevance for each
DEG. The significantly prognostic genes were extracted, and the
principal component analysis (PCA) was further performed
based on these prognostic DEGs. Both PC1 and PC2 of
prognostic DEGs were selected to serve as the signature scores.
This scoring method has significant strength in focusing on the
score of the set with the largest block of well-correlated (or
anticorrelated) genes, while downweighing contributions from
genes unrelated to most set factors, which was applied in
previous studies (54, 55). The formula for the scoring system
was as follows: regulator- related score = ∑(PC1i + PC2i) where i
represents the express ion of the final determined
prognostic DEGs.

Single-Cell Transcriptome Analysis
Single-cell RNA-seq data were acquired from one published
study (GSE131309) (56). Based on the package “Seurat”
(version 4.0.5), the data were analyzed following the standard
pipeline, which was explained in detail on the official website
(https://satijalab.org/seurat/). In the current study, the quality
control (QC) metrics were consistent with those in the published
study. We conducted gene expression normalization by
LogNormalize (scale factor = 10,000). Then, 2,000 highly
va r i ab l e g ene s (HVGs) were iden t ified w i th the
FindVariableGenes function. Following the results of the
ElbowPlot, 25 PCs were selected. Then, cell clustering and t-
distributed stochastic neighbor embedding (t-SNE) were further
performed based on the above analysis. Moreover, we used the
same labels from the data resource to annotate specific cell
clusters, and detailed annotation approaches were present in
July 2022 | Volume 13 | Article 921223
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corresponding parts in that study (56). The gene expression of
RNA modification regulators was further visualized.

Chemotherapeutic Sensitivity Prediction
The Genomics of Drug Sensitivity in Cancer (GDSC) was
accessed to collect drug response data (https://www.
cancerrxgene.org/downloads/anova) (57). The drug response
data spanned 518 compounds that target 24 pathways.
Furthermore, there were nearly 1,000 human cancer cell lines
within this database. To assess chemotherapeutic sensitivity, IC50

and drug sensitivity score were used based on the R packages
“pRRophetic” (version 0.5) and “oncoPredict” (version 0.2) (58,
59). Moreover, p-value was corrected for multiple comparisons
where appropriate.

Cell Lines and Cell Culture
The human synovial sarcoma cell line (SW-982) and
liposarcoma cell line (SW-872) were purchased from Procell
Life Science & Technology Co., Ltd. The human skin fibroblast
cell line (HSF) was purchased from Fenghui Biotechnology Co.,
Ltd. The primary human synovial sarcoma cells (hSS-005R) were
established as previously described (60). The above cell lines were
cultured in Dulbecco’s modified Eagle medium (DMEM)
supplemented with 10% fetal bovine serum (FBS) at 37°C in
5% CO2 atmosphere.

Real-Time Quantitative PCR
Total RNA of cell lines was extracted using the RNA Express
Total RNA Kit (M050, NCM Biotech, China). The cDNA
synthesis was performed by utilizing the RevertAid First Strand
cDNA Synthesis kit (K1622, Thermo Fisher Scientific, United
States). The RT-qPCR was performed as previously described
(60). The sequences of the primers for RT-qPCR are presented in
Table S3.

Full-Length Transcriptome Analysis
We validated related gene expression level with our own
sequencing data including 4 tumor samples and 4 paired
normal tissues. Full-length transcriptome analysis was
performed by Biomarker Technologies (Biomarker
Technologies Ltd, Beijing, China). All operations were in
accordance with Oxford Nanopore Technologies (Oxford
Nanopore Technologies, Oxford, United Kingdom). The
analysis platform (BMKCloud) performs correlation analysis
based on reference sequences and nanopore transcriptome
sequencing data.

Statistical Analysis
Statistical analysis was performed by using R software (version
4.1.0). The Spearman correlation test was conducted to calculate
the correlations of RNA modification regulators. For pairwise
comparisons, data were compared by utilizing Student’s t-tests
for parametric comparisons and Wilcoxon signed-rank test for
nonparametric comparisons. Similarly, one-way ANOVA and
Kruskal–Wallis test were applied when over two groups were
analyzed. Survival curve comparison was conducted by Log-rank
test. Univariate and multivariate Cox regression were utilized to
Frontiers in Immunology | www.frontiersin.org 5
identify significant prognostic factors, with hazard ratio (HR)
and 95% confidence interval (CI) calculated. Receiver operating
characteristic (ROC) curves were performed to assess the
accuracy of the model by utilizing the R package “timeROC”
(version 0.4). The function “surv_cutpoint” of the package
“survminer” (version 0.4.9) was repeatedly conducted to
determine the optimal cutoff values of the regulator scores in
the datasets. The patients in the datasets were further
dichotomized into low and high regulator score subgroups. We
also used chi-square or Fisher exact tests to compare clinical
characteristics between two distinct groups. Statistical
significance was assigned with two-sided p-value < 0.05.
RESULTS

Landscape of RNA Modification
Regulators in STS
In this study, a total of 32 RNA modification regulators were
selected. The somatic mutation frequency of RNA modification
regulators in STS was first assessed. The mutations were
concentrated within 14 RNA modification regulators, and only
18 of 237 STS patients (7.59%) displayed regulator-associated
mutations (Figure 2A). For a global view in pan-cancer, we also
explored the mutation frequency in 32 other cancer types from
the TCGA cohort (Supplementary Figure 1E). It could be found
that the proportion of regulator mutation was relatively low in
uvea l me lanoma (UVM), pheochromocytoma and
paraganglioma (PCPG), and testicular germ cell tumors
(TGCT), while uterine corpus endometrial carcinoma (UCEC)
presented more mutations. The analysis of mutation co-
occurrence indicated significant correlations among gene
mutations including LRPPRC, IGF2BP2, YTHDC2, ALKBH5,
and WTAP (Supplementary Figure S1A). However, there was
no significant survival difference in overall survival (OS) or
disease-free survival (DFS) between STS patients with
mutations and without mutations (Supplementary Figures 1B,
C). Further examination of the CNV alteration indicated that
ALKBH5, METTL1, and METTL3 exhibited relatively evident
CNV gain, while METTL16 and ZC3H13 presented a relatively
substantial proportion of CNV loss (Figure 2B). Additionally,
the chromosome locations of each RNA modification regulator
are depicted in Figure 2C. The Gene Ontology (GO) analysis of
the regulators indicated that biological processes were mainly
enriched in terms of RNA modification (Supplementary
Figure S1D).

Next, we characterized the gene expression of RNA
modification regulators in STS samples against normal tissues.
Of 32 RNA modification regulators, 30 regulators were
significantly differentially expressed (Figures 2D–G). The t-
SNE visualization of single cells from STS samples of the
GSE131309 dataset was colored by specific cell clusters
(Figure 3A). The distribution and level of gene expression
were also illustrated (Figure 3B and Supplementary Figures
2A, B). Notably, METTL3, METTL16, and IGF2BP2 mainly
clustered in malignant cells, while WTAP, ZC3H13,
July 2022 | Volume 13 | Article 921223
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HNRNPA2B1, YTHDF2, YTHDF3, and YTHDC1 were broadly
distributed in all cell clusters. We also conducted RT-qPCR
analysis to validate regulator expression in cell lines of STS
(Figures 3C–F). The expression levels of METTL14, WTAP,
YTHDC1, and LRPPRC were significantly lower in STS cell lines
including SW-982, hSS-005R, and SW-872, compared with the
expression in HSF. The expression level of RNA modification
regulators validated by our own sequencing data is shown in
Supplementary Figure 3. In four pairs of tumor and normal
samples, the differences in expression levels of several regulators
were consistent with those in public datasets. The prognostic
roles of these regulators in TCGA pan-caner datasets were also
explored (Figure 3H). Furthermore, based on the expression
Frontiers in Immunology | www.frontiersin.org 6
level of 32 RNA modification regulators, we could efficiently
discriminate STS samples from normal tissues (Figure 2H).

Identification of RNA Modification
Regulator Patterns
The network of 32 RNA modification regulators presented a
comprehensive landscape of the interactions (Figure 3G). It is
noteworthy that the significant correlations were not limited to
the single RNA modification but to multiple different RNA
modification types. More remarkably, METTL1 showed
negative correlation with a substantial proportion of RNA
modification regulators. These findings suggested potential
cross-talk among these regulators, which might play
A B

C D

E F G H

FIGURE 2 | Transcriptional and genetic alterations of RNA modification regulators in STS. (A) The mutation frequency of RNA modification regulators in 237 STS
patients. The upper bar reflects the TMB. Every single column represents a patient. (B) The CNV alteration of RNA modification regulators in STS. The height of the
column with a specific color represents the CNV frequency (%). The color represents the CNV status including gain (red) and loss (blue). (C) The location of RNA
modification regulators on human chromosomes. (D–G) The expression level of 32 RNA modification regulators between STS samples (red) and normal tissues (blue)
in the TCGA-SARC cohort. The box plot extends from the 25th to 75th percentile and the central line indicates the median. (H) Principal component analysis (PCA)
of 32 RNA modification regulators for discriminating between tumor and normal samples. ns, p ≥ 0.05; *, 0.01 ≤ p < 0.05; **, 0.001 ≤ p < 0.01; ***, 0.0001 ≤ p <
0.001; ****, p < 0.0001.
July 2022 | Volume 13 | Article 921223
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significant roles in the development of distinct RNA
modification patterns.

In order to further elucidate distinct RNA modification
regulator patterns, unsupervised consensus clustering was
conducted to group STS patients in the TCGA-SARC cohort
based on the expression of 32 regulators (Supplementary
Figuress 4A–F). We identified K = 3 as the optimal index
according to the elbow method (61). Correspondingly, 259 STS
Frontiers in Immunology | www.frontiersin.org 7
patients in the TCGA-SARC cohort were identified into 3
clusters including 120 cases in cluster A, 83 cases in cluster B,
and 56 cases in cluster C (Figure 4A). These clusters were
further named as Regulator Clusters A–C, respectively
(Supplementary Table 6). Analysis of the survival curve
indicated a significant difference among 3 distinct regulator
clusters, and Regulator Cluster B showed an apparent survival
advantage (Figure 4B). For further comparison of pathway
A B

C D

G H

E F

FIGURE 3 | Validation and interaction of RNA modification regulator expression in STS. (A) The t-SNE plot demonstrating specific cell clusters. Each color
corresponds to one cell type. (B) The t-SNE plots illustrating the expression level of specific genes. (C–F) Validation of expression of RNA modification regulators in
cell lines. (G) The interaction of RNA modification regulator expression in STS. The colors represent the types of RNA modification. The size of the circles indicated
the prognostic effect assessed by p-value. The dots within the circles represent the prognostic roles including protective factor (green) and risk factor (black). (H) The
prognostic roles of 32 RNA modification regulators across cancers in TCGA. Red indicates the higher regulator expression related to poor survival, while blue
suggests the association with good survival. Only statistically significant prognostic factors were present. *, 0.01 ≤ p < 0.05; **, 0.001 ≤ p < 0.01; ***, 0.0001 ≤ p <
0.001; ****, p < 0.0001.
July 2022 | Volume 13 | Article 921223
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enrichment among distinct regulator clusters, GSVA was
conducted . As i l l u s t r a t ed in Figures 4D, E and
Supplementary Figure 4G , Regulator Cluster C was
significantly enriched in pathways associated with DNA
replication, mismatch repair, and base excision repair. Of
Frontiers in Immunology | www.frontiersin.org 8
note, further ssGSEA demonstrated that Regulator Cluster C
was also enriched with innate immune cell infiltrations that
include myeloid-derived suppressor cel ls (MDSCs),
macrophages , monocytes , and natura l k i l ler (NK)
cells (Figure 4C).
A B

C

D E

FIGURE 4 | Identification of regulator clusters and related biological characteristics. (A) Heatmap of 32 RNA modification regulators among distinct regulator
clusters. (B) The OS curve comparing survival of the TCGA-SARC cohort in Regulator Clusters A (blue), Regulator Clusters B (orange), and Regulator Clusters C
(red). (C) The infiltration of immune cells within distinct regulator clusters. The box plot extends from the 25th to 75th percentile, and the central parallel line indicates
the median. (D, E) The GSVA illustrating pathway enrichment among distinct regulator clusters. ns, p ≥ 0.05; *, 0.01 ≤ p < 0.05; **, 0.001 ≤ p < 0.01; ***, 0.0001 ≤ p
< 0.001.
July 2022 | Volume 13 | Article 921223
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TME Cell Infiltration in Distinct
Genomic Subtypes
To investigate potential associations between TME cell
infiltration and RNA modification regulators, the immune cell
compositions were compared among distinct patterns
(Supplementary Figure 1F). As illustrated, most regulators
showed negative correlations with CD8+ T cells, and were
positively correlated with T helper cells and Treg cells. For
further exploration of clinical and biological characteristics of
distinct regulator clusters, a total of 117 DEGs were identified as
RNA modification regulator-related signature, which was
illustrated within the overlapping of the Venn diagram
(Figure 5A). These DEGs were subsequently evaluated by the
univariate Cox regression analysis, and 54 DEGs with a
prognostic effect were screened out (Supplementary Table 7).
The main terms in biological processes of GO analysis of these 54
DEGs included RNA splicing, RNA catabolic process, and
nuclear division (Figure 5G). Consistent with the identification
method of regulator clusters, the unsupervised clustering analysis
revealed 3 distinct genomic subtypes including Regulator genes
S1–S3 based on the 54 DEGs (Supplementary Figures 5A–F and
Supplementary Table 6). We found clear distinction of gene
expression among these subtypes, and clinical characteristics
were also variable as illustrated (Figure 5D). Notably,
significant survival differences existed among these regulator
gene subtypes, and Regulator gene S3 was correlated with poor
prognosis (Figure 5B). The stromal scores of Regulator gene S3
were also relatively lower compared with scores in the other two
regulator gene subtypes (Figure 5C). The pathway enrichment
analysis demonstrated significant enrichment for DNA
replication, homologous recombination, and mismatch repair
in Regulator gene S3 (Figure 5E and Supplementary Figure 5G,
H). Subsequent analysis based on TMB signatures also showed
the enhanced activity of base excision repair, DNA damage
response, and epithelial–mesenchymal transition (EMT) in
Regulator gene S3 (Figure 5F). For immune cell infiltration,
Regulator gene S3 was enriched with activated CD4+ T cells and
Th2 cells (Figure S5I).

Construction and Validation of Regulator-
Related Score
Although distinct RNA modification-related regulator clusters and
regulator gene subtypes were identified, the analysis was limited
within the TCGA-SARC cohort. We further built the RNA
regulator score model based on the prognostic regulator-related
DEGs, which could be used to calculate for each STS patient. The
flow diagram of the development of the regulator score is illustrated
in Figure 6A. There was a significant difference in the regulator
score among distinct regulator gene subtypes (Supplementary
Figure 6A). The STS patients were further dichotomized into a
high regulator score and a low regulator score group according to
the cutoff value calculated by the algorithm. It was worth noting that
patients with a low regulator score were associated with better
prognosis in the TCGA-SARC cohort (p < 0.001) (Figure 6B).
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The robustness of the scoring model was further confirmed by the
external validation in GSE30929 and GSE17674. The external
validation indicated a concordant result in the DFS of GSE30929
(p < 0.001) and OS of GSE17674 (p = 0.003) with that in the TCGA-
SARC cohort (Figures 6G, H). The areas under the curve (AUCs)
of ROCs for 1-, 3-, and 5-year survival also achieved acceptable
values, namely, 0.792, 0.705, and 0.744 in GSE17674, respectively
(Figure 6I and Supplementarys Figure 6B, C). Subgroup analysis
of regulator scores in different clinical characteristic groups in the
TCGA-SARC cohort also yielded stable results (Supplementary
Figures 6D–N). In addition, clinical characteristics including
gender, age, histology, site, and vital status between the high and
low regulator score groups were compared (Figure 6J). Multivariate
Cox regression analysis was further conducted to determine the
prognostic role of the regulator score in STS patients. As illustrated,
the regulator score was identified as a robust independent
prognostic indicator in the TCGA-SARC cohort (HR = 4.45, 95%
CI 2.65–7.49, p < 0.001) (Figure 6K).

Association Between Regulator Score and
Biological Processes
Because of the significant correlation between the regulator score
and the prognosis of STS patients, we further investigated potential
biological processes associated with the regulator score. As
illustrated in Figure 6C, the regulator score exhibited significant
inverse correlations with innate immune cells including CD56bright

NK cells, eosinophils, immature dendritic cells, mast cells, and
monocytes. Moreover, the ESTIMATE score and the stromal score
were significantly higher in the STS patients with a low regulator
score, while those with a high regulator score obtained a
significantly higher tumor purity score (Figures 6D–F). Higher
TMB was also found in the high regulator score group (Figure 7A
and Supplementary Figure 5J). In the TCGA-SARC cohort,
survival analysis demonstrated that the poor prognosis was
associated with lower TMB, which would further deteriorate
combined with a higher regulator score (Figures 7B, C). For the
frequency of the somatic mutation between these two groups, we
observed more mutations in the high regulator score group with a
sample mutation proportion of 83.61%, compared with 61.49% in
the low regulator score group (Figures 7D, E). It is also noteworthy
that the high regulator score group had a significantly higher
frequency of arm-level amplification and deletion than the low
regulator score group (p < 0.05) (Figure 8A). When comparing the
pathway activities between distinct regulator score groups, we found
a considerable increase of reactive oxygen species production and
oxidative phosphorylation, but the activity level of the Wnt/b-
catenin signaling pathway strongly decreased (Figure 7F). As the
cancer-immunity cycles were of guiding significance for
immunotherapy, the correlation with the regulator score was also
explored. There was an inverse correlation among CD4+ T cell,
dendritic cell, Th17 cell, Th2 cell, and Treg cell recruitment with the
regulator score (Figure 7G). Meanwhile, the regulator score was
negatively correlated with most of the immunotherapy-predicted
pathways, indicating its potential role in related immunotherapy.
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Potential Role of Regulator Score in
Chemotherapeutic Value
The strong link between the regulator score and TME prompted us
to further explore the predictive effect of the regulator score on
Frontiers in Immunology | www.frontiersin.org 10
response to checkpoint immunotherapy. As there was no
information about immunotherapy in the TCGA-SARC cohort, a
cohort of melanoma patients treated with the combination of anti-
PD-1 and anti-CTLA-4 was utilized. The regulator score of an
A B

D E

F

G

C

FIGURE 5 | Identification of distinct genomic subtypes and TME cell infiltration. (A) Venn diagram showing the overlapping of RNA modification regulator-related
DEGs. (B) The OS curve comparing survival of the TCGA-SARC cohort in Regulator gene S1 (blue), Regulator gene S2 (orange), and Regulator gene S3 (red). (C)
Differences in stromal score among three regulator gene subtypes in the TCGA-SARC cohort. (D) The unsupervised clustering analysis of the 54 overlapping DEGs
in the TCGA-SARC cohort. (E) The GSVA illustrating pathway enrichment among distinct regulator gene subtypes. (F) Differences in TMB signatures among three
regulator gene subtypes in the TCGA-SARC cohort. (G) GO enrichment analysis of the 54 overlapping DEGs. ns, p ≥ 0.05; *, 0.01 ≤ p < 0.05; **, 0.001 ≤ p < 0.01;
***, 0.0001 ≤ p < 0.001; ****, p < 0.0001.
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FIGURE 6 | Construction of regulator score and related clinical characteristics. (A) Alluvial diagram illustrating the association among regulator clusters, regulator gene
subtypes, regulator score groups, and vital status. (B) The OS curve comparing survival of the TCGA-SARC cohort in low regulator score (blue) and high regulator score (red)
groups. (C) Correlations between regulator score and immune cell infiltration by the Spearman correlation test. (D–F) Differences of ESTIMATES score (D), stromal score (E),
and tumor purity (F) between high and low regulator score groups. (G, H) The DFS curve of GSE30928 (G) and the OS curve of GSE17674 (H) in low (blue) and high
regulator score (red) groups. (I) Time-dependent ROC evaluating the predictive performance of the regulator score in the TCGA-SARC cohort. (J) Clinical characteristics
between low and high regulator score groups in the TCGA-SARC cohort. (K) Multivariate Cox regression of clinical characteristics with regulator score. The horizontal line
represents the 95% CI for each variable. The vertical dot line represents the HR of STS patients. *, 0.01 ≤ p < 0.05; **, 0.001 ≤ p < 0.01; ***, 0.0001 ≤ p < 0.001.
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FIGURE 7 | Association between regulator score and biological processes. (A) The difference in the TMB level between low and high regulator score groups in the
TCGA-SARC cohort. (B) The OS curve comparing survival of high- and low-TMB groups in the TCGA-SARC cohort. (C) The OS curve illustrating the subgroup
analysis of TMB level and regulator score. (D, E) The somatic mutation frequency of high (D) and low (E) regulator score groups in the TCGA-SARC cohort. (F)
Differences in pathway activities between low and high regulator score groups. (G) Correlation of the regulator score with immunotherapy-predicted pathways (lower
left) and cancer immunity cycle (upper right).
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FIGURE 8 | The potential role of regulator score in CNV and chemotherapeutic value. (A) The frequency of arm-level amplification and deletion between low and
high regulator score groups. (B) The progression-free survival (PFS) curve comparing survival of high and low regulator score groups in a cohort of melanoma
patients treated with the combination of anti-PD-1 and anti-CTLA-4. (C) The proportion of clinical response to anti-PD-1 with anti-CTLA-4 immunotherapy in high
and low regulator score groups in the melanoma cohort. (D–F) The box plot of the estimated IC50 of MK-2206 (D), erlotinib (E), and Nutlin-3a (F) between low and
high regulator score groups. (G–I) The box plot of the predicted drug sensitivity scores of MK-2206 (G), erlotinib (H), and Nutlin-3a (I) between low and high
regulator score groups. A lower drug sensitivity score indicated that this group could be more sensitive to the drug therapy. *, p < 0.05.
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individual patient was calculated on the basis of the scoring system
mentioned above. Surprisingly, patients with a low regulator score
exhibited significant survival advantage compared with those in the
high regulator score group (p = 0.040) (Figure 8B). Moreover, the
response rates to immunotherapy were also significantly higher in
the low regulator score group compared with those in high regulator
score group (p < 0.001) (Figure 8C). In addition to immunotherapy,
other chemotherapeutic agents might also exert a potential anti-
cancer effect. Therefore, the GDSC database was selected because of
the large chemotherapeutic agents available. After systematic drug
screening, three common chemotherapeutic agents including MK-
2206, erlotinib, and Nutlin-3a were identified with IC50 varying
significantly between the high and low regulator score groups
(Figures 8D–F). Significant differences in the drug sensitivity
score of these drugs were also illustrated between two scoring
groups, suggesting that the low regulator score group was more
sensitive to these drugs (Figures 8G–I).
DISCUSSION

Numerous studies have demonstrated that RNA modification
played an important role in multiple biological processes
mediated by various regulators (9, 10, 42, 43). However,
considerable studies focused solely on the single type of RNA
modification. Furthermore, the overall landscape of TME and
immune infiltrates mediated by different patterns of RNA
modification regulators have not been studied in depth.
Consequently, exploring the cross-talk among RNA
modification regulators including m6A, m5C, m1A, and m7G in
the STS may help elucidate the characteristics of TME and
corresponding subtypes and further develop a therapeutic
strategy for STS treatment.

Hence, a total of 32 RNA modification regulators were
thoroughly studied on the basis of gene expression, mutation
patterns, and CNV profiles. The proportion of mutations within
regulators were relatively lower, which was consistent with
related studies in other malignancies (62, 63). We also
demonstrated that the expression levels of RNA modification
regulators were significantly different between STS and normal
samples. The expression of several RNA modification regulators
was verified by utilizing RT-qPCR in cell lines, which may shed
creative lights on further research on STS. The emergence of
single-cell transcriptomes contributed to identifying gene
expression at high resolution within specific cell types (64). Of
note, METTL3, METTL16, and IGF2BP2 were mainly
represented in the malignant clusters. According to the study
focusing on the role of METTL3 in lung adenocarcinoma,
METTL3 could enhance mRNA translation including EGFR
and Hippo pathways, further promoting growth and invasion
of human lung cancer cells (65). In line with this study, the
expression level of METTL3 was significantly upregulated in
osteosarcoma tissues and cell lines (66). Moreover, silencing
METTL3 could suppress tumor proliferation and migration and
was also associated with lymphoid enhancer-binding factor 1
(LEF1) and Wnt/b-catenin signaling pathway. Substantial cross-
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talk among RNA modification regulators was observed, which
was consistent with the results in colorectal cancer (67). As a
limited number of studies have been conducted concerning the
cross-talk of RNA modification regulators, further studies with
biological mechanism research are warranted in the future.

Concerning the distinct characteristics of these regulators,
three regulator clusters were identified by utilizing the
unsupervised consensus clustering. This method could help
discover conformational details that might be masked due to
population averages, thus identifying potential meaningful
patterns (68, 69). Regulator Cluster C was characterized by
poor prognosis compared with the other two clusters. It has
been demonstrated that MDSCs were relatively enriched in
Regulator Cluster C, which has been extensively studied and
considered as immunosuppressive cells (70). The proangiogenic
capacity of immature myeloid cells may facilitate tumor growth
and metastasis (71). Preliminary evidence suggested promising
activity when drugs targeting reprogramming of the metabolism
of MDSCs were applied in combination with immune
checkpoint inhibitors (72). The DEGs on the basis of distinct
regulator clusters were mainly enriched in the biological process
of RNA splicing, indicating the significant role of RNA
modification in regulating RNA splicing, stabilization, and
metabolism (20, 73–75). Similar to the analysis of regulator
clusters, three regulator gene subtypes were identified with
markedly different prognoses and TME landscapes. The
stromal scores were significantly reduced in Regulator gene S3,
also suggesting the low level of infiltrating stromal cells in this
subtype in STS (50).

Although STS cohorts could be identified into distinct clusters
based on the robust clustering algorithm, an accurate approach
was needed to quantitatively assess RNA modification-related
risk for STS patients at the single individual level. The RNA
regulator score model established in the current study has
significant clinical values and could guide treatment for STS
patients. Firstly, the RNA regulator score could serve as a strong
prognostic indicator for STS. As we expected, Regulator gene S3
with a relatively poor prognosis also scored significantly higher.
Moreover, the RNA regulator score could efficiently distinguish
TME characteristics concerning tumor purity, and stromal and
immune cell infiltration in individual STS patients. This study
found a mild positive correlation between regulator score and
TMB. Notably, the relationship between TMB and survival was
controversial and varied across tumor types (76, 77). The TCGA-
SARC patients with high TMB presented a better prognosis,
which needs to be further explored in future studies.
Furthermore, a combined prediction model including TMB
and the regulator score could provide better outcome
prediction. In this study, the potential role of the regulator
score in cancer-immunity cycles cannot be ignored, which also
suggested that RNAmodification could regulate immunotherapy
(78). As is widely known, tumor progression was associated with
the driver mutations (79). Moderate differences were identified
in multiple mutant genes between groups with different regulator
scores. We observed a relatively increased mutation rate of
ATRX in the high regulator score group, which was
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characterized by poor prognosis. Previous studies demonstrated
that protein coded by ATRX has been implicated in chromatin
remodeling at telomeres. Therefore, ATRX mutations may
consequently lead to an abnormal telomeric phenotype, which
has been proven in glioma (80, 81).

In the absence of an STS cohort receiving immunotherapy, we
introduced an independent melanoma dataset treated with the
combination of anti-PD-1 and anti-CTLA-4. The strength of the
regulator score was further verified while additional prospective
studies of STS concerning immunotherapy are still needed for
further verification. Additionally, the regulator score-based drug
screening could identify potential chemotherapeutic agents for
personalized therapy.

There are growing lines of evidence of widespread cross-talk
between RNA modification regulators in a wide variety of tumors
(82). In colorectal cancer, the interactions of 26 RNAmodification
regulators could redefine the characteristics of TME and give a
more reliable indication of the prognosis (67). Moreover, the
importance of noncoding RNAs with RNA modification has
become increasingly appreciated in recent years (83, 84). With
further study upon RNA modification, more specific regulators
have been identified and a total of 32 RNAmodification regulators
have been included in the current study. Future research should
also focus on the cross-talk between RNA modification regulators
in non-neoplastic diseases.

In conclusion, this study, for the first time, represented a
comprehensive and systematic analysis of four types of RNA
modification regulators in STS. The cross-talk of RNA
modification regulators played a significant role in regulating
the complexity of TME, which was strongly associated with the
prognosis of STS patients. The individualized assessment based
on the regulator score model could facilitate and optimize
personalized treatment. In a broad perspective, this work
reinforces the significance of the cross-talk of RNA
modification regulators and sheds new light on the
individualized treatment strategies for STS patients.
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Supplementary Figure 1 | Correlation and prognostic analysis of RNA
modifications regulators in STS. (A) The mutation co-occurrence and exclusion
analysis for 14 mutated regulators. The color represents the correlations including
co-occurrence (green) and mutually exclusion (purple). (B) Overall survival (OS)
curve of STS patients with (red) and without mutations (green) of RNA modification
regulators. (C) Disease-free survival (DFS) curve of STS patients with (red) and
without mutations (green)of RNA modification regulators. (D) GO enrichment
analysis of 32 RNA modification regulators. The horizontal axis represents the gene
ratio. (E) The mutation frequency of 32 RNA modification regulators in other 32
cancer types of TCGA cohort. The sample size of each cancer type was given in the
in bracket. (F) The spearman correlation between TME cell infiltration and RNA
modification regulators. (G) Association of expression of RNA modification
regulators with OS based on univariate Cox regression analysis.

Supplementary Figure 2 | Expression of RNA modification regulators in STS at
single-cell resolution. (A) The t-SNE plots illustrating the expression level of specific
genes. (B) The stacked violin plots demonstrating the expression level of specific
genes across cell clusters.

Supplementary Figure 3 | The expression level of RNA modification regulators
verified by sequencing data. (A–L) The expression level of RBM15B, ZC3H13,
METTL16, IGF2BP2, FMR1, YTHDF2, TRMT61A, TRMT61B, ALKBH1, ALLYREF,
WDR4 and RNMT based on the sequencing data.
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Supplementary Figure 4 | Analysis of RNA modification Regulator Clusters in
STS. (A–D) Consensus clustering based on RNA modification regulators (K = 2-5).
(E) Consensus cumulative distribution function (CDF) Plot based on RNA
modification regulators. (F) Delta area plot of consensus clustering based on RNA
modification regulators. (G) The GSVA illustrating pathway enrichment among
distinct Regulator Clusters.

Supplementary Figure 5 | Analysis of Regulator gene subtypes in STS. (A–D)
Consensus clustering based on regulator-related DEGs (K = 2-5). (E) The CDF
Plot based on the 54 RNAmodification regulator-related DEGs. (F) Delta area plot
of consensus clustering based on the DEGs. (G, H) The GSVA illustrating
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pathway enrichment among distinct Regulator gene subtypes. (I) The infiltration
of immune cells within distinct Regulator gene subtypes. (J) Scatter plots
depicting the positive correlation between TMB and Regulator Score in TCGA-
SARC cohort.

Supplementary Figure 6 | Validation and subgroup analysis of Regulator
Score. (A) Differences of Regulator Score among distinct Regulator Clusters.
(B, C) Time-dependent ROC evaluating the predictive performance of Regulator
Score in GSE17674 (B) and GSE30929 (C). (D–N) Subgroup analysis of
Regulator Scores in different clinical characteristics groups including age, gender,
site and histology.
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GLOSSARY

STS soft-tissue sarcoma
m6A N6-methyladenosine
m5C 5-methylcytosine
m1A N1-methyladenosine
m7G 7-methylguanosine
Y pseudouridine
A-to-I editing adenosine-to-inosine RNA editing
MeRIP-Seq methylated RNA immunoprecipitation-sequencing
METTL3 Methyltransferase Like 3
METTL14 Methyltransferase Like 14
METTL16 Methyltransferase Like 16
WTAP Wilms' tumor 1-associated protein
ZC3H13 zinc finger CCCH-type containing 13
RBM15 RNA-binding motif protein 15
FTO obesity-associated protein
ALKBH5 a-ketoglutarate-dependent dioxygenase alkB homolog 5
YTH YT521-B homology
IGF2BP insulin-like growth factor 2 mRNA-binding proteins
NSUN methyltransferases NOP/SUN
ALYREF Aly/REF export factor
YBX1 Y box binding protein 1
TRMT6/61A tRNA methyltransferase 6/61A
TRMT61B tRNA methyltransferase 61B
TRMT61C tRNA methyltransferase 61C
WDR4 WD repeat domain 4
RNMT RNA guanine-7 methyltransferase
TCGA The Cancer Genome Atlas
GEO Gene Expression Omnibus
TME tumor microenvironment
GTEx the Genotype-Tissue Expression
CNVs copy number variations
DEGs differentially expressed genes
GSVA gene set variation analysis
GO Gene Ontology
MSigDB Molecular Signatures Database
FDR false discovery rate
ssGSEA single-sample gene set enrichment analysis
TMB tumor mutation burden
PCA principal component analysis
GGI gene expression grade index
QC quality control
HVG highly variable genes
t-SNE t-distributed stochastic neighbor embedding
GDSC The Genomics of Drug Sensitivity in Cancer
HR hazard ratio
CI confidence interval
ROC receiver operating characteristic
UVM uveal melanoma
PCPG pheochromocytoma and paraganglioma
TGCT testicular germ cell tumors
UCEC uterine corpus endometrial carcinoma
OS overall survival
DFS disease-free survival
MDSC myeloid-derived suppressor cell
EMT epithelial–mesenchymal transition
LEF1 lymphoid enhancer-binding factor 1.
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