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Abstract— Cognitive workload recognition is pivotal to
maintain the operator’s health and prevent accidents in
the human-robot interaction condition. So far, the focus of
workload research is mostly restricted to a single task, yet
cross-task cognitive workload recognition has remained a
challenge. Furthermore, when extending to a new workload
condition, the discrepancy of electroencephalogram (EEG)
signals across various cognitive tasks limits the generaliza-
tion of the existed model. To tackle this problem, we propose
to construct the EEG-based cross-task cognitive workload
recognition models using domain adaptation methods in a
leave-one-task-out cross-validation setting, where we view
any task of each subject as a domain. Specifically, we first
design a fine-grained workload paradigm including working
memory and mathematic addition tasks. Then, we explore
four domain adaptation methods to bridge the discrepancy
between the two different tasks. Finally, based on the sup-
porting vector machine classifier, we conduct experiments
to classify the low and high workload levels on a private
EEG dataset.Experimental results demonstrate that our pro-
posed task transfer framework outperforms the non-transfer
classifier with improvements of 3% to 8% in terms of mean
accuracy, and the transfer joint matching (TJM) consistently
achieves the best performance.

Index Terms— Cognitive workload, cross-task recogni-
tion, electroencephalogram (EEG), domain adaptation.

I. INTRODUCTION

CURRENTLY, the cognitive workload of the operator has
been studied widely in the fields of human-robot interac-
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tion environment and passive brain-computer interface [1], [2].
It is a special case of cognitive states, described as the
ratio of the operator’s available cognitive resources (e.g., the
attention resources and working memory capacity) over the
task demanded resources [3]. Due to the limited cognitive
resources of the brain, the heavy cognitive work in real-world
environments will lead to cognitive overload, further affect
task execution and harm the operator’s state [4]. As such, it is
important to accurately recognize human cognitive workload
to prevent accidents and maintain health.

To date, we can categorize the measurements for cognitive
workload into subjective and objective measures [5]. Subjec-
tive measurements are mainly based on the operator’s per-
ceived feeling and rating scales, e.g., the National Aeronautics
and Space Administration-Task Load Index (NASA-TLX) [6].
Though these measurements implement easily, they are post-
evaluation and cannot yield objective or real-time results [7].
Meanwhile, objective measurements are mainly relied on the
recorded physiological signals during the task process, hence
having less interference on the task [5]. Among various
physiological signals, the electroencephalogram (EEG) signal
has been widely used and studied, due to its high-temporal-
resolution, security, and convenience. Besides, its effectiveness
has been validated in detecting cognitive workload during
the execution of workload-related cognitive tasks [8]. Hence,
we concentrate on EEG-based cognitive workload recognition.

The EEG signals may have variabilities among different
subjects and/or tasks, mainly including intra- and inter-subject,
and inter-task variabilities. These variabilities are related
to constructing subject-dependent, cross-subject (or subject-
independent), and cross-task (or task-independent) models,
respectively [7]. The subject-dependent model is trained and
tested on data specific to each subject. Here, we can view
the subject-dependent study as the standard cognitive work-
load recognition design [9] considering the large variability
between subjects. Hitherto, many subject-dependent meth-
ods have been constructed and achieved acceptable recog-
nition performance [10], [11]. Typically, the inter-subject
and inter-task variabilities are more challenging and complex
and would have inferior performance to the former. But if
successful, they would enable and improve cognitive state
monitoring and probing in real-world environments [7], [9].
So it is crucial to alleviate the cross-subject and cross-task
issues. The cross-subject model is trained on data from one or
a group of subjects and tested with data from a new subject.
On the cross-subject research, based on the development of
EEG optimal features extraction and classification models,
acceptable results are obtained [12], [13].
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The cross-task model is trained on one task and tested
on another similar but different task. Ideally, although differ-
ent cognitive tasks may elicit different cognitive resources,
the cognitive workload pays more attention to the occu-
pied amount of cognitive resources rather than the specific
cognitive resources. Therefore, for a practical design, it is
possible to construct a generalizable or cross-task cognitive
workload recognition model that is capable to recognize
workload across various tasks [14]. However, we find the
cross-task cognitive workload recognition has degraded perfor-
mance than the subject-dependent model [14]. During different
task-elicited cognitive activities, the mismatched workload
between the training and testing data [15], the highly dissimilar
EEG patterns [16], the non-stationary characteristics of EEG
data [15], [17], further the distribution variabilities between
the EEG data, may cause considerable difficulties for cross-
task cognitive workload recognition. Existing studies assumed
a set of invariant features exists across tasks and proposed
to find the common features and then constructed the task-
independent model [8], [14]–[16], which might ignore the
discrepancy between different tasks and thus have limited
performance. To deal with the above problems, we propose
to apply unsupervised domain adaptation for establishing the
cross-task cognitive workload recognition model, aiming to
reduce the distribution discrepancy as well as to improve
the generalized classification accuracy across various tasks.
Given efficient labeled source samples and unlabeled target
samples, unsupervised domain adaptation transfers knowledge
from the source domain to the target domain and tries to train a
classifier that works well on a target domain. It aims to reduce
the distribution discrepancy between the source and target
data, thus making them similar [18], [19]. To our knowledge,
domain adaptation has not been or rarely been applied for
cross-task cognitive workload recognition systems.

In this paper, we propose a new framework for EEG-based
cross-task cognitive workload recognition using domain adap-
tation. The proposed framework is implemented under three
transfer schemes, which are the same/various one-to-one
cross-task transfers, and the many-to-one cross-task transfer.
We mainly explore four domain adaptation methods as a
preliminary study for the new framework. These domain adap-
tation methods both assume the shared feature representations
are existing between the source domain and the target domain
simultaneously reducing the distribution gap. The difference
in them lies in the ideas on the marginal distribution and
conditional distribution between domains. Then, we compare
the performance of these methods on a private EEG dataset
with two different tasks to construct the workload recognition
model in a binary classification way. Assuming the two tasks
involved in the cross-task study should share have some
brain mechanisms in common but also present distinctive
activations, as suggested and applied in [8], [20], [21], we thus
use the Sternberg Working Memory task (denoted as WM task)
and Mathematics Addition task (denoted as MA task) to elicit
cognitive workload states.

In Figure 1, we display the general framework of cross-
task cognitive workload recognition, including the cross-task
design, EEG data acquisition, data preprocessing, feature

Fig. 1. The proposed framework of cross-task cognitive workload
recognition using domain adaptation.

extraction, domain adaptation, and classification. Here, we take
task A (e.g., the WM task) as source data to train the models,
and task B (e.g., the MA task) as the target data to test the
models.

The major contributions of this work are three-fold. First,
we design a workload paradigm including working memory
and mathematic addition tasks with fine-grained partition.
Second, we propose to use domain adaptation to reduce the
distribution discrepancy as well as to improve the classification
accuracy. Third, we evaluate the proposed method on a real
EEG dataset, with results demonstrating the superiority of our
method over non-transfer methods.

The rest of the work is organized as follows. Section II
briefly introduces the concepts of domain adaptation and
related methods. Section III introduces EEG data recordings
during two different cognitive workload tasks. The results
are compared and presented in Section IV to evaluate the
performance of the proposed methods. Section V discusses
the major findings. Finally, Section VI concludes the whole
paper.

II. METHODS

We adopt unsupervised domain adaptation without using
the labeled samples from the target subjects, to cope with the
task-to-task variability for building the EEG-based cross-task
cognitive workload recognition models.

The EEG signal collected in one task of each subject is
viewed as a domain, which is defined as

{
(Xi , yi )

}N
i=1, where

N is the number of trials used. Xi ∈ R
(E×d) is an EEG trial

with E electrodes and d dimensional features, and yi ∈ R
C

is the corresponding label for Xi of C classes.
The source domain is the labeled EEG samples of one

task and the target domain is the unlabeled EEG sam-
ples of the other task. Given a source domain DS ={(

Xi
s, yi

s

)
, · · · ,

(
X Ns

s , y Ns
s

)}
with Ns labeled samples, and a

target domain DT =
{

X1
T , · · · , X Nt

T

}
with Nt unlabeled sam-

ples, domain adaptation aims to predict the labels y1
t , · · · , y

Nt
t

corresponding to the inputs X1
T , · · · , X Nt

T in the target domain,
using the learned knowledge from the source domain. Gener-
ally, domain adaptation assumes the source and target domains
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have the same feature spaces and label spaces, i.e., X S, X T ∈
R

(E×d) and yS, yT ∈ R
C , but the marginal probability distrib-

ution and/or conditional probability distribution are different,
i.e., P(X S) �= P(XT ) and/or P (yS | X S) �= P (yT | XT ) [22].
Specifically, in the paper, we follow the key assumption in
most domain adaptation methods, that the source and target
domains have different marginal probability distributions and
different conditional probability distributions.

In the following, we will briefly introduce four domain
adaptation methods used in the paper. These methods mainly
focus on the shared feature representation and minimization
of the distribution discrepancy.

A. Transfer Component Analysis

Transfer component analysis (TCA) tries to reduce the
distribution discrepancy via embedding the source and target
domains into a shared low-dimensional feature space and
learning a set of transfer components [23]. TCA can be seen
as a dimensionality reduction method. To achieve this goal,
Pan et al. proposed to find a transformation function φ(·)
such that the P(φ(X s)) ≈ P(φ(X t )) and P

(
ys | φ(X s)

) ≈
P

(
yt | φ(Xt )

)
. Such φ(·) should be satisfied that, it can

reduce the distance between the domain distribution (e.g., the
empirical means) and preserve the variance of the original data
at the same time. By adopting the empirical Maximum Mean
Discrepancy (MMD) [24] as the distance measure, the final
mathematic representation of TCA is

min
W

tr(W T K L K W ) + μtr(W T W ),

s.t. W T K H K W = Im , (1)

where the first term is the MMD distance, i.e.,∥∥∥ 1
Ns

∑Ns
i=1 W T φ(X i )− 1

Nt

∑Nt
j=1 W T φ(X j )

∥∥∥2= tr(W TK L K W ),

K = [φ(X i )
T φ(X j )] is the kernel matrix defined on all

the data. Li j = 1/N2
s , if Xi , X j ∈ Xs , else Li j = 1/N2

t ,
if Xi , X j ∈ Xt , otherwise Li j = −1/Ns Nt . W ∈ R

(Ns +Nt )×m

is the transformation matrix that transforms the kernel matrix
K to an m-dimension space (m � Ns + Nt ). A regularization
term tr(W T W ) is added to control the complexity of the
W , μ > 0 is the trade-off parameter. W T K H K T W = I
is the constraint to keep the structure of the original data,
where H = INs +Nt − (1/(Ns + Nt ))11T is the centering
matrix, INs +Nt ∈ R

(Ns+Nt )×(Ns +Nt ) is the identity matrix,
and 1 ∈ R

Ns +Nt is the column vector with all 1’s. Finally,
W is composed of the m leading components of the matrix
(K L K + μI )−1 K H K .

B. Joint Distribution Adaptation

Joint distribution adaptation (JDA) is proposed to adopt
both the marginal and conditional distributions in a principled
dimensionality reduction procedure [25],

D (Ds ,DT ) ≈ D (P (X S) , P (XT ))

+ D(P (yS | X S) , P (yT | XT )), (2)

Similar to TCA, JDA tries to find a transforma-
tion matrix W , such that P(W T Xs) ≈ P(W T X t ) and

P
(
ys | W T X s

) ≈ P
(
yt | W T Xt

)
. Marginal distributions can

be constructed by the TCA method, however, it is nontrivial to
adopt the conditional distributions since there are no labeled
data in the target domain. Long et al. proposed to use the
pseudo labels of the target data and class-conditional distri-
butions (P (Xs | ys = c) and P (Xt | yt = c), c� {1, · · · , C} is
in the label space) to approximate conditional distributions.
Since the pseudo labels may be unreliable, we can iteratively
update them. The JDA optimization problem is

min
W

tr
(

W T K L K T W
)

+
∑C

c=1
tr(W T K Mc K T W )

+ λ �W�2
F ,

s.t. W T K H K T W = I, (3)

where the first term is the MMD distance
between marginal distribution, the second term∥∥∥1/

n(c)
s

∑
Xi∈D(c)

s
W T φ(Xi )−1

/
n(c)

t
∑

X j ∈D(c)
t

W T φ(X j )
∥∥∥2 =

tr(W T K Mc K W ) is the MMD distance between
the class-conditional distribution, where D

(c)
s =

{Xi : Xi�Ds ∧ y (Xi ) = c} is the set of examples belonging
to class c in the source data, y (Xi ) is the true label of Xi ,
and n(c)

s =
∣∣∣D(c)

s

∣∣∣; D
(c)
t = {

X j : X j�Dt ∧ ŷ
(
X j

) = c
}

is the set of examples belonging to class c in the
target data, ŷ

(
X j

)
is the pseudo labels of X j , and

n(c)
t =

∣∣∣D(c)
t

∣∣∣; (Mc)i j = 1/(n(c)
s n(c)

s ), if Xi , X j ∈ D
(c)
s ;

else (Mc)i j = 1/(n(c)
t n(c)

t ), if Xi , X j ∈ D
(c)
s ; else

(Mc)i j = −1/(n(c)
s n(c)

t ), if Xi ∈ D
(c)
s , X j ∈ D

(c)
t or

X j ∈ D
(c)
s , Xi ∈ D

(c)
t ; otherwise (Mc)i j = 0. The

third term is the regularization term. The W can be
obtained by the following generalized eigen-decomposition
problem and composed of its d smallest eigenvectors,(

K (L + ∑C
c=1 Mc)K T + λI

)
W = K H K T W�, where

� = (φ1, · · · , φd ) are the Lagrange multipliers.

C. Balanced Domain Adaptation

As mentioned above, the TCA method only considers the
marginal distribution of source and target domains, and JDA
considers both the marginal and conditional distributions.
Though JDA may have more information used, it assumes
the marginal and conditional distributions are dedicating
identically to the domain divergence, which is not practical
in real-world applications. To address this problem, Wang
et.al [26] proposed a balanced domain adaptation (BDA) by
using a balance factor μ to exploit the different importance
of distributions,

D (Ds ,DT ) ≈ (1 − μ) D (P (X S) , P (XT ))

+ μD(P (yS | X S) , P (yT | XT )), (4)

where μ ∈ [0, 1], when μ → 0, the marginal distri-
bution is more important to adapt, when μ → 1, the
conditional distribution is more important. The optimization
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Fig. 2. The experimental design in this paper, including (A) the general task design, (B) the design of WM task and MA task, and (C) a detailed trial
of both tasks at a difficulty level of L3.

problem of BDA is

min
W

tr

(
W T K ((1 − μ)) L + μ

∑C

c=1
Mc)K T W

)

+ λ �W�2
F ,

s.t . W T K H K W = I, μ ∈ [0, 1] . (5)

The W is obtained by solving the following problem,(
K ((1 − μ)) L + μ

∑C
c=1 Mc)K T + λI

)
W = K H K T W�,

and composed of its d smallest eigenvectors, where
� = (φ1, · · · ,φd) are the Lagrange multipliers.

D. Transfer Joint Matching

When the source and target domains are different in both
feature distribution and samples relevance, Long et al. [27]
proposed Transfer Joint Matching (TJM) to cope with this
setting. TJM aims to reduce the domain discrepancy by
simultaneously matching the marginal feature distributions
and reweighting the source samples across domains in a
principled dimensionality reduction procedure, and construct
a new feature representation that is stationary to both the
marginal distribution discrepancy and the irrelevant samples,

min
W

tr
(

W T K L K T W
)

+ λ(�Ws�2,1 + �Wt�2
F ),

s.t. W T K H K T W = I, (6)

here, the first term is the MMD distance between mar-
ginal distribution, the second is the regularizer of sample
reweighting, including the row-sparsity for source sample
in the sample space. Followed with TCA, the constraint
is retaining the structure of the original data. So, the new
feature representation is Z = W T K . Finding the optimal
adaptation matrix W is reduced to solving following gener-
alized eigen-decomposition for the d smallest eigenvectors,(
K L K T + λG

)
W = K H K T W , φ = (φ1, · · · , φd) are the

Lagrange multipliers, and G is a diagonal sub-gradient matrix.

We recommend the readers refer to the detailed descriptions
of TJM [27].

III. DATA AND EXPERIMENT

A. Subjects and Experiment Setup

In this study, we have invited 45 college students (28 males
and 17 females, aged 20 to 30, mean age of 24.6 ± 6.6) to
participate in EEG experiments at the iBRAIN laboratory of
Nanjing University of Aeronautics and Astronautics. Except
for one subject, all others were right-handed. All subjects
have fulfilled the inclusion criterion that having a normal
or corrected-to-normal vision. They did not suffer from any
condition that may cause anxiety or fatigue. Participants were
required to keep away from caffeine, medication, and alcohol,
and had a normal amount of eight sleep hours before the
experiment. After the explanation of the experimental protocol,
we have obtained the signed written consent from all subjects.

Each subject undertook three tasks, including resting state
with eye closed and eye open, WM task, and MA task. The
general experimental design is displayed in Figure 2(A).

In the WM task, subjects needed to remember different
numbers of stimuli groups (here we choose English letter
sequences as stimuli), maintaining for 2 seconds, and deter-
mine whether the shown English letter had existed in the
memorization sequences before [28]. The WM task consists
of seven groups, and each group has 20 trials, 30% of them
are target stimuli. We set the difficulty levels of seven, from
the very low (L1), low (L2), medium (L3), medium-high (L4),
high (L5), very high (L6) to extreme high (L7), with the length
of sequences as 1, 2, 4, 6, 8, 10, 12, respectively. In each group,
the order of levels was randomly presented. After a blank of
1s, the stimulus was presented for 2s followed by a fixation
cross during the interval of 3s, then a judgment time of 2s.

In the MA task, the subjects needed to retain the results of
the currently shown addition formula (e.g., 5+7) and identify
whether the given number (e.g., 11) matched the result they
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TABLE I
DETAILS OF THE TASK DESIGN FOR ALL SEVEN LEVELS IN THE WM TASK AND MA TASK

calculated before. This task involves temporal storage of inter-
mediate results and information retrieval held in the cognitive
workspace [11]. Similarly, the MA task consists of seven
groups, and each group has 20 trials, 30% of them are target
stimuli. We set the difficulty levels of seven, corresponding
with the various digits and carries of addition. In each group,
the order of levels is randomly presented. After a blank of
1s, each addition was presented for 2s followed by a fixation
cross for 3s, while the answer is displayed for 2s.

In Figure 2(B), we display the detailed setup for each
cognitive task, and Figure 2(C) shows a detailed trial of both
tasks at a difficulty level of L3. In Table I, we list the level
design and the examples of various difficulty levels.

All task stimuli were shown on a computer screen in white
font on a black background. Participants were instructed to
focus on both accuracy and speed and practice five trials before
the EEG recordings were implemented for both tasks. Notably,
mental fatigue may be induced during the experiment and
it may contaminate the EEG quality. To avoid this, we first
randomized the group order in each task. Then, we randomized
the order of difficulty levels in each group. Also, we asked the
subjects to rest before each task to ease the fatigue. The task
paradigms were carried out in E-Prime 2.0 software [29].

B. Data Acquisition and Preprocessing

A portable wireless EEG amplifier (NeuSen. W64, Neura-
cle, China) was used for EEG data recording at a sampling
rate of 1000 Hz. Fifty-nine electrodes were arranged according
to the international 10-20 system, with reference at CPz and
a forehead ground at AFz. Electrode impedances were kept
below 5 k� for all electrodes throughout the experiment.
In addition to the EEG signals, the reaction time and the
answer accuracy of the subjects were also recorded as objec-
tive behavior data to evaluate the cognitive workload levels.

A widely-used EEG preprocessing pipeline was adopted in
the current study, using EEGLAB software [30]. Specifically,
the raw EEG data were firstly re-referenced to the average
of the electrodes, then, band-pass filtered to 0.1-70 Hz to
eliminate noise, and additionally a 50 Hz notch filtered to
reduce the power line noise. The filtered data were down-
sampled to 256 Hz. Signals were then baseline adjusted and
segmented into 2s epochs after stimulus onset. Eye-blink and
muscle-related artifacts were removed via Independent Com-
ponents Analysis by rejecting the components that were highly
correlated with those artifacts. Here we used ADJUST [31] and
ICLabel [32] tools to mark the components. Due to high noise
contamination, seven subjects were excluded, thus leaving

TABLE II
THE NUMBER OF SAMPLES OF DIFFERENT TASKS

38 subjects (25 males and 13 females, mean age of
24.4 ± 5.9 years) for the subsequent analysis. For these sub-
jects, the bad epochs with noise were further removed by
visual inspection, thus leaving 4554 and 4681 trials (each is 2s
length) for the WM task and MA task, respectively. In Table II,
we list the corresponding numbers of the workload levels with
two tasks.

C. Feature Extraction

For feature extraction, we have extracted power spectral
density (PSD) features from the spectral dimension [33] and
coherence features from the brain connectivity network [34],
which are both widely used in EEG analysis [35], and com-
bined them as the final feature set.

To be specific, the PSD and coherence features are extracted
from 5 clinical frequency bands (δ [1∼3 Hz], θ [4∼7 Hz],
α [8∼13 Hz], β [14∼30 Hz], and γ [31∼50 Hz]), and
PSD is extracted based on short-time Fourier transform.
Short-time Fourier transform is a time-frequency domain
decomposed method, and it decomposes signals into small
sequential data frames with shifting windows, and a fast
Fourier transform is then used to each frame [36]. We use
Hanning windows with 0.5s window length (total is 2s) and
no overlap. The calculation formula of PSD is PSD =

1
N Fs

∣∣∣∑N
n=1 x [n] w [n] e− j2π f n/Fs

∣∣∣2
, where x [n] is the EEG

trials, n = 1, 2, · · · , N, Fs is the sampling rate, w [n] is the
window function. The total dimension of the PSD feature of
a 59-channel EEG segment is 59 channels × 4 windows ×
5 bands = 1180.

Besides the PSD feature, functional connectivity network
can be used for measuring the relationship between different
EEG electrodes [35] or functional brain regions [37]–[39].
EEG-related functional connectivity networks can be con-
structed by coherence [40]. The formula for coherence is

Cohxy(ω) = |Pxy(ω)|
Pxx (ω)Pyy(ω) , where Pxy(ω) is the cross-spectrum

of channel signals x and y, and Px x(ω), Pyy(ω) are the power
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TABLE III
THE DESIGN OF TRANSFER SCHEMES

spectrum of x and y, respectively. Since the connection matrix
is symmetric, i.e., the upper triangle is the same as the lower
triangle, we thus remove the lower triangle entries. Since
the main diagonal entries are both self-connections, we also
remove them. The total dimension of coherence feature of a
59-channel EEG segment is 59×(59−1)/2 × 5 bands=8555.
Finally, we combine the PSD and coherence as the final
features (total 9735).

D. Workload Classification

We aim to build EEG-based cross-task cognitive workload
recognition models using domain adaptation techniques. Here,
during training for cross-task transfer, the samples of the
labeled source data from task A are used to predict the
unlabeled target data in task B. Considering the different appli-
cation scenarios, we define three kinds of transfer schemes
with different focuses.

(1) One-to-one cross-task transfer (denoted as O → O): is
the transfer considering the intra-subject task variability,
where we use the data from each subject to complete
the cross-task cognitive workload recognition. Given one
subject, the source domain is the data of task A, and the
target domain is the data of task B of the same person.

(2) Many-to-one cross-task transfer (denoted as M → O):
is the transfer focusing on the source combination,
where the source domain is the data of task A of
all the subjects, and the target domain is the data of
task B of each subject. It makes sense when multiple
existing subjects are available and it might have more
information than O → O.

(3) Various one-to-one cross-task transfer (denoted as
VO → O): which considers the subject variabilities,
where the target domain is the task B of one subject,
the source domain is the enumerated task A from the
other subjects.

We thus focus on evaluating the domain adaptation methods
for a common binary classification task. We take levels L1, L2,
L3 as low workload, and levels L5, L6, L7 as high workload.

Here we adopt widely used classifiers for baseline com-
parison, including supporting vector machine (SVM) with
radial basis function (RBF) kernel, K-nearest neighbor (KNN),
linear discriminative analysis (LDA), and single hidden-layer
artificial neural network (ANN). These methods also are non-
transfer methods. SVM is constructed based on the RBF kernel
with a soft margin parameter C. The parameter of KNN is the
number of neighbors. Note that this paper only presents the
best SVM and KNN results. The LDA classifier is used with
the default setting provided by MATLAB. ANN is used with
10 hidden units. Based on the preliminary results, we then
use SVM with RBF kernel as the base classifier for domain

TABLE IV
DETAILS OF HYPER-PARAMETER FOR THE USED METHODS

adaptation methods. For the TCA, JDA, and TJM methods,
the hyper-parameters are the dimension of subspace d , the
kernel function, RBF kernel-based γ , trade-off parameter λ;
for BDA, it also includes the balance factor μ. The related
hyper-parameters are summarized in Table IV. We first use
the MA task and WM task as source domain (training data)
and target domain (testing data), respectively, as MA→WM.
Then, we select data in reverse order, as WM→MA. So, for
each method, we repeat the classification process 228 times
(38 subjects × 2 orders × 3 conditions).

IV. EXPERIMENTAL RESULTS

The results for recognizing cognitive workload consist of
two parts. First, behavioral data including response time
and answer accuracy, and event-related spectral perturba-
tion (ERSP) are analyzed to validate the different cognitive
workload levels induced by WM and MA tasks. Second, the
binary classification results of cross-task workload models
are presented, using accuracy and F1 score as performance
evaluation metrics.

A. Behavioral Results

We use the WM task and MA task to explore cross-task
cognitive workload recognition. In the experiment, we have
recorded the response time and answer accuracy as behavior
data. Due to the non-block experimental design and random
order of experimental stimulus representation [41], we did not
collect the subjective measurements, such as the NASA-TLX
questionnaire. Figure 3 presents the behavior data to validate
the effectiveness of these two types of cognitive tasks and
the corresponding one-way analysis of variance (ANOVA)
results. This experiment confirms that easy and hard tasks are
distinguishable.

For both the MA and WM tasks, when the diffi-
culty levels increase, the subjects perform worse as in
Figure 3(A) and (B), and take longer to provide the answers
as in Figure 3(C) and (D). For the MA task, the accuracy
difference between levels 1, 2, 3 and levels 4, 5, 6, 7 (p <
0.01), and the difference between levels 4, 5, 6, and level 7
(p < 0.01) are significant; the difference between levels 1, 2,
3 and the difference between levels 4, 5, 6 are not significant.
For response time, the difference between levels 1, 2, 3
and levels 5, 6, 7 (p < 0.01), and the difference between
level 4 and level 7 (p < 0.01) are significant; the difference
between levels 1, 2, 3, 4, the difference between levels 4, 5,
6 and the difference between levels 5, 6, 7 are not significant.
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Fig. 3. Results of the one-way ANOVA of the behavioral data. Bars
represent mean ± standard error. WM task: working memory task; MA
task: mathematic addition; RT: Response Time; ∗∗ indicates p < 0.01;
Games-Howell’s correction was used for multiple comparisons.

For the WM task, the accuracy difference between levels 1, 2,
3, 4, and levels 5, 6, 7 (p < 0.01) are significant; the difference
between levels 1, 2, 3, 4, and the difference between levels 5,
6, 7 are not significant. For response time, the difference
between levels 1, 2 and levels 5, 6, 7 (p < 0.01), and the
difference between level 1 and levels 3, 4 (p < 0.01) are
significant; the difference between levels 1, 2, the difference
between levels 3, 4, and the difference between levels 4, 5, 6,
7 are not significant.

We analyze EEG using the event-related spectral pertur-
bation (ERSP) [20], [42] and perform the one-way ANOVA
with 2000 permutations for statistical testing. ERSP provides
detailed information on event-related desynchronization/ syn-
chronization and can visualize the mean power changes [43].
In Figure 4, we analyze the ERSP maps for each cognitive
task, for each of the 7 stimulus conditions in all 59 electrodes,
and in the four EEG frequency-bands (θ , α, β, and γ ) during
the 0-1000ms after task stimulus, using EEGLAB [30].

For the WM task, as shown in Figure 4(A), in θ band,
levels 1 and 2, levels 4,5,6, and 7 have similar ERSP patterns,
respectively. In α and β band, level 1 to level 7 have similar
ERSP. Significant differences between level 1 to level 7 are
confined in θ band with frontal, right temporal, and occipital
brain regions (p < 0.05), whereas the difference in the α, β,
and γ bands are not significant.

For the MA task, as shown in Figure 4(B), in θ band,
levels 1 and 2, levels 4,5, and 6 have similar ERSP patterns,
respectively. In α and β band, level 1 to level 7 have similar
ERSP patterns. Significant differences between level 1 to
level 7 are confined in θ band with frontal and left occipital
brain regions (p < 0.05), and γ band with occipital, and central
brain regions (p < 0.05), whereas the difference in the α and β
bands are not significant. Furthermore, the ERSP distributions
between the WM task and MA task have a similar pattern in
the θ , α, and β bands.

B. Classification Results

Table V displays the classification accuracy of different
methods and Supplementary Table S1 validates the differences
between different methods. Here, SVM, LDA, KNN, and ANN
are non-transfer methods, whereas TCA, JDA, BDA, and TJM
are domain adaptation methods with SVM as the classifier.

Fig. 4. Results of the one-way ANOVA for ERSP analysis. WM task:
working memory task; MA task: mathematic addition. For different levels,
blue indicates event-related desynchronization, red indicates event-
related synchronization. The last column represents p values, with redder
color indicating the stronger significance; FDR correction was used for
multiple comparisons.

In O → O, M → O, and V O → O transfers, we find
the proposed TJM method has the best average accuracy
both for the MA→WM and WM→MA. For non-transfer
methods, SVM performs better than other methods. Specif-
ically, in O → O task transfer, compared TJM with SVM,
the average accuracy is increased by 8.36% in MA→WM,
5.76% in WM→MA, 7.06% on average. In M → O task
transfer, compared with SVM, the average accuracy of TJM
is increased by 7% in MA→WM, 4.81% in WM→MA,
5.91% on average. When comparing O → O to M → O,
we find SVM, ANN, and all domain adaptation methods
have an increasing trend as having more source data samples.
In V O → O task transfer, we have averaged the classification
results of various source domains for each target domain,
and have reported the average classification results of all the
target domains as the final results. Compared with SVM, the
average accuracy of TJM is increased by 3.59% in MA→WM,
3.17% in WM→MA, 3.38% on average. When comparing
the O → O to M → O, the improvement of M → O

design might come from the more training data; for M → O

design, the proposed transfer methods outperform the non-
transfer methods, we argue the improvement of this result
might come from the proposed domain adaptation frameworks.
Comparing the O → O, V O → O, and M → O classification
results, we have found that the V O → O setting has lower
classification accuracy than the other two, mainly due to the
huge subject variabilities existing in this way. It indicates the
importance to reduce the effect of subject variabilities.
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TABLE V
THE CLASSIFICATION ACCURACY (%) WITH MEAN AND

STANDARD DEVIATION

Supplementary Table S1 validates the differences between
different methods using Dunn’s test with multiple comparison
corrections. In both O → O and M → O designs, the dif-
ference between TJM and non-transfer methods (SVM, LDA,
KNN, and ANN) are significant (p < 0.05); the difference
between all transfer methods to KNN and LDA are signifi-
cant (p < 0.05). For domain adaptation, TCA versus BDA,
JDA versus TJM have no significant difference (p > 0.05).
In V O → O setting, the difference between non-transfer meth-
ods (SVM, LDA, KNN, and ANN) versus JDA and TJM are
significant (p < 0.05). For domain adaptation, the difference
between TCA versus TJM, BDA versus TJM are significant
(p < 0.05), whereas JDA versus TJM, JDA versus BDA have
no significant difference (p > 0.05). To further display the
performance, in Figure 5, we show the accuracy distributions
across different algorithms, using box-plot figures. Besides,
Supplementary Table S2 shows the F1 score results, which
have similar results in Table V. We also provide additional
case 1 and case 2 settings for binary cross-task cognitive
workload recognition, here, in case 1, we take level L1 as low
workload and level L7 as high; in case 2, we take levels L1,
L2 as low workload, levels L6, L7 as high. Supplementary
Tables S3 and S4 show the classification accuracy and F1
score results for both case 1 and case 2. In sum, the proposed
transfer framework has better performance and significant
improvements than non-transfer methods, especially for TJM.
As such, both cognitive tasks generate positive transfers in the
proposed cross-task framework.

V. DISCUSSION

The discussion of cross-task cognitive workload recognition
consists of five parts. First, the classification tasks with com-
binations of different source numbers and the dimensions of
subspace for the TJM are conducted in Figure 6. Second, accu-
racy comparisons between PSD and coherence are employed
in Figure 7. Third, PSD and coherence are employed sepa-
rately to evaluate their impacts in Figures 8 and 9. Fourth,
a nonlinear dimensionality reduction is used to visualize the
feature representation learned after TJM in Figure 10. Finally,
the limitations and future work are presented.

A. Parameter Sensitivity

To figure out the best source combination number in
M → O design, we also conduct classification tasks using the

Fig. 5. Accuracy distributions for each algorithm and differences
between the TJM and the other methods. Here, (A) and (B) are in O → O
design, (C) and (D) are in M → O design, (E) and (F) are in VO → O
design. The first column is trained on the MA task and tested on the
WM task, the second column is in reverse order. ∗∗ indicates p < 0.01;∗ indicates p< 0.05; Dunn’s test with multiple comparison correction was
used.

TJM method with different source combination numbers from
[4, 6, 8, · · · , 38] and the dimension of subspace from [40,
60, 80, 100], as shown in Figure 6. Here, (A) is trained on
the MA task and tested on the WM task, (B) is in reverse,
and d is the dimension number of TJM. For (A), the highest
accuracy is obtained at source number NS = 28, and d=80.
For the MA→WM task, when the NS < 20, the overall
trend is increasing, and the low-dimensional d can obtain
acceptable performance, such as d = 40 in (A); when NS > 20,
the bigger d shows more stable power. For (B), the highest
accuracy is obtained at source number NS = 36, and d=80.
For the WM→MA task, the accuracy trend is first decreasing
at NS = 16, then increasing. Similarly, when NS > 16, the
higher d shows a stable increase. Since we direct combine
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Fig. 6. Accuracy for TJM algorithm with different source combinations,
where (A) is trained on MA task and tested on WM task, (B) is reverse,
and d is the dimension number of TJM.

Fig. 7. Accuracy comparison between PSD and coherence (COH)
features in a M → O design. Bars represent mean ± standard error.
Here, the mean is the average accuracy of MA→WM and WM→MA
transfers. Paired t-test is used for feature comparisons, and ∗∗ indicates
p < 0.01.

data in all the source domains as a new source domain, the
training time of M → O design is longer than O → O. The
above results show that the multi-source selection might be
useful for fast cognitive workload recognition.

B. Features Comparisons

To evaluate the different features on the results of the
TJM method, we repeat the classification task using PSD
and coherence features separately. We set the kernel function
as linear, the dimension of subspace as 80, and the other
experimental settings stay the same. Accuracy comparisons
between PSD and coherence are displayed in Figure 7.

Coherence has an advantage over PSD for about 4.3% and
7.1% increments in the MA→WM and WM→MA transfers,
respectively (p < 0.01, paired t-test). When compared with
the average accuracy of the two transfers, the coherence has
an advantage over PSD with about a 5.7% increment. In sum,
in terms of the mean accuracy, the coherence performs better
than PSD, although these two features have different feature
numbers. Previous studies have shown that brain activity
is usually completed by multiple brain regions [34], [35].
We argue that the functional connectivity feature (i.e., coher-
ence used in the study) can better reflect the correlation
between EEG electrodes, so coherence achieves better clas-
sification results than PSD.

C. Feature Importance

We also investigate the importance of the original features
for both two tasks. In Figure 8, we show the PSD distributions
in low and high workload conditions with the mean PSD value
of each channel across 5 frequency bands. Here, the whole

Fig. 8. The PSD distribution in low and high workload, where the upper
is for WM task and the lower is for MA task. The color bar below indicates
the mean PSD for each frequency band.

Fig. 9. The coherence variance distribution of low and high workload.
(A) The upper is for the WM task and the lower is for the MA task.
The color bar indicates the coherence variation, where the redder color
represents an increasing trend and the bluer represents a decreasing
trend. (B) We then show features distribution for the five frequency bands
in the pie charts and the channel location in the radar charts for each task.

EEG brain is divided into the frontal, central, occipital, pari-
etal, and temporal brain regions. We find the PSD distributions
in the same task have a similar pattern but vary between the
two tasks. For the WM task, with the workload increment, the
θ frequency band in the frontal and central brain regions has an
increased PSD; the α and β bands in the parietal and occipital
brain regions both have a decreased PSD; the γ band in the
frontal and occipital brain regions has an increased PSD. For
the MA task, the θ and α bands in the temporal regions have
similar PSD distribution; the β band in the occipital region
has a decreased PSD with the workload increment.

In Figure 9, we show the coherence variance distribution of
low and high workloads. To obtain the coherence variance
distribution, we first use the mean coherence features of
high workload to minus the low workload in corresponding
frequency bands. In Figure 9(A), the upper is for the WM task
and the lower is for the MA task. As we can see, the coherence
variance distributions have a similar pattern for both tasks,
where δ band in frontal regions has great importance and the
coherence values have an increasing trend, whereas the coher-
ence values in β and α bands from central and occipital regions
have a decreasing trend. To further find the workload-related
frequency bands and channels, we then use a t-test to select the
most significate top 200 features (p < 0.01). In Figure 9(B),
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Fig. 10. Feature visualization by t-SNE. Here, (A) and (B) are the features
of the original distribution, (C) and (D) are the features after TJM. The first
column is trained on the MA task and tested on the WM task, the second
column is in reverse order. Light colors denote features from the source
domain and deep colors represent features from the target domain. For
better visualization, we also highlight features from different categories
with different colors (i.e., red and blue). S is Source, and T is Target
domain.

we show features distribution for the five frequency bands in
the pie charts and the channel locations in the radar charts
for each task. The majority of coherence features in the δ
band included frontal, central, and occipital regions, following
with theta and alpha bands. The PSD features and coherence
features describe the EEG characteristics from the spectral and
spatial connectivity perspectives, respectively, thus combining
them may offer meaningful information.

D. Feature Visualization

To visualize the distributions of feature representation
learned by TJM, we try to project the latent feature represen-
tations on a two-dimensional (2D) plane using t-distributed
stochastic neighbor embedding (t-SNE) in Figure 10. T-SNE
is a nonlinear dimensionality-reduction method, aiming to
sustain data structure in a low-dimensional space [44]. For
briefness, we randomly select one target from the dataset in
O → O design and draw the t-SNE maps on 2D space.
Here, Figures 10 (A) and (B) are the features of the original
distribution, (C) and (D) are the features after TJM. The first
column is trained on the MA task and tested on the WM task,
the second column is in reverse order. Light colors denote
features from the source domain and deep colors represent
features from the target domain. Red denotes low and blue
denotes high workload class. Since we use a random order to
display the experimental stimulus rather than the commonly-
used block design, the classification task in our paper is harder
to discriminate than the block design. As we can see from
Figures 10 (A) and (B), originally, the samples belonging to
different classes overlap substantially across domains, making
it difficult to discriminate. In Figures 10 (C) and (D), the
discrepancies between different tasks have been reduced, as the
target samples are closer to the corresponding classes, which

also makes it easy to classify. Although it is easier to classify
the low workload and high workload samples in (C) and (D)
than (A) and (B), we also find the classification boundaries
after the TJM still have some overlaps. We argue that some
hard-to-distinguish samples might be misclassified and mis-
lead the classification boundaries in source domains, indicating
the need to construct the effective and strong classifier in
source domains.

E. Limitations and Future Work

In this paper, the experimental results show that domain
adaptation methods in a M → O design have better perfor-
mance than O → O design, indicating the multi-source domain
adaptation would enhance the classification performance than
a single source. We argue the M → O design may provide
more information and more data for constructing a powerful
and robust model than O → O design. However, we use
traditional domain adaptation methods in the experiment.
Besides, we focus on the binary classification task in the
paper, whereas the experimental design can be used to classify
seven workload levels. These findings provide the requisite
deep transfer models necessary for recognizing the multi-class
workload levels for real-world use, due to their effectiveness
and strong power [45], especially for multi-source deep trans-
fer learning [46].

VI. CONCLUSION

In this paper, we have presented a preliminary study on
EEG-based cross-task cognitive workload recognition using
domain adaptation techniques, and a comparative study on
a private EEG dataset. The cross-task workload recognition
models have been constructed in O → O, M → O, and
V O → O transfers. We have compared the performance of
domain adaptation methods and conventional non-transfer
classifiers. The experimental results have demonstrated the
proposed task transfer framework outperforms the non-transfer
classifier with an accuracy increase of 3% to 8%. Taking
advantage of jointly considering the adaptation of data distrib-
utions and the weights of source samples, the TJM consistently
achieves the best performance and significant improvements.
The results provide the requisite deep and/or multi-source
domain adaptation methods that might be necessary for recog-
nizing the multi-class workload levels for real-world use.
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