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ABSTRACT 

In deriving a regression model analysts often have to use variable selection, despite of problems introduced by data- 

dependent model building. Resampling approaches are proposed to handle some of the critical issues. In order to assess 

and compare several strategies, we will conduct a simulation study with 15 predictors and a complex correlation struc- 

ture in the linear regression model. Using sample sizes of 100 and 400 and estimates of the residual variance corre- 

sponding to R2 of 0.50 and 0.71, we consider 4 scenarios with varying amount of information. We also consider two 

examples with 24 and 13 predictors, respectively. We will discuss the value of cross-validation, shrinkage and back- 

ward elimination (BE) with varying significance level. We will assess whether 2-step approaches using global or pa- 

rameterwise shrinkage (PWSF) can improve selected models and will compare results to models derived with the 

LASSO procedure. Beside of MSE we will use model sparsity and further criteria for model assessment. The amount of 

information in the data has an influence on the selected models and the comparison of the procedures. None of the ap- 

proaches was best in all scenarios. The performance of backward elimination with a suitably chosen significance level 

was not worse compared to the LASSO and BE models selected were much sparser, an important advantage for inter- 

pretation and transportability. Compared to global shrinkage, PWSF had better performance. Provided that the amount 

of information is not too small, we conclude that BE followed by PWSF is a suitable approach when variable selection 

is a key part of data analysis. 
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1. Introduction 

In deriving a suitable regression model analysts are often 

faced with many predictors which may have an influence 

on the outcome. We will consider the low-dimensional 

situation with about 10 to 30 variables, the much more 

difficult task of analyzing ‘omics’ data with thousands of 

measured variables will be ignored. Even for 10+ vari- 

ables selection of a more relevant subset of these vari- 

ables may have advantages as it results in simpler models 

which are easier to interpret and which are often more 

useful in practice. However, variable selection can intro- 

duce severe problems such as biases in estimates of re- 

gression parameters and corresponding standard errors, 

instability of selected variables or an overoptimistic esti- 

mate of the predictive value [1-4]. 

To overcome some of theses difficulties several pro- 

posals were made during the last decades. To assess the  

predictive value of regression model cross-validation is 

often recommended [2]. For models with a main interest 

in a good predictor the LASSO by [5] has gained some 

popularity. By minimizing residuals under a constraint it 

combines variable selection with shrinkage. It can be re- 

garded, in a wider sense, as a generalization of an app- 

roach by [2], who propose to improve predictors with 

respect to the average prediction error by multiplying the 

estimated effect of each covariate with a constant, an 

estimated shrinkage factor. As the bias caused by vari- 

able selection is usually different for individual cova- 

riates, [4] extends their idea by proposing parameterwise 

shrinkage factors. The latter approach is intended as a 

post-estimation shrinkage procedure after selection of 

variables. To estimate shrinkage factors the latter two 

approaches use cross-validation calibration and can also 

be used for GLMs and regression models for survival 

data. 
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When building regression models it has to be distin- 

guished whether the only interest is a model for predic- 

tion or whether an explanatory model, in which it is also 

important to assess the effect of each individual covariate 

on the outcome, is required. Whereas the mean square 

error of prediction (MSE) is the main criterion for the 

earlier situation, it is important to consider further quality 

criteria for a selected model in the latter case. At least 

interpretability, model complexity and practical useful- 

ness are relevant [6]. For the low-dimensional situation 

we consider backward elimination (BE) as the most suit- 

able variable selection procedure. Advantages compared 

to other stepwise procedure were given by [7]. For a 

more general discussion of issue in variable selection and 

arguments to favor BE to other stepwise procedures and 

to subset selection procedures using various penalties 

(e.g. AIC and BIC) see [4] and [8]. To handle the impor- 

tant issue of model complexity we will use different 

nominal significance levels of BE. The two post-estima- 

tion shrinkage approaches mentioned above will be used 

to correct parameter estimates of models selected by BE. 

There are many other approaches for model building. 

Despite of its enormous practical importance hardly any 

properties are known and the number of informative 

simulation studies is limited. As a result many issues are 

hardly understood, guidance to built multivariable regres- 

sion models is limited and a large variety of approaches 

is used in practice. 

We will focus on a simple regression model  

0 1Y X    

   , , , ,n n

 

with X a p-dimensional covariate. Let there be n ob- 

servations 1 1y x y xΛ  used to obtain estimates  

1b  and 0 1x b

15p 

0

b y   of the regression parameters. 

The standard approach without variable selection is 

classic ordinary least squares (OLS). In a simulation 

study we will investigate how much model building can 

be improved by variable selection and cross-validated 

based shrinkage. The paper reviews and extends early 

work by the authors [2,4,9]. Elements added are a tho- 

rough reflection on the value of cross-validation and a 

comparison with Tibshirani’s LASSO [5]. With an in- 

terest in deriving explanatory models we will not only 

use the MSE as criteria, but will also consider model 

complexity and the effects of individual variables. Two 

larger studies analyzed several times in the literature will 

also be used to illustrate some issues and to compare 

results of the procedures considered. 

The paper is structured in the following way. Section 2 

describes the design of the simulation study. Section 3 

reviews the role of cross-validation in assessing the pre- 

diction error of a regression model and studies its be- 

havior in the simulation study. Section 4 reviews global 

and parameterwise shrinkage and assesses the perform- 

ance of cross-validation based shrinkage in the simu- 

lation data. The next Sections 5 and 6 discuss the effect 

of model selection by BE and the usefulness of cross- 

validation and shrinkage after selection. Section 7 com- 

pares the performance of post-selection shrinkage with 

the LASSO. Two real-life examples are given in Section 

8. Finally, the findings of the paper are summarized and 

discussed in Section 9. 

2. Simulation Design 

The properties of the different procedures are investi- 

gated by simulation using the same design as in [10]. In 

that design the number of covariates , the cova- 

riates have a multivariate normal distribution with mean 

j  , standard deviation j 1  

7,14 ,130.3, 0.5, 0.5R R R  
0.7R

 for all covariates. 

Most correlations are zero, except R1,5 = 0.7, R1,10 = 0.5, 

R2,6 = 0.5, R4,8 = −0.7, 7,8 9  

and 11,12  . The covariates 3 8X X  and 15, X  are 

uncorrelated with all other ones. The regression coeffi- 

cients are taken to be 0 0   (intercept), β1 = β2 = β3 = 0, 

β4 = −0.5, β5 = β6 = β7 = 0.5, β8 = β9 = 1 and 10 1.5 , 
11 012 13 14 15        

1 1 15 15X X X

. 

The variance of the linear predictor  

     Λ  in the model equals  

 var 6.25XX C    

2 6.25  2 2.5 

, where CX is the covariance  

matrix of the X’s. The residual variances are taken to be 

 or . The corresponding values of 

the multiple correlation coefficient  

   2 2var varR X X     2 0.50R  are  and  

2 5 7 0.714R  
400n

, respectively. Sample sizes are n = 100 

or  . For each of the four  combinations, 

called scenarios, 
 2 ,n

10,000N   samples are generated 

and analyzed. The scenarios are ordered on the amount 

of information they carry on the regression coeffients. 

Scenario 1 is the combination , sce-   2100, 6.25n  

 2100, 2.50n   , scenario 3 is  nario 2 is 

 2400, 6.25n    and scenario 4 is  

 2400, 2.50n   . 

Since the covariates are not independent, the contribu- 

tion of Xj to the variance of the linear predictor  

 var X  2 2varj j j

 X is not simply equal to    . 

Moreover, the regression coefficients have no absolute 

meaning, but depend on which other covariates are in the 

model. To demonstrate this, it is studied how dropping 

one of the covariates influences the optimal regression 

coefficients of the other covariates, the variance of the 

linear predictor  var X 
2

 and the increase of the resi- 

dual variance  , which is equal to the decrease of 

 var X  , ,. This is only done for 4 10X XΛ  which 

have non-zero coefficients in the full model. The results 

are shown in Table 1. 
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Table 1. Effects of dropping one covariate with non-zero β’s. The other 14 covariates remain in the model. The main body of 

the table gives the regression coefficients. The last rows show the resulting values of  Xvar 

2

, the increase in the residual 

variance   and the multiple correlation R
2
. The latter is computed for the case of . Covariates X1, X2, X3, X11, 

..., 

X15 have β = 0. Dropping them will not affect the β’s of the model under “none”. 

.2
6 25

 cov covariate dropped 

  none 4 5 6 7 8 9 10 

coeff. 1 0 0 0.47 0 0 0 0 1.47 

 2 0 0 0 0.25 0 0 0 0 

 3 0 0 0 0 0 0 0 0 

 4 −0.5 - −0.50 −0.50 −0.29 −1.20 −0.50 −0.50 

 5 0.5 0.50 - 0.50 0.50 0.50 0.50 0.53 

 6 0.5 0.50 0.50 - 0.50 0.50 0.50 0.50 

 7 0.5 0.34 0.50 0.50 - 0.90 0.50 0.50 

 8 1.0 1.40 1.00 1.00 1.29 - 1.00 1.00 

 9 1.0 1.00 1.00 1.00 1.00 1.00 - 1.00 

 10 1.5 1.50 1.27 1.50 1.50 1.50 1.50 - 

 11 0 0 0 0 0 0 0 0 

 12 0 0 0 0 0 0 0 0 

 13 0 0 0 0 0 0 0.50 0 

 14 0 0 0 0 0.25 −0.20 0 0 

 15 0 0 0 0 0 0 0 0 

 var X 

2

  6.25 6.139 6.163 6.063 6.107 5.860 5.500 5.103 

increase    0 0.111 0.087 0.187 0.143 0.390 0.750 1.147 

2R   0.50 0.491 0.493 0.485 0.488 0.469 0.440 0.408 

 

The table also shows the resulting  for the case 

that . Apparently, the effect of each covariate 

is partly “inherited” by some of the other covariates. A 

simple pattern of inheritance is seen for X6. It only 

correlates with X2 and the pair 6

2R
2 6.25 

 2 ,

of assessing the predictive value of a statistical model. 

X X  is independent 

of the rest. If X6 is dropped, 2X  gets the regression 

coefficient 2,inher 2,6 6 0.25R   . This saves a little bit 

of the variance of the linear predictor. It drops from 

6.250 to 6.063, while it would have dropped to 6.000 if 

X6 were independent of the other predictors. A more 

complicated pattern is seen for X7. If that one is dropped, 

14 8,X X  and 4X  inherite the effects. The covariates X14 

and X8 show up because they are directly correlated with 

X7. Covariate X4 shows up because it is correlated with 

X8. The variance of the linear predictor drops from 6.250 

to 6.107. 

Since 3 11 12 15 , , ,X X X X



 are independent of the 

other covariates, they cannot inherit effects. However, 

14 1 2 13, , ,X X X X  can partly substitute 4 10, ,X XΛ , 

although they have coefficients 0i   in the full 

model. 

3. The Value of Cross-Validation 

Cross-validation is often recommended as a robust way  

d

The simplest approach is leave-one-out cross-validation in 

which each observation is predicted from a model using 

all the other observations. The generalization is k -fold 

cross-validation in which the observations are ran omly 

divided into k  “folds” of approximately equal size and 

observation in one fold are predicted using the observa- 

tions in the other folds. In the paper leave-one-out cross- 

validation will be used  k n , but the formulas pre- 

sented apply more gene Let rally.      1,
, ,

i i i
y x b    be 

obtained in the cross-validation sub ob- 

servation i  is not included. The cross-validation based 

estimate of the prediction error is defined as  

set, in which 

      

2

1,
1

ˆ
CV i ii i i

i

Err y y x x b
n

  


         
  

The true prediction error of the model with estimates 

b0

 

1 n 

 and b1 from the “original” model using all n obser- 

vations is defined as 

 2

new 0 new 1 .Err E Y b X b     
 

In the simulation study it is given by 
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  2 2

0 1 XErr b b C b 1 .        

The results in the simulation study using all variates 

w

d job in esti- 

m of Err

l to ze

mus

 

la

CVr

co

ithout any selection are given in Table 2. 

The results show that ˆ
CVErr  does a goo

ating the mean value  over all simulations. 

However, since the correlation between ˆ
CVErr  and 

Err  over all simulation runs is virtually equa ro, it 

t be concluded that it does a very poor job in 

estimating the prediction error of the individual models. 

Notice that the standard deviation of ˆ
CVErr  is much

rger than that of Err . The explanation is that a lot of 

the variation in Êr  is due to the estimation of the 

unknown 2 . Cr alidation might be do a better job 

in picking  the systematic prediction part of the pre- 

diction error caused by the error in the estimated 

oss-v

up 

 ’s. 

That can be checked by studying the behavior of 
2ˆ

CVErr s  which is an estimate of the systematic part  

2

0 1b b   1R b   . Here 2  s  is the usual unbiased  

estimator of 2 . The re

th

 deviations from 

th

results a  shown in Table 3. It 

nicely shows at the systematic error decreases mono- 

tonically from scenario 1 to scenario 4. 

Means are very similar but standard

e CV estimates are much smaller. CV somehow shrinks 

the estimate of the systematic error towards the mean. 

The table shows that the correlations between the esti- 

mate 2ˆ
CVErr s  and the true value 2Err   are still 

very low. The warning issued in Section 4 of [2] still 

holds. It is nearly impossible to estimate the prediction 

error of a particular regression model. Cross-validation is 

of very little help in estimating the actual error. It can 

only estimate the mean error, averaged over all potential 

“training sets”. However, it might be helpful in selecting 

procedures that reduce the prediction error. 

Finally, it should be pointed out that the cross-vali- 

dation results are in close agreement with the model 

based estimates of the prediction error as discussed in the 

same section of [2]. 

4. Cross-Validation Based Shrinkage 
without Selection 

4.1. Global Shrinkage 

As argued by [2,11], the predictive performance of the 

resulting model can be improved by shrinkage of the 

model towards the mean. This gives the predictor  

  1Ŷ y c X x b
   

0 1c

 

with shrinkage factor c,   . In the following c will 

be called global shrinkage factor. Under the assumption 

of homo-skedasticity, the optimal value for c can be 

estimated as 
2

heur

exp

ˆ 1
p s

c
SS


 

SS 2

 

with exp  the explained sum of squares, s  the esti- 

mate of the residual variance and p the number of pre- 

dictors. 

A model free estimator can be obtained by means of 

cross-validation. Let      1,i i i
, ,y x b    be obtained in the 

cross-validation subset, in which observation i  is not 

included, then  can be estimated by minimizing c

      

2

1,
1

n

i ii i i
i

y y c x x b


  


     
 

Table 2. Simulation results for ˆ
CV

 

 
 

Err  and Err  and their correlation (corr.) in models without selection. 

   ˆ
CV

Err  Err  corr. 

scenario n 2  mean st.dev mean st.dev.  

1 1  6.2 0.024 00 5 7.470 1.160 7.461 0.473 

2 100 2.50 3.029 0.474 2.980 0.188 0.029 

3 400 6.25 6.505 0.470 6.511 0.096 -0.009 

4 400 2.50 2.611 0.189 2.604 0.038 0.002 

 

Table 3. Simulation results for ˆ 
CV

Err s2
 and Err 2  and their correlation (corr.) in models without selection. 

   
2ˆ

CV
Err s  2Err  corr. 

scenario n 2  mean st.dev mean st.dev.  

1 1  6.2 0.063 00 5 1.216 0.275 1.211 0.473 

2 100 2.50 0.526 0.150 0.480 0.188 0.045 

3 400 6.25 0.261 0.048 0.261 0.096 0.095 

4 400 2.50 0.114 0.031 0.104 0.038 0.044 
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resulting in 

       

    

1,

2

1,

.
i i i

i i

x b

b



  

 



 
 
 

 

ng 

1

1

ˆ

n

i i
i

cal n

i
i

y y x

c

x x







 








This estimate can be obtained by regressi  i i
y y    

on     


rcept. I

slightly from

ŷ  as proposed in

u

1,i i i
x x b   in a model without an inte t  

diff  the one obtained by regressing iy  

on  [2]. The definition allows k-fold 

ers 

 i
cross-validation and is not restricted to leave-one-o t 

cross-validation. The results of application of global 

shrinkage in the simulation data, ignoring the restriction 

0 1c  , are shown in Table 4. Actually, 0c   was 

never observed and 1c   only occasionally. 

ble shows that global shrinkage ca lp to 

reduce the predictio r if the amount of in

Th n he

n erro formation 

in

between reduction in predictio

age and the predictio

ar

0 an ely. The

−0 10 for 9 . The  panel  the 

actual (true) prediction error based on our knowledge of 

8, 0.05

e ta

 the data is low. For scenario 1 the mean of the shrink- 

age factor is 0.84 and the mean reduction of prediction 

error is 0.14. Corresponding values for scenario 4 are 

0.98 and 0.001. For the latter all shrinkage factors are 

close to one and predictors with and without shrinkage 

are nearly identical. However, the positive correlation 

between the shrinkage factor c and the reduction in 

prediction error is counter-intuitive. To get more insight 

the data for scenario 1 with a small amount of infor- 

mation  2100, 6.25n    is shown in Figure 1. 

The re n error due 

to shrink n error of the OLS models 

lation 

e shown for three categories of the shrinkage factor c, 

namely    0.8 , 0.8 0.9c c    and  0.9c  . The 

frequencies of these categories among the 10,000 simu- 

lations ar espectiv  upper 

panel shows the apparent (estimated) prediction errors 

based on cross-validation and the apparent reduction 

achi- eved by global shrinkage. The differences between 

the three categories are small, but they are in line with 

the intuition that the largest reduction is achieved when 

the shrinkage factor is small. The quartiles (25%, 50%, 

75%) of the apparent reduction are 0.09, 0.15, 0.27 for 

0.8, 0.01,0.04,0.15c    for 0.8 0.9c   and −0.07, 

e 1754, 774 d 506, r

.02, 0 0.c  middle shows

the true model. Here, the picture is completely different. 

Reduction of the prediction error only occurs when the 

shrinkage factor is close to one and the OLS prediction 

error is large. Substantial shrinkage with 0.8c   tends 

to increase the prediction error. The quartiles of the true 

reduction are −0.29, −0.13, 0.04 for c < 0. , 0.18, 

0.31 for 0.8 0.9c   and 0.19, 0.28, 0.38 for 0.9c  . 

The lower panel shows the relation between the apparent 

and the a ion. At first sight the res r 

counter-intuitive. This phenomenon is extensively dis- 

cussed in [9]. What happens could be understood from 

the heuristic shrinkage factor 

ctual reduct ults ou

 2

heur exp
ˆ 1c p s SS   . If 

b  is “large” by random fluctuation, th

plained sum of squares expSS heur ays 

ose to 1 and does not “push” b  in the direction of the 

true 

e observed ex- 

 is large and ĉ  st

cl

 . If b  is “small” andom fluctuati  expSS  

is small and heurĉ  will be close  to 0 and might “push” 

in the wrong direction. This explains the overall neg  

correlation 0.253r

 by r on,

r

ative

 

ible to pred

se Shrinkage 

rinkage factor, coin- 

PWSF), to be defined 

 between apparent and actual re- 

duction of the prediction error. It must be concluded that 

it is imposs ict from the data whether shrink- 

age will be helpful for a particular data set or not. The 

chances are given under “frac. pos.” in Table 4. They are 

quite high in noisy data, but that gives no guarantee for a 

particular data set. 

4.2. Parameterwi

[4] suggested a covariate specific sh

ed parameterwise shrinkage factor (

as 

   Ŷ y X x c b
    1 .

Here, c  is a vector of shrinkag actors with 

0 1c

e f

  for 1, ,j p  Λ
ultiplication: 

 and “  ” stands for coordi- 

nate-wise m  1 1,j jj
c b c b  . This way of 

of Breiman’s Garrote [12]. See 

also [9,13]. Sauerbrei sug arameterwise 

shrinkage after model selection and to estimate the vector 

c  by cross-validation. As for the global shrinkage 

 (compared with OLS) achieved by global shrinkage in 

regulation is in the spirit 

gests to use the p

Tab mulation resu the reductio error

out selection; “frac. pos.” stands for the fraction with positive reduction, “corr.” stand for the correlation 

 
lts for n in prediction le 4. Si

odels withm

between the shrinkage factor and the reduction. 

   shrinkage factor c reduction of pred. error frac. pos. corr. 

scenario n 2  m ean st.dev mean st.dev   

1 100 6.25 0.746 0.617 0.839 0.045 0.139 0.245 

2 100 2.50 0.929 0.018 0.022 0.067 0.657 0.487 

3 400 6.25 0.962 0.006 0.007 0.025 0.636 0.679 

4 400 0.984 0.002 0.001 0.006 0.573 0.495 2.50 
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Figure 1. Reduction of prediction error achieved by global shrinkage for different categories of the shrinkage factor c; data 

from scenario 1  , . 2
100 6 25 . The upper panel shows the apparent prediction errors obtain d through cross- n e

validation, the middle panel shows the actual (true) prediction errors and the lower panel shows the relation between the 

apparent and the actual reduction. 

 

this could be obtained by regression without intercept  

f o  i i
y y   on       1,i i i  . 

e shrink as applied in the simulation data in 

m

ith the 

 in scenario 1. In scenario 4 the in-  

mated prediction error obtained from the cross-validation 

fit is far t

 

x x b 
crease is moderate, but still present. Moreover, the esti- 

Although this is against the advice of [4] parameter- 

wis age w

odels without selection, ignoring the restrictions  

0 1jc   for 1, ,j p Λ . A summary of the results is 

given in Table 5. 

Using PWSF the average prediction error increases 

when compared w OLS predictor. The increase is 

large (about 10%)

oo optimistic. (Data not shown). The explana- 

tion is that parameterwise shrinkage is not able to handle 

the redundant covariates with no effect at all. This can be 

seen from the box plots in Figure 2. 

For the redundant covariates the shrinkage factors are 

all over the place. Even variables with a weak effect have 

sometimes negative PWSF values. For the strong cova- 

riates they are quiet well-behaved despite the erratic 

behavior for the other ones. The conclusion must be that 

Copyright © 2013 SciRes.                                                                                  OJS 
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Table 5. Comparison of the prediction errors of OLS, global 

se

mean prediction error 

shrinkage and parameterwise shrinkage in models without 

lection. 

   

scenario n 2  OLS global shr. parameterwise shr. 

1 100 6.25 7.46 7.32 8.10 

2 100 2.50 2.98 2.96 3.24 

400 6.25 3 6.51 6.50 6.94 

4 400 2.50 2.60 2.60 2.77 

 

 

Figure 2. Box plot of parameterwise shrinkage factors in models without selection. Results from scenario 4. 

 

in models with many predictors without selection on 

stronger predictors parameterwise shrinkage cannot be 

recomm

rinkage values will be set to zero, but altogether such a 

0.1573, 0.05

ended. The behavior is a bit better if negative 

sh

constraint is not sufficient. This is completely in line 

with Sauerbrei’s original suggestion. 

5. Model Selection 

Following [10] models are selected by backward eli- 

mination at significance levels of     

and 0.01  . An impr

selected is, shown in Fig

ession of which cova

ure 3. 

riates are 

ed, Type I and 
Type II

selec- 

he 

s, 

the ones that have an influence on the outcome in the full 

model. In the simulation those ar the covariates 

5.1. Number of Variables Select
 Error 

The “softest” definition of model selection is the 

tion of covariates to be used in further research. T

“optimal” model contains only the important covariate

e 

4 10, ,X XΛ . If these are selected the other ones are 

redundant. However if one of the important covariates is 

not s portant covariates can come to elected, other non-im

the rescue if they are correlated with the non-selected 

important covariate(s). In the simulation data non-im- 

portant covariates that can play such a role are covariates 

1 2 13 14, , ,X X X X  as can be seen from Table 1. The effect 

of omitting important covariates is the loss of explained 

variatio in the optimal model after selection or, equi- 

valently, the introduction of additional random error. If 

no selection takes place there is no loss of explained 

variation, but there is a large number of non-important 

covariates, leading to larger estimation errors. Even more 

important is a severe loss in general usability of such pre- 

d nsider, for example, a prognostic model 

comprising many variables. All constituent variables 

would have to be measured in an identical or at least in a 

n 

ictors [4,6]. Co
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Figure 3. Frequency of selection per covariate. 

 

similar way, even when their effects were very small. 

Such a model is impractical, therefore “not clinically 

useful” and likely to be “quickly forgotten” [14]. 

From Figure 3 we learn that in the

 lot of information (scenario 4) all important variables 

%

 easy situation with 

a

are selected in nearly all replications. For the 8 variables 

without an influence selection frequencies agree closely 

to the nominal significance level. For 15.73   se- 

lection frequencies are between 15.7% and 19.0%. The 

corresponding relative frequencies are between 5.1% and 

6.55% for 5%   and between 0.9% and 3.3% for 

1%  . Results are much worse for situations with less 

information. For the most extreme scen  ob- 

vious that all selected models deviate substantially from 

the true model. For 1%

ario 1 it is

   selection frequencies are 

only between 23  and 25.1% for the 4 relevant vari- 

 4 7

.4%

ables X X  with a weak effect. Even for 

15.73%   these frequencies are only between 46.1% 

and 57.3%. Of these 4X  has the lowest frequency, 

which is probably cau the strong correlation with 

8

sed by 

X . With 28.9% 1X  has the largest frequency of se- 

lection  non-important covariates. That is 

 its strong correlation with X5. In 19.4% of 

the simulations X1 is selected while the important vari- 

able X5 is not selected. 

he effect of sel ion at the three levels is shown in 

Figures 4-6. 

Figure 4 summarizes the number of included variables 

for the different scenarios. In the simple scenario 4 all 

seven relevant variables

 among 

d by

the

T ect

 were nearly always selected. In 

ad

ment to the significance level. In 87.7%  the correct 

model was selected for 0.01

explaine

   whereas redundant 

variables without influence were ded when using 

dition irrelevant variables were selected in close agree- 

ad

0.157   For scenarios with less information the num- 

ber of selected variables is usually smaller and the sig- 

l has a stronger influence on the inclusion 

fr

res 5

riates with

nificance leve

equencies. Strong predictors are still selected in most of 

the replications, but the rest of the selected model does 

hardly ever agree to the true model. For each of the vari- 

ables with a weaker effect the power for variable inclu- 

sion is low. 

The comparison of Figu  and 6 nicely shows the 

balance between allowing redundant covariates (cova- 

out effect in the selected model) and allowing 

loss of explained variation. The number of redundant 

covariates shown in Figure 5, corresponds directly to the 

type I error. It hardly depends on the residual variance 
2  and the sample size n . Despite of some stronger 

correlations in our design the distribution is very close to 

binomial  8, . The type II error is reflected by the loss 

of the variance of the optimal linear predictor  

 var X  , or ,equivalently, the increase in residual 

variance 2 , caused by not selecting all important cova- 

riates. It could be translated into a loss of 2R  by divi- 

ding it by the marginal variance  

    2var varY X    , which is equal to 12.5 in sce- 

n ios 1 and 3 (σ2 = 6.25) and 8.75 in scenarios 2 and 4 

(σ2 = 2.5). This is shown in Figure 6. 

General s aking, loss of 2R  depends on both the 

significance level used in the selection process and the 

 

ar

ly pe
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Figure 4. Number of included covariates. 

 

 

Figure 5. Number of redundant covariates. 

 

amount of information in the data reflected by residual 

variance 2

coefficient is 0.7) if the latter is not selected. That is 

shown in Table 6 for scenario 2 and 0.05  and the sample size n . In scenario 4 with 

a high amount of information, the loss of 2R  is 

negligible and the nu er of redu variates can be 

controlled by taking 0.01

  . It has to 

be kept in mind that other variables are also deleted 

making a direct comparison difficu . Concerning these 

two variables the correct model includes X5 and excludes 

e in 69% of the replications. Here the 

 

mb

 

ndant co

  . In sce ario 1 there is a 

if the selec

n

tionsubstantial loss of 2R   is too strict and 

0.1573   might be more appropriate. 

As mentioned above and seen in Table 1 the variable 

1X  can pa ly take over the role of 5rt X  (correlation 

lt

X1, which is the cas

mean loss is smallest. X5 is erroneously excluded in 

about 28% of the models. In about half of them the 

correlated variable X1 is included, reducing the R2 loss 
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Figure 6. Loss of R  in comparison to the full model. The bars show mean ± 1 st.dev. in the population of replications. 

 

Table 6. Inclusion frequencies and ave age loss of 

2

R X Xr 2  for combinations of 
1

 and 
5

 .for scenario 2 and 0 05 . 

1
X  included 

5
X  included Frequency mean loss of 2R  

no no 1365 0.0485 

no yes 6900 0.0179 

 

yes no 1433 0.0274 

yes yes 302 0.0206

Copyright © 2013 SciRes.                                                                                  OJS 



H. C. VAN HOUWELINGEN, W. SAUERBREI 89

 
caused by ex f X5 substantially. 

5.2. Assessment of Prediction Error 

The predictio ror of a particular model d nds on the 

number of re ant covariates and the los  explained 

variation. The average reduction of prediction error when 

compared with no selection (significance le 1

clusion o

n er epe

dund s of

vel   ) is 

uld be best com- 

he prediction 
2

shown in Figure 7. Those numbers co

pared with the systematic component of t

error, Err  , as reported in Table 3. 

It nicely shows that the optimal level depends on the 

amount of information in the data. It also shows that 

moderate selection at 0.1573  , in a univariate situ- 

ation equivalent with AIC or Mallows’ CP, can do very 

little harm. Even 0.05   gives always bette ults 

than no selection. For a small sample size the relative 

reduction in prediction error is small. For the large 

sample size elimination of several variab

r res

les reduces the 

relative prediction error substantially for 0.05  . The 

average number of selected variables is 7.02 for scenario 

3 and 7.40 for scenario 4

Figure 8 shows the prediction error ranking of the 

different levels in the ividual simulation data sets. 

Mean ranks were used in replications where the same 

model was selected. As observed before, the variation is 

very big and there is no outspoken winner, but there are 

some outspoken losers. In all scenarios it is bad not to 

select at all. However, for a small sample size it is even 

worse to use a very small s

. 

 ind

election level. 

The p  errors of the se els can be 

estimated by cross-validation in such a way that in each 

cross-validation data set the whole sele rocedure is 

carried ou in Section 3 this will yield a correct esti- 

mate of the average prediction. Thus, it could be used to 

select the al” significance level eral, but it 

will not necessarily yield the best proc or the act- 

ual data set at hand. 

s 7 and 9 shows that cross-valida- 

bout the re- 

le to notice 

rediction lected mod  

ction p

t. As 

 “optim  in gen

edure f

6. Post-Selection Cross-Validation 

A common error in model selection is to use cross- 

validation after selection to estimate the prediction error 

and to select the best procedure. As pointed out by [15], 

this is a bad thing to do. That is exemplified by Figures 9 

and 10. 

Comparing Figure

tion after selection is far too optimistic a

duction of the prediction error and is not ab

the poor performance of selection at 0.01   for the 

scenarios 1 and 2. Moreover, as can be seen from Figure 

10, post-selection cross-validation tends to favor selec- 

tion at 0.1573   for all scenarios. This is no surprise 

because in univariate selection 0.1573   is equi- 

va

 

lent with using AIC, which is very close to using 

cross-validated prediction error if the normal model 

holds true. 

6.1. Post-Selection Shrinkage 

While cross-validation after selection is not able to select  

 

re 7. Mean reduction  prediction error as reported in Tables 2 and 3 for different α-levels. Values of Err − s
2
 

21, 0.48, 0. ios 1-4, respectively (see Table 3). 

Figu

are 1.

 of the true

 in scenar26 and 0.104
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Figure 8. Ranks of prediction error for different levels; rank = 1 is best, rank = 4 is worst. 

 

 

Figure 9. Reduction of estimated prediction error, obtained through post-selection cross-validation, after backward elimina- 

tion with three selection levels. 
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Figure 10. Ranks of estimated prediction error obtained from post-selection cross-validation for different levels; rank = 1 is 

best, rank = 4 is worst. The ranks of the true prediction error are shown in Figure 8. 

cross-validation based shrinkage after selection can help 

to improve the model. The results are shown in Figure 

11. 

On the average, parameterwise shrinkage gives better 

predictions than global shrinkage, when applied after 

selection. An intuitive explanation is that small effects 

that just survive the selection, are more prone to selection 

bias and, therefore, can profit from shrinkage. In contrast, 

selection bias plays no role for large effects and shrink- 

age is not needed, see [16] and chapter 2 of [8]. Whereas 

global shrinkage “averages” over all effects, parameter- 

wise shrinkage aims to shrink according to these indi- 

vidual needs. 

This can also be investigated by looking into the mean  

squared  

 

the best model, it might be of interest to see whether 

 estimation errors 
2

,
ˆ

j opt j   of the regres-  

sion coefficients conditional on the selection of cova- 

riates in the model. The c efficients ,opt jo   are the op- 

timal regression coef in the selected model. As 

discussed in , j

ficients 

2 the opt Section   coefficients can differ 

from the j  coefficients if there is correlation between 

ce the effect of redundant covariates that only enter 

that distinction. The precise mechanism is not quite clear 

yet. To get some better feeling what is going on, the 

observed scatterplot of parameterwise shrinkage factors 

versus the OLS estimator are shown in Figure 13 for 

covariate X3 (no effect), X6 (weak effect) and X9 (strong 

effect). These covariates are selected because the optimal 

parameter value when selected does not depend on which 

other covariates are selected as well. X3 is independent of 

all other variables and the other two variables are only 

correlated with one variable without influence. Therefore 

parameter estimates are theoretically equal to the true 

value in the full model. If the optimal value varies with 

the selection the graphs are a bit harder to interpret. 

For X3, the covariate without effect and no correlation, 

the inclusion frequency is close to the type I error and in 

about half of these cases parameter estimates are positive 

and negative. The variable is selected in replications in 

which the estimated regression coefficient is by chance 

most heavily overestimated (in absolute terms) compared 

to the true (null) effect. One would hope that PWFS 

would correct these chance inclusions by a rule like “the 

by chance, while the global shrinkage is not able to make 

the covariates. Figure 12 shows the mean squared errors 

of the shrinkage based estimators relative to the mean 

quared errors of the OLS estimators for sample size 

larger the absolute effect b , the smaller the shrinkage

factor c ”. Although most shrinkage factors are muc

lower than one, Fig

 

h 

ure 13 shows a different cloud: “the 

la

s

rger b , the larger c ”. 

A similar observation transfers to the plot for X9, 

which is selected in all replications. Therefore, selection 

bias is no issue for this covariate. The hope is that PWSF 

would move the estimate close to the true value β = 1.0. 

100n  , scenarios 1 and 2 . Sample size 400n   is not 

shown, because post-selection shrinkage has hardly any 

effect. 

It is clear that the parameterwise shrinkage helps to 

redu
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Figure 11. Reduction in prediction error obtained through s

deviation. 

hr kage after selection. Error bars show mean ± 1 standard 

 

in

 

Figure 12. Relative mean squared estimation errors of the partial regression coefficient per covariate (compared to OLS in 

the selected model) for the parameter estimates obtained by global (black) or parameterwise post-selection shrinkage (grey). 

Covariates 1-3 and 11-15 have no effect in the full model. 

 

h b. Most values are close to 1, indicating that servation can be made for the cases where the correlated 

Generally speaking that does not happen: c increases 

slowly wit

shrinkage is not required. The only “hoped for” ob- 
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Figure 13. Parameterwise shrinkage factors versus OLS estimates from selected models for covariates 3, 6 and 9; α = 0:05 

and scenario 2; reference lines refer to the true value of the parameter. 

 

variable X13 is included (plot not shown). X13 has no 

effect and the selection frequency (5.9%) agrees well to 

the type I error. If X13 is included, the shrinkage factor 

for X9 show a decreasing trend with c -values clearly 

below 1 if the estimate overestimates the true value 

1

b  

  , and values around 1  if 1b  . One might say 

that param rin helps to correct for chance 

inclusions of ut r estimation errors. 

X6 is a covariate with a weak effect. It is not included 

in 19% of the replications, certainly cases in which the 

ue effect was underestimated by chance. The overall 

for the case where it is included shows a stronger 

increasing trend (compared with X9) tending to a value of 

about 0.96c  , if b is large. Here, X2 plays the role of a 

nfounding redundant covariate. In cases where it is 

included (plot not shown), the shrinkage factor for X6 is 

rather stable with median value about 0.88c  . 

Some understanding obtained by the observa- 

tion in [2] that in univariate he optimal shrinkage  

factor is given by 

c

es eter sh

X13 b

kag

not fo

tr

picture 

co

 can be 

models t

  2ˆ1 varcuni    . If   is small,  

hard to esti ate. If this quantity is very m   is large it 

could be estimated by 21 1unic t . The parameter- 

wise shrinkage factor behaves very similarly. This could 

be seen from plotting PWSF against t  (Graphs not 

shown). Such a plot clearly shows that 

ˆ  

2t   (for 

0.05  ) is the cut-point for an inclusion and that 

PWSF tends to increase with t  for included variables. 

For large absolute t-values, PWSF’s are close to one. 

whereas they drop to about 0.8 for t  close to 2. The 

relation between PWSF and t  is similar for all three 

covariates 9X . The difference between the covariates is 

the size of the effect and correspondingly the range of t  

after selection. 

The conclusion so far is that coordinate-wise shrinkage 

is helpful after selection. However it is not clear how to 

select the significance level. In a real analysis, the level 

should be determined subjectively by the aim of the 

study [4]. In the following we will compare backwards 

elimination with a procedure like the LASSO, that com- 

bines selection, shrinkage and fine-tuning. 

7. Comparison with LASSO 

The simulations discussed above were compared with the 

results of the LASSO with cross-validation based selection 
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of the penalty parameter  . Because LASSO is quite 

time-consuming it was only applied on the first 2000 data 

sets for eac com ination  n  and 2h b of  . Figure 14 

shows the d i n of e cross-va n based istr butio  th lidatio   

for each co The variation in the penalty para- 

meter 

mbination. 

 , even in the simple situation of scenario 4 is 

surprisingly large. There is some correlation with the 

estimated variance in the full model, but that does not 

explain the huge variation. 

The next Figure 15 shows the inclusion frequencies  

 

 

ation based λ’s for the different scenarios. Figure 14. LASSO: histogram of the cross-v

 
alid

 

Figure 15. LASSO: inclusion frequencies of the covariates. 
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for the different covariates. Relevant variables are nearly 

always included, but LASSO is not able to exclude 

redundant covariates if there is much signal in the other 

ones. For example, in scenario 4 inclusion frequencies 

are 52% for 3X  and 54% for 15X , the two uncorrelated 

bles with uence. The probable reason is that 

selection and shri ge are controlled by the same penal- 

m 

varia

ty ter

out infl

nka

 . The menon is also nicely illustrated by 

Figure 16. 

Finally, the question how the prediction error of 

LASSO compares with the models based on selection 

and shrinkage is answered by Figure 17. 

The conclusion must be that LASSO is no panacea. 

Concerning prediction error, it seems to be OK for noisy 

data (scenarios 1 and 2), but it is beaten by variable 

selection followed by some form of shrinkage if the data 

are less noisy (scenario 4). Most likely, that is caused by 

the inclusion of two many variables without effect. Vari- 

able selection combined with parameterwise shrinkage 

performs quit well. The choice of a suitable significance 

level seems to depend on the amount of information in 

eas 0.01

pheno

the data. Wher    has the best performance in 

scenari s 

en these 

o 4, thi

arios. In 

level seems to be too low in the other 

cases selections with 0.157sc    or 

0.05  ve better pre ormance. Using 

post shrinkage sli ces the prediction 

errors with an advantage for parameterwise shrinkage. 

8. Examples 

8.1. Ozone Data 

For illustration, we consider one specific aspect of a 

study on ozone effects on school children’s lung growth. 

The study was carried out from February 1996 to Octo- 

ber 1999 in Germany on 1101 school children in first and 

second primary school classes (6 - 8 years). For more 

details see [17]. As in [18] we use a subpopulation of 496 

children and 24 variables. None of the continuous vari- 

ables exhibited a strong non-linear effect, allowing to 

assume a linear effect for continuous variables in our 

analyses. 

First, the whole data set is analyzed using backward 

elimination in combination with global and parameter- 

wise shrinkage and LASSO. Selected variables with cor- 

responding parameter estimates are given in Table 7 and 

mean squared prediction errors are shown in Table 8. 

The t-values are only given for the full model to illustrate 

the relation between the t-value and the parameterwise 

shrinkage factor. For variables with very large 

 ha

selection 

diction perf

ghtly redu

t -values, 

PWSF are close to 1. In contrast, PWSFs are all over the 

place if t  is small, a good indication that variables 

should be eliminated. 

Mean squared prediction errors for the full model and 

the BE models were obtained through double cross-va- 

s-validated pre- 

ined by cross- 

validation within the cross-validation training set. Pre- 

diction error for the LASSO is based on single cross- 

validation because double cross-validation turned out to 

be too time-consuming. Therefore, the LASSO predic- 

tion error might be too optimistic. 

MSE is very similar for all models, irrespective of 

applying shrinkage or not (range 0.449 - 0.475; the full 

model with PWSF is the only exception), but the number 

 

lidation in the sense that for each cros

diction, the shrinkage factors were determ

 

 covarFigure 16. LASSO: distribution of the number of redundant iates. There are eight redundant covariates in the design. 
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Figure 17. Average prediction errors for different strategies. 

 
Table 7. Analysis of full ozone data set using standardized covariates. The unadjusted R2 equals 0.67 in the full model and 

drops only slightly to 0.64 for the BE(0.01) model. For the LASSO model it is 0.66. 

method full model BE(0.1573) BE(0.05) BE(0.01) LASSO 

cglobal 0.973 0.9876 0.9927 0.9958 − 

variables b |t| cpar b cpar b cpar b cpar b 

ALTER 0.016 1.42 1.09       0.015 

ADHEU −0.010 0.90 1.03       −0.005 

SEX −0.099 10.04 1.00 −0.101 0.98 −0.098 0.99 −0.096 0.99 −0.094 

HOCHOZON −0.033 2.52 0.78 −0.036 0.64 −0.026 0.72   −0.014 

AMATOP −0.002 0.15 −33.9        

AVATOP −0.007 0.70 −0.20       −0.003 

ADEKZ 0.004 0.38 −8.93        

ARAUCH 0.003 0.31 −9.15        

AGEBGEW 0.010 0.97 −0.00       0.007 

FSNIGHT 0.008 0.77 −1.09       0.004 

FLGROSS 0.173 11.42 0.97 0.181 1.01 0.181 1.01 0.184 1.01 0.172 

FMILB −0.021 1.56 0.45 −0.018 0.64     −0.011 

FNOH24 −0.036 2.85 0.72 −0.038 0.72 −0.032 0.79   −0.020 

FTIER −0.004 0.37 −5.60       −0.002 

FPOLL −0.026 1.32 −1.13 −0.020 0.79 −0.025 0.80   −0.011 

FLTOTMED −0.019 1.93 0.86 −0.020 0.63     −0.012 

FTEH24 −0.030 1.53 0.36 −0.032 0.25     −0.002 

FSATEM 0.023 1.88 1.08 0.023 0.76     0.019 

FSAUGE 0.003 0.30 −6.61        

FLGEW 0.086 6.04 1.16 0.090 0.98 0.090 0.98 0.090 0.97 0.086 

FSPFEI 0.027 2.20 0.68 0.027 0.87 0.032 0.89 0.026 0.90 0.019 

FSHLAUF −0.008 0.75 −1.16        

FO3H24 0.033 1.58 0.46 0.038 0.22      

FSPT 0.015 0.65 −3.61        
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Table 8. Mean squared prediction errors. 

model no shrinkage global shrinkage parameterwise shrinkage 

full 0.0461 0.0461 0.0629 

BE(0.1573) 0.0449 0.0449 0.0456 

BE(0.05) 0.0475 0.0475 0.0470 

BE(0.01) 0.0465 0.0465 0.0464 

LASSO   0.0458 

 

of variables in the model is very different. BE(0.01) 

selects a model with 4 variables, corresponding PWSF 

are all close to 1. Three variables are added if 0.05 is 

used as significance level. Using 0.157 selects a model 

with 12 variables. Two of them have a very low (below 

0.3) PWSF, indicating that these variables may better be 

excluded. LASSO selects a complex model with 17 vari- 

ables. 

Although they carry relevant information the double 

cross-validation results for the full data set lack the in- 

tuitive appeal of the split-sample approach. To get closer 

to that intuition the following “dynamic” analysis scheme 

is applied. First the data are sorted randomly, next the 

first trainn  observations are used to derive a prediction 

model which is used to predict the remaining trainn n  

observations. This is done for ntrain 150, 200, 250, 

300, 350 and repeated 100 time way an im- 

pression is obtained how the different approaches behave 

with growing information. T

raphs. Figure 18 shows the mean number of covariates 

proc are substanti train = 350 LA

selects on average 14.4 vari  whereas BE(0.01)

lect .0 varia s. Figure 19 sho the evo tion 

of t hri o r mo selected  

BE( is alw oun 8 and BE(0  

v  0  0.9 r ll m e 

glo age s mu wer,  from 83 

with an increase to 0.95. Figure 20 s the mean 

squ dictio f e di  

W tion F ha ery nce, 

wh glob nkag tor c ghtly reduce 

MS dicti oves d if 

vari ection rform and all E 

than  glob ge or. T ost im t 

con that “BE(0.01 lowe PW

L  ve ilar ction E’s, e 

LASSO has to include many e cov es to  

that. 

8.2 at D

In a  exam e wil strate e issues in a 

stu ne d ng v le. T ta w  

analysed in [19] and later used in many papers. 13 

continuous covariates (age, weight, height and 10 body 

circumference measurements) are available as predictors 

for percentage of body fat. As in the book of [8] we 

excluded case 39 from the analysis. The data are avail- 

able on the website of the book. In Table 9 we give mean 

squared prediction errors for several models and shrink- 

age approaches. Furthermore we give these estimates for 

variables excluding 6X , the dominating predictor. This 

analysis assumes that 6X  would not have been mea- 

sured or that it would not have been publicly available. A 

related analysis is presented in chapter 2.7 of [8] with the 

aim to illustrate the influence of a dominating predictor 

and to raise the issue about the term “full model” and 

whether a full model approach has advantageous pro- 

perties compared with variable selection procedures. 

Using all variable MSEs of the models are very similar 

with a range from 18.76 - 20.80. Excluding 6

 = 100, 

s. In that 

X  leads to 

erences between models are 

still negligible (25.87 - 27.47); with the full model 

 of the ozone data. For BE(0.157), 

E(0.01) a SO we giv ter est

Table 10. 

Exclud  6

a severe increase, but diffhe results are shown in 

g

included. More variables are included with increasing 

sample size (larger power) and differences between the 

followed by PWSF as an exception. This agrees well 

with the results

edures al. For n SSO 

ables,  se- 

s only 4 ble ws lu

he global s nkage fact r. Fo dels  with

0.01) it ays ar d 0.9  for .157) it

aries between .96 and 8 t fo, bu the fu odel th

bal shrink factor i ch lo  starting  0.

 show

ared pre n errors or th fferent strategies.

ithout selec  PWS s a v bad performa

ereas the al shri e fac an sli

E of pre on. PWSF impr  the pre ictor 

able sel  is pe ed has sm er MS

 using a al shrinka  fact he m portan

clusion is ) fol d by SF” and 

ASSO have ry sim predi  MS but th

 mor ariat achieve

. Body F ata 

 second ple w l illu  som

dy with o ominati ariab he da ere first

B nd LAS e parame imates in 

ing X  lts in the inclus of othe  

bles for all approaches. As  the ozone data O 

rdly b is er 

n fr (0.0 llow  PW PWS

ariables selected b  BE(0.01) are close to 1, whereas 

ariables elected ditionall  by BE .157) e 

WSF va es below 0.9 and s metimes round 0.6. This 

xample confirms that BE(0 1) followed by F 

ives sim ar prediction MS  but includes ch 

aller er of bles

Dis n and Conclusions 

ildin able regression odel is a challenging task 

a larger number of candid predictors is a e. 

ving a situation with about  to 30 variables in ind 

 full model is often unsu e of 

iable selection is required bviousl  subjec  

nowledg has to play a key role in model buildin , but 

en it is limited [ and d iven el-bu  is 

uired pite e c  in t eratu 0,  

resu ion r vari-

a in LASS

ha eli inates any m varia le, but the MSE 

ed by

not bett
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v y
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included under different strategies. Figure 18. Mean number of covariat

 
es 

 

Figure 19. Evolution of the global shrinkage factor for differ

BE(0.157) and BE(1.000) = “No selection”. 

 

21] w

en

e consider backward elimination as a suitable 

approach, provided the sample size is not too small and 

 sensibly chosen according to the 

t selection levels. From top to bottom BE(0.010), BE(0.050), 

selected regression models. 

In a simulation study and two examples we discuss the 

value of cross-validation, assess a global and a para- 

meterwise cross-validation shrinkage approach, both 

without and with variable selection, and compare results 

with the LASSO procedure which combines variable  

the significance level is

aim of a study. For a more detailed discussion see chapt- 

er 2 of [8]. Under- and overfitting, model instability and 

bias of parameter estimates are well known issues of 
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Figure 20. Mean squared prediction error for the different strategies. 

 
Table 9. Mean squared prediction errors. 

model no shrinkage global shrinkage param.wise shrinkage 

 all no 
6

X  all no 
6

X  all no 
6

X  

full 19.05 26.74 19.04 26.71 20.59 31.47 

BE(0.1573) 20.80 27.47 20.78 27.45 20.22 27.22 

BE(0.05) 18.76 26.10 18.76 26.10 18.83 26.85 

BE(0.01) 19.54 25.87 19.54 25.87 19.54 25.90 

LASSO     19.08 26.22 

 

selection with shrinkage [2,4,5]. As discussed in the 

introduction it is often necessary to derive a suitable 

explanatory model which means that the effects of indi- 

vidual variables are important. In this respect a sparse 

model has advantages, both from a statistical point of 

direct effects of irrelevant variables if a relevant variable 

is not included. It seems consensus that stepwise and 

other variable selection procedures have limited value as 

tools for model building in small studies ([8,21] Section 

2.3) and 10 observations per variable  often considered 

of 100n

view and from a clinical point of view. In a related con- 

text [22] refer to parameter sparsity and practical spars- 

ty.  

as a lower boundary to derive an explanatory model [23]. 

Based on this knowledge it is obvious that a sample size 
i

9.1. Design of Simulation Study 

Our simulation design was used before for investigations 

of different issues [10]. We consider 15 covariates with 

seven of them having an effect on the outcome. In addi- 

tion, multicollinearity between variables introduces in-  

is

  (6.7 per variable) is low. As a more realistic 

400 . Concerning the resi- 

du

scenario we also consider n

al variance we have chosen two scenarios resulting in 
2 0.5R   and 2 0.71R  . The 4 scenarios reflect the 

situation with a low to a large(r) amount of information 

in the data. As expected from related studies the amount 

of information in the data has an influence on the results 

Copyright © 2013 SciRes.                                                                                  OJS 



H. C. VAN HOUWELINGEN, W. SAUERBREI 100 

 
Table 10. Parameter estimates for the standardized variables. 

 BE(0.1573) BE(0.01) LASSO 

 all no 
6

X  all no
6

X  no 
6

X  all 

var. b par
c  b par

c  b par
c  b par

c  b b 

1
X  0.77 0.85 2.76 0.95   2.49 0.98 0.89 2.49 

2
X    8.46 0.99   8.86 0.99  4.74 

3
X  −0.84 0.91 −2.90 0.99 −1.11 0.93 −2.99 0.99 −0.81 −2.17 

4
X  −0.76 0.69 −0.93 0.63     −0.80 −0.47 

5
X  −1.09 0.71       −0.76 1.56 

6
X  8.93 0.96   8.01 0.99   8.54  

7
X          −0.57 1.41 

8
X    1.01 0.71     0.54 0.99 

9
X            

10
X          0.18  

11
X          0.40  

12
X  0.73 0.59       0.43  

13
X  −1.58 0.98 −2.64 1.00 −1.57 0.97 −2.97 0.96 −1.64 −2.32 

 

and therefore on the comparison between different proce- 

dures. 

a
Selection 

The fin  of Section 3 c

does imate the perfor e model at hand 

but the erage perform e over all ble “training 

sets”. T ults of Se  confirm t hrink-

age o impro diction per nce in data

with little information [2,11] like in the first scenario

with 0  and  . However, the results 

show actual val f the global ge factor

ret [9] hrinkage is a bit counter- 

9.2. Cross-Validation nd Shrinkage without 

dings

not est

onfirm that cross-validation 

mance of th

av anc possi

he res ction 4 hat global s  

 can help t ve pre forma  

 

10n  2 6.25
u o that th

rd to 

e 

interp

e 

. S

 shrinka  

is ha

intuitive. Considerable shrinkage is a sign that something 

is wrong and application of shrinkage might even in- 

crease the prediction error. That is evident from the nega- 

tive correlation 0.253    between apparent and actual 

reduction in prediction error in the simulations from 

scenario 1. For the more informative scenarios 2-4 all 

shrinkage factors are close to one and predictors with and 

without shrinkage are nearly identical. It must be con- 

cluded that it is impossible to predict from the data 

a particular data set 

positive and negative signs and some of them have 

values far away from the intended range between 0 and 

1. 

ediction error is o com- 

pare result rom variable selection proce es. This 

plies that able predic th favorable statistical 

in (or only rest of an is. In 

rast to such a statistically  analysis r chers 

often the  to derive a planato odel 

 willing to accept a m or 

prediction per ance [6]. E ing relevant variables 
2

erion fo

ous in st ith a lo

whether shrinkage will be helpful for 

or not. 

Our results confirm that it does not make any sense to 

use parameterwise shrinkage in the full model [4]. Esti- 

mated shrinkage factors are not able to handle redundant 

covariates with no effect at all. Therefore they can have 

9.3. Variable Selection and Post Selection 
Shrinkage 

Most often pr the main criteria t

s f dur  

im  a suit tor wi

criteria are the ma ) inte analys

cont  guided esear

have 

and are

aim  suitable ex ry m

odel with slightly inferi

xcludform

results in a loss of R  and the inclusion of variables 

without effect complicates the model unnecessarily and 

usually increases the variance of a predictor. We used 

several criteria to compare the full model and models 

derived by using backward elimination with several val- 

ues of the nominal significance level, the key criterion to 

determine complexity of a selected model, and the 

LASSO procedure. The number of variables is a key 

crit r the interpretability and the practical useful- 

ness of a predictor. BE(0.01) always selects the sparsest 

model, but such a low significance level may be danger- 

udies w w amount of information. Our 

results confirm that BE(0.01) is very well suited if a lot 

of information is available. All stronger predictors are 

always included and only a small number of irrelevant 
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variables is selected. Altoge

levels of 0.05 or 0.157 select nable models. For 

studies with a sample siz  loss in 2R  is 

acceptable and more than comp using the 

pre n error  criterion. bviou sidering sev- 

eral statistical criteria the odel does not have 

advantages and the simu study illustrates that some 

selection is always sensib  The ts of on 5 

show that parameterwise shrinkage a ter selection can 

help to pro dictiv rform  on rrect-

ing the regre oeffi s tha orderline signi- 

ficant. 

9.4. Comparison with LASSO and Similar
Procedures 

With the hype for high-d sion ata th SSO 

approach [5] became popular. Howe results in our 

simulation study and in the two examples are dis- 

appointing. As originally p posed d cros - 

tion to select the penalty rame bda. H wever, 

even in the sim n of sce  4 the variation 

is surprisingly e. In all scenari e number of 

redund var  were cted ean

pproach is less suitable for variable selection. This is 

rast, BE(0.01) selected a sm odel with only 4 

ous 

n 

cons portant advanta of LASSO and 

constrai  the appro

kage 

actors results also in better p edictions for para- 

m

ion bias and can profit from 

shrinkage. rast, large effects are alway  

and do no y shrinkage. 

m the large num r  newer pro als co ining 

variable selection and shrinkage ultan ously, we con- 

sidered only the L O in this work. In  comparison of 

approaches in low-dimensio rvival settings [ lso 

compared results from the c net, S AD and some 

boosting approaches. Using st

redic erfor  as c  they ude ll 

results did not differ much. Especi n pr n 

performance, ..., th ation of them w t too e”. 

They di not consi backwa ination follo by 

-selection shrinkage, the approach h gave better 

results t an the LASSO in our investigation, both in 

simulation and the xamples. With a s  cho ig- 

nificance level for BE predi per nce w ot 

worse c pared to he LASSO and models selected were 

much sparser, an important a ntage for interpretation 

and transportability of models. The tigation also 

shows that the PW  approac  has adv es com ared 

to the global shrinkage factor  our t tep appr h, 

BE follo d by PWSF, can generally be sed in regres- 

ion m s we er it suita proac n 

variable selection is a key part of data analysis. 

e the choice of 

ther BE with significance selection are prone to select

ed reaso

e of 400 the

ensated when 

sly, con

f

ver, 

 we use

ter lam

n io

os a larg

all m

ge 

r

dictio  as O

full m

lation 

le. resul Secti

 im ve pre e pe ance by ly co  p

 ssion c cient t are b

 

imen al d e LA

ro s-valida

  pa

o

o

plest situati ar

 larg

ant iables  sele which m s that this s
a

confirmed in the examples. From 24 candidate variables 

17 were included in the model derived for the ozone data. 

In cont

variables, but the MSE was similar. The simultane

combination of variable selection with shrinkage is ofte

idered as an im

some of its followers, such as SCAD [24] or the elastic 

net [25]. We compare the LASSO results with post selec- 

tion shrinkage procedures, in principle two-step proce- 

dures combining variable selection and shrinkage. In 

contrast to LASSO and related procedures post selection 

shrinkage is not based on optimizing any criteria under a 

given nt and aches are somehow ad- 

hoc. Using cross-validation a global shrinkage approach 

was proposed [2] and later extended to parameterwise 

shrinkage [4]. These post selection shrinkage approaches 

can be easily used in all types of GLMs or regression 

models for survival data after the selection of a model. 

Whereas global shrin “averages” over all effects, 

parameterwise shrinkage aims to shrink according to 

individual needs caused by the selection bias. Our results 

confirm that parameterwise shrinkage helps to reduce the 

effect of redundant covariates that only enter by chance, 

while the global shrinkage is not able to make that 

distinction. The better performance concerning the indi- 

vidual f

eterwise shrinkage compared to global shrinkage. The 

PWSF results confirm observations from another type of 

study on the use of cross-validation to reduce bias caused 

by model building [16]. Small effects that just survived 

9.5. Directions for Future Research 

Lik

 In cont

t need an

s selected

Fro be of pos mb

 sim e

 aASS

nal su 26] a

elasti

ability, sparseness, bias and 

C

tion p mance riteria  concl “overa

ally i edictio

e vari

der 

as no  larg

wed d rd elim

post  whic

h

 e uitably sen s

ction forma as n

om  t

dva

inves  

SF h antag p

. As wo s

u

oac

we

odel consid as a ble ap h whe

  in LASSO, the choice of the sig- 

nificance level   in the variable selection is 

Double cross-validation might be helpful in selec

crucial. 

ting  , 

but eeded about the criterion to be used. reflection is n

Prediction error is the obvious choice but does not reflect 

the need for a sparse model [27]. In order to improve 

research on selection procedures for high-dimensional 

data, several approaches to determine a more suitable   

or use two penalty parameters were proposed during the 

last years. It would be important to investigate whether 

they can improve model building in the easier low-di- 

mensional situations 

As mentioned abov the approach of this paper can be 

easily implied for generalized linear models like model 

logistic regression and survival analysis. It would be 

interesting to see such applications. 
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