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Abstract

Cross-validation (CV) is a popular method for model-selection. Unfortunately, it is

not immediately obvious how to apply CV to unsupervised or exploratory contexts.

This thesis discusses some extensions of cross-validation to unsupervised learning,

specifically focusing on the problem of choosing how many principal components to

keep. We introduce the latent factor model, define an objective criterion, and show

how CV can be used to estimate the intrinsic dimensionality of a data set. Through

both simulation and theory, we demonstrate that cross-validation is a valuable tool

for unsupervised learning.
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Chapter 1

Introduction

Cross-validation (CV) is a popular method for model selection. It works by estimat-

ing the prediction error of each model under consideration and then choosing the

model with the best performance. In unsupervised contexts, though, there is no clear

notion as to what exactly “prediction error” is. Therefore, it is difficult to employ

cross-validation for model selection in unsupervised or exploratory contexts. In this

thesis, we take a look at some extensions of cross-validation to unsupervised learning.

We focus specifically on the problem of choosing how many components to keep for

principal component analysis (PCA), but many of the concepts we introduce are more

broadly applicable.

Before we can do anything, we need a solid theoretical foundation. To this end,

Chapter 2 gives a survey of relevant results from multivariate statistics and ran-

dom matrix theory. Then, Chapter 3 derives the behavior of the singular value

decomposition (SVD) for “signal-plus-noise” matrix models. These two chapters are

complemented by Appendices A and B, which collect properties of random orthog-

onal matrices and give some limit theorems for weighted sums of random variables.

Collectively, this work provides the groundwork for the rest of the thesis.

In Chapter 4, we introduce the latent factor model. This is a generative model

for signal-plus-noise matrix data that expands the setup of PCA to include correlated

factor loadings. We motivate loss functions for estimating the signal part, and then

show how the SVD performs with respect to these criteria.

1



2 CHAPTER 1. INTRODUCTION

The next chapter (Chapter 5) focuses on cross-validation strategies. It covers both

Wold-style “speckled” hold-outs as well as Gabriel-style “blocked” hold-outs. We

define model error and prediction error for the latent factor model, and present the

two cross-validation methods as estimators of prediction error. The chapter includes

a comparison of CV methods with parametric model-selection procedures, showing

through simulation that CV is much more robust to violations in model assumptions.

In situations where parametric assumptions are unreasonable, cross-validation proves

to be an attractive method for model selection.

Chapter 6, the final chapter, contains a theoretical analysis of Gabriel-style cross-

validation for the SVD, also known as bi-cross-validation (BCV). This chapter shows

that BCV is in general a biased estimator of model error, with an explicit expression

for the bias. Despite this bias, though, the procedure can still be used successfully for

model selection, provided the leave-out sizes are chosen appropriately. The chapter

shows how to choose the leave-out sizes and proves a weak form of consistency.

Cross-validation is a valuable and flexible procedure for model selection. Through

theory and simulation, this thesis demonstrates the applicability and utility of cross-

validation as applied to principal component analysis. Many of the ideas in the

following chapters generalize to other unsupervised learning procedures. This thesis

shows that cross-validation can successfully be used for model selection in a variety

of contexts.



Chapter 2

Multivariate statistics background

Multivariate statistics will prove to be a central tool for this thesis. We use this

chapter to gather the relevant definitions and results, concentrating mainly on the

eigenvalues and eigenvectors from sample covariance matrices. The literature in this

area spans over fifty years. We give the basic definitions and properties of the mul-

tivariate normal and Wishart distributions in Section 2.1. Then, in Section 2.2, we

survey classical results about sample covariance matrices when the number of di-

mensions, p, is fixed and the sample size, n, grows to infinity. This material is by

now standard and can be found in any good multivariate statistics book (e.g. Muir-

head [61]). Lastly, in Section 2.3, we survey modern asymptotics, where n→∞ and

p grows with n. Modern multivariate asymptotics is still an active research topic,

but today it is possible to give a reasonably-complete description of the objects of

interest.

2.1 The multivariate normal and Wishart distri-

butions

We start with the definition of the multivariate normal distribution and some basic

properties, which can be found, for example, in Muirhead [61][Chapters 1–3].

Definition 2.1 (Multivariate Normal Distribution). For mean vector
¯
µ ∈ R

p and

3



4 CHAPTER 2. MULTIVARIATE STATISTICS BACKGROUND

positive-semidefinite covariance matrix Σ ∈ R
p×p, a random vector

¯
X ∈ R

p is said

to be distributed from the multivariate normal distribution, denoted
¯
X ∼ N

(
¯
µ, Σ

)
if

for every fixed vector
¯
a ∈ R

p, the vector
¯
aT

¯
X has a univariate normal distribution

with mean
¯
aT

¯
µ and variance

¯
aTΣ

¯
a.

The multivariate normal distribution is defined for any positive-semidefinite covari-

ance matrix Σ, but it only has a density when Σ is strictly positive-definite.

Proposition 2.2. If
¯
X ∈ R

p follows a multivariate normal distribution with mean
¯
µ

and positive-definite covariance matrix Σ, then its components have density

f(
¯
x) = (2π)−p/2|Σ|−1/2 exp

(
−1

2
(
¯
x−

¯
µ)TΣ−1(

¯
x− µ)

)
. (2.1)

A basic fact about the multivariate normal is the following:

Proposition 2.3. Let
¯
a ∈ R

p, C ∈ R
q×p, and

¯
X ∼ N

(
¯
µ, Σ

)
. Define

¯
Y = C

¯
X +

¯
a.

Then
¯
Y ∼ N

(
C

¯
µ +

¯
a, CΣCT

)
.

Two immediate corollaries are:

Corollary 2.4. Suppose that
¯
X ∼ N (

¯
0, σ2Ip) and that O ∈ R

p×p is an orthogonal

matrix. Then O
¯
X

d
=

¯
X.

Corollary 2.5. If
¯
X ∼ N (

¯
0, Σ) and Σ = CCT for a matrix C ∈ R

p×p, and if

¯
Z ∼ N (

¯
0, Ip) , then C

¯
Z

d
=

¯
X.

We are often interested in estimating the underlying parameters from multivariate

normal data. The sufficient statistics are the standard estimates.

Proposition 2.6. Say that
¯
X1,

¯
X2, . . . ,

¯
Xn are independent draws from a N

(
¯
µ, Σ

)

distribution. Then the sample mean

¯
X̄n ≡

1

n

n∑

i=1
¯
Xi (2.2)
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and the sample covariance

Sn ≡
1

n− 1

n∑

i=1

(
¯
Xi −

¯
X̄n

) (
¯
Xi −

¯
X̄n

)T
(2.3)

are sufficient statistics for
¯
µ and Σ.

To describe the distribution of Sn, we need to introduce the Wishart distribution.

Definition 2.7 (Wishart Distribution). Let
¯
X1,

¯
X2, . . . ,

¯
Xn ∈ R

p be an iid sequence

of random vectors, each distributed as N (
¯
0, Σ) . Then the matrix

A =
n∑

i=1
¯
Xi

¯
XT

i

is said to have the Wishart distribution with n degrees of freedom and scale parameter

Σ. We denote this by A ∼ Wp (n, Σ) .

When n ≥ p and Σ is positive-definite, the elements of a Wishart matrix have a

density.

Proposition 2.8. Suppose that A ∼ Wp (n, Σ). If n ≥ p and Σ is positive-definite,

then the elements of A have a density over the space of positive-definite matrices,

given by

f(A) =
|A|n−p−1

2

2
np

2 |Σ|n2 Γp

(
n
2

) exp

(
−1

2
tr
(
Σ−1A

))
, (2.4)

where Γp (·) is the multivariate gamma function, computed as

Γp

(n

2

)
= πp(p−1)/4

p∏

i=1

Γ

(
n + 1− i

2

)
. (2.5)

We can now characterize the distributions of the sufficient statistics of a sequence

of iid multivariate normal random vectors.

Proposition 2.9. Let
¯
X̄n and Sn be defined as in Proposition 2.6. Then

¯
X̄n and Sn

are independent with
¯
X̄n ∼ N

(
µ, 1

n
Σ
)

and (n− 1)Sn ∼ Wp (n− 1, Σ).
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White Wishart matrices—those with scale parameter Σ = σ2Ip are of particular

interest. We can characterize their distribution in terms of eigenvalues and eigenvec-

tors.

Proposition 2.10. Suppose that A ∼ Wp (n, σ2Ip) with n ≥ p and let A = nOLOT

be the spectral decomposition of A, with L = diag (l1, l2, . . . , lp) and l1 > l2 > · · · >
lp > 0. Then O and L are independent, with O Haar-distributed over the group of

p× p orthogonal matrices and the elements of L having density

(
1

2σ2

)np/2
πp2/2

Γp

(
n
2

)
Γp

(
p
2

)
p∏

i<j

|li − lj|
p∏

i=1

l
(n−p−1)/2
i e−

li
2σ2 . (2.6)

In the random matrix theory literature, with σ2 = 1 the eigenvalue density above is

sometimes referred to as the Laguerre Orthogonal Ensemble (LOE).

2.2 Classical asymptotics

In this section we present results about sample covariance matrices when the sample

size, n, tends to infinity, with the number of dimensions, p a fixed constant. A

straightforward application of the strong law of large numbers gives us the limits of

the sample mean and covariance.

Proposition 2.11. Let
¯
X1,

¯
X2, . . . ,

¯
Xn be a sequence of iid random vectors in R

p

with E [
¯
X1] =

¯
µ and E

[(
¯
X1 −

¯
µ
) (

¯
X1 −

¯
µ
)T]

= Σ. Then, as n→∞,

¯
X̄n ≡

1

n

n∑

i=1
¯
Xi

a.s.→
¯
µ

and

Sn ≡
1

n− 1

n∑

i=1

(
¯
Xi −

¯
X̄n

) (
¯
Xi −

¯
X̄n

)T a.s.→ Σ.

To simplify matters, for the rest of the section we will mostly work in a setting

when the variables have been centered. In this case, the sample covariance matrix
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takes the form Sn = 1
n

∑n
i=1 ¯

Xi
¯
XT

i . To see that centering the variables does not

change the theory in any essential way, we provide the following proposition.

Proposition 2.12. Let
¯
X1,

¯
X2, . . . ,

¯
Xn be a sequence of random observations in R

p

with mean vector
¯
µ and covariance matrix Σ. Let

¯
X̄n = 1

n

∑n
i=1 ¯

Xi and Sn =
1

n−1

∑n
i=1

(
¯
Xi −

¯
X̄n

)(
¯
Xi −

¯
X̄n

)T
be the sample mean and covariance, respectively. De-

fine the centered variables
¯
X̃i =

¯
Xi −

¯
µ. Then

Sn =
1

n

n∑

i=1
¯
X̃i

¯
X̃T

i +OP

(
1

n

)
.

In particular, this implies that

√
n (Sn −Σ) =

√
n

(
1

n

n∑

i=1
¯
X̃i

¯
X̃T

i −Σ

)
+OP

(
1√
n

)
.

Proof. We can write

Sn =
1

n− 1

n∑

i=1
¯
X̃i

¯
X̃T

i +
n

n− 1

(
¯
X̄n −

¯
µ
) (

¯
X̄n −

¯
µ
)T

=

(
1

n
+

1

n(n− 1)

) n∑

i=1
¯
X̃i

¯
X̃T

i +
n

n− 1

(
¯
X̄n −

¯
µ
) (

¯
X̄n −

¯
µ
)T

The result follows since
¯
X̃i

¯
X̃T

i = OP (1) and
¯
X̄n −

¯
µ = OP

(
1√
n

)
.

The next fact follows directly from the multivariate central limit theorem.

Proposition 2.13. Suppose that
¯
X1,

¯
X2, . . . ,

¯
Xn is a sequence of iid random vectors

in R
p with

E
[
¯
X1

¯
XT

1

]
= Σ,

and that for all 1 ≤ i, j, i′, j′ ≤ p there exists finite Γiji′j′ with

E [(X1iX1j − Σij) (X1i′X1j′ − Σi′j′)] = Γiji′j′ .
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If Sn = 1
n

∑n
i=1 ¯

Xi
¯
XT

i , then
√

n vec (Sn −Σ)
d→ vec (G) , where G is a random p× p

symmetric matrix with vec (G) a mean-zero multivariate normal having covariance

Cov (Gij, Gi′j′) = Γiji′j′ .

In the previous proposition, vec is an operator that stacks the columns of an n × p

matrix to create an np-dimensional vector.

If the elements of
¯
X1 have vanishing first and third moments (for instance if the

distribution of
¯
X1 is symmetric about the origin, i.e.

¯
X1

d
= −

¯
X1), and if E

[
¯
X1

¯
XT

1

]
=

diag (λ1, λ2, . . . , λp) , then Γiji′j′ simplifies to

Γiiii = E
[
X4

1i

]
− λ2

i for 1 ≤ i ≤ p, (2.7a)

Γijij = Γijji = E
[
X2

1iX
2
1j

]
for 1 ≤ i, j ≤ p, i 6= j; (2.7b)

all other values of Γiji′j′ are 0. In particular, this implies that the elements of vec (G)

are independent. If we also have that
¯
X1 is multivariate normal, then

Γiiii = 2λ2
i for 1 ≤ i ≤ p, and (2.8a)

Γijij = Γijji = λiλj for 1 ≤ i, j ≤ p, i 6= j. (2.8b)

It is inconvenient to study the properties of the sample covariance matrix when the

population covariance Σ is not diagonal. By factorizing Σ = ΦΛΦT for orthogonal

Φ and diagonal Λ, we can introduce
¯
X̃i ≡ ΦT

¯
Xi to get E

[
¯
X̃i

¯
X̃T

i

]
= Λ and Sn =

Φ
(

1
n

∑n
i=1 ¯

X̃i
¯
X̃T

i

)
ΦT. With this transformation, we can characterize the distribution

of Sn completely in terms of 1
n

∑n
i=1 ¯

X̃i
¯
X̃T

i .

The next result we present is about the sample principal components. It is moti-

vated by Proposition 2.13 and is originally due to Anderson [1].

Theorem 2.14. For n → ∞ and p fixed, let S1, S2, . . . ,Sn be a sequence of ran-

dom symmetric p × p matrices with
√

n vec (Sn −Λ)
d→ vec (G) , for a determin-

istic Λ = diag (λ1, λ2, . . . , λp) having λ1 > λ2 > · · · > λp and a random symmet-

ric matrix G. Let Sn = UnLnU
T
n be the eigendecomposition of Sn, with Ln =

diag (ln,1, ln,2, . . . , ln,p) and ln,1 ≥ ln,2 ≥ · · · ≥ ln,p. If G = OP (1), and the signs of Un
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are chosen so that Un,ii ≥ 0 for 1 ≤ i ≤ p, then the elements of Un and Ln converge

jointly as

√
n (Un,ii − 1)

P→ 0 for 1 ≤ i ≤ p, (2.9a)

√
nUn,ij

d→ − Gij

λi − λj

for 1 ≤ i, j ≤ p with i 6= j, and (2.9b)

√
n (ln,i − λi)

d→ Gii for 1 ≤ i ≤ p. (2.9c)

More generally, Anderson treats the case when the λi are not all unique. The key

ingredient to Anderson’s proof is a perturbation lemma, which we state and prove

below.

Lemma 2.15. For n → ∞ and fixed p let S1, S2, . . . ,Sn ∈ R
p×p be a sequence of

symmetric matrices of the form

Sn = Λ +
1√
n

Hn + o

(
1√
n

)
,

where Λ = diag (λ1, λ2, . . . , λp) with λ1 > λ2 > · · · > λp and Hn = O (1) . Let

Sn = UnLnU
T
n be the eigendecomposition of Sn, with Ln = diag (ln,1, ln,2, . . . , ln,p) .

Further suppose that Un,ii ≥ 0 for 1 ≤ i ≤ p and ln,1 > ln,2 > · · · > ln,p. Then for all

1 ≤ i, j ≤ p and i 6= j we have

Un,ii = 1 + o

(
1√
n

)
, (2.10a)

Un,ij = − 1√
n

Hn,ij

λi − λj

+ o

(
1√
n

)
, and (2.10b)

ln,i = λi +
Hn,ii√

n
+ o

(
1√
n

)
. (2.10c)
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Proof. Define p× p matrices En, F n, and ∆n so that

En = diag (Un,11, Un,22, . . . , Un,pp) , (2.11)

F n =
√

n (Un −En) , (2.12)

∆n =
√

n (Ln −Λ) , (2.13)

giving

Un = En +
1√
n

F n, and

Ln = Λ +
1√
n
∆n.

We have that

Sn = Λ +
1√
n

Hn + o

(
1√
n

)

= UnLnU
T
n

= EnΛET
n +

1√
n

(
En∆nE

T
n + F nΛET

n + EnΛF T
n

)
+

1

n
Mn (2.14)

where the elements of Mn are sums of O (p) terms, with each term a product of

elements taken from En, F n, Λ, and ∆n. Also,

Ip = UnU
T
n

= EnE
T
n +

1√
n

(
F nE

T
n + EnF

T
n

)
+

1

n
W n, (2.15)

where W n = F nF
T
n . From (2.15) we see that for 1 ≤ i, j ≤ p and i 6= j we must

have

1 = E2
n,ii +

1

n
Wn,ii, and (2.16a)

0 = En,iiFn,ji + Fn,ijEn,jj +
1√
n

Wn,ij. (2.16b)
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Substituting E2
n,ii = 1− 1

n
Wn,ii into equation (2.14), we get

Hn,ii = En,ii∆n,iiEn,ii +
1√
n

(Mn,ii − λiWn,ii) + o (1) , and (2.17a)

Hn,ij = λjEn,jjFn,ij + λiFn,jiEn,ii +
1√
n

Mn,ij + o (1) . (2.17b)

Equations (2.16a)–(2.17b) admit the solution

En,ii = 1 + o

(
1√
n

)
, (2.18a)

Fn,ij = − Hn,ij

λi − λj

+ o (1) , and (2.18b)

∆n,ii = Hn,ii + o (1) . (2.18c)

This completes the proof.

An application of the results of this section is the following theorem, which de-

scribes the behavior of principal component analysis for large n and fixed p.

Theorem 2.16. Let
¯
X1,

¯
X2, . . . ,

¯
Xn be a sequence of iid N

(
¯
µ, Σ

)
random vectors

in R
p, with sample mean

¯
X̄n and sample covariance Sn. Let Σ = ΦΛΦT be the

eigendecomposition of Σ, with Λ = diag (λ1, λ2, . . . , λp) and λ1 > λ2 > · · · > λp > 0.

Similarly, let Sn = UnLnU
T
n be the eigendecomposition of Sn, likewise with Ln =

diag (ln,1, ln,2, . . . , ln,p), ln,1 > ln,2 > · · · > ln,p, and signs chosen so that
(
ΦTUn

)
ii
≥ 0

for 1 ≤ i ≤ p. Then

(i) ln,i
a.s.→ λi for 1 ≤ i ≤ p, and Un

a.s.→ Φ .

(ii) After appropriate cenering and scaling, {ln,i}pi=1 and Un converge jointly in

distribution and their limits are independent. For all 1 ≤ i ≤ p

√
n (ln,i − λi)

d→ N
(
0, 2λ2

i

)
,

and
√

n
(
ΦTUn − Ip

) d→ F ,
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where F is a skew-symmetric matrix with elements above the diagonal indepen-

dent of each other and distributed as

Fij ∼ N
(

0,
λiλj

(λi − λj)
2

)
, for all 1 ≤ i < j ≤ p.

Proof. Part (i) is a restatement of Proposition 2.11. Part (ii) follows from Proposi-

tion 2.13 and Theorem 2.15.

2.3 Modern asymptotics

We now present some results about sample covariance matrices when both the sample

size, n, and the dimensionality, p, go to infinity. Specifically, most of these results

suppose that n → ∞, p → ∞, and n
p
→ γ for a fixed constant γ ∈ (0,∞) . There

is no widely-accepted name for γ, but we will sometimes adopt the terminology of

Marčenko and Pastur [56] and call it the concentration.

Most of the random matrix theory literature concerning sample covariance ma-

trices is focused on eigenvalues. Given a sequence of sample covariance matrices

S1, S2, . . . ,Sn, with Sn ∈ R
p×p and p = p(n) these results generally come in one of

two forms. If we label the eigenvalues of Sn as ln,1, ln,2, . . . , ln,p, with ln,1 ≥ ln,2 ≥
· · · ≥ ln,p, then we can define a random measure

F Sn =
1

p

p∑

i=1

δln,i
. (2.19)

This measure represents a random draw from the set of eigenvalues of Sn that puts

equal weight on each eigenvalue. It is called the spectral measure of Sn. Results

about F Sn are generally called results about the “bulk” of the spectrum.

The second major class of results is concerned with the behavior of the extreme

eigenvalues ln,1 and ln,p. Results of this type are called “edge” results.
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2.3.1 The bulk of the spectrum

To work in a setting where the dimensionality p, grows with the sample size, n, we

introduce a triangular array of sample vectors. The sample covariance matrix Sn is

of dimension p × p and is formed from row n of a triangular array of independent

random vectors,
¯
Xn,1,

¯
Xn,2, . . . ,

¯
Xn,n. Specifically, Sn = 1

n

∑n
i=1 ¯

Xn,i
¯
XT

n,i. We let Xn

be the n× p matrix Xn =
(

¯
Xn,1

¯
Xn,2 · · ·

¯
Xn,n

)T

, so that Sn = 1
n
XT

nXn. Most

asymptotic results about sample covariance matrices are expressed in terms of Xn

rather than Sn. For example, the next theorem about the spectral measure of a large

covariance matrix is stated this way.

Theorem 2.17. Let X1, X2, . . . ,Xn be a sequence of random matrices of increasing

dimension as n → ∞, so that Xn ∈ R
n×p and p = p(n). Define Sn = 1

n
XT

nXn. If

the elements of Xn are iid with E|Xn,11 − EXn,11|2 = 1 and n
p
→ γ > 0, then the

empirical spectral measure FSn almost surely converges in distribution to a determin-

istic probability measure. This measure, denoted FMP
γ , is called the Marčenko-Pastur

Law. For γ ≥ 1 it has density

fMP
γ (x) =

γ

2πx

√
(x− aγ)(bγ − x), aγ ≤ x ≤ bγ, (2.20)

where aγ =
(
1− 1√

γ

)2

and bγ =
(
1 + 1√

γ

)2

. When γ < 1, there is an additional

point-mass of (1− γ) at the origin.

Figure 2.1 shows the density fMP
γ (x) for different values of γ. The reason for choosing

the name “concentration” to refer to γ becomes apparent in that for larger values of

γ, FMP
γ becomes more and more concentrated around its mean.

The limiting behavior of the empirical spectral measure of a sample covariance

matrix was originally studied by Marčenko and Pastur [56] in 1967. Since then,

several papers have refined these results, including Grenander and Silverstein [37],

Wachter [92], Jonsson [47], Yin and Krishnaiah [98], Yin [96], Silverstein and Bai [82],

and Silverstein [81]. These papers either proceed via a combinatorial argument in-

volving the moments of the matrix elements, or else they employ a tool called the

Stieltjes transform. Theorem 2.17 is a simplified version of Silverstein and Bai’s main



14 CHAPTER 2. MULTIVARIATE STATISTICS BACKGROUND
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Figure 2.1: The Marčenko-Pastur law. Density, fMP
γ (x), plotted against quan-

tile, x, for concentration γ = 0.25, 1, and 4. Concentration is equal to the number of
samples per dimension. For γ < 1, there is an addition point-mass of size (1− γ) at
x = 0.

result, which more generally considers complex-valued random variables and allows

the columns of Xn to have heterogeneous variances.

The meaning of the phrase “FSn converges almost surely in distribution to FMP
γ ”

is that for all x which are continuity points of FMP
γ ,

FSn (x)
a.s.→ FMP

γ (x) . (2.21)

Equivalently, Theorem 2.17 can be stated as a strong law of large numbers.

Corollary 2.18 (Wishart LLN). Let Xn and {ln,i}pi=1 be as in Theorem 2.17. Let
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g : R→ R be any continuous bounded function. Then

1

p

p∑

i=1

g (ln,i)
a.s.→
∫

g(x) dFMP
γ (x). (2.22)

Concerning convergence rates for the quantities in Theorem 2.17, Bai et al. [4]

study the total variation distance between FSn and FMP
γ . Under suitable conditions

on Xn,11 and γ, they show that ‖FSn − FMP
γ ‖TV = OP

(
n−2/5

)
and that with proba-

bility one ‖FSn − FMP
γ ‖TV = O

(
n−2/5+ε

)
for any ε > 0. Guionnet and Zeitouni [39]

give concentration of measure results. If Xn,11 satisfies a Poincaré inequality and g is

Lipschitz, they show that for δ large enough,

− 1

n2
log P

{∣∣∣∣
∫

g(x) dFSn(x)−
∫

g(x) dFMP
γ (x)

∣∣∣∣ > δ

}
= O

(
δ2
)
, (2.23)

with an explicit bound on the error. If one is willing to assume that the elements

of Xn are Gaussian, then Hiai and Petz [41] give an exact value for the quantity in

(2.23). Guionnet [38] gives a survey of other large deviations results.

It is interesting to look at the scaled behavior in equation (2.22) when the quan-

tities are scaled by p. Indeed one can prove a Central Limit Theorem (CLT) for

functionals of eigenvalues.

Theorem 2.19 (Wishart CLT). Let X1, X2, . . . ,Xn be a sequence of random n× p

matrices with p = p(n). Assume that Xn has iid elements and that E [Xn,11] = 0,

E
[
X2

n,11

]
= 1, and E

[
X4

n,11

]
<∞. Define Sn = 1

n
XT

nXn and let FSn be its spectral

measure. If n → ∞, n
p
→ γ and g1, g2, . . . , gk are real-valued functions analytic on

the support of FMP
γ , then the sequence of random vectors

p ·
(∫

g1(x) dFSn(x)−
∫

g1(x) dFMP(x),
∫

g2(x) dFSn(x)−
∫

g2(x) dFMP(x), . . . ,
∫

gk(x) dFSn(x)−
∫

gk(x) dFMP(x)
)
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is tight. Moreover, if E
[
X4

n,11

]
= 3, then the sequence converges in distribution to a

multivariate normal with mean
¯
µ and covariance Σ, where

µi =
gi(aγ) + gi(bγ)

4
− 1

2π

∫ bγ

aγ

gi(x)√
(x− aγ)(bγ − x)

dx (2.24)

and

Σij = − 1

2π2

∫∫
gi(z1)gj(z2)

(m(z1)−m(z2))
2

d

dz1

m(z1)
d

dz2

m(z2)dz1dz2. (2.25)

The integrals in (2.25) are contour integrals enclosing the support of FMP
γ , and

m(z) =
−(z + 1− γ−1) +

√
(z − aγ)(z − bγ)

2z
, (2.26)

with the square root defined to have positive imaginary part when ℑz > 0.

The case when E
[
X4

n,11

]
= 3 is of particular interest because it arises when Xn,11 ∼

N (0, 1).

This theorem was proved by Bai and Silverstein [6], and can be considered a

generalization of the work by Johnsson [47]. In computing the variance integral (2.25),

it is useful to know that m satisfies the identities

m(z̄) = m(z),

and

z = − 1

m(z)
+

γ−1

m(z) + 1
.

Bai and Silverstein show how to compute the limiting means and variances for g(x) =

log x and g(x) = xr. They also derive a similar CLT when the elements of Xn are

correlated. Pastur and Lytova [66] have recently relaxed some of the assumptions

made by Bai and Silverstein.
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2.3.2 The edges of the spectrum

We now turn our attention to the extreme eigenvalues of a sample covariance matrix.

It seems plausible that if FSn
d→ FMP

γ , then the extreme eigenvalues of Sn should

converge to the edges of the support of FMP
γ . Indeed, under suitable assumptions,

this is exactly what happens. For the largest eigenvalue, work on this problem started

with Geman [34], and his assumptions were further weakened by Jonsson [48] and Sil-

verstein [76]. Yin et al. [97] prove the result under the weakest possible conditions [7].

Theorem 2.20. Let X1, X2, . . . ,Xn be a sequence of random matrices of increasing

dimension, with Xn of size n × p, p = p(n), n → ∞, and n
p
→ γ ∈ (0,∞). Let

Sn = 1
n
XT

nXn and denote its eigenvalues by ln,1 ≥ ln,2 ≥ · · · ≥ ln,p. If the elements

of Xn are iid with EXn,11 = 0, EX2
n,11 = 1, and EX4

n,11 <∞, then

ln,1
a.s.→
(
1 + γ−1/2

)2
.

For the smallest eigenvalue, the first work was by Silverstein [78], who gives a result

when Xn,11 ∼ N (0, 1). Bai and Yin [10] proved a theorem that mirrors Theorem 2.20.

Theorem 2.21. Let Xn, n, p, and {ln,i}pi=1 be as in Theorem 2.20. If EX4
n,11 < ∞

and γ ≥ 1, then

ln,p
a.s.→
(
1− γ−1/2

)2
.

With the same moment assumption on Xn,11, if 0 < γ < 1, then

ln,p−n+1
a.s.→
(
1− γ−1/2

)2
.

For the case when the elements of Xn are correlated, Bai and Silverstein [5] give a

general result that subsumes Theorems 2.20 and 2.21.

After appropriate centering and scaling, the largest eigenvalue of a white Wishart

matrix converges weakly to a random variable with known distribution. Johans-

son [44] proved this statement and identified the limiting distribution for complex

white Wishart matrices. Johnstone [45] later provided an analogous result for real

matrices, which we state below.
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Theorem 2.22. Let X1, X2, . . . ,Xn be a sequence of random matrices of increasing

dimension, with Xn ∈ R
n×p, p = p(n), and n → ∞ with n

p
→ γ ∈ (0,∞). Define

Sn = 1
n
XT

nXn and label its eigenvalues ln,1 ≥ ln,2 ≥ · · · ≥ ln,p. If the elements of Xn

are iid with Xn,11 ∼ N (0, 1) , then

ln,1 − µn,p

σn,p

d→ W1 ∼ FTW
1 ,

where

µn,p =
1

n

(√
n− 1/2 +

√
p− 1/2

)
,

σn,p =
1

n

(√
n− 1/2 +

√
p− 1/2

)( 1√
n− 1/2

+
1√

p− 1/2

)1/3

,

and FTW
1 is the Tracy-Widom law of order 1.

El Karoui [28] extended this result to apply when γ = 0 or γ =∞. With appropriate

modifications to µn,p and σn,p, he later gave a convergence rate of order (n ∧ p)2/3

for complex-valued data [29]. Ma [53] gave the analogous result for real-valued data.

For correlated complex normals, El Karoui [30] derived a more general version of

Theorem 2.22.

The Tracy-Widom distribution, which appears in Theorem 2.22, was established

to be the limiting distribution (after appropriate scaling) of the maximum eigenvalue

from an n × n symmetric matrix with independent entries distributed as N (0, 2)

along the main diagonal and N (0, 1) otherwise [89] [90]. To describte FTW
1 , let q(x)

solve the Painlevé II equation

q′′(x) = xq(x) + 2q3(x),

with boundary condition q(x) ∼ Ai(x) as x→∞ and Ai(x) the Airy function. Then

it follows that

FTW
1 (x) = exp

{
−1

2

∫ ∞

s

q(x) + (x− s)q2(x) dx

}
.
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Figure 2.2: The Tracy-Widom law. Limiting density of the largest eigenvalue
from a white Wishart matrix after appropriate centering and scaling.

Hastings and McLeod [40] study the tail behavior of q(x). Using their analysis, one

can show (see, e.g. [70]) that for s→ −∞,

FTW
1 (s) ∼ exp

(
−|s|

3

24

)
,

while for s→∞,

1− FTW
1 (s) ∼ s−3/4

4
√

π
exp

(
−2

3
s3/2

)
.

The density of FTW
1 is shown in Figure 2.2.

A result like Theorem 2.22 holds true for the smallest eigenvalue. We define the

Reflected Tracy-Widom Law to have distribution function GTW
1 (s) = 1 − FTW

1 (−s).

Then we have
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Theorem 2.23. With the same assumptions as in Theorem 2.22, if γ ∈ (1,∞) then

ln,p − µ−
n,p

σ−
n,p

d→ W1 ∼ GTW
1 ,

where

µ−
n,p =

1

n

(√
n− 1/2−

√
p− 1/2

)
,

σ−
n,p =

1

n

(√
n− 1/2−

√
p− 1/2

)( 1√
p− 1/2

− 1√
n− 1/2

)1/3

.

If γ ∈ (0, 1), then
ln,p−n+1 − µ−

p,n

σ−
p,n

d→ W1 ∼ GTW
1 .

We get the result for γ ∈ (0, 1) by reversing the role of n and p. Baker et al [13] proved

the result for complex data. Paul [67] extended the result to real data when γ →∞.

Ma [53] gives convergence rates. In practice, log ln,p converges in distribution faster

than ln,p. Ma recommends appropriate centering and scaling constants for log ln,p to

converge in distribution to a GTW random variable at rate (n ∧ p)2/3.

Theorem 2.23 does not apply when n
p
→ 1. Edelman [26] derived the limiting

distribution of the smallest eigenvalue when n = p. It is not known if his result holds

more generally when n
p
→ 1.

Theorem 2.24. Let Xn and {ln,i}pi=1 be as in Theorem 2.22. If p(n) = n, then for

t ≥ 0,

P {n ln,p ≤ t} →
∫ t

0

1 +
√

x√
x

e−(x/2+
√

x) dx.

In addition to the extreme eigenvalues, it is possible to study the joint distribution

of top or bottom k sample eigenvalues for fixed k as n→∞. In light of Theorem 2.17,

for fixed k we must have that the top (respectively, bottom) sample eigenvalues

converge almost surely to the same limit. Furthermore, Soshnikov [83] showed that

applying the centering and scaling from Theorem 2.22 to the top k sample eigenvalues

gives a specific limiting distribution.
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It is natural to ask if the limiting eigenvalue distributions are specific to Wishart

matrices, or if they apply to non-Gaussian data as well. There is compelling evidence

that the Tracy-Widom law is universal. Soshnikov [83] extended Theorem 2.22 to

more general Xn under the assumption that Xn,11 is sub-Gaussian and n − p =

O(p1/3). Péché [69] later removed the restriction on n − p. Tao and Vu [87] showed

that Theorem 2.24 applies for general Xn,11 with EXn,11 = 0 and EX2
n,11 = 1.

2.3.3 Eigenvectors

Relatively little attention has been focused on the eigenvectors of sample covariance

matrices. While many results are known, as of yet there is no complete character-

ization of the eigenvectors from a general sample covariance matrix. Most of the

difficulty in tackling the problem is that it is hard to describe convergence properties

of Un, the p× p matrix of eigenvectors, when n and p go to infinity. The individual

p2 elements of Un do not converge in any meaningful way, so the challenge is to come

up with relevant macroscopic characteristics of Un.

Silverstein [74] was perhaps the first to study the eigenvectors of large-dimensional

sample covariance matrices. He hypothesized that for sample covariance matrices of

increasing dimension, the eigenvector matrix becomes more and more “Haar-like”. A

random matrix U ∈ R
p×p is said to be Haar-distributed over the orthogonal group

if for every fixed p × p orthogonal matrix O, the rotated matrix OU has the same

distribution as U . That is, OU
d
= U . Silverstein’s conjecture was that as n→∞, Un

behaves more and more like a Haar-distributed matrix. The next theorem displays

one aspect of Haar-like behavior.

To state the theorem, we need to define the extension of a scalar function g : R 7→
R to symmetric matrix arguments. If S = ULUT is the eigendecomposition of the

symmetric matrix S ∈ R
p×p, with L = diag(l1, l2, . . . , lp), then we define

g (S) = U
(

diag
(
g(l1), g(l2), . . . , g(lp)

))
UT.

With this notion, we can state Silverstein’s result.
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Theorem 2.25. Let X1, X2, . . . ,Xn be a sequence of random matrices of increasing

dimension, with Xn ∈ R
n×p, p = p(n), and Xn having iid elements with EXn,11 = 0,

EX2
n,11 = 1, and EX4

n,11 <∞. Define Sn = 1
n
XT

nXn. Let
¯
a1,

¯
a2, . . . ,

¯
an be a sequence

of nonrandom unit vectors with
¯
an in R

p and let g : R→ R be a continuous bounded

function. If n→∞ and n
p
→ γ ∈ (0,∞), then

¯
aT

ng (Sn)
¯
an

a.s.→
∫

g(x) dFMP
γ (x).

Silverstein [74] proves the result for convergence in probability and a specific class of

Xn. Bai et al. [3] strengthen the result to a larger class of Xn and proves almost-sure

convergence. They also consider dependence in Xn.

It may not be immediately obvious how Theorem 2.25 is related to eigenvectors.

If Sn = UnLnUn is the eigendecomposition of Sn, with Ln = diag (ln,1, ln,2, . . . , ln,p) ,

then g(Ln) = diag
(
g(ln,1), g(ln,2), . . . , g(ln,p)

)
and g(Sn) = Ung(Ln)UT

n . We let
¯
bn =

Un
¯
an. Then,

¯
aT

ng(Sn)
¯
an =

p∑

i=1

b2
n,i g(ln,i). (2.27)

If Un is Haar-distributed, then
¯
bn will be distributed uniformly over the unit sphere in

R
p, and the average in (2.27) will put about weight 1

p
on each eigenvalue. If Un puts

bias in any particular direction then the average will put extra weight on particular

eigenvalues.

Silverstein investigated second-order behavior of eigenvectors in [75], [77], [79],

and [80]. He demonstrated that certain second-order behavior of Un depends in a

crucial way on the fourth moment of Xn,11. This greatly restricts the class of Xn for

with the eigenvectors of Sn are Haar-like.

Theorem 2.26. Let Xn, Sn, and
¯
an be as in Theorem 2.25. Suppose also that

EX4
n,11 = 3. Let g1, g2, . . . , gk be real-valued functions analytic on the support of FMP

γ .
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Then, the random vector

√
p ·
(

¯
aT

ng1(Sn)
¯
an −

∫
g1(x) dFMP

γ (x),

¯
aT

ng2(Sn)
¯
an −

∫
g2(x) dFMP

γ (x), . . . ,

¯
aT

ngk(Sn)
¯
an −

∫
gk(x) dFMP

γ (x)

)

converges in distribution to a mean-zero multivariate normal with covariance between

the ith and jth components equal to

∫
gi(x)gj(x) dFMP

γ (x)−
∫

gi(x) dFMP
γ (x) ·

∫
gj(x) dFMP

γ (x).

Bai et al. [3] give a similar result for complex-valued and correlated Xn. Silver-

stein [79] showed that if g1(x) = x and g2(x) = x2, then the condition EX4
n,11 = 3 is

necessary for the random vector in Theorem 2.26 to converge in distribution for all

¯
an. However, for the specific choice of

¯
an =

(
1√
p
, 1√

p
, . . . , 1√

p

)
, he later showed that

the conclusions of Theorem 2.26 hold more generally when Xn,11 is symmetric and

EX4
n,11 <∞ [80].
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Chapter 3

Behavior of the SVD in low-rank

plus noise models

3.1 Introduction

Many modern data sets involve simultaneous measurements of a large number of

variables. Some financial applications, such as portfolio selection, involve looking

at the market prices of hundreds or thousands of stocks and their evolution over

time [57]. Microarray studies involve measuring the expression levels of thousands

of genes simultaneously [73]. Text processing involves counting the appearances of

thousands of words on thousands of documents [55]. In all of these applications, it is

natural to suppose that even though the data are high-dimensional, their dynamics

are driven by a relatively small number of latent factors.

Under the hypothesis that one ore more latent factors explain the behavior of a

data set, principal component analysis (PCA) [46] is a popular method for estimating

these latent factors. When the dimensionality of the data is small relative to the sam-

ple size, Anderson’s 1963 paper [1] gives a complete treatment of how the procedure

behaves. Unfortunately, his results do not apply when the sample size is comparable

to the dimensionality.

A further complication with many modern data sets is that it is no longer appro-

priate to assume the observations are iid. Also, sometimes it is difficult to distinguish

25
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between “observation” and “variable”. We call such data “transposable”. A microar-

ray study involving measurements of p genes for n different patients can be considered

transposable: we can either treat each gene as a measurement of the patient, or we can

treat each patient as a measurement of the gene. There are correlations both between

the genes and between the patients, so in fact both interpretations are relevant [27].

One can study latent factor models in a transpose-agnostic way by considering

generative models of the form X = UDV T +E. Here, X is the n× p observed data

matrix. The unobserved row and column factors are given by U and V , respectively,

matrices with k orthonormal columns each, and k ≪ min(n, p). The strengths of

the factors are given in the k × k diagonal matrix D, and E is a matrix of noise. A

natural estimator for the latent factor term UDV T can be constructed by truncating

the singular value decomposition (SVD) [36] of X. The goal of this paper is to study

the behavior of the SVD when n and p both tend to infinity, with their ratio tending

to a nonzero constant.

In an upcoming paper, Onatski [64] gives a thorough treatment of latent factor

models. He assumes that the elements of E are iid Gaussians, that
√

n(UTU − Ik)

tends to a multivariate Gaussian distribution, and that V and D are both non-

random. The contributions of this chapter are twofold. First, we work under a

transpose-agnostic generative model that allows randomness in all three of U , D,

and V . Second, we give a more complete picture of the almost-sure limits of the

sample singular vectors, taking into account the signs of the dot products between

the population and sample vectors.

We describe the main results in Section 3.2. Sections 3.3–3.8 are dedicated to

proving the two main theorems. Finaly, we discuss related work and extensions in

Section 3.9. We owe a substantial debt to Onatski’s work. Although most of the

details below are different, the general outline and the main points of the argument

are the same.
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3.2 Assumptions, notation, and main results

Here we make explicit what the model and assumptions are, and we present our main

results.

3.2.1 Assumptions and notation

We will work sequences of matrices indexed by n, with

Xn =
√

n UnDnV
T
n + En. (3.1)

We denote by
√

n UnDnV
T
n the “signal” part of the matrix Xn and En the “noise”

part. We will often refer to Un and V n as the left and right factors of Xn, and the

matrix Dn will be called the matrix of normalized factor strengths. The first two

assumptions concern the signal part:

Assumption 3.1. The factors Un and V n are random matrices of dimensions n×k

and p × k, respectively, normalized so that UT
nUn = V T

nV n = Ik. The number of

factors, k, is a fixed constant. The aspect ratio satisfies n
p

= γ + o
(

1√
n

)
for a fixed

nonzero constant γ ∈ (0,∞).

Assumption 3.2. The matrix of factor strengths, Dn, is of size k× k and diagonal,

with Dn = diag (dn,1, dn,2, . . . , dn,k) and dn,1 > dn,2 > · · · > dn,k > 0. The matrix Dn

converges almost surely to a deterministic matrix D = diag(µ
1/2
1 , µ

1/2
2 , . . . , µ

1/2
k ) with

µ1 > µ2 > · · · > µk > 0. Moreover, the vector
√

n(d2
n,1 − µ1, d

2
n,1 − µ2, . . . , d

2
n,K − µk)

converges in distribution to a mean-zero multivariate normal with covariance matrix

Σ having entries Σij = σij (possibly degenerate).

The next assumption concerns the noise part:

Assumption 3.3. The noise matrix En is an n × p matrix with entries En,ij inde-

pendent N (0, σ2) random variables, also independent of Un, Dn, and V n.

For analyzing the SVD of Xn, we need to introduce some more notation. We

denote the columns of Un and V n by
¯
un,1,

¯
un,2, . . . ,

¯
un,k and

¯
vn,1,

¯
vn,2, . . . ,

¯
vn,k, respec-

tively. We let
√

n ÛnD̂nV̂
T

n be the singular value decomposition of Xn truncated
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to k terms, where D̂n = diag(µ̂
1/2
n,1 , µ̂

1/2
n,2 , . . . , µ̂

1/2
n,k) and the columns of Û and V̂ are

given by
¯
ûn,1,

¯
ûn,2 . . . ,

¯
ûn,k and

¯
v̂n,1,

¯
v̂n,2, . . . ,

¯
v̂n,k, respectively.

3.2.2 Main results

We are now in a position to say what the results are. There are two main theorems, one

concerning the sample singular values and the other concerning the sample singular

vectors. First we give the result about the singular values.

Theorem 3.4. Under Assumptions 3.1 – 3.3, the vector ˆ
¯
µn = (µ̂n,1, µ̂n,2, . . . , µ̂n,k)

converges almost surely to
¯
µ̄ = (µ̄1, µ̄2, . . . , µ̄k), where

µ̄i =





(µi + σ2)
(
1 + σ2

γµi

)
when µi > σ2

√
γ
,

σ2
(
1 + 1√

γ

)2

otherwise.
(3.2)

Moveover,
√

n(
¯
µ̂−

¯
µ̄) converges in distribution to a (possibly degenerate) multivariate

normal with covariance matrix Σ̄ whose ij element is given by

σ̄ij ≡





σij

(
1− σ4

γµ2
i

)(
1− σ4

γµ2
j

)

+ δij2σ
2

(
2µi + (1 + γ−1) σ2

)(
1− σ4

γµ2
i

) when µi, µj > σ2

√
γ
,

0 otherwise.

(3.3)

When σii = 2µ2
i , and µi > σ2

√
γ
, the variance of the ith component simplifies to σ̄ii =

2(µi + σ2)2
(
1− σ4

γµ2
i

)
.

Next, we give the result for the singular vectors:

Theorem 3.5. Suppose Assumptions 3.1 – 3.3 hold. Then the k × k matrix Θn ≡
V T

n V̂ n converges almost surely to a matrix Θ = diag(θ1, θ2, . . . , θk), where

θ2
i =





(
1− σ4

γµ2
i

)(
1 + σ2

γµi

)−1

when µi > σ2

√
γ
,

0 otherwise.
(3.4)
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Also, the k × k matrix Φn ≡ UT
n Ûn converges almost surely to a matrix Φ =

diag(ϕ1, ϕ2, . . . , ϕk), where

ϕ2
i =





(
1− σ4

γµ2
i

)(
1 + σ2

µi

)−1

when µi > σ2

√
γ
,

0 otherwise.
(3.5)

Moreover, θi and ϕi almost surely have the same sign.

3.2.3 Notes

Some discussion of the assumptions and the results are in order:

1. Assumptions 3.1 and 3.2 are simpler than the assumptions given in many other

papers while still being quite general. For example, Paul’s “spiked” covariance

model has data of the form

X = ZΞT + E,

where Ξ is an p×k matrix of factors and Z is an n×k matrix of factor loadings

whose rows are iid multivariate N (0, C) random variables for covariance matrx

C having eigen-decomposition C = QΛQT. Letting Z =
√

nP̂ Λ̂
1/2

Q̂
T

be the

SVD of Z, Anderson’s results [1] give us that Λ̂ and Q̂ converge almost surely to

Λ and Q, respectively, and that the diagonal elements of
√

n(Λ̂−Λ) converge to

a mean-zero multivariate normal whenever C has no repeated eigenvalues. If we

define U = P̂ , D = Λ̂
1/2

, and V = ΞQ̂, then X =
√

n UDV T +E, where the

factors satisfy Assumptions 3.1 and 3.2. Dropping the normality assumption on

the rows of Z poses no problem. Moreover, we can suppose instead of iid that

the rows of Z are a martingale difference array with well-behaved low-order

moments and still perform a transformation of the variables to get factors of

the form we need for Theorems 3.4 and 3.5.

2. There is a sign-indeterminancy in the sample and population singular vectors.

We choose them arbitrarily.
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3. If instead of almost-sure convergence, Dn converges in probability to D, then

the theorems still hold with
¯
µ̂n, Θn, and Φn converging in probability.

4. The assumption that
√

n (d2
1 − µ1, d

2
2 − µ2, . . . d

2
k − µk) converges weakly is only

necessary for determining second-order behavior; the first order results still

hold without this assumption. If the limiting distribution of the vector of factor

strengths
√

n (d2
1 − µ1, d

2
2 − µ2, . . . d

2
k − µk) is non-normal, one can still get at

the second-order behavior of the SVD through a small adaptation of the proof.

5. Most of the results in Theorems 3.4 and 3.5 can be gotten from Onatski’s results

[64]. However, Onatski does not show that
√

n(µ̂i − µ̄i)
P→ 0 when µi is below

the critical threshold. Furthermore, Onatski proves convergence in probability,

not almost sure convergence. Lastly, Onatski does not get at the joint behavior

between Θn and Φn.

3.3 Preliminaries

Without loss of generality we will assume that σ2 = 1. Until Section 3.8 , we will also

assume that γ ≥ 1.

3.3.1 Change of basis

A convenient choice of basis will make it easier to study the SVD of Xn. Define

Un,1 = Un, and choose Un,2 so that
(
Un,1 Un,2

)
is an orthogonal matrix. Similarly,

put V n,1 = V n and choose V n,2 so that
(
V n,1 V n,2

)
is orthogonal. If we define

Ẽn,ij = UT
n,iEnV n,j and Xn,ij = UT

n,iXnV n,j, then in block form,

(
UT

n,1

UT
n,2

)
Xn

(
V n,1 V n,2

)
=

(√
nDn + Ẽn,11 Ẽn,12

Ẽn,21 Ẽn,22

)
.
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Because Gaussian white noise is orthogonally invariant, the matrices Ẽn,ij are all

independent with iid N (0, 1) elements. Let

Ẽn,22 =
√

n
(
On,1 On,2

)(Λ1/2
n

0

)
P T

n (3.6)

be the SVD of Ẽn,22, with Λn = diag (λn,1, λn,2, . . . λn,p−k) . Note that Ẽ
T

n,22Ẽn,22 ∼
Wp−k (n− k, Ip−k) . Define

X̃n =




Ik 0

0 OT
n,1

0 OT
n,2




(√
nDn + Ẽn,11 Ẽn,12

Ẽn,21 Ẽn,22

)(
Ik 0

0 P n

)

=




√
nDn + En,11 En,12

En,21

√
nΛ1/2

n

En,31 0


 , (3.7)

where En,11 = Ẽn,11, En,12 = Ẽn,12P n, En,21 = OT
n,1Ẽn,21, and En,31 = OT

n,2Ẽn,31.

Let ŨnD̃nṼ n be the SVD of X̃n, truncated to k terms. Lastly, put the left and right

singular vectors in block form as

Ũn =

(
Ũn,1

Ũn,2

)
(3.8)

and

Ṽ n =

(
Ṽ n,1

Ṽ n,2

)
, (3.9)

where Ũn,1 and Ṽ n,1 both k × k matrices.

We have gotten to X̃n via an orthogonal change of basis applied to Xn. By

carefully choosing this basis, we have assured that:

1. The blocks of X̃n are all independent.

2. The elements of the matrices En,ij are iid N (0, 1).
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3. The elements {nλn,1, nλn,2, . . . , nλn,p−k} are eigenvalues from a white Wishart

matrix with n− k degrees of freedom.

4. X̃n and Xn have the same singular values. This implies that D̂n = D̃n.

5. The left singular vectors of Xn can be recovered from the left singular vectors

of X̃n via multiplication by an orthogonal matrix. The same holds for the right

singular vectors.

6. The dot product matrix UT
n Ûn is equal to Ũn,1. Similarly, V T

n V̂ n = Ṽ n,1.

This simplified form of the problem makes it much easier to analyze the SVD of Xn.

3.4 The secular equation

We set Sn = 1
n

= X̃
T

nX̃n. The eigenvalues and eigenvectors of Sn are the squares

of the singular values of 1√
n
X̃n and its right singular vectors, respectively. In block

form, we have

Sn =

(
Sn,11 Sn,12

Sn,21 Sn,22

)
, (3.10)

where

Sn,11 = D2
n +

1√
n

(
DnEn,11 + ET

n,11Dn

)

+
1

n

(
ET

n,11En,11 + ET
n,21En,21 + ET

n,31En,31

)
,

(3.11a)

and

Sn,12 =
1√
n

(
DnEn,12 + ET

n,21Λ
1/2
n

)
+

1

n
ET

n,11En,12, (3.11b)

Sn,21 =
1√
n

(
ET

n,12Dn + Λ1/2
n En,21

)
+

1

n
ET

n,12En,11, (3.11c)

Sn,22 = Λn +
1

n
ET

n,12En,12. (3.11d)
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Now we study the eigendecomposition of Sn. If
¯
v =

(
¯
v1

¯
v2

)
is an eigenvector of Sn

with eigenvalue µ, then

(
Sn,11 Sn,12

Sn,21 Sn,22

)(
¯
v1

¯
v2

)
= µ

(
¯
v1

¯
v2

)
.

If µ is not an eigenvalue of Sn,22, then we get

¯
v2 = − (Sn,22 − µIp−k)

−1
Sn,21

¯
v1, and (3.12a)

(
Sn,11 − µIk − Sn,12 (Sn,22 − µIp−k)

−1
Sn,21

)
¯
v1 = 0. (3.12b)

Conversely, if (µ,
¯
v1) is a pair that solves (3.12b) and

¯
v1 6= 0, then

¯
v =

(
¯
v1

− (Sn,22 − µIp−k)
−1

Sn,21
¯
v1

)
(3.13)

is an eigenvector of Sn with eigenvalue µ.

We define

T n(z) = Sn,11 − zIk − Sn,12 (Sn,22 − zIp−k)
−1

Sn,21 (3.14)

fn(z,
¯
x) = T n(z)

¯
x, (3.15)

and refer to fn(z,
¯
x) = 0 as the secular equation. This terminology comes from numer-

ical linear algebra, where a secular equation is analogous to a characteristic equation;

it is an equation whose roots are eigenvalues of a matrix. Typically, secular equations

arise in eigenvalue perturbation problems. The name comes from the fact that they

originally appeared studying secular perturbations of planetary orbits. A more stan-

dard use of the term “secular equation” would involve the equation detT n(z) = 0.

However, for our purposes it is more convenient to work with fn.
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3.4.1 Outline of the proof

Almost surely Sn and Sn,22 have no eigenvalues in common, so every eigenvalue-

eigenvector pair of Sn is a solution to the secular equation. To study these solutions,

we first focus on T n(z).

It turns out that when z > (1 + γ−1/2)2, we can find a perturbation expansion for

T n(z). In Section 3.5, we show that for z above this threshold, we can expand

T n(z) = T 0(z) +
1√
n

T n,1(z),

where T 0(z) is deterministic and T n,1(z) converges in distribution to a matrix-valued

Gaussian process indexed by z. With this expansion, in Section 3.6 we study se-

quences of solutions to the equation fn(zn,
¯
xn) = 0. Using a Taylor series expansion

for zn > (1 + γ−1/2)2, we write

zn = z0 +
1√
n

zn,1 + oP

(
1√
n

)
,

¯
xn =

¯
x0 +

1√
n¯

xn,1 + oP

(
1√
n

)
,

where (z0,
¯
x0) is the limit of (zn,

¯
xn) as n → ∞ and (zn,1,

¯
xn,1) is the order- 1√

n
ap-

proximation error.

In Section 3.7 we get the singular values and singular vectors of 1√
n
X̃n. From

every solution pair (zn,
¯
xn) satisfying fn(zn,

¯
xn) = 0, we can construct an eigenvalue

and an eigenvector of Sn using equation (3.13). The eigenvalues are squares of sin-

gular values of 1√
n
X̃n, and the eigenvectors are right singular vectors. We can get

the corresponding left singular vectors by multiplying the right singular vectors by

X̃n and scaling appropriately. For z values above the critical threshold, we use the

perturbation results of the previous two sections. Below the threshold, we use a more

direct approach involving the fluctuations of the top eigenvalues of Λn.

Finally, in Section 3.8 we show that the results still hold when γ < 1. For parts

of the proof, we will need some limit theorems for weighted sums from Appendix B.
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3.5 Analysis of the secular equation

We devote this section to finding a simplified formula for T n(z) for certain values of

z. By a bit of algebra and analysis, we find the first- and second-order behavior of

the secular equation.

First, we employ the Sherman-Morrison-Woodbury formula [36] to get an expres-

sion for (Sn,22 − zIp−k)
−1. As a reminder, this identity states that for matrices A,

B, and C with compatible dimensions, the following formula for the inverse holds:

(A + BC)−1 = A−1 −A−1B
(
I + CA−1B

)−1
CA−1.

Using this, we can write

(Sn,22 − zIp−k)
−1 =

(
(Λn − zIp−k) +

1

n
ET

n,12En12

)−1

= (Λn − zIp−k)
−1

− 1

n
(Λn − zIp−k)

−1

·ET
n,12

(
Ik +

1

n
En,12 (Λn − zIp−k)

−1
ET

n,12

)−1

En,12

· (Λn − zIp−k)
−1 .

(3.16)

Next, we define D̃n = Dn + 1√
n
En,11, so that

Sn,12

(
Sn,22 − zIp−k

)−1

Sn,21

=
1

n

(
D̃

T

nEn,12 + ET
n,21Λ

1/2
n

)

· (Sn,22 − zIp−k)
−1

·
(
ET

n,12D̃n + Λ1/2
n En,21

)
.

(3.17)

There are three important terms coming out of equations (3.16) and (3.17) that

involve Λn. These are En,12 (Λn − zIp−k)
−1

ET
n,12, ET

n,21 (Λn − zIp−k)
−1

En,21, and
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En,12 (Λn − zIp−k)
−1

Λ1/2
n En,21. Each term can be written as a weighted sum of outer

products.

There is dependence between the weights, but the outer products are iid. For

example, with En,12 =
(

¯
En,12,1

¯
En,12,2 · · ·

¯
En,12,p−k

)
, we have

En,12 (Λn − zIp−k)
−1

ET
n,12, =

p−k∑

α=1

1

λn,α − z
·
¯
En,12,α

¯
ET

n,12,α.

From the Central Limit Theorem and the Strong Law of Large Numbers we know

that 1
p−k

∑p−k
α=1 ¯

En,12,α
¯
ET

n,12,α
a.s.→ Ik and that

√
p− k

(
1

p−k

∑p−k
α=1 ¯

En,12,α
¯
ET

n,12,α − Ik

)

converges in distribution to mean-zero symmetric matrix whose elements are jointly

multivariate normal. In the limiting distribution, the elements have variance 2 along

the diagonal and variance 1 off of it; aside from the matrix being symmetric, the

unique elements are all uncorrelated. The difficulty in analyzing these terms comes

from the dependence between the weights.

When z is in the support of FMP
γ , the weights behave erratically, but other-

wise they have some nice properties. First of all, Λn is independent of En,12 and

En,21. Secondly, the Wishart LLN (Corollary 2.18) and Theorem 2.20 ensure that

for z > (1 + γ−1/2)2, 1
p−k

∑p−k
α=1

1
λn,α−z

a.s.→
∫

1
t−z

dFMP
γ (t). Moreover, the Wishart

CLT (Theorem 2.19) guarantees that the error is of size OP( 1
n
). These properties in

combination with the limit theorems for weighted sums in Appendix B allow us to

get the behavior of En,12 (Λn − zIk)
−1

ET
n,12 and its cousins.

The function

m(z) ≡
∫

1

t− z
dFMP

γ (t)

= γ ·
−(z − 1 + γ−1) +

√(
z − bγ

)(
z − aγ

)

2z
(3.18)

is the Stieltjes transform of FMP
γ , where aγ =

(
1− γ−1/2

)2
and bγ =

(
1 + γ−1/2

)2
.

When restricted to the complement of the support of FMP
γ , m has a well-defined
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inverse

z(m) = − 1

m
+

1

1 + γ−1 m
. (3.19)

Also, m is strictly increasing and convex outside the support of FMP
γ . This function

appears frequently in the remainder of the chapter.

Lemma 3.6. If z > bγ, then

1

n
En,12 (Λn − zIp−k)

−1
ET

n,12
a.s.→ γ−1m(z) · Ik, (3.20a)

1

n
ET

n,21 (Λn − zIp−k)
−1

En,21
a.s.→ γ−1m(z) · Ik, (3.20b)

and
1

n
En,12 (Λn − zIp−k)

−1
Λ1/2

n En,21
a.s.→ 0. (3.20c)

Proof. We prove the result for the first quantity and the other derivations are analo-

gous. For each 1 ≤ i, j ≤ k, we have that

(
1

n
En,12 (Λn − zIp−k)

−1
ET

n,12

)

ij

=
p− k

n
· 1

p− k

p−k∑

α=1

(En,12)iα (En,12)jα

λn,α − z
.

Let N = p−k, define weights WN,α = (λn,α−z)−1, and let YN,α = (En,12)iα (En,12)jα .

The function

g(t) =





1
t−z

if t ≤ bγ,

1
bγ−z

otherwise,

is bounded and continuous. Moreover, since λn,1
a.s.→ bγ, with probability one g(λn,α)

is eventually equal to WN,α for all α. The Wishart LLN (Corollary 2.18) gives us

that 1
N

∑N
α=1 WN,α

a.s.→
∫

1
t−z

dFMP
γ (t) = m(z). Since |WN,α| ≤ WN,1

a.s.

≤ bγ, the fourth

moments of the weights are uniformly bounded in N . The YN,α are all iid with EYN,α =

δij and EY 4
N,α <∞. Applying these results, the weighed SLLN (Proposition B.2) gives

us that 1
N

∑N
α=1 WN,αYN,α

a.s.→ m(z)δij. Since p−k
n
→ γ−1, this completes the proof.

Lemma 3.7. Considered as functions of z, the quantities in Lemma 3.6 and their

derivatives converge uniformly over any closed interval [u, v] ⊂
(
bγ,∞

)
.
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Proof. We show this for the first quantity and the other proofs are similar. Defining

en,ij(z) =

(
1

n
En,12 (Λn − zIp−k)

−1
ET

n,12

)

ij

,

we will show that for all (i, j) with 1 ≤ i, j ≤ k, supz∈[u,v] |en,ij(z)− γ−1m(z)δij| a.s.→ 0.

Let ε > 0 be arbitrary. Note that for z > bγ, m′(z) > 0 and m′′(z) < 0. We let

d = m′(u) and choose a grid u = z1 < z2 < · · · < zM−1 < zM = v, with |zl−zl+1| = γε
2d

.

Then |γ−1m(zl) − γ−1m(zl+1)| < ε
2
. From Lemma 3.6, we can find N large enough

such that for n > N , maxl∈{1,...,M} |en,ij(zl)− γ−1m(zl)δij| < ε
2
. Also guarantee that N

is large enough so that λn,1 < u (this is possible since λn,1
a.s.→ bγ < u). Let z ∈ [u, v]

be arbitrary and find l such that zl ≤ z ≤ zl+1. Observe that en,ij(z) is monotone

for z > λn,1. Thus, either en,ij(zl) ≤ en,ij(z) ≤ en,ij(zl+1) or en,ij(zl+1) ≤ en,ij(z) ≤
en,ij(zl).

If i 6= j, we have for n > N , − ε
2

< en,ij(z) < ε
2
. Otherwise, when i = j, en,ij(z)

is monotonically increasing and γ−1m(zl) − ε
2

< en,ij(z) < γ−1m(zl+1) + ε
2
, so that

γ−1m(z) − ε < en,ij(z) < γ−1m(z) + ε. In either case, |en,ij(z) − γ−1m(z)δij| < ε.

Since d
dz

[
1

λ−z

]
= − 1

(λ−z)2
, which is monotone for z > λ, the same argument applies

to show that the derivatives converge uniformly.

Lemma 3.8. If z1, z2, . . . , zl > bγ, then jointly for z ∈ {z1, z2, . . . , zl}

√
n

(
1

n
En,12 (Λn − zIp−k)

−1
ET

n,12 − γ−1m(z)Ik

)
≡ F n(z)

d→ F (z), (3.21a)

√
n

(
1

n
En,12 (Λn − zIp−k)

−1
Λ1/2

n En,21

)
≡ Gn(z)

d→ G(z), (3.21b)

√
n

(
1

n
ET

n,21 (Λn − zIp−k)
−1

En,21 − γ−1m(z)Ik

)
≡Hn(z)

d→H(z), (3.21c)

where the elements of F (z), G(z), and H(z) jointly define a multivariate Gaussian
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process indexed by z, with each matrix independent of the others. The nonzero co-

variances are defined by

Cov
(
Fij(z1), Fij(z2)

)
= γ−1 (1 + δij)

m(z1)−m(z2)

z1 − z2

, (3.22a)

Cov
(
Gij(z1), Gij(z2)

)
= γ−1 z1 m(z1)− z2 m(z2)

z1 − z2

, (3.22b)

Cov
(
Hij(z1), Hij(z2)

)
= γ−1 (1 + δij)

m(z1)−m(z2)

z1 − z2

, (3.22c)

with the interpretation when z1 = z2 that

m(z1)−m(z2)

z1 − z2

= m′(z1), and
z1 m(z1)− z2 m(z2)

z1 − z2

= m(z1) + z1 m′(z1).

Proof. We will need the Wishart CLT (Theorem 2.19) and the strong weighted mul-

tivariate CLT (Corollary B.5). To save space we only give the argument for the joint

distribution of F (z1) and F (z2).

Put N = p − k and consider the 2k2-dimensional vector
¯
YN,α =

(
¯
ỸN,α

¯
ỸN,α

)
, where

¯
ỸN,α = vec

(
¯
En,12,α

¯
ET

n,12,α

)
and En,12 =

(
¯
En,12,1

¯
En,12,2 · · ·

¯
En,12,N

)
. Define the

2k2-dimensional weight vector
¯
WN,α =

(
¯
WN,α,1

¯
WN,α,2

)
, where

¯
WN,α,i = 1

λα−zi¯
1. We have

that for α = 1, 2, . . . , N , the
¯
YN,α are iid with

E [
¯
YN,1] =

¯
µY =

(
¯
µ̃Y

¯
µ̃Y

)

and
¯
µ̃Y = vec (Ik). Also, we have

E

[(
¯
YN,1 −

¯
µY
) (

¯
YN,1 −

¯
µY
)T]

= ΣY =

(
Σ̃

Y
Σ̃

Y

Σ̃
Y

Σ̃
Y

)
,

where Σ̃
Y

= E

[(
vec
(
¯
En,12,1

¯
ET

n,12,1 − Ik

))(
vec
(
¯
En,12,1

¯
ET

n,12,1 − Ik

))T]
is a k2 × k2
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matrix defined by the relation

E

[(
¯
En,12,1

¯
ET

n,12,1 − Ik

)
ij

(
¯
En,12,1

¯
ET

n,12,1 − Ik

)
i′j′

]
= δ(i,j)=(i′,j′) + δ(i,j)=(j′,i′).

That is, the diagonal elements of
¯
En,12,1

¯
ET

n,12,1 − Ik have variance 2 and the off-

diagonal elements have variance 1. Aside from the matrix being symmetric, the

unique elements are all uncorrelated.

Letting

µW
i =

∫
dFMP

γ (t)

t− zi

= m(zi), and

σW
ij =

∫
dFMP

γ (t)

(t− zi)(t− zj)
=

m(zi)−m(zj)

zi − zj

,

the Wishart LLN combined with the truncation argument of Lemma 3.6 gives us that
1
N

∑N
α=1

1
λn,α−zi

a.s.→ µW
i and 1

N

∑N
α=1

1
(λn,α−zi)(λn,α−zj)

a.s.→ σW
ij . Thus,

1

N

N∑

α=1
¯
WN,α

a.s.→
¯
µW =

(
µW

1 ¯
1

µW
2 ¯

1

)
, and

1

N

N∑

α=1
¯
WN,α

¯
WT

N,α
a.s.→ ΣW =

(
σW

11¯
1
¯
1T σW

12¯
1
¯
1T

σW
21¯

1
¯
1T σW

11¯
1
¯
1T

)
.

Moreover, the Wishart CLT tells us that the error in each of the sums is of size

OP

(
1
N

)
.

As in Lemma 3.6, the fourth moments of
¯
WN,α and

¯
YN,α are all well-behaved.

Finally, we can invoke the strong weighted CLT (Corollary B.5) to get that the

weighted sum
√

N
(

1
N

∑N
α=1 ¯

WN,α •
¯
YN,α −

¯
µW •

¯
µT
)

converges in distribution to a

mean-zero multivariate normal with covariance

ΣW •ΣY =

(
σW

11 Σ̃ σW
12 Σ̃

σW
21 Σ̃ σW

22 Σ̃

)
.
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This completes the proof since

√
n vec

(
1

n
En,12 (Λn − ziIp−k)

−1
ET

n,12 − γ−1m(µ)Ik

)

= γ−1

√
n

p− k
·
√

N

(
1

N

N∑

α=1
¯
WN,α,i •

¯
ỸN,α −

¯
µW

i •
¯
µ̃Y

i

)

(with
¯
µW

i = µW
i ¯

1), and γ−1
√

n
p−k
→ γ−1/2.

Remark 3.9. It is possible to show that the sequences in Lemma 3.8 are tight by

an argument similar to the one used in [64]. This implies that the convergence is

uniform in z. For our purposes, we only need that the finite-dimensional distributions

converge.

With Lemmas 3.6–3.8, we can get a perturbation expansion of T n(z) for z > bγ.

Lemma 3.10. If [u, v] ⊂
(
bγ, ∞

)
, then T n(z)

a.s.→ T 0(z) uniformly on [u, v], where

T 0(z) =
1

1 + γ−1m(z)
D2 +

1

m(z)
Ik. (3.23)

Lemma 3.11. If z > bγ, then

T n(z) = T 0(z) +
1√
n

T n,1(z), (3.24)

where

T n,1(z) =−
(
1 + γ−1m(z)

)−2 ·DF n(z)D

+
(
1 + γ−1m(z)

)−1

·
{√

n
(
D2

n −D2
)

+ D
(
En,11 −Gn(z)

)
+
(
En,11 −Gn(z)

)T
D
}

− z Hn(z) +
√

n

(
1

n
ET

n,31En,31 − (1− γ−1)Ik

)
+ oP (1) . (3.25)
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Proof. First, we have

Sn,11 = D2
n + Ik +

1√
n

(
DEn,11 + ET

n,11D
)

+

(
1

n

(
ET

n,11En,11 + ET
n,21En,21 + ET

n,31En,31

)
− Ik

)
.

Next, we compute

(
Ik +

1

n
En,12

(
Λn − zIp−k

)−1

ET
n,12

)−1

=

(
Ik + γ−1m(z)Ik +

1√
n

F n(z)

)−1

=
(
1 + γ−1m(z)

)−1
Ik −

1√
n

(
1 + γ−1m(z)

)−2
F n(z) + oP

(
1√
n

)
.

Using this, after a substantial amount of algebra we get

Sn,12

(
Sn,22 − zIp−k

)−1

Sn,21

= z m(z) Ik +
γ−1m(z)

1 + γ−1m(z)
D2

n

+
1√
n

{
1

1 + γ−1m(z)

(
DGn(z) + GT

n (z)D
)

+
γ−1m(z)

1 + γ−1m(z)

(
DEn,11 + ET

n,11D
)

+

(
1

1 + γ−1m(z)

)2

DF n(z)D + z Hn(z)

}

+
1

n
ET

n,21En,21 + oP

(
1√
n

)
.

The equations for T 0 and T n,1 follow. To simplify the form of T 0, we use the identity

z ·
(
1 + γ−1m(z)

)
= − 1

m(z)
+ (1− γ−1).
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3.6 Solutions to the secular equation

We will now study the solutions to fn(z,
¯
x) = 0, defined in equation (3.15). If (z,

¯
x) is

a solution, then so is (z, α
¯
x) for any scalar α. We restrict our attention to solutions

with ‖
¯
x‖2 = 1. We also impose a restriction on the sign of

¯
x, namely we require that

the component with the largest magnitude is positive, i.e.

max
i

xi = max
i
|xi|. (3.26)

3.6.1 Almost sure limits

First we look at the solutions of f0(z,
¯
x) ≡ T 0(z)

¯
x, the limit of fn(z,

¯
x) for z > bγ.

Lemma 3.12. Letting k̄ = max{i : µi > γ−1/2}, if µ1, µ2, . . . , µk are all distinct, then

there are exactly k̄ solutions to the equation f0(z,
¯
x) = 0. They are given by

(µ̄i,
¯
ei), i = 1, . . . , k̄,

where µ̄i is the unique solution

m(µ̄i) =
1

µi + γ−1
,

and
¯
ei is the ith standard basis vector.

Proof. We have that

T 0(z) =
1

1 + γ−1m(z)
D2 +

1

m(z)
Ik.

Since this is diagonal, the equation f0(z,
¯
x) = 0 holds iff the ith diagonal element of

T 0(z) is zero and
¯
x =

¯
ei. The ith diagonal is zero when

µi

1 + γ−1m(z)
+

1

m(z)
= 0,
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equivalently

m(z) = − 1

µi + γ−1
.

Note that m(z) > −
(
γ−1/2 + γ−1

)−1
and m′(z) > 0 on

(
bγ,∞

)
. Hence, a unique

solution exists exactly when µi > γ−1/2.

Given a solution of f0(z,
¯
x) = 0, it is not hard to believe that there is a sequence

of solutions (zn,
¯
xn) such that fn(zn,

¯
xn) = 0, with zn and

¯
xn converging to z and

¯
x,

respectively. We dedicate the rest of this section to making this statement precise.

Lemma 3.13. If µ > γ−1/2 occurs l times on the diagonal of D2, then with probability

one there exist sequences zn,1, . . . , zn,l such that for n large enough:

1. zn,i 6= zn,j for i 6= j

2. det T n(zn,i) = 0 for i = 1, . . . , l.

3. zn,i → z0 = m−1
(

1
µ+γ−1

)
.

The proof involves a technical lemma, which we state and prove now.

Lemma 3.14. Let gn(z) be a sequence of continuous real-valued functions that con-

verge uniformly on (u, v) to g0(z). If g0(z) is analytic on (u, v), then for n large

enough, gn(z) and g0(z) have the same number of zeros in (u, v) (counting multiplic-

ity).

Proof. Since |g0(z)| is bounded away from zero outside the neighborhoods of its zeros,

we can assume without loss of generality that g0(z) has a single zero z0 ∈ (u, v) of

multiplicity l. Define g̃n(z) = gn(z)
|z−z0|l−1 . The function g̃0(z) is bounded and continuous,

and has a simple zero at z0. For r small enough, g̃0(z0+r) and g̃0(z0−r) have differing

signs. Without loss of generality, say that the first is positive.

The sequence g̃n(z) converges uniformly to g̃0(z) outside of a neighborhood of z0.

Thus, for n large enough, g̃n(z − r) < 0 and g̃n(z + r) > 0. Also, either gn(z) has a

zero at z0, or else for a small enough neighborhood around z0, sgn g̃n(z) is constant.

Since g̃n(z) is continuous outside of a neighborhood of z0, g̃n(z) and gn(z) must have
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a zero in (z0 − r, z0 + r) ⊂ (u, v). Call this zero zn,1. Since r is arbitrary, zn,1 → z0,

and gn(z)
z−zn,1

→ g0(z)
z−z0

uniformly on (u, v). We can now proceed inductively, since g0(z)
z−z0

has a zero of multiplicity l − 1 at z0.

Proof of Lemma 3.13. Let z0 be the unique solution of m(z0) = (µ + γ−1)−1. Define

gn(z) = det T n(z). Since det is a continuous function, gn(z) converges uniformly to

g0(z) in any neighborhood of z0. Noting that g0(z) has a zero of multiplicity l at z0,

by Lemma 3.14 we get that for large enough n, gn(z) has l zeros in a neighborhood

of z0. By a lemma of Okamoto [63], the zeros of gn(z) are almost surely simple.

The last thing we need to do is show that for each sequence zn,i solving the

equation det T n(zn,i) = 0, there is a corresponding sequence of vectors
¯
xn,i with

fn(zn,i,
¯
xn,i) = 0. Since det T n(zn,i) = 0, there exists an

¯
xn,i with T n(zn,i)

¯
xn,i = 0.

We need to show that the sequence of vectors has a limit.

Every solution pair (zn,i,
¯
xn,i) determines a unique eigenvalue-eigenvector pair

through equation (3.13). Since the eigenvalues of Sn are almost surely unique,

with the identifiability restriction of (3.26) we must have that zn,i uniquely deter-

mines
¯
xn,i. Suppose that zn,i is the ith largest solution of det T n(z) = 0, and that

fn(zn,i,
¯
xn,i) = 0. We will now show that

¯
xn,i

a.s.→
¯
ei.

Lemma 3.15. Suppose that fn(zn,i,
¯
xn,i) = 0, that

¯
xn,i satisfies the identifiability

restriction (3.26), and that zn,i
a.s.→ µ̄i. If µi 6= µj for all j 6= i, then

¯
xn,i

a.s.→
¯
ei.

We will use a perturbation lemma, which follows from the sin Θ theorem (see

Stewart and Sun [85][p. 258]).

Lemma 3.16. Let (z,
¯
x) be an approximate eigenpair of the k × k matrix A (in the

sense that A
¯
x ≈ z

¯
x), with ‖

¯
x‖2 = 1. Let

¯
r = A

¯
x− z

¯
x. Suppose that there is a set L

of k − 1 eigenvalues of A such that

δ = min
l∈L
|l − z| > 0.

Then there is an eigenpair (z0,
¯
x0) of A with ‖

¯
x0‖2 = 1 satisfying

¯
xT

¯
x0 ≥

√
1− ‖̄r‖

2
2

δ2
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and

|z − z0| ≤ ‖̄r‖2.

Proof of Lemma 3.15. We have that zn,i
a.s.→ µ̄i and that T n(zn,i)

¯
xn,i = 0. Since

T n(zn,i)
a.s.→ T 0(µ̄i), we get

‖T 0(µ̄i)
¯
xn,i‖2 = ‖

(
T n(zn,i − T 0(µ̄i)

)
¯
xn,i‖2

≤ ‖T n(zn,i − T 0(µ̄i)‖F
a.s.→ 0.

Since µi is distinct, 0 is a simple eigenvalue of T 0(µ̄i). Thus, all other eigenvalues

have magnitude at least δ > 0 for some δ. Define
¯
rn = T 0(µ̄i)

¯
xn,i. By Lemma 3.16,

there exists an eigenpair (z0,
¯
x0) of T 0(µ̄i) with |z0| ≤ ‖̄rn‖2 and

¯
xT

n,i ¯
x0 ≥

√
1− ‖̄r‖2

2

δ2 .

Since ‖̄rn‖ a.s.→ 0, for n large enough we must have z0 = 0 and
¯
x0 =

¯
ei or −

¯
ei. Lastly,

noting that
¯
x0 and

¯
xn,i are both unit vectors, we get

‖
¯
xn,i −

¯
x0‖22 = 2− 2

¯
xT

n,i ¯
x0

a.s.→ 0.

With the identifiability restriction, this forces
¯
xn,i

a.s.→
¯
ei.

Finally, we show that eventually the points described in Lemma 3.13 are the only

zeros of fn(z,
¯
x) having z > bγ. Since fn(z,

¯
x) = 0 implies det T n(z) = 0, it suffices

to show that T n(z) has no other zeros.

Lemma 3.17. For n large enough, almost surely the equation det T n(z) = 0 has

exactly k̄ solutions in
(
bγ,∞

)
(namely, the k̄ points described in Lemma 3.13).

Proof. By Lemma 3.14, for n large enough det T n(z) and det T 0(z) have the same

number of solutions in (u, v) ⊂
(
bγ,∞

)
. Thus, we only need to show that the solutions

of det T n(z) are bounded. Since every solution is an eigenvalue of Sn, this amounts to

showing that the eigenvalues of Sn are bounded. Using the Courant-Fischer min-max
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characterization of eigenvalues [36], we have

‖Sn‖2 =
1√
n
‖Xn‖22

≤
(
‖UnDnV

T
n‖2 +

1√
n
‖En‖2

)2

a.s.→
(√

µ1 +
√

bγ

)2

.

Thus, the solutions of det T n(z) = 0 are almost surely bounded.

3.6.2 Second-order behavior

To find the second-order behavior of the solutions to the secular equation, we use

a Taylor-series expansion of fn(z,
¯
x) around the limit points. That is, if (zn,

¯
xn) →

(z0,
¯
x0), we let Dfn be the derivative of fn and write

0 = fn(zn,
¯
xn) ≈ fn(z0,

¯
x0) + Dfn(z0,

¯
x0)

(
zn − z0

¯
xn −

¯
x0

)
.

We now want to solve for zn− z0 and
¯
xn−

¯
x0. Without the identifiability constraint,

there are k equations and k + 1 unknowns, but as soon as we impose the condition

‖
¯
xn‖2 = ‖

¯
x0‖2 = 1, the system becomes well-determined.

To make this precise, we first compute

Dfn(z,
¯
x) =

(
T ′

0(z)
¯
x T 0(z)

)
+OP

(
1√
n

)
, (3.27)

with pointwise convergence in z. Then, we write

fn(zn,
¯
xn) = fn(z0,

¯
x0) + Dfn(z0,

¯
x0)

(
zn − z0

¯
xn −

¯
x0

)
+OP

(
(zn − z0)

2 + ‖
¯
xn −

¯
x0‖22

)
.
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If fn(zn,
¯
xn) = 0 and f0(z0,

¯
x0) = 0, then we get

0 =
1√
n

fn,1(z0,
¯
x0) + Dfn(z0,

¯
x0)

(
zn − z0

¯
xn −

¯
x0

)
+OP

(
(zn − z0)

2 + ‖
¯
xn −

¯
x0‖22

)
.

If (zn,
¯
xn)

a.s.→ (z0,
¯
x0), then the differences zn−z0 and

¯
xn−

¯
x0 must be of size OP

(
1√
n

)

and the error term in the Taylor expanson is size OP

(
1
n

)
. The final simplification we

can make is from the length constraint on
¯
xn and

¯
x0. We have

1 =
¯
xT

n¯
xn

=
(
¯
x0 + (

¯
xn −

¯
x0)
)T(

¯
x0 + (

¯
xn −

¯
x0)
)

= 1 + 2
¯
xT

0 (
¯
xn −

¯
x0) + ‖

¯
xn −

¯
x0‖22,

so that
¯
xT

0 (
¯
xn−

¯
x0) = OP

(
1
n

)
. With a little more effort, we can solve for zn− z0 and

¯
xn −

¯
x0.

Lemma 3.18. If (zn,
¯
xn) is a sequence converging almost surely to (µ̄i,

¯
ei), such that

fn(zn,
¯
xn) = 0 and µi 6= µj for i 6= j, then:

(i)
√

n(zn − µ̄i) = −
(
T n,1(µ̄i)

)
ii(

T ′
0(µ̄i)

)
ii

+ oP(1), (3.28)

(ii)
√

n (xn,i − 1) = oP (1) , and (3.29)

(iii)

√
n xn,j = −

(
T n,1(µ̄i)

)
ji(

T 0(µ̄i)
)

jj

+ oP(1) for i 6= j. (3.30)

Proof. We have done most of the work in the exposition above. In particular, we

already know that (ii) holds. Using the Taylor expansion, we have

0 =
1√
n

T n,1(µ̄i)
¯
ei +

(
T ′

0(µ̄i)
¯
ei T 0(µ̄i)

)(zn − µ̄i

¯
xn −

¯
ei

)
+ oP

(
1√
n

)
.
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Since T 0 and T ′
0 are diagonal, using (ii) we get

0 =
1√
n

(
T n,1(µ̄i)

)
ii

+
(
T ′

0(µ̄i)
)

ii
(zn − µ̄i) + oP

(
1√
n

)
,

0 =
1√
n

(
T n,1(µ̄i)

)
ji

+
(
T 0(µ̄i)

)
jj

xn,j + oP

(
1√
n

)
for i 6= j.

Therefore, (i) and (iii) follow.

At this point, it behooves us to do some simplification. For µi, µj > γ−1/2, we

have

m(µ̄i) = − 1

µi + γ−1
.

Using (3.19), this implies

µ̄i = µi + 1 + γ−1 +
γ−1

µi

=
(
µi + 1

)(µi + γ−1

µi

)
.

Note that this agrees with the definition of µ̄i in Theorem 3.4. Now,

m(µ̄i)−m(µ̄j)

µ̄i − µ̄j

=
1

(µi + γ−1)(µj + γ−1)
· µiµj

µiµj − γ−1
,

so that

m′(µ̄i) =
1

(µi + γ−1)2
· µ2

i

µ2
i − γ−1

.

Also,
µ̄i m(µ̄i)− µ̄j m(µ̄j)

µ̄i − µ̄j

=
1

µi µj − γ−1
.

We can compute

(
T 0(µ̄i)

)
jj

= (µi − µj)

(
µi + γ−1

µi

)
for j 6= i,

(
T ′

0(µ̄i)
)

ii
= −

(
µ2

i

µ2
i − γ−1

)(
µi + γ−1

µi

)
.
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Since
(
1 + γ−1m(µ̄i)

)−1
= µi+γ−1

µi
, we get

T n,1(µ̄i) =

(
1√
n

ET
n,31En,31 −

√
n(1− γ−1)Ik

)

−
(

µi + γ−1

µi

)2

DF n(µ̄i)D

+

(
µi + γ−1

µi

)(√
n(D2

n −D) + D
(
En,11 −Gn(µ̄i)

)

+
(
En,11 −Gn(µ̄i)

)T
D
)

− (µi + 1)

(
µi + γ−1

µi

)
Hn(µ̄i).

The first term converges in distribution to a mean-zero multivariate normal with

variance 2 (1− γ−1) along the diagonal and variance 1− γ−1 otherwise; the elements

are all uncorrelated except for the obvious symmetry. Also, we have

Cov
(
Fij(µ̄1), Fij(µ̄2)

)
= γ−1(1 + δij) ·

1

(µ1 + γ−1)(µ2 + γ−1)
· µ1µ2

µ1µ2 − γ−1
,

Cov
(
Gij(µ̄1), Gij(µ̄2)

)
= γ−1 · 1

µ1µ2 − γ−1
,

Cov
(
Hij(µ̄1), Hij(µ̄2)

)
= γ−1(1 + δij) ·

1

(µ1 + γ−1)(µ2 + γ−1)
· µ1µ2

µ1µ2 − γ−1
.

Therefore, for j 6= i we have variances

Var
((

T n,1(µ̄i)
¯
ei

)
i

)
= σii ·

(
µi + γ−1

µi

)2

+ 2
(
2µi + 1 + γ−1

) (µi + γ−1)2

µ2
i − γ−1

+ o(1),

(3.31a)

Var
((

T n,1(µ̄i)
¯
ei

)
j

)
=
(
2µi + 1 + γ−1

) (µi + γ−1)2

µ2
i − γ−1

+ o(1), (3.31b)

and nontrivial covariances

Cov
((

T n,1(µ̄i)
¯
ei

)
i
,
(
T n,1(µ̄j)

¯
ej

)
j

)
= σij ·

µi + γ−1

µi

· µj + γ−1

µj

+ o(1) (3.32a)
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and

Cov
((

T n,1(µ̄i)
¯
ei

)
j
,
(
T n,1(µ̄j)

¯
ej

)
i

)
=
(
µi + µj + 1 + γ−1

)

· (µi + γ−1)(µj + γ−1)

µiµj − γ−1
+ o(1).

(3.32b)

All other covariances between the elements of T n,1(µ̄i)
¯
ei and T n,1(µ̄j)

¯
ej are zero.

3.7 Singular values and singular vectors

The results about solutions to the secular equation translate directly to results about

the singular values and right singular vectors of 1√
n
X̃n.

3.7.1 Singular values

Every value z with fn(z,
¯
x) = 0 for some

¯
x is the square of a singular value of 1√

n
X̃n.

Therefore, Section 3.6 describes the behavior of the top k̄ singular values. To complete

the proof of Theorem 3.4 for γ ≥ 1, we only need to describe what happens to the

singular values corresponding to the indices i with µi ≤ γ−1/2.

Lemma 3.19. If µi ≤ γ−1/2 then the ith eigenvalue of Sn, converges almost surely

to bγ.

Proof. From Lemma 3.17, we know that for n large enough and ε small, there are

exactly k̄ = max{i : µi > γ−1/2} eigenvalues of Sn in
(
bγ +ε,∞). From the eigenvalue

interleaving inequalities, we know that the ith eigenvalue of Sn is at least as big as

the ith eigenvalue of Sn,22.

Denote by µ̂n,i the ith eigenvalue of Sn, with k̄ < i ≤ k. Then almost surely,

lim
n→∞

λn,i ≤ lim
n→∞

µ̂n,i ≤ lim
n→∞

µ̂n,i ≤ bγ + ε.

Since λn,i
a.s.→ bγ and ε is arbitrary, this forces µ̂n,i

a.s.→ bγ.
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Lemma 3.20. If µi ≤ γ−1/2, then
√

n(µ̂i− µ̄i)
P→ 0, where µ̂i is the ith eigenvalue of

Sn.

Proof. We use the same notation as in Lemma 3.19. Recall that in the present

situation, µ̄i = bγ. Since λn,i = bγ +OP(n−2/3), we have that

√
n
(
λn,i − bγ

) P→ 0.

This means that

lim
n→∞

√
n
(
µ̂n,i − bγ

)
≥ oP(1).

The upper bound is a little more delicate. By the Courant-Fischer min-max charac-

terization, µ̂
1/2
i is bounded above by µ̃

1/2
i , the ith singular value of

1√
n

Xn +
√

n
(
(γ−1/2 + ε)1/2 − µ

1/2
i

)
¯
un,i

¯
vT

n,i

for any ε > 0. From the work in Section 3.6, we know that

µ̃i =
(
1 + γ−1/2 + ε

)(
1 +

1

γ1/2 + γε

)
+OP

(
σ̃i√
n

)

= bγ + ε2 γ1/2 − 1

1 + γ1/2ε
+OP

(
σ̃i√
n

)
,

where

σ̃2
i = σii

(
1− 1

1 + 2γ1/2ε + γε2

)2

+ 2
(
2(γ−1/2 + ε) + 1 + γ−1

)(
1− 1

1 + 2γ1/2ε + γε2

)

= O(ε).

Therefore, for all 0 < ε < 1, we have

√
n

(
µ̂n,i − bγ − ε2 γ1/2 − 1

1 + γ1/2ε

)
≤ OP

(
ε1/2
)
.
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Letting ε→ 0, we get

lim
n→∞

√
n
(
µ̂n,i − bγ

)
≤ oP(1).

Together with the lower bound, this implies
√

n
(
µ̂n,i − bγ

) P→ 0.

3.7.2 Right singular vectors

For µi > γ−1/2, we can get a right singular vector of 1√
n
X̃n from the sequence of

solution pairs (zn,i,
¯
xn,i) satisfiying fn(zn,i,

¯
xn,i) = 0 and zn,i

a.s.→ µ̄i. The vector is

parallel to

¯
x̃n,i =

(
¯
xn

−(Sn,22 − znIp−k)
−1Sn,21

¯
xn

)
. (3.33)

We just need to normalize this vector to have unit length. The length of
¯
x̃n is given

by

‖
¯
x̃n‖22 =

¯
xT

n

(
Ik + Sn,12(Sn,22 − znIp−k)

−2Sn,21

)
¯
xn. (3.34)

It is straightforward to show that for z > bγ,

Ik + Sn,12(Sn,22 − zIp−k)
−2Sn,21

a.s.→ −T ′
0(z)

=
γ−1m′(z)

(
1 + γ−1m(z)

)2D2 +
m′(z)
(
m(z)

)2Ik

uniformly for z in any compact subset of
(
bγ,∞

)
. It is also not hard to compute for

µi > γ−1/2 that

−T ′
0(µ̄i) =

γ−1

µ2
i − γ−1

D2 +
µ2

i

µ2
i − γ−1

Ik.

Therefore, if µi > γ−1/2 and (zn,i,
¯
xn,i)

a.s.→ (µ̄i,
¯
ei), then

‖
¯
x̃n,i‖22

a.s.→ µi(µi + γ−1)

µ2
i − γ−1

=
1 + 1

γµi

1− 1
γµ2

.

The behavior of the right singular vectors when µi ≤ γ1/2 is a little more difficult to
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get at. We will use a variant of an argument from Paul [68] to show that ‖
¯
x̃‖2 a.s.→ ∞,

which implies that ¯
xn,i

‖
¯
x̃n,i‖2

a.s.→ 0. We can do this by showing the smallest eigenvalue of

Sn,12(Sn,22 − zn,iIp−k)
−2Sn,21 goes to ∞.

Write

Sn,12(Sn,22 − zn,iIp−k)
−2Sn,21 =

p−k∑

α=1

¯
sn,α

¯
sT

n,α

(λ̃n,α − zn,i)2
,

where
¯
sn,1,

¯
sn,2, . . . ,

¯
sn,p−k are the eigenvectors of Sn,22 multiplied by Sn,12 = ST

n,21,

and λ̃n,1, λ̃n,2, . . . , λ̃n,p−k are the eigenvalues of Sn,22. For ε > 0, define the event

Jn(ε) = {zn,i < bγ + ε} . From the interleaving inequality, we have zn,i ≥ λ̃n,i. With

respect to the ordering on positive-definite matrices, we have

p−k∑

α=1

¯
sn,α

¯
sT

n,α

(λ̃n,α − zn,i)2
�

p−k∑

α=i

¯
sn,α

¯
sT

n,α

(λ̃n,α − zn,i)2

�
p−k∑

α=i

¯
sn,α

¯
sT

n,α

(bγ + ε− zn,i)2
on Jn(ε).

It is not hard to show that
∥∥∥
∑i−1

α=1
¯
sn,α

¯
sT
n,α

(bγ+ε−zn,i)2

∥∥∥ a.s.→ 0. Therefore,

p−k∑

α=i

¯
sn,α

¯
sT

n,α

(bγ + ε− zn,i)2

a.s.→ γ−1m′(bγ + ε
)

1 + γ−1m
(
bγ + ε

)D2 +
m′(bγ + ε

)
[
m
(
bγ + ε

)]2Ik.

As n→∞, we have P
(
Jn(ε)

)
→ 1. So, since m′(bγ+ε

)
≥ C√

ε
for some constant C, let-

ting ε→ 0 we must have that the smallest eigenvalue of Sn,12(Sn,22−zn,iIp−k)
−2Sn,21

goes to ∞.

3.7.3 Left singular vectors

We can get the left singular vectors from the right from multiplication by 1√
n
X̃n.

Specifically, if
¯
ṽn,i is a right singular vector of 1√

n
X̃n with singular value z

1/2
n,i , then

¯
ũn,i, the corresponding left singular vector, is defined by

z
1/2
n,i ¯

ũn,i =
1√
n

X̃n
¯
ṽn,i.
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We are only interested in the first k components of
¯
ũn,i. If

¯
ṽn,i =

1

‖
¯
x̃n,i‖2

(
¯
xn,i

−(Sn,22 − zn,iIp−k)
−1Sn,21

¯
xn,i

)
,

then these are given by 1
‖
¯
x̃n,i‖2

Rn(zn,i)
¯
xn,i, where

Rn(z) = Dn +
1√
n

En,11 −
1√
n

En,12 (Sn,22 − zIp−k)
−1

Sn,21.

It is not hard to show that Rn(z)
a.s.→ R0(z), uniformly for z > bγ, and Rn(z) =

R0(z) + 1√
n
Rn,1(z) + oP

(
1√
n

)
pointwise for z > bγ. Here,

R0(z) =
1

1 + γ−1m(z)
D,

and

Rn,1(z) =
(
1 + γ−1m(z)

)−1
(√

n (Dn −D) + En,11

)

−
(
1 + γ−1m(z)

)−2
F n(z)D −Gn(z).

Let yn,i = 1
‖
¯
x̃n,i‖2

Rn(zn,i)
¯
xn,i. A straightforward calculation shows the following:

Lemma 3.21. If µi > γ−1/2 and (zn,i,
¯
xn,i)

a.s.→ (µ̄i,
¯
ei), then

¯
yn,i

a.s.→
(

1− 1
γµ2

i

1 + 1
µi

)1/2

¯
ei.

If µi ≤ γ−1/2 and zn,i
a.s.→ bγ, then

¯
yn,i

a.s.→ 0.

3.8 Results for γ ∈ (0, 1)

Remarkably the formulas for the limiting quantities still hold when γ < 1. To see

this, we can get the behavior for γ < 1 by taking the transpose of Xn and applying
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the theorem for γ ≥ 1. We switch the roles of n and p, replace µi by µ′
i = γµi, and

replace γ by γ′ = γ−1. Then, for instance, the critical cutoff becomes

µ′
i >

1√
γ′ , i.e.

γµi > γ1/2,

which is the same formula for γ ≥ 1. The almost-sure limit of the square of the ith

eigenvalue of 1
p
XnX

T
n becomes

µ̄′
i = (γµi + 1)

(
1 +

γ

γµi

)

= γ(µi + 1)

(
1 +

1

γµ

)

= γµ̄i.

The formulas for the other quantities also still remain true.

3.9 Related work, extensions, and future work

With the proofs completed, we now discuss some extensions and related work.

3.9.1 Related work

When Johnstone [45] worked out the distribution of the largest eigenvalue in the

null (no signal) case, he proposed studying “spiked” alternative models. Spiked data

consists of vector-valued observations with population covariance of the form

Σ = diag(µ1, µ2, . . . , µk, 1, . . . , 1).

Work on the spiked model started with Baik et al. [11], Baik & Silverstein [12], and

Paul [68]. Baik et al. showed that for complex Gaussian data, a phase transition



3.9. RELATED WORK, EXTENSIONS, AND FUTURE WORK 57

phenomenon exists, depending on the relative magnitude of the spike. Baik & Sil-

verstein gave the almost-sure limits of the eigenvalues from the sample covariance

matrix without assuming Gaussianity. Paul worked with real Gaussian data and

gave the limiting distributions when γ > 1. Paul also gives some results about the

eigenvectors.

After this initial work, Bai & Yao [8] [9] derived the almost-sure limits and prove a

central limit theorem for eigenvalues for a general class of data that includes colored

noise and non-Gaussianity. Chen et al [19] consider another type of spiked model

with correlation. Nadler [62] derived the behavior of the first eigenvector in a spiked

model with one spike.

The above authors all consider data of the form X = ZΣ1/2. Onatski [64], like

us, examines data of the form X = UDV T +E. With slightly different assumptions

than ours, he is able to give the probability limits of the top eigenvalues, along with

the marginal distributions of the scaled eigenvalues and singular vectors. However,

Onatski does not work in a “transpose-agnostic” framework like we do, so his methods

do not allow getting at the joint distribution of the left and right singular vectors.

3.9.2 Extensions and future work

We have stopped short of computing the second-order behavior of the singular vectors,

but no additional theory is required to get at these quantities. Anyone patient enough

can use our results to compute the joint distribution of ‖
¯
x̃n,i‖2,

¯
xn,i, and

¯
yn,i. This in

turn will give the joint behavior of the singular vectors.

Most of the proof remains unchanged for complex Gaussian noise, provided trans-

pose (T) is replaced by conjugate-transpose (H). The variance formulas need a small

modification, since the fourth-moment of a real Gaussian is 3 and that of a complex

Gaussian is 2.

For colored or non-Gaussian noise, we no longer have orthogonal invariance, so

the change of basis in Section 3.3 is a little trickier. It is likely that comparable

results can still be found, perhaps using results on the eigenvectors of general sample

covariance matrices from Bai et al. [3].



58 CHAPTER 3. BEHAVIOR OF THE SVD



Chapter 4

An intrinsic notion of rank for

factor models

As Moore’s Law progresses, data sets measuring on the order of hundreds or thousands

of variables are becoming increasingly more common. Making sense of data of this

size is simply not tractable without imposing a simplifying model. One popular

simplification is to posit existence of a small number of common factors that drive

the dynamics of the data, which are usually estimated by principal component analysis

(PCA) or some variation thereof. The n × p data matrix X is approximated as a

low-rank product X ≈ UV T, where U and V are n× k and p× k, respectively, with

k much smaller than n and p.

The number of algorithms for approximating matrices by low-rank products has

exploded in recent years. These algorithms include archetypal analysis [21], the semi-

discrete decomposition (SDD) [49], the non-negative matrix factorization (NMF) [52],

the plaid model [51], the CUR decomposition [25], and regularized versions thereof.

They also include some clustering methods, in particular k-means and fuzzy k-means

[14].

A prevailing question is: How many common factors underlie a data set? Alter-

nately, how should one choose k? In general, the answer to this question is application-

specific. If we are trying to use X to predict a response, y, then the optimal k is

the one that gives the best prediction error for y. The situation is not always this

59
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simple, though. For exploratory analysis, there is no external response, and we want

to choose a k that is “intrinsic” to X. For other applications, we don’t have a single

response, y, we have many responses y1, y2, . . . , ym. We may not even know all of the

yi when we are processing X. We want a k that has good average-case or worst-case

prediction properties for a large class of responses.

In this chapter, we develop a precise notion of intrinsic rank for “latent factor” ma-

trix data. This choice of k is the one that minimizes average- or worst-case prediction

error over all bilinear statistics. We specifically work with the singular value decom-

position (SVD), but our definition can be extended to other matrix factorizations as

well.

Section 4.1 introduces the latent factor model, the data model from which we

base our constructions. Section 4.2 defines intrinsic rank as the minimizer of a loss

function. We give a theoretical analysis of the behavior of some natural loss functions

in Section 4.3, followed by simulations in Section 4.4. In Section 4.5, we examine the

connection between intrinsic rank and the scree plot. Finally, Section 4.6 discusses

some extensions and Section 4.7 gives a summary of the chapter.

4.1 The latent factor model

We start by describing a model for data generated by a small number of latent factors

and additive noise. Suppose that we have n multivariate observations
¯
x1,

¯
x2, . . . ,

¯
xn ∈

R
p. In a microarray setting, we will have about n = 50 arrays measuring the activa-

tions of around p = 5000 genes (or 50000, or even millions of genes in the case of exon

arrays). Alternatively, for financial applications
¯
xi will measure the market value of

on the order of p = 1000 assets on day i, and we may be looking at data from the

last three years, so n ≈ 1000. In these situations and others like them, we can often

convince ourselves that there aren’t really 5000 or 1000 different things going on in

the data. Probably, there are a small number, k of unobserved factors driving the

dynamics of the data. Typically, in fact, we think k is on the order of around 5 or 10.

To be specific about this intuition, for genomics applications, we don’t really

think that all p = 5000 measured genes are behaving independently. On the contrary,
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we think that there are a small number of biological processes that determine how

much of each protein gets produced. In finance, while it is true that the stock prices

of individual companies have a certain degree of independence, often macroscopic

effects like industry- and market-wide trends can explain a substantial portion of the

value.

4.1.1 The spiked model

One way to model latent effects is to assume that the
¯
xi are iid and that their

covariance is “spiked”. We think that
¯
xi is a weighted combination of k latent factors

corrupted by additive white noise. In this case,
¯
xi can be decomposed as

¯
xi =

k∑

j=1
¯
ajsi,j +

¯
εi

= A
¯
si +

¯
εi, (4.1)

where A =
(
¯
a1

¯
a2 · · ·

¯
ak

)
is a p × k matrix of latent factors common to all

observations and
¯
si ∈ R

k is a vector of loadings for the ith observation. We assume

that the noise vector
¯
εi is distributed as N (0, σ2Ip). If the loadings have mean zero

and covariance ΣS ∈ R
k×k, and if they are also independent of the noise, then

¯
xi has

covariance

Σ ≡ E
[
¯
xi

¯
xT

i

]
= AΣSA

T + σ2Ip. (4.2)

The decomposition in (4.2) can be reparametrized as

Σ = QΛQT + σ2Ip, (4.3)

where QTQ = Ik and Λ = diag (λ1, λ2, . . . , λk) , with λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0.

Equation (4.3) makes it apparent that Σ is “spiked”, in the sense that most of its

eigenvalues are equal, but k eigenvalues stand out above the bulk. The first k eigen-

values are λ1 +σ2, λ2 +σ2, . . . , λk +σ2, and the remaining p−k eigenvalues are equal

to σ2.
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4.1.2 More general matrix models

We can introduce a model more general than the spiked one by specifying a distri-

bution for the n× p data matrix X =
(
¯
x1

¯
x2 · · ·

¯
xn

)T

that includes dependence

between the rows. In the spiked model, the distribution of X can be described as

X
d
= ZΛ1/2QT + E, (4.4)

where E =
(
¯
ε1

¯
ε2 · · ·

¯
εn

)T

and Z is an n × k matrix of independent N (0, 1)

elements. More generally, we can consider data of the form

X
d
=
√

n UDV T + E, (4.5)

where UTU = V TV = Ik, and D = diag(d1, d2, . . . , dk) with d1 ≥ d2 ≥ · · · ≥ dk ≥ 0.

We can get (4.5) from (4.4) by letting ZΛ1/2 =
√

n UDCT be the SVD of ZΛ1/2 and

defining V = QC. Unlike the spiked model, (4.5) can model dependence between

variables as well as dependence between observations.

4.2 An intrinsic notion of rank

With Section 4.1’s latent factor model in mind, we turn our attention to defining the

intrinsic rank of a data set. This definition will be motivated both by the generative

model for X and by predictive power considerations. When X =
√

n UDV T + E,

we think of
√

n UDV T as “signal” and E as “noise”. We make a distinction between

the generative rank and the effective rank.

Definition 4.1. If the n × p matrix X is distributed as X =
√

n UDV T + E,

where UTU = V TV = Ik0
, D is a k0 × k0 diagonal matrix with positive diagonal

entries, and E is a noise matrix independent of the signal term whose elements are

iid N (0, σ2), then we denote by k0 the generative rank of X.

Intuitively the generative rank is the rank of the signal part of X.

The effective rank is defined in terms of how well the first terms of the SVD

of X approximates the signal
√

n UDV T. We let X =
√

nÛD̂V̂
T

be the full
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SVD of X, where Û =
(
¯
û1

¯
û2 · · ·

¯
ûn∧p

)
, V̂ =

(
¯
v̂1

¯
v̂2 · · ·

¯
v̂n∧p

)
, and D̂ =

diag
(
d̂1, d̂2, . . . , d̂n∧p

)
. If we let D̂(k) = diag

(
d̂1, d̂2, . . . , d̂k, 0, 0, . . . , 0

)
, then the

SVD truncated to k terms is X̂(k) =
√

n ÛD̂(k)V̂
T
. We are now in a position to

define effective rank

Definition 4.2. Given a loss function L : R
n×p×R

n×p → R, the effective rank of X

with respect to L is equal to

k∗
L ≡ argmin

k
L
(√

nUDV T, X̂(k)
)

. (4.6)

The effective rank depends on the choice of loss function. In some settings it

is preferable to choose an application-specific loss function. Often, we appeal to

simplicity and convenience and choose squared Frobenius loss. Specifically,

LF(A, A′) = ‖A−A′‖2F. (4.7)

One way to motivate this loss function is that it measures average squared error over

all bilinear statistics of the form
¯
αTA

¯
β,

1

np
‖A−A′‖2F =

∫

‖
¯
α‖2=1,
‖
¯
β‖2=1

(
¯
αTA

¯
β −

¯
αTA′

¯
β
)2

d
¯
α d

¯
β

(see Section A.3.2 for details). In the context of the latent factor model, the effective

rank with respect to LF is the rank that gives the best average-case predictions of

bilinear statistics of the signal part (with respect to squared-error loss).

A common alternative to Frobenius loss is spectral loss, given by

L2(A, A′) = ‖A−A′‖22. (4.8)

This can be interpreted as worst-case squared error over the class of all bilinear
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statistics,

‖A−A′‖22 = sup
‖
¯
α‖2=1,
‖
¯
β‖2=1

(
¯
αTA

¯
β −

¯
αTA′

¯
β
)2

.

In the sequel, we denote the optimal ranks with respect to Frobenius and spectral

loss as k∗
F and k∗

2, respectively.

4.3 Loss behavior

In this section we investigate the behavior of the loss functions introduced in Sec-

tion 4.2. First, we need to be more precise about our working assumptions on the

data matrices. The theory is easier if we work in an asymptotic setting, introducing

a sequence of data matrices X1, X2, . . . ,Xn, where Xn ∈ R
n×p, p = p(n), n → ∞,

and n
p
→ γ ∈ (0,∞). We will need three assumptions.

Assumption 4.3. The matrix Xn ∈ R
n×p can be decomposed as

Xn =
√

n UnDnV
T
n + En. (4.9)

Here, Un ∈ R
n×k0, Dn ∈ R

k0×k0, and V n ∈ R
p×k0. The left and right factors Un

and V n satisfy UT
nUn = V T

nV n = Ik0
. The aspect ratio satisfies n

p
= γ + o

(
1√
n

)
for

a constant γ ∈ (0,∞). The number of factors k0 is fixed.

Assumption 4.4. The matrix of normalized factor strengths is diagonal with Dn =

diag (dn,1, dn,2, . . . , dn,k0
) . For 1 ≤ i ≤ k0, the diagonal elements satisfy d2

n,i
a.s.→ µi for

deterministic µi satisfiying µ1 > µ2 > · · · > µk0
> 0.

Assumption 4.5. The noise matrix En has iid elements independent of Un, Dn,

and V n, with En,11 ∼ N (0, σ2).

These assumptions allow us to apply the results of Chapter 3 to get the first-order be-

havior of the SVD of Xn. As before, we let
¯
un,1,

¯
un,2, . . . ,

¯
un,k0

and
¯
vn,1,

¯
vn,2, . . . ,

¯
vn,k0

denote the columns of Un and V n, respectively. We set Xn =
√

n ÛnD̂nV̂
T

n to

be the SVD of Xn, where the columns of Ûn and V̂ n are
¯
ûn,1,

¯
ûn,2, . . . ,

¯
ûn,n∧p and
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¯
v̂n,1,

¯
v̂n,2, . . . ,

¯
v̂n,n∧p, respectively. With D̂n = diag

(
µ̂

1/2
n,1 , µ̂

1/2
n,2 , . . . , µ̂

1/2
n,n∧p

)
, we set

D̂n(k) = diag
(
µ̂

1/2
n,1 , µ̂

1/2
n,2 , . . . , µ̂

1/2
n,k , 0, 0, . . . , 0

)
so that X̂n(k) =

√
n ÛnD̂n(k)V̂

T

n is

the SVD of Xn truncated to k terms.

We can decompose the columns of V̂ n into sums of two terms, with the first term

in the subspace spanned by V n, and the second term orthogonal to it. By setting

Θn = V T
n V̂ n and taking the QR decomposition of V̂ n − V nΘn, the matrix of right

factors can be expanded as

V̂ n = V nΘn + V̄ nΘ̄n, (4.10)

with V̄ n ∈ R
p×(p−k0) satisfying V̄

T
n V̄ n = Ip−k0

and V T
n V̄ n = 0. We choose the signs

so that Θ̄n has non-negative diagonal entries. Note that

Ik = V̂
T

n V̂ n = ΘT
nΘn + Θ̄

T
nΘ̄n. (4.11)

In particular, since Θ̄n is upper-triangular, if Θn converges to a diagonal matrix Θ,

then Θ̄n must also, converge to a diagonal matrix,
(
Ik −Θ2

)1/2
. This makes the

decomposition in equation (4.10) very convenient to work with.

The same trick applies to Ûn. We expand

Ûn = UnΦn + ŪnΦ̄n, (4.12)

with Ūn and Φ̄n defined analogously to V̄ n and Θ̄n. Again, we have that

Ik = ΦT
nΦn + Φ̄

T
n Φ̄n. (4.13)

Likewise, if Φn converges to a diagonal matrix, then Φ̄n must do the same.

We can new get a simplified formula for X̂n(k). With the decompositions in

equations (4.10) and (4.12), we get

X̂n(k) =
√

n
(
Un Ūn

)(ΦnD̂n(k)ΘT
n ΦnD̂n(k)Θ̄

T
n

Φ̄nD̂n(k)ΘT
n Φ̄nD̂n(k)Θ̄

T
n

)(
V T

n

V̄
T
n

)
. (4.14)
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We can get the asymptotic limits of the quantities above. For 1 ≤ i ≤ k0, we set

µ̄i =





(µi + σ2)
(
1 + σ2

γµi

)
when µi > σ2

√
γ
,

σ2
(
1 + 1√

γ

)2

otherwise,
(4.15a)

θi =





√(
1− σ4

γµ2
i

)(
1 + σ2

γµi

)−1

when µi > σ2

√
γ
,

0 otherwise,

(4.15b)

ϕi =





√(
1− σ4

γµ2
i

)(
1 + σ2

µi

)−1

when µi > σ2

√
γ
,

0 otherwise,

(4.15c)

while for i > k0, we set µ̄i = σ2
(
1 + 1√

γ

)2

and θi = ϕi = 0. For i ≥ 1, we define

θ̄i =
√

1− θ2
i , (4.15d)

ϕ̄i =
√

1− ϕ2
i . (4.15e)

With

D(k) = diag
(
µ̄

1/2
1 , µ̄

1/2
2 , . . . , µ̄

1/2
k , 0, 0, . . . , 0

)
∈ R

n×p (4.16a)

and

Θ = diag (θ1, θ2, . . . , θp) , (4.16b)

Φ = diag (ϕ1, ϕ2, . . . , ϕn) , (4.16c)

Θ̄ = diag
(
θ̄1, θ̄2, . . . , θ̄p

)
, (4.16d)

Φ̄ = diag (ϕ̄1, ϕ̄2, . . . , ϕ̄n) , (4.16e)
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Theorems 3.4 and 3.5 give us that for fixed k as n→∞,

ΦnD̂n(k)ΘT
n

a.s.→ ΦD(k)ΘT,

ΦnD̂n(k)Θ̄
T
n

a.s.→ ΦD(k)Θ̄
T
,

Φ̄nD̂n(k)ΘT
n

a.s.→ Φ̄D(k)ΘT,

Φ̄nD̂n(k)Θ̄
T
n

a.s.→ Φ̄D(k)Θ̄
T
.

This result makes it easy to analyze the loss behavior. Letting µi = 0 for i > k0,

putting µ̄i(k) = µ̄i 1{i ≤ k} and

F i(k) =

(
µ

1/2
i − ϕi µ̄

1/2
i (k) θi −ϕi µ̄

1/2
i (k) θ̄i

−ϕ̄i µ̄
1/2
i (k) θi −ϕ̄i µ̄

1/2
i (k) θ̄i

)
(4.17)

we have that for ‖ · ‖ being spectral or Frobenius norm, for fixed k as n→∞,

1√
n

∥∥√n UnDnV
T
n − X̂n(k)

∥∥ a.s.→
∥∥ diag

(
F 1(k), F 2(k), . . . ,F k∨k0

(k)
)∥∥.

Thus,

1

n

∥∥√n UnDnV
T
n − X̂n(k)

∥∥2

F

a.s.→
k∨k0∑

i=1

∥∥F i(k)
∥∥2

F
(4.18)

and

1

n

∥∥√n UnDnV
T
n − X̂n(k)

∥∥2

2

a.s.→ max
1≤i≤k∨k0

∥∥F i(k)
∥∥2

2
. (4.19)

Similar results can be gotten for other orthogonally-invariant norms. A straightfor-

ward calculation shows

F T
i (k) F i(k)

=

(
µi − 2ϕiµ

1/2
i θiµ̄

1/2
i (k) + θ2

i µ̄i(k) −ϕiθ̄iµ
1/2
i µ̄

1/2
i (k) + θiθ̄iµ̄i(k)

−ϕiθ̄iµ
1/2
i µ̄

1/2
i (k) + θiθ̄iµ̄i(k) θ̄2

i µ̄i(k)

)
,
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so that

tr
(
F T

i (k) F i(k)
)

= µi − 2ϕiθiµ
1/2
i µ̄

1/2
i (k) + µ̄i(k),

det
(
F T

i (k) F i(k)
)

= ϕ̄2
i θ̄

2
i µiµ̄i(k).

When µi > σ2

√
γ
, we can use the identities ϕiθiµ̄

1/2
i µ

−1/2
i = 1 − σ4

γµ2
i

and ϕ̄2
i θ̄

2
i = σ4

γµ2
i

to

get

tr
(
F T

i (k) F i(k)
)

=





σ2

γµi

(
3σ2 + (γ + 1)µi

)
if i ≤ k,

µi otherwise,
(4.20a)

det
(
F T

i (k) F i(k)
)

=





(
σ2

γµi

)2

(µi + σ2)(γµi + σ2) if i ≤ k

0 otherwise.
(4.20b)

When µi ≤ σ2

√
γ
, we have

tr
(
F T

i (k) F i(k)
)

=





µi + σ2
(
1 + 1√

γ

)2

if i ≤ k

µi otherwise,
(4.21a)

det
(
F T

i (k) F i(k)
)

=





µi σ
2
(
1 + 1√

γ

)2

if i ≤ k

0 otherwise.
(4.21b)

We can use these expressions to compute

‖F i(k)‖2F = tr
(
F T

i (k) F i(k)
)
, (4.22)

‖F i(k)‖22 =
1

2

{
tr
(
F T

i (k) F i(k)
)

+

√[
tr
(
F T

i (k) F i(k)
)]2 − 4 det

(
F T

i (k) F i(k)
)}

.

(4.23)

The expression for the limit of 1
n
‖√n UnDnV

T
n − X̂n(k)‖22 is fairly complicated. In

the Frobenius case, we have
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Proposition 4.6. For fixed k as n→∞, we have

1

n
‖√n UnDnV

T
n − X̂n(k)‖2F

a.s.→
k∑

i=1

αiµi +

k0∑

i=k+1

µi + σ2

(
1 +

1√
γ

)2

· (k − k0)+, (4.24)

where

αi =





σ2

γµ2
i

(
3σ2 + (γ + 1)µi

)
if µi > σ2

√
γ
,

1 + σ2

µi

(
1 + 1√

γ

)2

otherwise.
(4.25)

Figure 4.1 shows αi as a function of µi. It is beneficial to include the ith term

when αi < 1, or equivalently µi > µ∗
F, with

µ∗
F ≡ σ2


1 + γ−1

2
+

√(
1 + γ−1

2

)2

+
3

γ


 . (4.26)

This gives us the next Corollary.

Corollary 4.7. As n→∞,

k∗
F

a.s.→ max {i : µi > µ∗
F} ,

provided no µk is exactly equal to µ∗
F.

The theory in Chapter 3 tells us that when µi > σ2

√
γ
, the ith signal term is “detectable”

in the sense that the ith sample singular value and singular vectors are correlated with

the population quantities. Proposition 4.6 tells us that when µi ∈
(

σ2

√
γ
, µ∗

F

)
, the ith

signal term is detectable, but it is not helpful (in terms of Frobenius norm) to include

in the estimate of
√

n UnDnV
T
n . Only when µi surpasses the inclusion threshold µ∗

F

is it beneficial to include the ith term.

Figure 4.2 shows the detection and inclusion thresholds as functions of γ.
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Figure 4.1: Frobenius loss penalty. Relative penalty for including the ith factor
in the SVD approximation of

√
n UnDnV

T
n , with respect to squared Frobenius loss.

When the ith factor has signal strengh µi, the cost for excluding the ith term of the
SVD is µi, and the cost for including it is αi · µi. Here, we plot αi as a function of µi

for various aspect ratios γ = n
p
. The units are chosen so that σ2 = 1.



4.3. LOSS BEHAVIOR 71

Aspect Ratio

S
ig

n
a
l 
S

tr
e
n
g
th

5

10

15

20

25

2
−4

2
−2

2
0

2
2

2
4

Threshold

Inclusion

Detection

Figure 4.2: Signal strength thresholds. Detection threshold γ−1/2 and inclu-

sion threshold µ∗
F = 1+γ−1

2
+

√(
1+γ−1

2

)2

+ 3
γ

plotted against the aspect ratio γ = n
p
.

When the normalized signal strength µi

σ2 is above the detection threshold, the ith
sample SVD factors are correlated with the population factors. With respect to
Frobenius loss, when the normalized signal strength is above the inclusion threshold,
it is beneficial to include the ith term in the SVD approximation of

√
n UnDnV

T
n .
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4.4 Simulations

We confirm the theory of the previous section with a Monte Carlo simulation. We

generate a matrix X as follows:

1. The concentration γ is one of {0.25, 1.0, 4.0}.

2. The size of the matrix s is one of {144, 400, 1600, 4900}. We set the number of

rows and columns in the matrix as n =
√

s γ and p =
√

s/γ, respectively. This

ensures that γ = n
p

and s = n p.

3. The noise level is set at σ2 = 1. The noise matrix E is an n × p matrix with

iid N (0, 1) elements.

4. The generative rank, k0, is fixed at 5. The normalized factor strengths are set at

(µ1, µ2, µ3, µ4, µ5) = (4µ∗
F, 2µ∗

F, µ∗
F, 1

2
µ∗

F, 1
4
µ∗

F), and the factor strength matrix

is D = diag
(
µ

1/2
1 , µ

1/2
2 , . . . , µ

1/2
5

)
.

5. The left and right factor matrices U and V are of sizes n × 5 and p × 5,

respectively. We choose these matrices uniformly at random over the Stiefel

manifold according to Algorithm A.1 in Appendix A.

6. We set X =
√

n UDV T + E and let X̂(k) be the SVD of X truncated to k

terms.

After generating X, we compute the squared Frobenius loss 1
n
‖√nUDV T− X̂(k)‖2F

and the squared spectral loss 1
n
‖√nUDV T − X̂(k)‖22 as functions of the rank, k. In

Figures 4.3 and 4.4, we plot the results over 500 replicates. For the Frobenius case,

we should expect the loss to decrease until k = 2, stay flat at k = 3, and then increase

thereafter. This is confirmed by the simulations. The spectral norm behaves similarly

to the Frobenius norm.
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Figure 4.3: Simulated Frobenius loss. Squared Frobenius loss 1
n
‖√nUDV T −

X̂(k)‖2F as a function of the rank, k, for X generated according the procedure de-
scribed in Section 4.4 and X̂(k) equal to the SVD of X truncated to k terms.
The concentration γ = n

p
is one of {0.25, 1.0, 4.0} and the size s = np is one of

{144, 400, 1600, 4900}. The solid lines show the means over 500 replicates with the
error bars showing one standard deviation. The dashed lines show the predictions
from Proposition 4.6. We can see that as the size increases, the simulation agrees
more and more with the theory.
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Figure 4.4: Simulated spectral loss. Squared spectral loss 1
n
‖√nUDV T −

X̂(k)‖22 as a function of the rank, k, with X and X̂(k) as in Figure 4.3. Sample size
s = np is shown in the columns and concentration γ = n

p
is shown in the rows. Solid

lines show the means over 500 replicates with the error bars showing one standard
deviation; the dashed lines show the predictions from Section 4.3, specifically from
equations (4.19), (4.20a–4.21b), and (4.23). The simulations agrees quite well with
the theory, especially for large sample sizes.
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4.5 Relation to the scree plot

Cattell’s scree plot [18] is a popular device for choosing the truncation rank in prin-

cipal component analysis. One plots the square of the singular value, d̂2
k, against the

component number, k. Typically such a plot exhibits an “elbow”, where the slope

changes noticeably. This is the point at which Cattell recommends truncating the

SVD of the matrix.

In some circumstances, the elbow is close to the Frobenius and spectral loss mini-

mizers, k∗
F and k∗

2. In Figure 4.5, we generate a matrix X =
√

n UDV T +E ∈ R
n×p,

with n = p = 100, such that elements of E are iid N (0, 1). In the first column, we set

D2 = diag(5.0, 4.75, 4.5, . . . , 0.5, 0.25). The figure shows the scree plot along with

‖√n UDV T − X̂(k)‖2 for Frobenius and spectral norms, where X̂(k) is the SVD

of X truncated to k terms. There is substantial ambiguity in determining the loca-

tion of the most pronounced elbow. Despite this subtlety, there is indeed an elbow

relatively close to k∗
F and k∗

2, the minimizers of the two loss functions.

We can easily manipulate the simulation to get a scree plot with a more pro-

nounced elbow in the wrong place. In the second column of Figure 4.5, we aug-

ment the factor strength matrix with three additional large values, so that D2 =

diag(20.0, 15.0, 10.0, 5.0, 4.75, 4.5, . . . , 0.5, 0.25). With this modification, there is a

clear elbow at k = 4. However, compared to the optimal values, truncating the SVD

at k = 4 gives about a 25% worse error with respect to squared Frobenius loss and

about 50% worse with respect to squared spectral loss.

In general, we cannot make any assurances about how close the elbow is to k∗
F

or k∗
2. Through a simulation study, Jackson [42] provides evidence that if the latent

factors are strong enough to be easily distinguished from noise, then the elbow is a

reasonable estimate of the loss minimizers (he does not actually compute the loss

behavior, but this seems likely). However, when there are both well-separated factors

and factors near the critical strength level µ∗
F, the second example here illustrates

that the elbow might be a poor estimate.
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Figure 4.5: Scree plots and loss functions. We generate a matrix as X =√
n UDV T +E and set X̂(k) equal to the SVD of X truncated to k terms. The left

and right columns show different choices of D, described in the text. The top row
contains scree plots, where the square of the kth singular value of X, d̂2

k, is plotted

against component number, k, with units are chosen so that
∑

k d̂2
k = 1. The next

two rows show ‖√n UDV T − X̂(k)‖2F and ‖√n UDV T − X̂(k)‖22, as functions of
the rank, k with units chosen so that the minimum value is 1.0. Dashed lines show
the elbow of the scree plot and the minimizers of the two loss functions. The elbow of
the scree plot (which is fit by eye) gives a reasonable estimate of the loss minimizers
in the first column, but not in the second.
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4.6 Extensions

We have focused specifically on truncating the singular value decomposition because

that is the case for which the theory has been most developed. We have also focused

specifically on Frobenius and spectral losses. One could easily extend our work to look

at the nuclear norm loss (sum of singular values) [32] or Stein’s loss [43]. Alternatively,

it is not hard to adapt our analysis to study forms like ‖ÛD̂(k)2Û
T − UD2UT‖.

For matrix decompositions beyond the SVD, extension of our work is more difficult,

mainly because very little scholarship has been devoted to their theoretical properties.

We have not examined shrinking the singular values at all, but in some situations

this may be beneficial. For example, the Frobenius norm of the F i matrix from

Section 4.3, which is involved in the Frobenius loss ‖√n UDV T−X̂(k)‖2F , converges

to

µi − 2ϕiθiµ
1/2
i µ̄

1/2
i + µ̄i

whenever k ≥ i. Recall that µ̄i is the almost-sure limit of the d̂2
i , the square of the

ith singular value of 1√
n
X. If we shrink the ith singular value, replacing d̂i with f(d̂i)

for continuous f(·), then the Frobenius penalty for including the ith term converges

to

µi − 2ϕiθiµ
1/2
i f(µ̄

1/2
i ) + f 2(µ̄

1/2
i ).

This quantity is minimized when f(µ̄
1/2
i ) = µ

1/2
i ϕiθi = µ̄

−1/2
i

(
µi − σ4

γµi

)
. After some

algebra, the optimal f takes the form

f(d̂i) =





(
d̂2

i − 2
(
1 + 1

γ

)
σ2 +

(
1− 1

γ

)2 σ4

d̂2
i

)1/2

when d̂i > σ
(
1 + 1√

γ

)
,

0 otherwise.
(4.27)

With this shrinkage, it is always beneficial (in terms of Frobenius norm) to include

the ith term.
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4.7 Summary and future work

We have described a plausible model for data generated by a small number of latent

factors corrupted by additive white noise. With this model in mind, we have moti-

vated two loss functions, the squared Frobenius norm and squared spectral norm, as

measuring average- or worst-case quadratic error over the class of all bilinear statis-

tics. These loss functions in turn determine the intrinsic ranks k∗
F and k∗

2. We have

shown how the losses and the ranks behave for the truncated SVD, both theoretically

and through simulation. Finally, we have explored the relation between intrinsic rank

and the scree plot, and then discussed some extensions.

We did not describe a way to estimate the error from truncating an SVD, nor

did we propose a practical method for choosing k. For now, our hope is that this

work is useful in developing intuition for how the SVD behaves and that it provides a

suitable starting point for designing and evaluating such procedures. In later chapters,

we explicitly discuss estimation and rank selection.



Chapter 5

Cross-validation for unsupervised

learning

The problem unsupervised learning (UL) tries to address is this: given some data,

describe its distribution. Many estimation problems can be cast as unsupervised

learning, including mean and density estimation. However, more commonly unsuper-

vised learning refers to either clustering or manifold learning. A canonical example

is principal component analysis (PCA). In PCA, we are given some high-dimensional

data, and we look for a lower-dimensional subspace that explains most of the variation

in the data. The lower-dimensional subspace describes the distribution of the data. In

clustering, the estimated cluster centers give us information about the distribution of

the data. The output of every UL method is a summary statistic designed to convey

information about the process which generated the data.

Many UL problems involve model selection. For example, in principal component

analysis we need to choose how many components to keep. For clustering, we need

to choose the number of clusters in the data. Many manifold learning techniques

require choosing a bandwidth or a kernel. Often in these contexts, model-selection is

done in an ad-hoc manner. Rules of thumb and manual inspection guide most choices

for how many components to keep, how many clusters are present, and what is an

appropriate kernel. Such informal selection rules can be problematic when different

researchers come to different conclusions about what the right model is. Moreover,

79
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even when there is an obvious “natural” model to human eyes, it may be hard to pick

out in computer-automated analysis. For objectivity and efficiency, it is desirable to

have a well-specified automatic model selection procedure.

For concreteness, in this chapter we focus on principal components, though many

of the ideas generalize to other methods. We suppose that the data, X, is an n × p

matrix generated according to the signal-plus-noise model X =
√

n UDV T +E. We

consider the first term to be the “signal” matrix, and the second term to be “noise”.

Often the signal term is a low-rank product. Our goal is to estimate this term as best

as possible by truncating the singular value decomposition (SVD) of X. Here “best”

means with respect to the metrics introduced in Chapter 4. We are interested in the

model selection problem where each model is defined by the number of terms we keep

from the SVD of X.

We would like our model selection procedure to be non-parametric, if possible.

To work in a variety of contexts, the selection procedure cannot assume Gaussianity

or independence across samples. We would like the procedure to be driven by the

empirical distribution of the data. Cross-validation (CV) is a popular approach to

model selection that generally meets these criteria. Therefore, we seek to adapt CV

to our purposes.

CV prescribes dividing a data set into a “test” set and a “train” set, fitting a model

to the training set, and then evaluating the model’s performance on the test set. We

repeat the fit/evaluate procedure multiple times over different test/train partitions,

and then average over all replicates. Traditionally, the partitions are chosen so that

each datum occurs in exactly one test set. As for terminology, for a particular replicate

the test set is commonly referred to as the held-out or left-out set, and likewise the

train set is often called the held-in or left-in set.

Most often, cross-validation is applied in supervised contexts. In supervised learn-

ing (SL) the data consists of a sequence of (
¯
x,

¯
y) predictor-response pairs. Broadly

construed, the goal of supervised learning is to describe the conditional distribution

of
¯
y given

¯
x. This is usually for prediction or classification. In the supervised context,



81

for a particular CV replicate there are four parts of data:

(
Xtrain Y train

Xtest Y test

)
.

Implicit in the description of cross-validation is that the replicates use Xtest to predict

Y test. So, the held-in data looks like

(
Xtrain Y train

Xtest ∗

)
.

We extrapolate from Xtest to predict Y test.

It is not immediately obvious how to apply cross-validation to unsupervised learn-

ing. In unsupervised learning there is no Y ; we instead have the two-way partition

(
Xtrain

Xtest

)
.

There is nothing to predict! Renaming X to Y does not make the problem any

better, for then the division becomes:

(
Y train

Y test

)
,

with hold-in (
Y train

∗

)
.

Now, there is nothing to extrapolate from to predict Y test! For cross-validation to

work in unsupervised learning, we need to consider more general hold-outs.

We look at two different types of hold-outs in this chapter. The first, due to Wold,

is “speckled”: we leave out random elements of the matrix X and use a missing data

algorithm like expectation-maximization (EM) for prediction. The second type of

hold-out is “blocked”. This type, due to Gabriel, randomly partitions the columns of
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X into “predictor” and “response” sets and then performs the SL version of cross-

validation.

5.1 Assumptions, and notation

We will generally assume we have data X ∈ R
n×p generated according to the latent

factor model

X =
√

n UDV T + E. (5.1)

Here, U ∈ R
n×k0 , V ∈ R

n×k0 , and D = diag(d1, d2, . . . , dk0
), with UTU = Ik0

V TV = Ik0
, and d1 ≥ d2 ≥ · · · ≥ dk0

> 0. We call
√

n UDV T the signal part and E

the noise part. In the spirit of data-driven analysis, we avoid putting distributional

assumptions on U , D, V , and E. This makes the terms unidentifiable. While this

indeterminacy can (and should!) bother some readers, for now we will plod on.

We denote the SVD of X by

X =
√

n ÛD̂V̂
T
, (5.2)

with Û ∈ R
n×n∧p, V̂ ∈ R

p×n∧p, and D̂ = diag(d̂1, d̂2, . . . , d̂n∧p). Here, Û
T
Û =

V̂
T
V̂ = In∧p and the singular values are ordered d̂1 ≥ d̂2 ≥ · · · ≥ d̂n∧p ≥ 0. We set

D̂(k) = diag(d̂1, d̂2, . . . , d̂k, 0, . . . , 0) ∈ R
n∧p×n∧p so that

X̂(k) =
√

n ÛD̂(k)V̂
T

(5.3)

is the SVD of X truncated to k terms. Similarly, we define Û (k) ∈ R
n×k and

V̂ (k) ∈ R
p×k to be the first k rows of Û and V̂ , respectively.

We focus on estimating the squared Frobenius model error

ME(k) = ‖√n UDV T − X̂(k)‖2F (5.4)

or its minimizer,

k∗
ME = argmin

k
ME(k). (5.5)
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Here, ‖ · ‖2F is the sum of squares of the elements.

Another kind of error relevant to cross-validation is prediction error. We let E′

be a matrix independent of E but having the same distribution conditionally on U ,

D, and V T. We set X ′ =
√

n UDV T + E′ and define the prediction error

PE(k) = E‖X ′ − X̂(k)‖2F. (5.6)

Likewise, we set

k∗
PE = argmin

k
PE(k). (5.7)

If E is independent of U , D, and V , then

PE(k) = E‖√n UDV T − X̂(k) + E′‖2F
= E‖√n UDV T − X̂(k)‖

+ 2 E

[
tr
((√

n UDV T − X̂(k)
)T

E′
)]

+ E‖E′‖2F
= E

[
ME(k)

]
+ E‖E‖2F. (5.8)

The prediction error is thus equal to the sum of the expected model error and an

irreducible error term.

Finally, we should note that our definitions of prediction error and model error

are motivated by the definitions given by Breiman [15] for cross-validating linear

regression.

5.2 Cross validation strategies

In this section we describe the various hold-out strategies for getting a cross-validation

estimate of PE(k). It is possible to get an estimate of ME(k) from the estimate of

PE(k) by subtracting an estimate of the irreducible error. For now, though, we choose

to focus just on estimating PE(k).

For performing K-fold cross-validation on the matrix X, we partition its elements

into K hold-out sets. For each of K replicates and for each value of the rank, k, we
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leave out one of the hold-out sets, fit a k-term SVD to the left-in set, and evaluate its

performance on the left-out set. We thus need to describe the hold-out set, how to fit

an SVD to the left-in data, and how to make a prediction of the left-out data. After a

brief discussion of why the usual (naive) way of doing hold-outs won’t work, we survey

both speckled hold-outs (Wold-style), as well as blocked hold-outs (Gabriel-style).

5.2.1 Naive hold-outs

The ordinary hold-out strategy will not work for estimating prediction error. Suppose

we leave out a subset of the rows of X. After permutation, the rows of X are

partitioned as

(
X1

X2

)
, where X1 ∈ R

n1×p and X2 ∈ R
n2×p, and n1 + n2 = n. The

only plausible prediction of X2 based on truncating the SVD of X1 is the following:

1. Let X1 =
√

n Û 1D̂1V̂
T

1 be the SVD of X1, with D̂1 = diag(d̂
(1)
1 , d̂

(1)
2 , . . . , d̂

(1)
n1∧p).

2. Let D̂1(k) = diag(d̂
(1)
1 , d̂

(1)
2 , . . . , d̂

(1)
k, 0, . . . , 0) so that X̂1(k) ≡ √n Û 1D̂1(k)V̂

T

1 is

the SVD of X1 truncated to k terms. Similarly, denote by V̂ 1(k) ∈ R
p×k the

first k columns of V̂ 1.

3. Let (+) denote pseudo-inverse and predict the held out rows as X̂2(k) =

X2 X̂1(k)T
(
X̂1(k)X̂1(k)T

)+
X̂1(k) = X2 V̂ 1(k)V̂ 1(k)T.

The problem with this procedure is that ‖X2 − X̂2(k)‖2F decreases with k regardless

of the true model for X. So, it cannot possibly give us a good estimate of the error

from truncating the full SVD of X.

A similar situation arrises if we leave out only a subset of the columns of X.

To get a reasonable cross-validation estimate, it is therefore necessary to consider

more-general hold-out sets.

5.2.2 Wold hold-outs

A Wold-style speckled leave-out is perhaps the most obvious attempt at a more general

hold-out. We leave out a subset of the elements of the X, then use the left-in elements

to predict the rest.
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First we need to introduce some more notation. Let I denote the set of indices of

the elements of X, so that I = {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ p}. For a subset I ⊂ I,
let Ī denote its complement I \ I. We use the symbol ∗ to denote a missing value,

and let R∗ = R ∪ {∗}. For I ⊂ I, we define the matrix XI ∈ R
n×p
∗ with elements

XI,ij =





Xij if (i, j) ∈ I,

∗ otherwise.
(5.9)

Similarly X Ī , has elements

XĪ,ij =





Xij if (i, j) /∈ I,

∗ otherwise.
(5.10)

Finally, for A ∈ R
n×p
∗ , we define

‖A‖2F,I =
∑

(i,j)∈I

A2
ij. (5.11)

This notation allows us to describe matrices with missing entries.

A Wold-style speckled hold-out is an unstructured random subset I ⊂ I. The held-

in data is the matrix X Ī and the held-out data is the matrix XI . We use a missing

value SVD algorithm to fit a k-term SVD to X Ī . This gives us an approximation

U kDkV
T
k , where U k ∈ R

n×k and V k ∈ R
p×k have orthonormal columns and D ∈

R
k×k is diagonal. We evaluate the SVD on the held-out set by ‖U kDkV

T
k −XI‖2F,I .

Aside from the algorithm for getting U kDkV
T
k from X Ī , this is a full description of

the CV replicate.

When Wold introduced this form of hold-out in 1978 [95], he suggested using an

algorithm called nonlinear iterative partial least squares (NIPALS) to fit an SVD

to the held-in data. This algorithm, attributed to Fisher and Mackenzie [33] and

rediscovered by Wold and Lyttkens [94], never seems to have gained much prominence.

We suggest instead using an expectation-maximization (EM) as is consistent with

current mainstream practice in Statistics. Either way, there are some subtle issues in
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taking the SVD of a matrix with missing values. We explore these issues further in

Section 5.3, and present a complete algorithm for estimating the factors U kDkV
T
k .

5.2.3 Gabriel hold-outs

A Gabriel-style hold-out works by transforming the unsupervised learning problem

into a supervised one. We take a subset of the columns of X and denote them as the

response columns; the rest are denoted predictor columns. Then we take a subset of

the rows and consider them as test rows; the rest are train rows. This partitions the

elements of X into four blocks. With permutation matrices P and Q, we can write

P TXQ =

(
X11 X12

X21 X22

)
. (5.12)

Here, X11 consists of the train-predictor block, X12 is the train-response block, X21

is the test-predictor block, and X22 is the test-response block. It is beneficial to think

of the blocks as (
X11 X12

X21 X22

)
=

(
Xtrain Y train

Xtest Y test

)
.

A Gabriel-style replicate has hold-in

(
X11 X12

X21 ∗

)

and hold-out X22.

To fit a model to the hold-in set, we take the SVD of X11 and fit a regression

function from the predictor columns to the response columns. Normally, the regres-

sion is ordinary least squares regression from the principal component loadings to the

response columns. Then, to evaluate the function on the hold-out set, we apply the

estimated regression function to X21 to get a prediction X̂22.

In precise terms, suppose that there are p1 predictor columns, p2 response columns,

n1 train rows, and n2 test rows. Then X11 ∈ R
n1×p1 and X22 ∈ R

n2×p2 with p1+p2 = p
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and n1 + n2 = n. First we fit an SVD to the train-predictor block

X11 =
√

n Û 1D̂1V̂
T

1 .

Then, we truncate the SVD to k terms as
√

n Û 1(k)D̂1(k)V̂
T

1 (k) in the same way as

is discussed in Section 5.1. This defines a projection V̂ 1(k) and principal component

scores

Ẑ1(k) = X11V̂ 1(k) =
√

n Û 1(k)D̂1(k).

Similarly, we can get the principal components scores for the test-predictor block as

Ẑ2(k) = X21V̂ 1(k).

Next, we model the response columns as linear functions of the principal component

scores. We fit the model X12 ≈ Ẑ1(k)B with

B̂ =
(
Ẑ1(k)TẐ1(k)

)+
Ẑ1(k)TX12 =

1√
n

D̂1(k)+ Û 1(k)TX12.

Finally, we apply the model the test rows to get a prediction for the test-response

block

X̂22 = Ẑ2(k)B̂ = X21

(
1√
n

V̂ 1(k)D̂1(k)+ Û 1(k)T

)
X12. (5.13)

This gives a complete description of the CV replicate.

Remark 5.1. Typically for Gabriel-style CV, we have two partitions, one for the rows

and one for the columns. If the rows are partitioned into K sets and the columns are

partitioned into L sets, then we average the estimated prediction error over all KL

possible hold-out sets. This corresponds to n
n2
≈ K and p

p2
≈ L. In this situation, we

say that we are performing (K, L)-fold Gabriel-style cross-validation.

We can get some intuition for why Gabriel-style replicates work by expressing

the latent factor decomposition X =
√

n UDV T + E in block form. We let P =(
P 1 P 2

)
and Q =

(
Q1 Q2

)
be the block-decompositions of the row and column

permutations so that X ij = P T
i XQj. We define U i = P T

i U , V j = QT
j V , and
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Eij = P T
i EQj so that

P TXQ =

(
P T

1

P T
2

)
(√

n UDV T + E
) (

Q1 Q2

)

=
√

n

(
U 1DV T

1 U 1DV T
2

U 2DV T
1 U 2DV T

2

)
+

(
E11 E12

E21 E22

)
.

Thus, all four blocks have the same low-rank structure. If the noise is small then

X22 ≈
√

n U 2DV T
2 and

X̂22 ≈
√

n U 2D
(
V T

1 V̂ 1(k)
)
D̂(k)+

(
Û 1(k)TU 1

)
DV T

2

If the noise is exactly zero, k = k0, and rank(X22) = rank(X), then Owen and

Perry [65] show that X̂22 = X22. For other types of noise, the next chapter proves a

more general consistency result.

5.2.4 Rotated cross-validation

When the underlying signal UDV T is sparse, it’s possible that we will miss it in the

training set. For example, if U =
(
1 0 0 0

)T

and V =
(
1 0 0 0 0

)T

, then

UDV T =




d1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




.

Either the test set will observe this factor, or the train set, but not both. Only the

set that contains X11 will be affected by the factor.

One way to adjust for sparse factors is to randomly rotate the rows and columns

of X before performing the cross-validation. We generate P ∈ R
n×n and Q ∈ R

p×p,

uniformly random orthogonal matrices, by employing Algorithm A.1. Then, we set

X̃ = PXQT and perform ordinary cross-validation on X̃. Regardless of the factor

structure in X, the signal part of X̃ will be uniformly spread across all elements of
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the matrix. We call this procedure rotated cross-validation, abbreviated RCV.

RCV is similar in spirit to the generalized cross-validation (GCV) described in

Craven & Wahba [20] and Golub et al. [35]. GCV is an orthogonally-invariant way of

performing leave-one-out cross validation for regression. The difference is that GCV

rotates to a specific non-random configuration of the data that gives equal weight to

all observations in the rotated space, while RCV rotates to a random configuration

that gives equal weight in expectation.

5.3 Missing-value SVDs

To perform a Wold-style cross-validation we need to be able to compute the SVD of

a matrix with missing entries. This is a difficult problem. First of all, the problem

is not very well defined. If A is a matrix with missing entries, there are potentially

many different ways of factoring A as an SVD-like product. Often, one attempts to

force uniqueness by finding the complete matrix A′ ∈ R
n,p of minimum rank such

that A′
ij = Aij for all non-missing elements of A. Even then, A′ may not be unique.

Take

A =

(
1 ∗
∗ ∗

)
.

Then (
1 0

0 0

)
,

(
1 1

0 0

)
,

(
1 0

1 0

)
, and

(
1 1

1 1

)

are all rank-1 matrices that agree with A on its non-missing entries. We might

discriminate between these by picking the matrix with minimum Frobenius norm. In

this case, the matrix (
1 ∗
∗ 1

)

presents an interesting problem. We can either complete it as

(
1 1

1 1

)
or

(
1 0

0 1

)
.
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The first option has rank 1 and Frobenius norm 2. The second option has higher

rank, 2, but lower Frobenius norm,
√

2. Which criterion is more important? It it not

clear what the “right” SVD of A is.

We can alleviate the problem by considering a sequence of SVDs rather than a

single one. For each k = 0, 1, 2, . . ., define A′
k to the rank-k matrix of minimum

Frobenius norm that agrees with A on its non-missing elements. If no such matrix

exists, let I ⊂ I be indices of the non-missing elements of A and define the candidate

sets

Ak = {Ak ∈ R
n×p : rank(Ak) = k}

Ck = {Ak ∈ Ak : ‖A−Ak‖F,I = min
Bk∈Ak

‖A−Bk‖F,I}.

Lastly, put

A′
k = argmin

Ak∈Ck

‖Ak‖F,I .

We then define the rank-k SVD of A to be the equal to the SVD of A′
k.

There are still some problems with these SVDs. First of all, in general there may be

no relationship between A′
k and A′

k+1; the two matrices may be completely different

and have completely different SVDs. We lose the nesting property of ordinary SVDs,

where the rank-k SVD is contained in the rank-(k + 1) SVD. Secondly, although it

seems plausible, we do not have any guarantees that A′
k is unique. Situations may

arise where two different rank-k matrices have the same norms and the same residual

norms on the non-missing elements of A. Finally, finding A′
k is a non-convex problem.

The function ‖A −Ak‖F,I can have more than one local maximum. We need to be

aware of these deficiencies.

Rather than get too deep into the missing-value SVD rabbit-hole, we choose in-

stead to live with an approximation. We acknowledge that computing the best rank-k

approximation as defined above is computationally infeasible for large n and p. In-

stead of proving theorems about the global optimum, we focus on an algorithm for

computing a local solution.



5.3. MISSING-VALUE SVDS 91

We use an EM-algorithm to estimate A′
k. The inputs to the algorithm are k, a non-

negative integer rank, and A ∈ R
n×p
∗ , a matrix with missing values. The output is A′

k,

a rank-k approximation of A. The algorithm proceeds by iteratively estimating the

missing values of A by the values from the first k terms of the SVD of the completed

matrix. We give detailed pseudocode for the procedure as Algorithm 5.1. This is

essentially the same algorithm as the SVDimpute algorithm given in Troyanksaya et

al. [91], except that we use a different convergence criterion. SVDimpute stops when

successive estimates of the missing values of A differ by less than “the empirically

determined threshold of 0.01.” We instead stop when relative difference of the residual

sum of squares (RSS) between the non-missing entries and the rank-k SVD is small

(usually 1.0 × 10−4 or less). Our reason for using a different convergence rule is

that the analysis of the EM algorithm in Dempster et al. [22] shows that the RSS

decreases with each iteration, but makes no assurances about the missing values

converging. Regardless of which convergence criterion is used, the algorithm is very

easy to implement.
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Algorithm 5.1 Rank-k SVD approximation with missing values

1. Let I = {(i, j) : Aij 6= ∗}.

2. For 1 ≤ j ≤ p let µj be the mean of the non-missing values in column j of A,
or 0 if all of the entries in column j are missing.

3. Define A(0) ∈ R
n×p by

A
(0)
ij =

{
Aij if (i, j) ∈ I,

µj otherwise.

4. Initialize the iteration count N ← 0.

5. (M-Step) Let

A(N) =

n∧p∑

i=1

d
(N)
i ¯

u
(N)
i ¯

v
(N)T
i

be the SVD of A(N) and let A
′(N)
k be the SVD truncated to k terms, so that

A
′(N)
k =

k∑

i=1

d
(N)
i ¯

u
(N)
i ¯

v
(N)T
i .

6. (E-Step) Define A(N+1) ∈ R
n×p as

A
(N+1)
ij =

{
Aij if (i, j) ∈ I,

A
′(N)
k,ij otherwise.

7. Set
RSS(N) = ‖A−A

′(N)
k ‖2F,I .

If |RSS(N) − RSS(N−1)| is small, declare convergence and output A
′(N)
k as A′

k.
Otherwise, increment N ← N + 1 and go to Step 5.
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5.4 Simulations

We performed two sets of simulations to gauge the performance of Gabriel- and Wold-

style cross-validation. In the first set of simulations, we compare estimated prediction

error with true prediction error. In the second set, we evaluate the methods’ abilities

to estimate k∗
PE, the optimal rank.

Each simulation generates a data matrix X as X =
√

n UDV T + E. We fix the

dimensions and number of generating signals as n = 100, p = 50, and k0 = 6. For

“weak” factors we set D = Dweak = diag (10, 9, 8, 7, 6, 5) and for “strong” factors,

we set D = Dstrong =
√

nDweak. We generate U , V , and E independently of each

other. To avoid ambiguity in what constitutes “signal” and what constitutes “noise”,

we ensure that the elements of E are uncorrelated with each other.

We consider two types of factors. For “Gaussian” factors, we put the elements of

U distributed iid with U11 ∼ N
(
0, 1

n

)
and the elements of V iid with V11 ∼ N

(
0, 1

p

)
,

also independent of U . For “Sparse” factors we use sparsity parameter s = 10% and

set

P{U11 = 0} = 1− s,

P

{
U11 = − 1√

s n

}
= P

{
U11 = +

1√
s n

}
=

s

2
.

Similarly, we put

P{V11 = 0} = 1− s,

P

{
V11 = − 1√

s p

}
= P

{
V11 = +

1√
s p

}
=

s

2
.

The scalings in both cases are chosen so that E[UTU ] = E[V TV ] = Ik0
. Gaussian

factors are uniformly spread out in the observations and variables, while sparse factors

are only observable in a small percentage of the matrix entries (about 1%).

We use three types of noise. For “white” noise, we generate the elements of E

iid with E11 ∼ N (0, 1). For “heavy” noise, we use iid elements with E11 ∼ σ−1
ν tν ,

and ν = 3. Here tν is a t random variable with ν degrees of freedom, and σν =√
ν/(ν − 2) is chosen so that E[E2

11] = 1. Heavy noise is so-called because it has a

heavy tail. Lastly, for “colored” noise, we first generate σ2
1, . . . , σ

2
n ∼ Inverse-χ2(ν1)
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and τ 2
1 , . . . , τ 2

p ∼ Inverse-χ2(ν2) independently, with ν1 = ν2 = 3. Then we generate

the elements of E independently as Eij ∼ c−1
ν1,ν2

· N (0, σ2
i + τ 2

j ), where cν1,ν2
=√

1/(ν1 − 2) + 1/(ν2 − 2). Again, cν1,ν2
is chosen so that E[E2

ij] = 1. Colored noise

simulates heteroscedasticity. All three types of noise are plausible for real-world data.

Obviously, this set of simulations comes with a number of caveats. We are only

looking at two choices for the signal strengths, one choice of n and p, and a single

hold-out size. Moreover, this example uses relatively small n and p, potentially too

small for consistency asymptotics to kick in. Despite these deficiencies, the simula-

tions still convey substantial information about the behavior of the procedures under

consideration.

5.4.1 Prediction error estimation

Our goal with the first simulation was to get intuition for the behavior of Gabriel-

and Wold-style cross validation as prediction error estimators. We generated random

data of the form X =
√

nUDV T + E, described above. With X̂(k) being the SVD

of X truncated to k terms, the (normalized) true prediction error is given by

PE(k) = ‖√n UDV T − X̂(k)‖2F + 1.

Cross-validation gives us an estimate P̂E(k) of the prediction error curve. We wanted

to see how P̂E(k) compares to PE(k).

Figures 5.1 and 5.2 show the true and estimated prediction error curves from

(2, 2)-fold Gabriel CV and 5-fold Wold CV, along with their RCV variants. The plots

only show one set of curves for each factor and noise instance, but other replicates

showed similar behavior.

For most of the simulations, the cross-validation estimates of prediction error are

generally conservative. The only exception is with weak factors and colored noise,

perhaps because of the ambiguity in what constitutes “signal” and what constitutes

“noise” in this simulation. This global upward bias agrees with previous studies

of cross-validation (e.g. [15] and [17]). The RCV versions of the methods generally

brought down the bias. Some authors have observed a downward bias at the minimizer
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of P̂E(k) for ordinary cross-validation ([16], [88]). This bias does not appear to be

present here.

A striking difference between Wold- and Gabriel-style CV is their behavior for k

greater than k∗
PE. Gabriel-style CV does a better job at estimating the true PE(k),

which is relatively flat. Wold-style CV, on the other hand, increases steeply for k past

the minimizer. In some situations, the Wold-style behavior is more desirable, but as

the heavy-noise examples in Figure 5.2 illustrate, the steep increase is not always in

the right place. Gabriel-style cross-validation is better at conveying ambiguity when

the underlying dimensionality of the data is unclear.
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Figure 5.1: Cross-validation with strong factors. Estimated prediction
error curves for Gabriel- and Wold-style cross-validation, both original and rotated
(RCV) versions, with strong factors in the data. The true prediction error is shown in
black, the CV curves are red, and the RCV curves are blue. Error bars are computed
from the CV replicates. Despite their upward bias, the methods do well at estimating
PE(k) for k ≤ k∗

PE.
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Figure 5.2: Cross-validation with weak factors. Estimated prediction error
curves for Gabriel- and Wold-style cross-validation, both original and rotated (RCV)
versions, with weak factors in the data. As in Figure 5.1 the true prediction error is
shown in black, the CV curves are red, and the RCV curves are blue. Error bars give
are computed from the CV replicates. The methods have a harder time estimating
PE(k) and its minimizer.
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5.4.2 Rank estimation

In the next simulation, we see how well cross-validation works at estimating the

optimal rank, especially as compared to other rank-selection methods. We generate

data in the same manner as before, and record how far off the minimizer of P̂E(k) is

from the minimizer of PE(k).

We compared the four CV-based rank estimation methods with seven other meth-

ods. They are as follows:

• AIC: Rao & Edelman’s AIC-based estimator [71].

• BIC1, BIC2, and BIC3: Bai & Ng’s BIC-based estimators [2].

• F : Faber & Kowalski’s modification of Malinowski’s F -test, with a significance

level of 0.05 [31, 54].

• MDL: Wax & Kailaith’s estimator based on the minimum description length

principle [93] .

• UIP: Kritchman & Nadler’s estimator based on Roy’s union-intersection prin-

ciple and their background noise estimator, with a significance level of 0.001

[50, 72].

Kritchman and Nadler [50] give concise descriptions of four of the estimators. The

other estimators, Bai and Ng’s BICs, are defined as the minimizers of

BIC1(k) = log ‖X − X̂(k)‖2F + k
n + p

n p
log

n p

n + p
, (5.14a)

BIC2(k) = log ‖X − X̂(k)‖2F + k
n + p

n p
log Cn,p, (5.14b)

BIC3(k) = log ‖X − X̂(k)‖2F + k
log C2

n,p

Cn,p

, (5.14c)

where Cn,p = min(
√

n,
√

p).

Tables 5.1–5.4 summarize the results of 100 replicates. For the strong factors in

white noise, almost all of the methods correctly estimate the true PE-minimizing

rank. When the noise is non-white, Wold-style CV seems to be the clear winner.
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Estimated Rank

Method −7 −6 −5 −4 −3 −2 −1 0 +1 +2 +3 +4 +5 +6 +7 > 7

White Noise
CV-Gabriel 99 1

RCV-Gabriel 97 2 1

CV-Wold 100

RCV-Wold 100

AIC 99 1

BIC1 100

BIC2 100

BIC3 100

F 100

MDL 100

UIP 100

Colored Noise
CV-Gabriel 32 42 18 5 2 1

RCV-Gabriel 6 7 18 13 15 26 9 4 2

CV-Wold 97 3

RCV-Wold 22 39 29 7 2 1

AIC 2 9 19 70

BIC1 14 26 31 20 4 4 1

BIC2 23 41 24 9 1 2

BIC3 1 1 3 4 5 3 4 79

F 4 11 29 27 15 12 1 1

MDL 13 24 36 20 3 3 1

UIP 1 5 14 28 23 19 9 1

Heavy Noise
CV-Gabriel 61 35 4

RCV-Gabriel 42 27 12 14 5

CV-Wold 99 1

RCV-Wold 68 26 5 1

AIC 3 20 22 32 18 4 1

BIC1 65 27 7 1

BIC2 70 26 3 1

BIC3 32 27 20 13 4 4

F 38 29 27 6

MDL 64 28 7 1

UIP 18 35 27 18 2

Table 5.1: Rank estimation with strong Gaussian factors. Difference
between the estimated rank and the true minimizer of PE(k) for 100 replicates of
strong Gaussian factors with various types of noise.

However, as Figure 5.1 demonstrates, there is not much Frobenius loss penalty for

slightly overestimating the rank. Therefore, Tables 5.1 and 5.2 may be exaggerating

the advantage of Wold-style CV.

For the weak factors in white noise, the AIC, F and UIP methods fare well, and

the performance of the cross-validation-based methods is mediocre. For non-white

noise and weak factors, none of the methods perform very well. This is probably due

to the inherent ambiguity between what constitutes “signal” and what constitutes

“noise” in these simulations.
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Estimated Rank

Method −7 −6 −5 −4 −3 −2 −1 0 +1 +2 +3 +4 +5 +6 +7 > 7

White Noise
CV-Gabriel 8 73 11 7 1

RCV-Gabriel 98 2

CV-Wold 1 8 91

RCV-Wold 1 99

AIC 100

BIC1 1 99

BIC2 1 99

BIC3 100

F 100

MDL 100

UIP 100

Colored Noise
CV-Gabriel 4 34 19 24 8 6 5

RCV-Gabriel 1 5 13 13 22 20 10 8 8

CV-Wold 1 1 8 83 4 3

RCV-Wold 26 32 25 12 2 2 1

AIC 2 10 19 69

BIC1 17 23 29 20 3 4 2 2

BIC2 24 36 27 9 2 1 1

BIC3 3 2 2 4 7 2 80

F 4 9 32 28 14 11 2

MDL 16 24 31 19 6 2 1 1

UIP 4 17 27 23 18 9 2

Heavy Noise
CV-Gabriel 5 52 29 11 2 1

RCV-Gabriel 39 24 19 11 6 1

CV-Wold 1 1 11 83 4

RCV-Wold 66 28 5 1

AIC 2 21 24 33 11 6 3

BIC1 1 63 27 6 3

BIC2 1 71 22 5 1

BIC3 28 31 19 14 7 1

F 32 41 14 12 1

MDL 63 28 6 3

UIP 20 32 27 15 6

Table 5.2: Rank estimation with strong sparse factors. Difference between
the estimated rank and the true minimizer of PE(k) for 100 replicates of strong sparse
factors with various types of noise.
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Estimated Rank

Method −7 −6 −5 −4 −3 −2 −1 0 +1 +2 +3 +4 +5 +6 +7 > 7

White Noise
CV-Gabriel 3 56 32 9

RCV-Gabriel 5 66 20 8 1

CV-Wold 4 31 65

RCV-Wold 3 32 65

AIC 3 95 2

BIC1 1 13 46 40

BIC2 1 8 29 47 15

BIC3 99 1

F 99 1

MDL 6 44 50

UIP 99 1

Colored Noise
CV-Gabriel 2 9 22 21 25 10 3 5 2 1

RCV-Gabriel 2 4 11 16 14 12 19 9 13

CV-Wold 1 4 4 7 9 17 14 34 4 2 1 1

RCV-Wold 2 29 24 17 8 6 7 2 4 1

AIC 4 14 14 68

BIC1 2 26 22 20 9 8 3 2 4 4

BIC2 4 39 28 12 5 4 1 3 3 1

BIC3 1 1 5 11 1 3 4 74

F 1 7 16 24 17 13 10 1 11

MDL 1 25 23 21 8 9 4 1 4 4

UIP 2 11 12 22 19 15 4 15

Heavy Noise
CV-Gabriel 1 1 2 10 51 25 8 1 1

RCV-Gabriel 13 37 24 13 9 2 1 1

CV-Wold 1 4 6 4 13 17 21 32 1 1

RCV-Wold 1 2 13 59 16 4 2 1 1 1

AIC 7 15 28 25 14 7 1 2 1

BIC1 1 2 16 58 16 3 2 1 1

BIC2 4 15 23 46 8 1 1 1 1

BIC3 38 21 23 8 4 4 1 1

F 45 22 19 11 1 1 1

MDL 2 14 61 15 3 3 1 1

UIP 27 29 27 9 4 3 1

Table 5.3: Rank estimation with weak Gaussian factors. Difference be-
tween the estimated rank and the true minimizer of PE(k) for 100 replicates of weak
Gaussian factors with various types of noise.
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Estimated Rank

Method −7 −6 −5 −4 −3 −2 −1 0 +1 +2 +3 +4 +5 +6 +7 > 7

White Noise
CV-Gabriel 8 16 39 27 8 2

RCV-Gabriel 1 8 53 27 9 1 1

CV-Wold 2 2 11 16 29 40

RCV-Wold 2 15 29 54

AIC 6 77 16 1

BIC1 1 4 21 45 29

BIC2 1 4 14 27 37 17

BIC3 1 2 86 11

F 85 15

MDL 2 19 42 37

UIP 73 26 1

Colored Noise
CV-Gabriel 2 5 16 19 19 12 9 3 10 3 2

RCV-Gabriel 1 2 7 12 15 19 11 8 25

CV-Wold 1 3 6 11 10 17 21 25 2 2 1 1

RCV-Wold 2 22 21 19 12 11 3 5 3 2

AIC 2 8 9 81

BIC1 1 22 23 20 10 9 4 2 3 6

BIC2 1 7 37 17 13 9 7 1 3 4 1

BIC3 2 2 2 4 8 7 75

F 4 6 21 22 14 13 6 14

MDL 22 19 22 12 10 5 2 3 5

UIP 5 9 22 19 17 10 18

Heavy Noise
CV-Gabriel 2 4 22 25 24 20 3

RCV-Gabriel 1 4 9 18 20 18 12 13 2 1 2

CV-Wold 1 1 4 10 16 19 29 18 1 1

RCV-Wold 2 19 51 7 16 3 1 1

AIC 2 17 16 19 22 8 4 10 2

BIC1 1 4 21 51 5 13 3 1 1

BIC2 2 4 16 32 31 4 9 1 1

BIC3 3 25 23 17 12 10 4 4 1 1

F 2 29 21 23 10 7 5 2 1

MDL 3 19 52 6 15 3 1 1

UIP 20 23 22 13 12 3 5 1 1

Table 5.4: Rank estimation with weak sparse factors. Difference between
the estimated rank and the true minimizer of PE(k) for 100 replicates of weak sparse
factors with various types of noise.
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5.5 Real data example

We conclude this chapter with a neuroscience application. The Neural Prosthetic Sys-

tems Laboratory at Stanford University (NPSL) is interested in studying the motor

cortex region of the brain. Essentially, they want to know what the correspondence is

between neural activity in that part of the brain and motor activity (movement). Re-

search is still at a very fundamental level, and the basic question of how many things

are being represented is still unanswered. It is thought that desired position, speed,

and velocity get expressed as neural activity, but conjectures about the dimensionality

of the neural responses vary from 7 to 20 or more.

NPSL has designed and carried out an experiment meant to measure the di-

mensionality of neural response for a two-dimensional motion task. The experiment

involves measuring the activity in 49 neurons as a monkey performs 27 different

movement tasks (conditions).

For a particular neuron and condition, a simplified explanation of the experiment

is as follows:

1. At time t = 0 ms, start recording neural activity in the monkey.

2. At time t = 400 ms (target-on), show the monkey a target. The monkey is

not allowed to move at this point.

3. At a random time between time t = 400 ms and time t = 1560 ms, allow the

monkey to move.

4. At time t = 1560 ms (movement), the monkey starts to move and point at the

target.

5. Record activity up to but not including time t = 2110 ms.

Each condition includes a target position and a configuration of obstacles. The same

monkey is used for every trial. Measurements are taken at 5 ms intervals, so that

there are 422 total time points. It is necessary to do some registration, scaling,

and interpolation before doing more serious data analysis, but the details of those
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processes are not important for our purposes. Figure 5.3 shows the preprocessed

responses for each neuron and condition.

Time (ms)

R
e
s
p
o
n
s
e

0.0

0.5

1.0

1.5

0 500 1000 1500 2000

Figure 5.3: Motor cortex data. Response rates in 47 neurons for 27 movement
tasks. The subplots show the normalized response rates in a single neuron as functions
of time. Each color corresponds to a different movement task. The plot on the left is
a zoomed-in view of the data for the first neuron.

The data from the NPSL motor cortex experiment can be put into a matrix

where each neuron is thought of as a variable, and the timepoints of each condition

are thought of as observations. This gives us a matrix X with p = 49 variables and

n = 27 · 422 = 11394 observations. Of course, the rows of X are nothing like iid, and

the noise in X is not white. Parametric methods are not likely to give very reliable

estimates of the dimensionality of X, but cross-validation stands a reasonable chance.

After centering the columns of X, we performed Wold- and Gabriel-style cross-

validation to estimate the dimensionality of the signal part of X. For Gabriel-style

CV, we first tried both (2, 2)-fold and (2, 49)-fold; both resulting P̂E(k) curves had

their minima at the maximum k. For 5-fold Wold-style CV, there is a minimum at

k = 13. The BIC, F , MDL, and UIP estimators all chose k = 48 as the dimensionality,

while the AIC estimator chose k = 47. We show the cross-validation estimated

prediction curves in Figure 5.4. It is likely that the true dimensionality of X is high.
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Figure 5.4: Motor cortex estimated prediction error. Prediction error
as a function of rank, estimated by three cross-validation methods. The units are
normalized so that the maximum prediction error is 1.0. Error bars show one standard
error, estimated from the folds. The prediction error estimate from Wold-style CV
shows a minimum at k = 13, but the Gabriel-style CV estimates always decrease with
k. It is likely that the true dimensionality of the data is high.
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5.6 Summary and future work

We have described two different forms of cross-validation appropriate for model se-

lection in unsupervised learning. Wold-style CV uses a “speckled” leave-out, and

Gabriel-style CV uses a “blocked” leave-out. We have defined two forms of error

associated with SVD/PCA-like models, the prediction error and the model error.

Through simulations, we have shown that both forms of CV can be considered to give

estimates of prediction error. Both methods perform well, but Wold-style CV seems

to be more robust to badly-behaved noise. We have applied these cross-validation

methods to a data analysis problem from a neuroscience experiment.

We have focused on latent factor models and the singular value decomposition.

However, it is relatively easy to translate the two styles of cross-validation presented

here to other unsupervised learning methods. For Wold-style hold-outs, an EM-

like algorithm can usually be applied to the models in many unsupervised learning

contexts. The Gabriel-style philosophy of “treat some of the variables as response and

the others as predictors” can also be applied more broadly. We are in the process of

investigating both cross-validation strategies for clustering and kernel-based manifold

learning.

This chapter leaves a number of open questions. Mainly, we have not provided

any theoretical results here, only simulations. A quote from Downton’s discussion of

Stone’s 1974 paper on cross-validation equally applies to our work:

A current nine-day wonder in the press concerns the exploits of a Mr. Uri

Geller who appears to be able to bend metal objects without touching

them; [The author] seems to be attempting to bend statistics without

touching them. My attitude to both of these phenomena is one of open-

minded scepticism; I do not believe in either of these prestigious activities,

on the other hand they both deserve serious scientific examination [86].

Despite Dowton’s skepticism, cross-validation has proven to be an invaluable tool

for supervised learning. It is our hope that with some additional work, CV can be

just as valuable for unsupervised learning. In the next chapter, we provide some
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theoretical justification for Gabriel-style cross-validation, but analysis of Wold-style

cross-validation is still an open problem.



Chapter 6

A theoretical analysis of

bi-cross-validation

In this chapter we will determine the optimal leave out-size for Gabriel-style cross-

validation of an SVD, also known as bi-cross-validation (BCV), along with proving

a weak form of consistency. In Chapter 4, we rigorously defined the rank estimation

problem, and in Chapter 5 we introduced Gabriel-style cross validation. Here, we

provide theoretic justification for Gabriel-style CV.

First, a quick review of the problem. We are given X, an n× p matrix generating

by a “signal-plus-noise” process,

X =
√

n UDV T + E.

Here, U ∈ R
n×k0 , D ∈ R

k0×k0 , V ∈ R
p×k0 , and E ∈ R

n×p. The first term,
√

n UDV T, is the low-rank “signal” part. We call U and V the matrices of left

and right factors, respectively. They are normalized so that UTU = V TV =

Ik0
. The factor “strengths” are given in D, a diagonal matrix of the form D =

diag(d1, d2, . . . , dk0
), with d1 ≥ d2 ≥ · · · ≥ dk0

≥ 0. Also, typically k0 is much smaller

than n and p. Lastly, E consists of “noise”. Although more general types of noise are

possible, for simplicity we will assume that E is independent of U , D, and V . We

think of the signal part as the important part of X, and the noise part is inherently

107
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uninteresting.

The rank estimation problem is find the optimal number of terms of the SVD

to keep to estimate the signal part. We let X =
√

n ÛD̂V̂
T

be the SVD of

X, where Û ∈ R
n×n∧p and V̂ ∈ R

p×n∧p have orthonormal columns, and D̂ =

diag(d̂1, d̂2, . . . , d̂n∧p) with d̂1 ≥ d̂2 ≥ · · · ≥ d̂n∧p. For 0 ≤ k ≤ n ∧ p, we define

D̂(k) = diag(d̂1, d̂2, . . . , d̂k, 0, 0, . . . , 0) so that X̂(k) ≡ √n ÛD̂(k)V̂
T

is the SVD of

X truncated to k terms. The model error with respect to Frobenius loss is given by

ME(k) =
1

n p
‖√n UDV T − X̂(k)‖2F

The optimal rank is defined with respect to this criterion is

k∗ = argmin
k

ME(k).

The problem we consider is how to estimate ME(k) or k∗.

Closely related to model error is the prediction error. For prediction error, we con-

jure up a noise matrix E′ with the same distribution as E and let X ′ =
√

nUDV T +

E′. The prediction error is defined as

PE(k) ≡ 1

n p
E‖X ′ − X̂(k)‖2F,

which can be expressed as

PE(k) = E[ME(k)] +
1

n p
E‖E‖2F.

The minimizer of PE is the same as the minimizer of E[ME(k)], and one can get an

estimate of ME from an estimate of PE by subtracting an estimate of the noise level.

The previous chapter suggests using Gabriel-style cross-validation for estimating

the optimal rank. Owen & Perry [65] call this procedure bi-cross-validation (BCV).

For fold (i, j) of BCV, we permute the rows of X with matrices P (i) and Q(j), then
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partition the result into four blocks as

P (i)TXQ(j) =

(
X11 X12

X21 X22

)
.

We take the SVD of the upper-left block and evaluate its predictive performance on

the lower-right block. If X11 =
√

n Û 1D̂1V̂
T

is the SVD of X11 and X̂11(k) =
√

n Û 1D̂1(k)V̂
T

is its truncation to k terms (with D̂1(k) defined analogously to

D̂(k)), then the BCV estimate of prediction error from this fold is given by

P̂E
(
k; i, j

)
=

1

n2 p2

‖X22 −X21X̂11(k)+X12‖2F.

Here, + denotes pseudo-inverse and X22 has dimensions n2×p2. For (K, L)-fold BCV,

the final estimate is the average over all folds:

P̂E(k) =
1

KL

K∑

i=1

L∑

j=1

P̂E
(
k; i, j

)
.

From P̂E(k) we can get an estimate of the optimal rank as k̂ = argmink P̂E(k).

In this chapter, we give a theoretical analysis of P̂E(k). This allows us to de-

termine the bias inherent in P̂E(k) and its consistency properties for estimating k∗,

along with guidance for choosing the number of folds (K and L). Section 6.1 sets

out our assumptions and notation. Section 6.2 gives our main results. Then, Sec-

tions 6.3 and 6.4 are devoted to proofs, followed by a discussion in Section 6.5.

6.1 Assumptions and notation

The theory becomes easier if we work in an asymptotic framework. For that, we

introduce a sequence of data matrices indexed by n:

Xn =
√

n UnDnV
T
n + En. (6.1)
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Here, Xn ∈ R
n×p with p = p(n) and n

p
→ γ ∈ (0,∞). Even though the dimensions

of Xn grow, we assume that the number of factors is fixed at k0. The first set of

assumptions is as follows:

Assumption 6.1. We have a sequence of random matrices Xn ∈ R
n×p with n→∞

and p = p(n) also going to infinity. Their ratio converges to a fixed constant γ ∈
(0,∞) as n

p
= γ + o

(
1√
n

)
.

Assumption 6.2. The matrix Xn is generated as Xn =
√

n UnDnV
T
n + En. Here,

Un ∈ R
n×k0, Dn ∈ R

k0×k0, V n ∈ R
p×k0, and En ∈ R

n×p. The number of factors, k0,

is fixed.

Assumption 6.3. The matrices of left and right factors, Un and V n, have or-

thonormal columns, i.e. UT
nUn = V T

nV n = Ik0
. Their columns are denoted by

¯
un,1,

¯
un,2, . . . ,

¯
un,k0

and
¯
vn,1,

¯
un,2, . . . ,

¯
vn,k0

, respectively.

Assumption 6.4. The matrix of factor strengths is diagonal:

Dn = diag(dn,1, dn,2, . . . , dn,k0
). (6.2)

The strengths converge as d2
n,i

a.s.→ µi and d2
n,i − µi = OP

(
1√
n

)
, strictly ordered as

µ1 > µ2 > · · · > µk0
> 0.

Assumption 6.5. The noise matrix En is independent of Un, Dn, and V n. Its

elements are iid with En,11 ∼ N (0, σ2).

These assumptions are standard for latent factor models.

We can apply the work of Chapter 4 to get the behavior of the model error. We

let Xn =
√

n ÛnD̂nV̂
T

n be the SVD of Xn and let X̂n(k) =
√

n ÛnD̂n(k)V̂
T

n be its

truncation to k terms. Then the model error is

MEn(k) =
1

n p

∥∥√n UnDnV
T
n − X̂n(k)

∥∥2

F
. (6.3)

With Assumtions 6.1–6.5, we can apply Proposition 4.6 to get that for fixed k as
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n→∞,

p ·MEn(k)
a.s.→

k∑

i=1

αiµi +

k0∑

i=k+1

µi + σ2

(
1 +

1√
γ

)2

· (k − k0)+, (6.4)

where

αi =





σ2

γµ2
i

(
3σ2 + (γ + 1)µi

)
if µi > σ2

√
γ
,

1 + σ2

µi

(
1 + 1√

γ

)2

otherwise.
(6.5)

Defining k∗
n as the minimizer of MEn(k), we also get that

k∗
n

a.s.→ max {i : µi > µcrit} , (6.6)

where

µcrit ≡ σ2


1 + γ−1

2
+

√(
1 + γ−1

2

)2

+
3

γ


 , (6.7)

provided no µi is exactly eqaul to µcrit. We therefore know how MEn(k) and its

minimizer behave.

To study the bi-cross-validation estimate of prediction error, we need to introduce

some more assumptions and notation. As we are only analyzing first-order behavior,

we can restrict our analysis to the prediction error estimate from a single fold. We

let P n ∈ R
n×n and Qn ∈ R

p×p be permutation matrices for the fold, partitioned as

P n =
(
P n,1 P n,2

)
and Qn =

(
Qn,1 Qn,2

)
, with P n,1 ∈ R

n×n1 , P n,2 ∈ R
n×n2 ,

Qn,1 ∈ R
p×p1 , and Qn,2 ∈ R

p×p2 . Note that n = n1 + n2 and that p = p1 + p2. We

define Xn,ij = P T
n,iXQn,j, En,ij = P T

n,iEQn,j, Un,i = P T
n,iUn, and V n,j = QT

n,jV n.

Then in block form,

P T
nXnQn =

(
Xn,11 Xn,12

Xn,21 Xn,22

)

=
√

n

(
Un,1DnV

T
n,1 Un,1DnV

T
n,2

Un,2DnV
T
n,1 Un,2DnV

T
n,2

)
+

(
En,11 En,12

En,21 En,22

)
(6.8)

This is the starting point of our analysis.
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Now we look at the estimate of prediction error. We let Xn,11 =
√

n Ûn,1D̂n,1V̂
T

n,1

be the SVD of Xn,11. Here,

Ûn,1 =
(
¯
û

(1)
n,1 ¯

û
(1)
n,2 · · · ¯

û
(1)
n,n1∧p1

)
, (6.9a)

V̂ n,1 =
(
¯
v̂

(1)
n,1 ¯

v̂
(1)
n,2 · · · ¯

v̂
(1)
n,n1∧p1

)
, (6.9b)

and

D̂n,1 = diag
(
d̂

(1)
n,1, d̂

(1)
n,2, . . . , d̂

(1)
n,n1∧p1

)
. (6.9c)

For convenience, we define µ̂
(1)
n,i =

(
d̂

(1)
n,i

)2
. For 0 ≤ k ≤ n1 ∧ p1, we let

D̂n,1(k) = diag
(
d̂

(1)
n,1, d̂

(1)
n,2, . . . , d̂

(1)
n,k, 0, 0, . . . , 0

)
(6.10)

so that X̂n,11(k) ≡ √n Ûn,1D̂n,1(k)V̂
T

n,1 is the SVD of Xn,11 truncated to k terms.

This matrix has pseudo-inverse X̂n,11(k)+ = 1√
n

V̂ n,1D̂n,1(k)+Û
T

n,1. Therefore, the

BCV rank-k prediction of X22 is

X̂n,22(k) = Xn,21X̂
+

n,11(k)Xn,12

=
(√

n Un,2DnV
T
n,1 + En,21

)(
X̂n,11(k)+

)(√
n Un,1DnV

T
n,2 + En,12

)

=
√

n Un,2DnV
T
n,1V̂ n,1D̂n,1(k)+Û

T

n,1Un,1DnV
T
n,2

+ Un,2DnV
T
n,1V̂ n,1D̂n,1(k)+Û

T

n,1En,12

+ En,21V̂ n,1D̂n,1(k)+Û
T

n,1Un,1DnV
T
n,2

+
1√
n

En,21V̂ n,1D̂n,1(k)+Û
T

n,1En,12

=
√

n Un,2DnΘn,1D̂n,1(k)+ΦT
n,1DnV

T
n,2

+ Un,2DnΘn,1D̂n,1(k)+Ẽn,12

+ Ẽn,21D̂n,1(k)+ΦT
n,1DnV

T
n,2

+
1√
n

Ẽn,21D̂n,1(k)+Ẽn,12,

(6.11)
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where Θn,1 = V T
n,1V̂ n,1, Φn,1 = UT

n,1Ûn,1, Ẽn,12 = Û
T

n,1En,12, and Ẽn,21 = En,21V̂ n,1.

Note that Ẽn,12 and Ẽn,21 have iid N (0, σ2) entries, also independent of the other

terms that make up X̂n,22(k) and Xn,22. By conditioning on Ẽn,12 and Ẽn,21, we can

see that X̂22(k) is in general a biased estimate of
√

n Un,2DnV
T
n,2.

To analyze X̂22(k), we need to impose some additional assumptions. The first

assumption is fairly banal and involves the leave-out sizes.

Assumption 6.6. There exist fixed K, L ∈ (0,∞) (not necessarily integers), such

that n
n2

= K + o
(

1√
n

)
and p

p2
= L + o

(
1√
n

)
.

The next assumption is not quite so innocent and involves the distribution of the

factors.

Assumption 6.7. The departure from orthogonality for the held-in factors Un,1 and

V n,1 is of order 1√
n
. Specifically,

sup
n

E

∥∥∥√n1

(
UT

n,1Un,1 −
n1

n
Ik0

)∥∥∥
2

F
<∞, and

sup
n

E

∥∥∥√p1

(
V T

n,1V n,1 −
p1

p
Ik0

)∥∥∥
2

F
<∞.

This assumption is there so that we can apply the theory in Chapter 3 to get at the

behavior of the SVD of Xn,11. It is satisfied, for example, if we are performing ro-

tated cross-validation (see subsection 5.2.4) or if the factors are generated by certain

stationary processes. Proposition A.5 in Appendix A is helpful for verifying Assump-

tion 6.7. It is likely that the theory presented below holds under a weaker condition,

but a detailed analysis is beyond the scope of this chapter.

6.2 Main results

The BCV estimate of prediction error from a single replicate is given by

P̂En(k) =
1

n2 p2

‖Xn,22 − X̂n,22(k)‖2F. (6.12)
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It turns out that E

[
P̂En(k)

]
is dominated by the irreducible error. However, if we

have a
√

np-consistent estimate of σ2, then we can get an expression for the scaled

limit of the estimated model error. This expression is the main result of the chapter.

Theorem 6.8. Suppose that σ̂2
n is a sequence of

√
np-consistent estimators of σ2

satisfying E
[√

np (σ̂2
n − σ2)

]
→ 0. Define the BCV estimate of model error from a

single replicate as

M̂En(k) = P̂En(k)− σ̂2
n. (6.13)

Then, for fixed k as n→∞,

E

[
p · M̂En(k)

]
→

k∧k0∑

i=1

βi µi +

k0∑

i=k+1

µi + η · (k − k0)+, (6.14)

where

βi =





σ2

γµ2
i
(3σ2+(γ K−1

K
+L−1

L )µi)

ρ+(γ K−1

K
+L−1

L ) σ2

γµi
+ σ4

γµ2
i

when µi > σ2

√
ρ γ

,

1 + η
µi

otherwise,

(6.15a)

ρ =
K − 1

K
· L− 1

L
, (6.15b)

and

η =
σ2

(√
γ +

√
K

K−1
·
√

L−1
L

)2 . (6.15c)

It is interesting to compare βi with the expression for αi in equation (6.5), which

appears in the scaled limit of the true model error, p ·MEn(k). Although the BCV

estimator of model error is biased, this bias is small for large µi, K, and L.

A corollary gives the behavior of the minimizer of the expected model error esti-

mate. We let k̂n be the rank that minimizes E

[
M̂En(k)

]
. Note that k̂n is a deter-

ministic quantity. The next two results follow from Theorem 6.8.
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Corollary 6.9. As n→∞,

k̂n → max

{
i : µi >

σ2

√
γ
·
√

2

ρ

}
, (6.16)

(provided no µi is exactly equal to σ2

√
γ
·
√

2
ρ
, in which case the limit is ambiguous).

We can use Corollary 6.9 to guide our choice of K and L. If we choose them

carefully, then k̂n and k∗
n will converge to the same value.

Corollary 6.10. If
√

ρ =

√
2√

γ̄ +
√

γ̄ + 3
, (6.17)

where

γ̄ =

(
γ1/2 + γ−1/2

2

)2

, (6.18)

then k̂n and k∗
n converge to the same value (provided no µi is exactly equal to σ2

√
γ
·
√

2
ρ
).

Interestingly, the first-order-optimal choices of K and L do not depend on the

aspect ratio of the original matrix. All that matters is the ratio of the number of

elements in Xn,11 to the number of elements in Xn.

For a square matrix, γ = γ̄ = 1, and the optimal ρ is 2
9
. If we choose K = L, then

this requires
K − 1

K
=

√
2

3
,

so that

K =

(
1−
√

2

3

)−1

≈ 1.89.

For general aspect ratios (γ 6= 1), this requires

K =
3

3− 2
(√

γ̄ + 3−√γ̄
) .

For very large or very small aspect ratios (γ → 0 or γ → ∞), K → 1. In these

situations one should leave out almost all of the matrix when performing bi-cross-

validation.
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The remainder of the chapter is devoted to proving Theorem 6.8.

6.3 The SVD of the held-in block

The first step in analyzing the BCV estimate of prediction error is to see how the SVD

of Xn,11 behaves. With Assumptions 6.1–6.7, we can start this analysis. Our strategy

is to use Assumption 6.7 to apply a matrix perturbation argument in combination

with Theorems 3.4 and 3.5.

We show that we can apply Theorem 3.5 to
√

n Un,1DnV
T
n,1 + En,11 even though

Un,1 and V n,1 do not have orthogonal columns. First we set

γ1 =
K − 1

K
· L

L− 1
· γ (6.19)

and note that n1

p1
= n1

n
· p

p1
· n

p
= γ1 + o

(
1√
n1

)
. Next, for 1 ≤ i ≤ k0, we define

µ1,i =
L− 1

L
· µi, (6.20a)

µ̄1,i =





K−1
K
· (µ1,i + σ2)

(
1 + σ2

γ1µ1,i

)
when µ1,i > σ2

√
γ1

,

K−1
K
· σ2

(
1 + 1√

γ1

)2

otherwise.
(6.20b)

θ1,i =





√
L−1

L
·
√(

1− σ4

γ1µ2
1,i

)(
1 + σ2

γ1µ1,i

)−1

when µ1,i > σ2

√
γ1

,

0 otherwise,

(6.20c)

ϕ1,i =





√
K−1

K
·
√(

1− σ4

γ1µ2
1,i

)(
1 + σ2

µ1,i

)−1

when µ1,i > σ2

√
γ1

,

0 otherwise.

(6.20d)

For i > k0, we put µ̄1,i = K−1
K
·σ2
(
1 + 1√

γ1

)2

. Now, for k ≥ 1 we let Θ1(k) and Φ1(k)

be k0 × k matrices with entries

θ
(k)
1,ij =





θ1,i if i = j,

0 otherwise,
and ϕ

(k)
1,ij =





ϕ1,i if i = j,

0 otherwise,
(6.21)
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respectively. In this section, we prove the following:

Proposition 6.11. For fixed k as n → ∞, the first k columns of Θ1,n and Φ1,n

converge in probability to Θ1(k) and Φ1(k), respectively. Likewise, for 1 ≤ i ≤ k,

d̂
(1)
n,i

P→ µ̄
1/2
1,i .

We prove the proposition by leveraging the work of Chapter 3. We have that

Xn,11 =
√

n Un,1DnV
T
n,1 + En,11. The first term does not satisfy the conditions

of Theorems 3.4 and 3.5 since Un,1 and V n,1 do not have orthonormal columns.

Moreover, the scaling is
√

n instead of
√

n1. We introduce scaling constants and

group the terms as

Xn,11 =
√

n1

(√ n

n1

Un,1

)(√p1

p
Dn

)(√ p

p1

V n,1

)T

+ En,11. (6.22)

With this scaling,

E

[(√ n

n1

Un,1

)T(√ n

n1

Un,1

)]
= E

[(√ p

p1

V n,1

)T(√ p

p1

V n,1

)]
= Ik0

,

and the diagonal elements of
(√

p1

p
Dn

)
converge to µ

1/2
1,1 , µ

1/2
1,2 , . . . , µ

1/2
1,k0

. So, Propo-

sition 6.11 should at least be plausible.

We prove the result by showing that
(√

n
n1

Un,1

)(√
p1

p
Dn

)(√
p
p1

V n,1

)T

is almost

an SVD. We denote its k0-term SVD by Ũn,1D̃n,1Ṽ
T

n,1, and demonstrate the following:

Lemma 6.12. Three properties hold:

(1) For 1 ≤ i ≤ k0, |p1

p
d2

n,i − d̃2
n,i| = OP

(
1√
n

)
.

(2) For any sequence of vectors
¯
x1,

¯
x2, . . . ,

¯
xn with

¯
xn ∈ R

n,

∥∥∥∥
(√ n

n1

Un,1

)T

¯
xn − Ũ

T

n,1 ¯
xn

∥∥∥∥
2

= OP

(‖
¯
xn‖2√

n

)
.

(3) For any sequence of vectors
¯
y1,

¯
y2, . . . ,

¯
yn with

¯
yn ∈ R

p,

∥∥∥∥
(√ p

p1

V n,1

)T

¯
yn − Ṽ

T

n,1
¯
yn

∥∥∥∥
2

= OP

(‖
¯
yn‖2√

n

)
.
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Above, d̃n,i is the ith diagonal entry of D̃n, which are assumed to be sorted in de-

scending order.

Proposition 6.11 is then a direct consequence of Lemma 6.12 combined with Theo-

rems 3.4 and 3.5.

Proof of Lemma 6.12. First, let
√

n
n1

Un,1 = Ūn,1Rn be a QR-decomposition so that

Ūn,1 ∈ R
n1×k0 has orthonormal columns and Rn is an upper-triangular matrix. Define

Rn,1 =
√

n(Rn,1 − Ik0
) so that Rn = Ik0

+ 1√
n
Rn,1. We can write

n

n1

UT
n,1Un,1 = Ik0

+
1√
n

(
Rn,1 + RT

n,1

)
+

1

n
RT

n,1Rn,1.

By Assumption 6.7, n
n1

UT
n,1Un,1 − Ik0

= OP

(
1√
n

)
. Therefore, Rn,1 = OP (1).

The same argument applies to show that there exits a V̄ n,1 ∈ R
p1×k0 with or-

thonormal columns such that

√
p

p1

V n,1 = Ṽ n,1

(
Ik0

+
1√
n

Sn,1

)
,

and Sn,1 is upper-triangular with Sn,1 = OP(1).

We now look at

(
Ik0

+
1√
n

Rn,1

)(
Dn

)(
Ik0

+
1√
n

Sn,1

)T

= Dn +
1√
n

(
Rn,1Dn + DnS

T
n,1

)
+

1

n
Rn,1DnS

T
n,1.

Since the diagonal elements of Dn are distinct, we can apply Lemma 2.15 twice to

get that there exist k0 × k0 matrices R̄n,1, S̄n,1 and ∆n of size OP(1) such that

(
Ik0

+
1√
n

Rn,1

)(
Dn

)(
Ik0

+
1√
n

Sn,1

)T

=
(
Ik0

+
1√
n

R̄n,1

)(
Dn +

1√
n
∆n

)(
Ik0

+
1√
n

S̄n,1

)T

,

with Ik0
+ 1√

n
R̄n,1 and Ik0

+ 1√
n
S̄n,1 both orthogonal matrices, and ∆n diagonal.
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We define Ũn,1 = Ūn,1

(
Ik0

+ 1√
n
R̄n,1

)
, Ṽ n,1 = V̄ n,1

(
Ik0

+ 1√
n
S̄n,1

)
, and D̃n =

√
p1

p

(
Dn + 1√

n
∆
)
. Now, as promised, Ũn,1D̃nṼ

T

n,1 is the SVD of

(√ n

n1

Un,1

)(√p1

p
Dn

)(√ p

p1

V n,1

)T

.

We can see immediately the property (1) holds. For property (2), note that

Ũn,1 = Ūn,1

(
Ik0

+
1√
n

R̄n,1

)

=

√
n

n1

Un,1

(
Ik0

+
1√
n

Rn,1

)−1(
Ik0

+
1√
n

R̄n,1

)

=

√
n

n1

Un,1

(
Ik0

+
1√
n

R̃n,1

)

for some R̃n,1 = OP(1). Therefore,

Ũ
T

n,1¯
xn −UT

n,1¯
xn =

1√
n

R̃
T

n,1U
T
n,1¯

xn

so that

‖ŨT

n,1¯
xn −UT

n,1¯
xn‖2 ≤

1√
n
‖R̃n,1‖F · ‖Un,1‖F · ‖

¯
xn‖2

= OP

(‖
¯
xn‖2√

n

)
.

A similar argument applies to show that property (3) holds.

6.4 The prediction error estimate

In this section, we study the estimate of prediction error

P̂En(k) =
1

n2 p2

‖Xn,22 − X̂n,22(k)‖2F
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We can expand this as

P̂En(k) =
1

n2 p2

tr
((

Xn,22 − X̂n,22(k)
)(

Xn,22 − X̂n,22(k)
)T)

=
1

n2 p2

tr
((√

n Un,2DnV
T
n,2 + En,22 − X̂n,22(k)

)

·
(√

n Un,2DnV
T
n,2 + En,22 − X̂n,22(k)

)T)

=
1

n2 p2

(∥∥√n Un,2DnV
T
n,2 − X̂n,22(k)

∥∥2

F

+ 2 tr
(
En,22

(√
n Un,2DnV

T
n,2 − X̂n,22(k)

)T)

+ ‖En,22‖2F
)

.

(6.23)

It has expectation

E

[
P̂En(k)

]
= E

[
1

n2 p2

∥∥√n Un,2DnV
T
n,2 − X̂n,22(k)

∥∥
]

+ σ2. (6.24)

The first term is the expected model approximation error and the second term is the

irreducible error.

The expected model approximation error expands into four terms. We have

E
∥∥√n Un,2DnV

T
n,2 − X̂n,22(k)

∥∥2

F

= E

[
tr
((√

n Un,2(Dn −DnΘn,1D̂n,1(k)+Φn,1Dn)V T
n,2

−Un,2DnΘn,1D̂n,1(k)+Ẽn,12

− Ẽn,21D̂n,1(k)+ΦT
n,1DnV

T
n,2

− 1√
n

Ẽn,21D̂n,1(k)+Ẽn,12

)

·
(√

n Un,2(Dn −DnΘn,1D̂n,1(k)+Φn,1Dn)V T
n,2

−Un,2DnΘn,1D̂n,1(k)+Ẽn,12

− Ẽn,21D̂n,1(k)+ΦT
n,1DnV

T
n,2

− 1√
n

Ẽn,21D̂n,1(k)+Ẽn,12

)T)]
. (6.25)



6.4. THE PREDICTION ERROR ESTIMATE 121

By first conditioning on everything but Ẽn,12 and Ẽn,21, the cross-terms cancel and

we get

E
∥∥√n Un,2DnV

T
n,2 − X̂n,22(k)

∥∥2

F

= E
∥∥√n Un,2(Dn −DnΘn,1D̂n,1(k)+Φn,1Dn)V T

n,2

∥∥2

F

+ E
∥∥Un,2DnΘn,1D̂n,1(k)+Ẽn,12

∥∥2

F

+ E
∥∥Ẽn,21D̂n,1(k)+ΦT

n,1DnV
T
n,2

∥∥2

F

+ E
∥∥ 1√

n
Ẽn,21D̂n,1(k)+Ẽn,12

∥∥2

F
. (6.26)

Since Ẽn,12 and Ẽn,21 are made of iid N (0, σ2) random variables, the last three terms

are fairly easy to analyze. We can use the following lemma:

Lemma 6.13. Let Z ∈ R
m×n be a random matrix with uncorrelated elements, all

having mean 0 and variance 1 (but not necessarily from the same distribution). If

A ∈ R
n×p is independent of Z, then

E ‖ZA‖2F = m ·E ‖A‖2F .

Proof. The square of the ij element of the product is given by

(ZA)2
ij =

( n∑

α=1

ZiαAαj

)2

=
n∑

α=1

Z2
iαA2

αj +
∑

α 6=β

ZiαAαjZiβAβj

This has expectation

E

[
(ZA)2

ij

]
=

n∑

α=1

E
[
A2

αj

]
,
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so that

E ‖ZA‖2F =
m∑

i=1

p∑

j=1

E

[
(ZA)2

ij

]

=
m∑

i=1

p∑

j=1

n∑

α=1

E
[
A2

αj

]

= m · E ‖A‖2F .

We also need a technical result to ensure that after appropriate scaling, the ex-

pectations are finite.

Lemma 6.14. For fixed k as n→∞, d̂
(1)
n,k is almost surely bounded away from zero.

Proof. We have that d̂
(1)
n,k is the kth singular value of 1√

n
Xn,11 = Un,1DnV

T
n,1 +

1√
n
En,11. This is the same as the kth eigenvalue of

1

n
Xn,11X

T
n,11 = Un,1DnV

T
n,1V n,1DnU

T
n,1 +

1√
n

Un,1DnV
T
n,1E

T
n,11

+
1√
n

En,11V n,1DnU
T
n,1 +

1

n
En,11E

T
n,11.

For each n, we choose On =
(
On,1 On,2

)
∈ R

n×n to be an orthogonal matrix with

On,2 ∈ R
n×n−k0 and OT

n,2Un,1 = 0. Then, with λk(·) denoting the kth eigenvalue, we

have

d̂
(1)
n,k = λk

(
1

n
Xn,11X

T
n,11

)

= λk

(
OT

n

( 1

n
Xn,11X

T
n,11

)
On

)

= λk

((
An,11 An,12

An,21 An,22

))
,

for An,ij = 1
n
OT

n,iX
T
n,11Xn,11On,j. Note that An,22 = 1

n
OT

n,2En,11E
T
n,11On,2 is an (n−

k)× (n− k) matrix with iid N (0, σ2) entries.

Define Gn = λk(An,22) By the eigenvalue interlacing inequality [36], we have that
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d̂
(1)
n,k ≥ Gn. Moreover, Theorems 2.17 and 2.20 give us that Gn

a.s.→ σ2
(
1 + 1√

γ1

)2

.

Hence, almost surely for n large enough d̂
(1)
n,k ≥ Gn ≥ σ2.

With these lemmas, we can prove the following:

Lemma 6.15. The terms in the expected model approximation error converge as:

E

[
p

n2 p2

∥∥∥
√

n Un,2(Dn −DnΘn,1D̂n,1(k)+Φn,1Dn)V T
n,2

∥∥∥
2

F

]

→
k∧k0∑

i=1

µi

(
1−

√
µi

µ̄1,i

θ1,iϕ1,i

)2

+

k0∑

i=k+1

µi,

(6.27a)

E

[
p

n2 p2

∥∥∥Un,2DnΘn,1D̂n,1(k)+Ẽn,12

∥∥∥
2

F

]
→ σ2

γ
·

k∧k0∑

i=1

µi

µ̄1,i

θ2
1,i, (6.27b)

E

[
p

n2 p2

∥∥∥Ẽn,21D̂n,1(k)+ΦT
n,1DnV

T
n,2

∥∥∥
2

F

]
→ σ2 ·

k∧k0∑

i=1

µi

µ̄1,i

ϕ2
1,i, (6.27c)

and

E

[
p

n2 p2

∥∥∥ 1√
n

Ẽn,21D̂n,1(k)+Ẽn,12

∥∥∥
2

F

]
→ σ2

γ
·

k∑

i=1

σ2

µ̄1,i

. (6.27d)

Proof. The squared Frobenius norm in the first term is equal to

tr
((√

n Un,2(Dn −DnΘn,1D̂n,1(k)+Φn,1Dn)V T
n,2

)

·
(√

n Un,2(Dn −DnΘn,1D̂n,1(k)+Φn,1Dn)V T
n,2

)T)

= n · tr
((

Dn −DnΘn,1D̂n,1(k)+Φn,1Dn

)
·
(
V T

n,2V n,2

)

·
(
Dn −DnΘn,1D̂n,1(k)+Φn,1Dn

)
·
(
UT

n,2Un,2

))
.
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Now, UT
n,2Un,2

P→ 1
K

Ik0
, V T

n,2V n,2
P→ 1

L
Ik0

, and

Dn −DnΘn,1D̂n,1(k)+Φn,1Dn

P→ diag
(
µ

1/2
1 − µ

1/2
1 θ1,1µ̄

−1/2
1,1 (k) ϕ1,1µ

1/2
1 , µ

1/2
2 − µ

1/2
2 θ1,2µ̄

−1/2
1,2 (k) ϕ1,2µ

1/2
2 , . . . ,

µ
1/2
k0
− µ

1/2
k0

θ1,k0
µ̄
−1/2
1,k0

(k) ϕ1,k0
µ

1/2
k0

)
,

where

µ̄1,i(k) =





µ̄1,i if i ≤ k,

0 otherwise.

We can apply the Bounded Convergence Theorem to get the result for the first

term since the elements of Un,2, V n,2, Θn,1 and Φn,1 are bounded by 1 and since

Lemma 6.14 ensures that the elements of D̂n,1(k)+ are bounded as well.

The last three terms can be gotten similarly by applying Lemmas 6.13 and 6.14.

We can now get an expression for the limit of the estimated model approximation

error. Specifically,

E

[
p

n2 p2

∥∥∥
√

n Un,2DnV
T
n,2 − X̂n,22(k)

∥∥∥
2

F

]

=

k∧k0∑

i=1

{
µi

(
1−

√
µi

µ̄1,i

θ1,iϕ1,i

)2

+ σ2µi

µ̄i

(
γ−1θ2

1,i + ϕ2
1,i

)
+

σ4

γµ̄1,i

}

+

k0∑

i=k+1

µi +
σ2

γ
·

k∑

i=k0+1

σ2

µ̄1,i

=

k∧k0∑

i=1

βi µi +

k0∑

i=k+1

µi +
σ2

γ

(
1 +

1√
γ1

)−2

· (k − k0)+, (6.28)
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where

βi =

(
1−

√
µi

µ̄1,i

θ1,iϕ1,i

)2

+
σ2

µ̄1,i

(
γ−1θ2

1,i + ϕ2
1,i

)
+

1

µi

σ4

γµ̄1,i

= 1− 2

√
µi

µ̄1,i

θ1,iϕ1,i +
µi

µ̄1,i

θ2
1,iϕ

2
1,i +

σ2

µ̄1,i

(
γ−1θ2

1,i + ϕ2
1,i

)
+

1

µi

σ4

γµ̄1,i

. (6.29)

If µ1,i ≤ σ2

√
γ1

, then θ1,i = ϕ1,i = 0 and µ̄1,i = K−1
K
· σ2

(
1 + 1√

γ1

)2

, so that

βi = 1 +
1

γ
· σ

2

µi

·
(

1 +
1√
γ1

)−2

.

In the opposite situation (µ1,i > σ2

√
γ1

), we define

ρ =
L− 1

L
· K − 1

K

and get the simplifications

µ̄1,i

µi

= ρ ·
(

1 + (1 + γ−1
1 )

σ2

µ1,i

+
σ4

γ1µ2
i

)
,

θ1,iϕ1,i = ρ ·
√

µi

µ̄1,i

·
(

1− σ4

γ1µ2
1,i

)
,

so that

− 2

√
µi

µ̄1,i

θ1,iϕ1,i +
µi

µ̄i

θ2
1,iϕ

2
1,i

= −ρ2

(
µi

µ̄1,i

)2(
1− σ4

γ1µ2
1,i

)(
1 + 2(1 + γ−1

1 )
σ2

µ1,i

+ 3
σ4

γ1µ2
1,i

)
,

σ2

µ̄1,i

(
γ−1θ2

1,i + ϕ2
1,i

)
= ρ2

(
µi

µ̄1,i

)2(
1− σ4

γ1µ2
1,i

)(
(1 + γ−1

1 )
σ2

µ1,i

+ 2
σ4

γ1µ2
1,i

)
,

and
1

µi

σ4

γµ̄1,i

= ρ2

(
µi

µ̄1,i

)2(
σ4

γ1µ2
1,i

)(
1 + (1 + γ−1

1 )
σ2

µ1,i

+
σ4

γ1µ2
1,i

)
.
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Putting it all together, we get

βi = 1 + ρ2

(
µi

µ̄1,i

)2

·
{(

1− σ4

γ1µ2
1,i

)(
−1− (1 + γ−1

1 )
σ2

µ1,i

− σ4

γ1µ2
1,i

)

+

(
σ4

γ1µ2
1,i

)(
1 + (1 + γ−1

1 )
σ2

µ1,i

+
σ4

γ1µ2
1,i

)}

= 1 + ρ2

(
µi

µ̄1,i

)2(
2

σ4

γ1µ2
1,i

− 1

)(
1 + (1 + γ−1

1 )
σ2

µ1,i

+
σ4

γ1µ2
1,i

)

= 1 +
2 σ4

γ1µ2
1,i

− 1

1 + (1 + γ−1
1 ) σ2

µ1,i
+ σ4

γ1µ2
1,i

=
3 σ4

γ1µ2
1,i

+ (1 + γ−1
1 ) σ2

µ1,i

1 + (1 + γ−1
1 ) σ2

µ1,i
+ σ4

γ1µ2
1,i

=

σ2

γ1µ2
1,i

(3σ2 + (γ1 + 1)µ1,i)

1 + (1 + γ−1
1 ) σ2

µ1,i
+ σ4

γ1µ2
1,i

. (6.30)

In particular, note that βi < 1 when 2 σ4

γ1µ2
1,i

− 1 < 0, or equivalently µi > σ2

√
γ
·
√

2
ρ
.

Getting the final expressions for βi and η in Theorem 6.8 is a matter of routine

algebra.

6.5 Summary and future work

We have provided an analysis of the first-order behavior of bi-cross-validation. This

analysis has shown that BCV gives a biased estimate of prediction error, with an

explicit expression for the bias. Fortunately, the bias is not too bad when the signal

strength is large and the leave-out sizes are small. Importantly, our analysis gives

guidance as to how the leave-out sizes should be chosen. Our theoretical analysis

agrees with the simulations done by Owen & Perry [65], who observed that despite

bias in prediction error estimates, larger hold-out sizes tend to perform better at

estimating k∗
F.

The form of consistency we give is rather weak since we did not analyze the
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variance of the BCV prediction error estimate. As a follow-up, it would be worthwhile

to address this limitation. For now, though, we can get some comfort from empirical

observations in [65] that the variance of the estimator is not too large. Indeed, based

on these simulations, it is entirely possible that the variance becomes negligible for

large n and p.
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Appendix A

Properties of random projections

We use this section to present some results about random projection matrices. We

call a symmetric p × p matrix P a projection if its eigenvalues are in the set {0, 1}.
Any projection matrix of rank k ≤ p can be decomposed as P = V V T for some V

satisfying V TV = Ik. We call the set

Vk (Rp) =
{
V ∈ R

p×k : V TV = Ik

}
⊆ R

p×k (A.1)

the rank-k Stiefel manifold of R
p. It is the set of orthonormal k-frames in R

p. Simi-

larly, we call the set

Gk (Rp) =
{
V V T : V ∈ Vk (Rp)

}
⊆ R

p×p (A.2)

the rank-k Grassmannian of R
p; this is the set of rank k projection matrices. If(

V V̄

)
is an p× p Haar-distributed orthogonal matrix and V is p× k, then we say

that V is uniformly distributed over Vk(R
p) and that V V T is uniformly distributed

over Gk(R
p).

A.1 Uniformly distributed orthonormal k-frames

We first present some results about a matrix V distributed uniformly over Vk(R
p).

We denote this distribution by V ∼ Unif
(
Vk(R

p)
)
. In the special case of k = 1, the

129
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distribution is equivalent to drawing a random vector uniformly from the unit sphere

in R
p. We denote this distribution by

¯
V ∼ Unif

(
Sp−1

)
.

A.1.1 Generating random elements

The easiest way to generate a random element of Vk(R
p) is to let Z be a p×k matrix

of iid N (0, 1) random variables, take the QR decomposition Z = QR, and let V be

equal to the first k columns of Q. In practice, there is a bias in the way standard

QR implementations choose the signs of the columns of Q. To get around this, we

recommend using Algorithm A.1, below.

Algorithm A.1 Generate a random orthonormal k-frame

1. Draw Z, a random p×k matrix whose elements are iidN (0, 1) random variables.

2. Compute Z = QR, the QR-decomposition of Z. Set Q1 to be the p×k matrix
containing the first k columns of Q.

3. Draw S, a random k × k diagonal matrix with iid diagonal entries such that
P {S11 = −1} = P {S11 = +1} = 1

2
.

4. Return V = Q1S.

This algorithm has a time complexity of O (pk2). Diaconis and Shahshahani [23]

present an alternative approach called the subgroup algorithm which can be used to

generate V as a product of k Householder reflections. Their algorithm has time com-

plexity O (pk). Mezzadri [60] gives a simple description of the subgroup algorithm.

A.1.2 Mixed moments

Since we can flip the sign of any row or column of V and not change its distribution,

the mixed moments of the elements of V vanish unless the number of elements from

any row or column is even (counting multiplicity). For example, E [V 2
11V21] = 0 since

we can flip the sign of the second row of V to get

V 2
11V21

d
= V 2

11(−V21) = −V 2
11V21.
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This argument does not apply to V11V12V22V21 or V 2
11V

2
22.

In the special case when k = 1, the vector
(
V 2

11, V
2
21, . . . , V

2
p1

)
is distributed as

Dirichlet
(

1
2
, 1

2
, . . . , 1

2

)
. This follows from the fact that if Y1, Y2, . . . , Yp are indepen-

dently distributed Gamma random variables and Yi has shape ai and scale s, then

with S =
∑p

i=1 Yi, the vector
(

Y1

S
, Y2

S
, . . . , Yp

S

)
is distributed Dirichlet (a1, a2, . . . , ap).

Using the standard formulas for Dirichlet variances and covariances, we get the mixed

moments up to fourth order. They are summarized in the next lemma.

Lemma A.1. If V ∼ Unif
(
V1(R

p)
)
, then

E
[
V 2

11

]
=

1

p
, (A.3a)

E [V11V21] = 0, (A.3b)

E
[
V 4

11

]
=

3

p (p + 2)
, (A.3c)

E
[
V 2

11V
2
21

]
=

1

p (p + 2)
. (A.3d)

The odd mixed moments are all equal to zero.

Using Theorem 4 from Diaconis and Shahshahani [24], which gives the moments

of the traces of Haar-distributed orthogonal matrices, we can compute the mixed

moments of V for more general k. Meckes [59] gives an alternative derivation of

these results.

Lemma A.2. If V ∼ Unif
(
Vk(R

p)
)

and k > 1, then the nonzero mixed moments of
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the elements V up to fourth order are defined by

E
[
V 2

11

]
=

1

p
, (A.4a)

E
[
V 4

11

]
=

3

p (p + 2)
, (A.4b)

E
[
V 2

11V
2
21

]
=

1

p (p + 2)
, (A.4c)

E
[
V 2

11V
2
22

]
=

p + 1

p (p− 1)(p + 2)
, (A.4d)

E [V11V12V22V21] =
−1

p (p− 1)(p + 2)
. (A.4e)

Proof. The first three equations follow directly from the previous lemma. We can

get the other moments from the moments of O, a Haar-distibuted p × p orthogonal

matrix. For the fourth equation, we use that

E [tr(O)]4 =
∑

r,s,t,u

E [OrrOssOttOuu] .

Only the terms with even powers of Oii are nonzero. Thus, we have

E [tr(O)]4 =

(
p

1

)
E
[
O4

11

]
+

(
p

2

)(
4

2

)
E
[
O2

11O
2
22

]

= p E
[
O4

11

]
+ 3p (p− 1) E

[
O2

11O
2
22

]
.

Theorem 4 of Diaconis and Shahshahani [24] gives that E [tr(O)]4 = 3. Combined

with Lemma A.1, we get that

E
[
O2

11O
2
22

]
=

1

3p (p− 1)

{
E [tr(O)]4 − p E

[
O4

11

]}

=
1

3p (p− 1)

{
3− p · 3

p (p + 1)

}

=
p + 1

p (p− 1)(p + 2)
.
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For the last equation, we use E
[
tr(O4)

]
. We have that

(O4)ij =
∑

r,s,t

OirOrsOstOtj.

We would like to compute E
[
(O4)11

]
. Note that unless r = s = t = 1, there are only

three situations when E [O1rOrsOstOt1] 6= 0. Two of them are demonstrated visually

by the configurations

1 s

1

s




O1r · · · Ors · · ·
...

. . .
...

Ot1 · · · Ost · · ·
...

...




r = 1, s = t, s 6= 1

and

1 r

1

r




Ot1 · · · O1r · · ·
...

. . .
...

Ost · · · Ors · · ·
...

...




t = 1, r = s, r 6= 1

.

The other nonzero term is when s = 1, r = t, and r 6= 1, so that O1rOrsOstOt1 =

O2
1rO

2
r1. In all other configurations there is a row or a column that only contains

one of {O1r, Ors, Ost, Ot1}. Since we can multiply a row or a column of O by −1

and not change the distribution of O, for this choice of r, s, and t we must have

O1rOrsOstOt1
d
= −O1rOrsOstOt1. This in turn implies that E [O1rOrsOstOt1] = 0.

With these combinatorics in mind, we have that

E
[
(O4)11

]
=
∑

s 6=1

E [O11O1sOssOs1] +
∑

r 6=1

E [O1rOrrOr1O11] +
∑

r 6=1

E
[
O2

1rO
2
r1

]
+ E

[
O4

11

]

= 2(p− 1)E [O11O12O22O21] + (p− 1)E
[
O2

12O
2
21

]
+ E

[
O4

11

]

= 2(p− 1)E [O11O12O22O21] + (p− 1)E
[
O2

11O
2
22

]
+ E

[
O4

11

]

Again applying Theorem 4 of [24], we have that E
[
tr(O4)

]
= 1. Combined with
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Lemma A.1, we have

E [O11O12O22O21] =
1

2(p− 1)

{
1

p
E
[
tr(O4)

]
− E

[
O4

11

]
− (p− 1)E

[
O2

11O
2
22

]}

=
1

2(p− 1)

{
1

p
− 3

p (p + 2)
− (p− 1)

p + 1

p (p− 1)(p + 2)

}

=
−1

p (p− 1)(p + 2)
.

A.2 Uniformly distributed projections

When P ∈ R
p×p is chosen uniformly over the set of rank-k p× p projection matrices,

we say P ∼ Unif
(
Gk(R

p)
)
. With the results of the previous section, we can derive the

moments of random projection matrices.

Lemma A.3. If P ∼ Unif
(
Gk(R

p)
)
, then

E [P ] =
k

p
Ip. (A.5)

Proof. Write P = V V T, where V ∼ Unif
(
Vk(R

p)
)
. For 1 ≤ i, j ≤ p we have

Pij =
k∑

r=1

VirVjr,

so

E [Pij] =





k E [V 2
11] , when i = j,

k E [V11V21] , otherwise.

The result now follows from Lemma A.1.

Lemma A.4. Let P ∼ Unif
(
Gk(R

p)
)
. If 1 ≤ i, j, i′, j′ ≤ p, then

Cov
[
Pij, Pi′j′

]
=

1

(p− 1)(p + 2)

(
k

p

)(
1− k

p

)

·
(
p δ(i,j)=(i′,j′) + p δ(i,j)=(j′,i′) − 2 δ(i,i′)=(j,j′)

)
.

(A.6)
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This gives us that aside from the obvious symmetry (Pij = Pji), the off-diagonal

elements of P are uncorrelated with each other and with the diagonal elements.

Proof. We need to perform six computations. As before, we use the representation

P = V V T, where V ∼ Unif
(
Vk(R

p)
)
. We have

E
[
P 2

11

]
= E

[( k∑

i=1

V 2
1i

)2
]

= E

[ k∑

i=1

V 4
1i +

∑

i6=j

V 2
1iV

2
1j

]

= k · 3

p (p + 2)
+ k (k − 1) · 1

n (p + 2)

=
k (k + 2)

p (p + 2)

=
2

p + 2

(
k

p

)(
1− k

p

)
+

(
k

p

)2

,

which gives us that

Var [P11] =
2

p + 2

(
k

p

)(
1− k

p

)
.

Next,

E
[
P 2

12

]
= E

[( k∑

i=1

V1iV2i

)2
]

= E

[ k∑

i=1

V 2
1iV

2
2i +

∑

i6=j

V1iV2iV1jV2j

]

= k · 1

p (p + 2)
+ k (k − 1) · −1

p (p− 1)(p + 2)

=
p

(p− 1)(p + 2)

(
k

p

)(
1− k

p

)
,

so that

Var [P12] =
p

(p− 1)(p + 2)

(
k

p

)(
1− k

p

)
.
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Also,

E [P11P22] = E

[( k∑

i=1

V 2
1i

)( k∑

j=1

V 2
2j

)]

= E

[ k∑

i=1

V 2
1iV

2
2i +

k∑

i=1

∑

j 6=i

V 2
1iV

2
2j

]

= k · 1

p (p + 2)
+ k (k − 1) · p + 1

p (p− 1)(p + 2)

=
k

p (p + 2)

(
1 + (p + 1)

k − 1

p− 1

)

=
−2

(p− 1)(p + 2)

(
k

p

)(
1− k

p

)
+

(
k

p

)2

,

so that

Cov [P11, P22] =
−2

(p− 1)(p + 2)

(
k

p

)(
1− k

p

)
.

Since P is symmetric, we have

Cov [P12, P21] = Var [P12] .

The other covariances are all zero. This is because

E [P11P12] = E

[∑

i,j

V 2
1i V1jV2j

]
,

E [P12P23] = E

[∑

i,j

V1iV2iV2jV3j

]
,

and

E [P12P34] = E

[∑

i,j

V1iV2iV3jV4j

]
.

Each term in these sums has an element that appears only once in a row. Thus, the

expectations are all 0.
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A.3 Applications

We now present two applications of the results in this section.

A.3.1 Projections of orthonormal k-frames

Suppose we have U ∈ R
p×k, an orthonormal k-frame, and we randomly project the

columns of U into R
q, with q < p. If we denote the projection matrix by V T and set

Ũ = V TU , it is natural to ask how close Ũ is to being an orthonormal k-frame. We

can prove the following:

Proposition A.5. Suppose U ∈ R
p×k satisfies UTU = Ik. Let V ∼ Unif

(
Vq(R

p)
)

with k ≤ q ≤ p and set Ũ =
√

p/qV TU . Then there exists a decomposition Ũ =

Ũ 0 + 1√
q
Ũ 1 such that Ũ

T

0 Ũ 0 = Ik and

E‖Ũ 1‖2F ≤
1

2
k (k + 1)

(
q

p

)2(
1− q

p

)
. (A.7)

In particular, this implies that E‖Ũ 1‖2F ≤ 2
27

k (k + 1).

The main ingredients of the proof are a perturbation lemma and a result about Ũ
T
Ũ ,

stated below.

Lemma A.6. Suppose U ∈ R
p×k satisfies UTU = Ik. Let V ∼ Unif

(
Vq(R

p)
)

with

k ≤ q ≤ p and set Ũ =
√

p/qV TU . Then E

[
Ũ

T
Ũ
]

= Ik and

E

∥∥∥√q
(
Ũ

T
Ũ − Ik

)∥∥∥
2

F
≤ k (k + 1)

(
q

p

)2(
1− q

p

)
, (A.8a)

with a matching lower bound of

E

∥∥∥√q
(
Ũ

T
Ũ − Ik

)∥∥∥
2

F
≥ k (k + 1)

(
q

p

)2(
1− q

p

)(
p

p + 2

)
. (A.8b)
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Proof. Set P = V V T so that Ũ
T
Ũ = p

q
UTPU . Now,

E
[
Ũ

T
Ũ
]

=
p

q
UT

E [P ] U = Ik.

Also, since OTPO
d
= P for any p × p orthogonal matrix O, we must that UTPU

has the same distribution as the upper k × k submatrix of P . This implies that

E

∥∥∥ŨT
Ũ − Ik

∥∥∥
2

F
=

k∑

i=1

k∑

j=1

Var [P ij]

=
q

p

(
1− q

p

){
k · 2

p + 2
+ k (k − 1) · p

(p− 1)(p + 2)

}

=
p k (k + 1)

(p− 1)(p + 2)

(
q

p

)(
1− q

p

)(
1− 2

p (k + 1)

)
.

The lower and upper bounds follow.

The next ingredient is a perturbation theorem due to Mirsky, which we take from

Stewart [84] and state as a lemma.

Lemma A.7 (Mirsky). If A and A + E are in R
n×p, then

n∧p∑

i=1

(
σi(A + E)− σi(A)

)2 ≤ ‖E‖2F, (A.9)

where σi(·) denotes the ith singular value.

We can now proceed to the rest of the proof.

Proof of Proposition A.5. We have that Ũ
T
Ũ = Ik + E, where E‖√qE‖2F ≤ C and

C is given in Lemma A.6. We can apply Lemma A.7 to get

k∑

i=1

(
σi(Ũ

T
Ũ )− 1

)2 ≤ ‖E‖2F.

Setting εi = σi(Ũ
T
Ũ ) − 1, we have σi(Ũ ) =

√
1 + εi. Note that E [q

∑
i ε

2
i ] ≤

E‖√q E‖2F ≤ C. Let R and S be p× k and k× k matrices with orthonormal columns
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such that

Ũ = R(Ik + ∆)ST

is the SVD of Ũ , where ∆ = diag(∆1, ∆2, . . . , ∆k), and ∆i =
√

1 + εi − 1. Set

Ũ 0 = RST and Ũ 1 =
√

q R∆ST. Then,

Ũ
T

0 Ũ 0 = SRTRST = SST = Ik

and

E‖Ũ 1‖2F =
k∑

i=1

E
[
q ∆2

i

]
≤ 1

2

k∑

i=1

E
[
q ε2

i

]
≤ C

2
,

where we have used that
√

1 + εi ≥ 1 + 1
2
εi − 1

2
ε2

i .

A.3.2 A probabilistic interpretation of the Frobenius norm

As another application of the results in this section, we give a probabilistic represen-

tation of the Frobenius norm of a matrix. It is commonly known that for any n× p

matrix A,

sup
‖
¯
x‖2=1,
‖
¯
y‖2=1

(
¯
xTA

¯
y
)2

= ‖A‖22, (A.10)

where ‖ · ‖2 is the spectral norm, equal largest singular value (see, e.g. [36]). The

function f(
¯
x,

¯
y) =

¯
xTA

¯
y is a general bilinear form on R

n × R
p. The square of the

spectral norm of A gives the maximum value of
(
f(

¯
x,

¯
y)
)2

when
¯
x and

¯
y are both

unit vectors. It turns out that the Frobenius norm of A is related to the average

value of
(
f(

¯
X,

¯
Y )
)2

when
¯
X and

¯
Y are random unit vectors.

Proposition A.8. If A ∈ R
n×p, then

∫

‖
¯
x‖2=1,
‖
¯
y‖2=1

(
¯
xTA

¯
y
)2

d
¯
x d

¯
y =

1

np
‖A‖2F . (A.11)

Proof. There are two steps to the proof. First, we show that if
¯
X ∼ Unif

(
Sn−1

)
and
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¯
a is arbitrary, then

E
[
¯
XT

¯
a
]2

=
1

n
‖
¯
a‖22.

Next, we show that if
¯
Y ∼ Unif

(
Sp−1

)
, then

E‖A
¯
Y ‖22 =

1

p
‖A‖2F.

The result follows from these two facts. To see the first part, since
¯
X is orthogonally

invariant we have

¯
XT

¯
a

d
=

¯
XT (‖

¯
a‖2

¯
e1) = ‖

¯
a‖2

¯
X1.

To see the second part, let A = UΣV T be the SVD of A and write

‖A
¯
Y ‖22 = ‖ΣV T

¯
Y ‖22

d
= ‖Σ

¯
Y ‖22 =

n∧p∑

i=1

σ2
i (A) Y 2

i .



Appendix B

Limit theorems for weighted sums

In this appendix we state and prove some limit theorems for weighted sums of iid

random variables. First, we give a weak law of large numbers (WLLN):

Proposition B.1 (Weighted WLLN). Let Xn,1, Xn,2, . . . , Xn,n be a triangular ar-

ray of random variables, iid across each row, with EXn,1 = µ and EX2
n,1 uniformly

bounded in n. Also, let Wn,1, Wn,2, . . . ,Wn,n be another triangular array of ran-

dom variables independent of the Xn,i (but not necessarily of each other). Define

W̄n = 1
n

∑n
i=1 Wn,i. If W̄n

P→ W̄ and E
[

1
n

∑n
i=1 W 2

n,i

]
is uniformly bounded in n, then

1

n

n∑

i=1

Wn,i Xn,i
P→ W̄µ. (B.1)

We do not give a proof of Proposition B.1, but instead derive a strong law of large

numbers (SLLN) below. The proof of the weak law is similar. Here is the strong law:

Proposition B.2 (Weighted SLLN). Let Xn,1, Xn,2, . . . , Xn,n be a triangular array of

random variables, iid across each row, with EXn,1 = µ and EX4
n,1 uniformly bounded

in n. Also, let Wn,1, Wn,2, . . . ,Wn,n be another triangular array of random variables

independent of the Xn,i (but not necessarily of each other). Define W̄n = 1
n

∑n
i=1 Wn,i.

If W̄n
a.s.→ W̄ and E

[
1
n

∑n
i=1 W 4

n,i

]
is uniformly bounded in n, then

1

n

n∑

i=1

Wn,i Xn,i
a.s.→ W̄µ. (B.2)
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Proof. Define Sn =
∑n

i=1 Wn,i Xn,i and let FW
n = σ(Wn,1, Wn,2, . . . ,Wn,n). We have

that
1

n
Sn − W̄n µ =

1

n

n∑

i=1

Wn,i (Xn,i − µ)

Note that

E

[
1

n2

(
n∑

i=1

Wn,i (Xn,i − µ)

)4 ∣∣∣∣∣ F
W
n

]

=
1

n2

(
E [Xn,1 − µ]4

n∑

i=1

W 4
n,i + 3 E

[
(Xn,1 − µ)2(Xn,2 − µ)2

]∑

i6=j

W 2
n,iW

2
n,j

)

≤ C1

[
1

n

n∑

i=1

W 2
n,i

]2

for some constant C1 bounding E [Xn,1 − µ]4 and 3 E [(Xn,1 − µ)2(Xn,2 − µ)2]. There-

fore, the full expectation is bounded by some other constant C2. We have just shown

that

E

[
1

n
Sn − W̄n µ

]4

≤ C

n2

for some constant C. Applying Chebyschev’s inequality, we get

P

{∣∣∣∣
1

n
Sn − W̄n µ

∣∣∣∣ > ε

}
≤ C

n2ε4
.

Invoking the first Borel-Cantelli Lemma, see the sum converges almost surely.

Next, we derive a central limit theorem (CLT). To prove it we will need a CLT

for dependent variables, which we take from McLeish [58]:

Lemma B.3. Let Xn,i,Fn,i, i = 1, . . . , n be a martingale difference array. If the

Lindeberg condition
∑n

i=1 E
[
X2

n,i; |Xn,i| > ε
]
→ 0 is satisfied and

∑n
i=1 X2

n,i
P→ σ2

then
∑n

i=1 Xn,i
d→ N (0, σ2).

With this Lemma, we can prove a CLT for weighted sums.

Proposition B.4 (Weighted CLT). Let
¯
Xn,i, i = 1, . . . , n be a triangular array of

random vectors in R
p with

¯
Xn,i iid such that E

¯
Xn,1 =

¯
µX , Cov[

¯
Xn,1] = ΣX , and all
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mixed fourth moments of the elements of
¯
Xn,1 are uniformly bounded in n. Let

¯
Wn,i,

i = 1, . . . , n be another triangular array of random vectors in R
p, independent of the

¯
Xn,i but not necessarily of each other. Assume that 1

n

∑n
i=1 ¯

Wn,i
¯
WT

n,i
P→ ΣW , and

that for all sets of indices j1, j2, j3, j4, with each index between 1 and p, we have that

E
[

1
n

∑n
i=1 Wn,ij1Wn,ij2Wn,ij3Wn,ij4

]
is uniformly bounded in n. Then

√
n

[
1

n

n∑

i=1
¯
Wn,i •

¯
Xn,i −

1

n

n∑

i=1
¯
Wn,i •

¯
µX

]
d→ N

(
0, ΣW •ΣX

)
, (B.3)

where • denotes Hadamard (elementwise) product.

Proof. Let

¯
Sn =

√
n

[
1

n

n∑

i=1
¯
Wn,i •

¯
Xn,i −

1

n

n∑

i=1
¯
Wn,i •

¯
µX

]
.

We will use the Cramér-Wold device. Let
¯
θ ∈ R

p be arbitrary. Define

Yn,i =
1√
n

p∑

j=1

θjWn,ij (Xn,ij − µX
j ),

so that
¯
θT

¯
Sn =

∑n
i=1 Yn,i. Also, with Fn,i = σ(Yn,1, Yn,2, . . . , Yn,i−1), the collection

{Yn,i,Fn,i} is a martingale difference array. We will use Lemma B.3 to prove the

result. First, we compute the variance as

n∑

i=1

Y 2
n,i =

1

n

n∑

i=1

[
p∑

j=1

θjWn,ij (Xn,ij − µX
j )

]2

=
1

n

n∑

i=1

n∑

j=1

p∑

k=1

θjθkWn,ijWn,ik(Xn,ij − µX
j )(Xn,ik − µX

k )

P→
p∑

j=1

p∑

k=1

θjθkΣ
W
jkΣX

jk

=
¯
θT
(
ΣW •ΣX

)
¯
θ,

where we have used the fourth moment assumptions and Proposition B.1 to get the
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convergence. Lastly we check the Lindeberg condition. We have that

n∑

i=1

E
[
Y 2

n,i; |Yn,i| > ε
]

≤ 1

ε2

n∑

i=1

E
[
Y 4

n,i

]

=
1

ε2n2

n∑

i=1

∑

j1,...,j4

{
θj1θj2θj3θj4 · E [Wn,ij1Wn,ij2Wn,ij3Wn,ij4 ]

· E
[
(Xn,ij1 − µX

j1
)(Xn,ij2 − µX

j2
)(Xn,ij3 − µX

j3
)(Xn,ij4 − µX

j4
)
]}

≤ C1

ε2n

∑

j1,...,j4

E

[
1

n

n∑

i=1

Wn,ij1Wn,ij2Wn,ij3Wn,ij4

]

≤ C1C2p
4

ε2n

→ 0

where C1 is a constant bounding |θj|4 and the centered fourth moments of Xn,ij, and

C2 bounds the fourth moments of the weights.

For some classes of weights, we can get a stronger result.

Corollary B.5. With the same assumptions as in Proposition B.4, if the mean of

the weights converges sufficiently fast as
√

n
[

1
n

∑n
i=1 ¯

Wn,i −
¯
µW
] P→ 0, then

√
n

[
1

n

n∑

i=1
¯
Wn,i •

¯
Xn,i −

¯
µW •

¯
µX

]
d→ N

(
0, ΣW •ΣX

)
. (B.4)
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