
Northumbria Research Link

Citation: Lin, Zijia, Ding, Guiguang, Han, Jungong and Wang, Jianmin (2016) Cross-view

Retrieval via Probability-based Semantics-Preserving Hashing. IEEE Transactions on

Cybernetics, 47 (12). pp. 4342-4355. ISSN 2168-2267

Published by: IEEE

URL: https://doi.org/10.1109/TCYB.2016.2608906

<https://doi.org/10.1109/TCYB.2016.2608906>

This version was downloaded from Northumbria Research Link:

http://nrl.northumbria.ac.uk/id/eprint/28089/

Northumbria University has developed Northumbria Research Link (NRL) to enable users

to access the University’s research output. Copyright © and moral rights for items on

NRL are retained by the individual author(s) and/or other copyright owners. Single copies

of full items can be reproduced, displayed or performed, and given to third parties in any

format or medium for personal research or study, educational, or not-for-profit purposes

without prior permission or charge, provided the authors, title and full bibliographic

details are given, as well as a hyperlink and/or URL to the original metadata page. The

content must not be changed in any way. Full items must not be sold commercially in any

format or medium without formal permission of the copyright holder. The full policy is

available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been

made available online in accordance with publisher policies. To read and/or cite from the

published version of the research, please visit the publisher’s website (a subscription

may be required.)

http://nrl.northumbria.ac.uk/policies.html

IEEE TRANSACTIONS ON CYBERNETICS 1

Cross-view Retrieval via Probability-based

Semantics-Preserving Hashing
Zijia Lin, Student Member, IEEE, Guiguang Ding, Member, IEEE, Jungong Han, Jianmin Wang

Abstract—For efficiently retrieving nearest neighbours from
large-scale multi-view data, recently hashing methods are widely
investigated, which can substantially improve query speeds. In
this paper, we propose an effective probability-based Semantics-
Preserving Hashing method to tackle the problem of cross-view
retrieval, termed SePH. Considering the semantic consistency
between views, SePH generates one unified hash code for all
observed views of any instance. For training, SePH firstly
transforms the given semantic affinities of training data into
a probability distribution, and aims to approximate it with
another one in Hamming space, via minimizing their Kullback-
Leibler divergence. Specifically, the latter probability distribution

is derived from all pair-wise Hamming distances between to-
be-learnt hash codes of the training data. Then with learnt
hash codes, any kind of predictive models like linear ridge
regression, logistic regression or kernel logistic regression, can
be learnt as hash functions in each view for projecting the
corresponding view-specific features into hash codes. As for out-
of-sample extension, given any unseen instance, the learnt hash
functions in its observed views can predict view-specific hash
codes. Then by deriving or estimating the corresponding output
probabilities w.r.t the predicted view-specific hash codes, a novel
probabilistic approach is further proposed to utilize them for
determining a unified hash code. To evaluate the proposed SePH,
we conduct extensive experiments on diverse benchmark datasets,
and the experimental results demonstrate that SePH is reasonable
and effective.

Index Terms—Semantics-Preserving Hashing, SePH, Cross-
view retrieval, Approximate nearest neighbour retrieval

I. INTRODUCTION

FOR numerous algorithms in the fields of cybernetics,

computer vision and machine learning, etc., retrieving

nearest neighbours for an instance plays a fundamental role,

as also revealed in [1] and [2]. However, with the explosion of

data in recent years, efficient nearest neighbour retrieval from

large-scale and rapidly-increasing databases becomes quite

challenging. For tackling that, various tree-based indexing

methods [3]–[6] and hashing methods [1], [2], [7]–[39] are

proposed to perform exact or approximate nearest neighbour

(ANN) retrieval with much higher speeds. As tree-based

indexing methods can suffer from the so-called “curse of

dimensionality” for high-dimensional data, recently hashing

methods are becoming preferred and widely researched for

Zijia Lin is with Department of Computer Science and
Technology, Tsinghua University, Beijing 100084, China (e-mail:
linzijia07@tsinghua.org.cn).

Guiguang Ding and Jianmin Wang are with School of Software,
Tsinghua University, Beijing 100084, China (e-mail: {dinggg,
jimwang}@tsinghua.edu.cn). Guiguang Ding is the corresponding
author.

Jungong Han is with Civolution Technology, Eindhoven 5656AE, The
Netherlands (e-mail: jungonghan77@gmail.com).

handling such data. Generally, for hashing methods, by gener-

ating a k-bit binary (i.e. 0 or 1) hash code for each instance,

we can store the data compactly in hardware bits. Meanwhile,

to perform ANN retrieval, the Hamming distances between

the query hash code and those in the retrieval set can be

efficiently calculated using fast bit-wise XOR and bit-count

operations 1 with a sub-linear time complexity. And with all

Hamming distances calculated, generally only the small ones

are kept and then ranked in an ascending order to select

instances with smallest Hamming distances as the approximate

nearest neighbours. Therefore, if the binary hash codes can

well preserve the affinities between instances, hashing methods

can perform ANN retrieval with much lower storage costs and

higher query speeds [18], while the quality loss of the retrieved

neighbours would be acceptable.

Generally speaking, we can roughly classify existing hash-

ing methods into single-view hashing [1], [2], [7]–[19] and

multi-view hashing [20]–[39]. The former focuses on data with

a single view, while the latter focuses on that with multiple

views, like an object with pictures from different cameras or

a news report with texts and images. Our work in this paper

is about cross-view retrieval for multi-view data. Specifically,

cross-view retrieval can utilize just one view of a query to

retrieval its nearest neighbours in other different views, like

using a query picture from one camera to retrieve relevant

ones from other cameras, or using a textual query to retrieve

semantically relevant images. Since cross-view retrieval can be

utilized in many applications, it is becoming more and more

popular, as also revealed in [35].

In recent years, researchers have proposed many effective

hashing methods for cross-view retrieval, ranging from un-

supervised ones [20]–[25] to supervised ones [26]–[39]. The

former ones generally utilize only the features of training

data in different views to exploit intra-view and inter-view

correlations for learning hash functions, which project features

into binary hash codes. Meanwhile, the latter ones can further

exploit other available supervised information like semantic

affinities of training data, to better learn the projections and

yield superior performance. Actually, for supervised ones, well

preserving the semantic affinities between instances is the key

to reducing the quality loss of retrieved nearest neighbours,

which is also the focus of our research.

In this paper, we propose a probability-based Semantics-

Preserving Hashing method for cross-view retrieval, termed

SePH. The proposed SePH belongs to supervised hashing.

1Both bit-wise XOR and bit-count operations are generally supported or
implemented by hardware.

IEEE TRANSACTIONS ON CYBERNETICS 2

(a) Previous Work (b) Proposed SePH

Fig. 1. Illustration of the differences between previous work (left) and the
proposed SePH (right). Here oi(i = 1, 2, . . . , 6) are to-be-learnt hash codes,
blue solid edges between them denote their pairwise distances (similarities),
and red dotted lines between edges denote the correlations between distances
(similarities). Note that for clarity, some edges/lines are omitted.

Moreover, considering the semantic consistency between ob-

served views, SePH generates one unified hash code for all ob-

served views of any instance, like [23] and [24]. For training,

SePH firstly transforms the given semantic affinities of training

instances into a probability distribution P and aims to approx-

imate it in Hamming space. Specifically, SePH transforms all

pairwise Hamming distances between to-be-learnt hash codes

of the training instances into another probability distribution

Q, and then minimizes its Kullback-Leibler divergence (KL-

divergence) from P . In previous work [27], [34], [35], the

supervised information, i.e. the semantic affinities of training

instances, is generally utilized to independently weight each

pairwise distance (similarity) between hash codes. Differently,

SePH standardizes all pairwise Hamming distances into a

global probability distribution by transforming each into a

probability and thus makes them dependent on each others. In

that way, apart from weighting pair-wise distances (similari-

ties) between hash codes as previous work, SePH can further

incorporate the correlations between distances (similarities)

to force the to-be-learnt hash codes of training instances to

better preserve the semantic affinities, as illustrated in Fig.

1, which shows the differences between previous work and

SePH in a vivid way. After learning the hash codes of training

instances, SePH further learns hash functions independently

in each view for projecting the corresponding features into

binary hash codes, which can be open for any kind of effective

predictive models. Specifically, in this paper, we respectively

utilize linear ridge regression, logistic regression and kernel

logistic regression as hash functions. As for out-of-sample

extension, given an unseen instance, the learnt hash functions

in each of its observed views can predict view-specific hash

codes. Then by deriving or estimating the corresponding out-

put probabilities w.r.t the predicted view-specific hash codes,

a novel probabilistic approach is further proposed to utilize

them for determining a unified hash code. Similar to [9], here

SePH employs a two-step hashing framework. The reason

why SePH adopts a two-step framework is two-fold. First

and most important, utilizing a two-step framework can make

SePH more flexible and enable it to use any kind of effective

predictive models as hash functions. Second, utilizing a two-

step framework can simplify the optimization process, since

directly learning hash functions in a one-step manner can

probably make the objective function quite complex and even

unable to be optimized. The reasonableness and effectiveness

of SePH is well demonstrated by comprehensive experiments

on diverse benchmark datasets.

We summarize the contributions of this paper as follows.

• We propose a probability-based Semantics-Preserving

Hashing method for cross-view retrieval, which approx-

imates a probability distribution derived from given se-

mantic affinities of training data with another one derived

from the to-be-learnt hash codes in Hamming space via

minimizing their KL-divergence.

• We propose a novel probabilistic approach to determine a

unified hash code for any given unseen instance, utilizing

its predicted view-specific hash codes from different ob-

served views and the corresponding derived or estimated

output probabilities.

This paper is based on our previous work presented in [40],

but it substantially extends that work. Specifically, apart from

non-linear kernel logistic regression, here we also utilize linear

ridge regression and logistic regression as hash functions, so

as to show that the learning of hash functions in SePH can be

open for different predictive models. Actually, the experiments

with linear ridge regression and logistic regression also well

demonstrate the effectiveness of SePH. Particularly, for hash

functions like linear ridge regression that cannot naturally

provide output probabilities with the predicted view-specific

hash codes, here we further propose an effective and general

method to estimate the output probabilities, which are required

for determining unified hash codes. Moreover, experiments are

conducted on all benchmark datasets to validate the effective-

ness of the proposed probabilistic approach for determining

the unified hash code of an unseen instance. We also analyse

the convergence of the optimization process for SePH with

experiments, and report its off-line training costs and on-line

hashing costs on all datasets. Additionally, more details of the

experimental results, like standard errors, are also presented

here. Detailed derivations for the gradient of the objective

function of SePH are also provided in the supplementary

material due to the limited space.

We organize the remainder of this paper as follows. Section

II gives an overview of previous researches on cross-view

hashing. Section III presents formula details of the proposed

SePH, including off-line training and on-line hashing. Then

experiments are described in Section IV, including settings,

results and analyses. And finally we come to conclusions in

Section V.

II. RELATED WORK

As mentioned previously, researchers have proposed many

effective unsupervised and supervised cross-view hashing

methods in recent years.

Unsupervised cross-view hashing methods [20]–[25] gen-

erally utilize only the features of training data in different

views to exploit intra-view and inter-view correlations for

learning hash functions to project features into binary hash

codes. Song et al. [21] proposed inter-media hashing (IMH),

IEEE TRANSACTIONS ON CYBERNETICS 3

which learns linear hash functions with intra-view and inter-

view consistencies to map view-specific features into a com-

mon Hamming space. Zhen et al. [22] proposed Spectral

Multimodal Hashing (SMH) based on spectral analysis of the

correlation matrix of different views and developed an efficient

algorithm to learn parameters from the data distribution so

as to obtain binary hash codes. Ding et al. [23] proposed

Collective Matrix Factorization Hashing (CMFH) that per-

forms collective matrix factorization in different views with

latent factor model to learn unified hash codes for training

instances. Zhou et al. [24] proposed Latent Semantic Sparse

Hashing (LSSH), which respectively utilizes sparse coding for

images and matrix factorization for texts to learn their latent

semantic features and eventually maps the learnt features to

a joint abstraction space to generate unified hash codes. Xie

et al. [25] proposed Online Cross-modal Hashing (OCMH),

which performs efficient updating of hash codes and analysis

of cross-modal correlations for online hashing by learning

shared latent codes.

Differently, supervised cross-view hashing methods [26]–

[39] can further exploit available supervised information like

semantic labels or semantic affinities of training data for gain-

ing further performance improvements. Bronstein et al. [26]

proposed CMSSH that models the projections from features in

each view to hash codes as binary classification problems with

positive and negative examples, and utilizes boosting methods

to efficiently learn them. Kumar and Udupa [27] proposed

a principled cross-view hashing method termed CVH, which

is an extension of the single-view spectral hashing [8] in

multi-view cases. Specifically, CVH learns hash functions

to map semantically similar instances to similar hash codes

across different views, via minimizing the similarity-weighted

pairwise Hamming distances between the hash codes of train-

ing instances. Zhen and Yeung [28] proposed Co-Regularized

Hashing (CRH) to learn hash functions for multi-view data

based on a boosted co-regularization framework. In CRH, hash

functions for each bit of the hash codes are learnt by solving

DC (difference of convex functions) programs, while the learn-

ing for multiple bits is performed via a boosting procedure.

Yu et al. [32] proposed Discriminative Coupled Dictionary

Hashing (DCDH). Specifically, DCDH firstly learns a coupled

dictionary for each view with side information like category

labels to represent data from different views as the sparse

codes in a shared dictionary space, and then learns unified

hash functions for mapping them into binary hash codes.

Zhou et al. [34] proposed a spectral-based hashing method

termed KSH-CV, which removes the orthogonality constraints

on hash code bits and learns kernel hash functions under

an Adaboost framework to preserve inter-view similarities.

Zhang and Li [35] proposed SCM to take semantic labels

into consideration for the hash learning procedure for large-

scale datasets via maximizing semantic correlations. SCM can

learn orthogonal hash functions via eigenvalue decomposition

(SCM-Orth) or non-orthogonal ones via sequential learning

(SCM-Seq). Moreover, Jiang and Li [37] integrated feature

learning and hash-code learning into an end-to-end learning

framework with deep neural networks (one for each view) for

cross-view hashing.

After reviewing the previous cross-view hashing methods,

especially the supervised ones, we realize that well preserving

the semantic affinities between instances is the key to reducing

the quality loss of retrieved neighbours and achieving better

performance. Generally, in supervised cases, given semantic

affinities of training data, previous methods like [27], [34],

[35] utilize them to independently weight each pairwise dis-

tance (similarity) between to-be-learnt hash codes. Differently,

in this paper the proposed SePH further incorporates the

correlations between pairwise Hamming distances to force

the to-be-learnt hash codes to better preserve the semantic

affinities. As will be demonstrated by our experiments, SePH

is reasonable and yields superior performance.

III. PROPOSED SEPH

Fig. 2 illustrates the framework of the proposed SePH. Like

[23] and [24], considering the semantic consistency between

views, SePH generates one unified hash code for each instance,

rather than respectively generate one different hash code for

each observed view as other previous researches [26], [27],

[34], [35]. That also allows SePH to store data with less

space costs. As shown in Fig. 2, for hash learning SePH

requires the view-specific features of training instances in each

view and an affinity matrix indicating their semantic affinities.

Specifically, SePH firstly transforms the given affinity matrix

into a probability distribution P in semantic space, and learns

the semantics-preserving hash codes of training instances

via utilizing their Hamming distances for deriving another

probability distribution Q in Hamming space to approximate

P (red dotted rectangle). Then with learnt hash codes and

view-specific features of training instances, SePH learns hash

functions in each view independently for projecting features

into hash codes (green dotted rectangle). As for out-of-sample

extension, given any unseen instance, learnt hash functions

in observed views firstly predict view-specific hash codes.

Then by deriving or estimating the corresponding output

probabilities w.r.t the predicted view-specific hash codes, SePH

utilizes a novel probabilistic approach to merge them and

determine a unified hash code (blue dotted rectangle). For ease

of presentation, here we firstly describe SePH in the case with

only two views, and then extend it to cases with more views.

A. Problem Formulation

Suppose that the training data is made up of n training

instances, denoted as O = {o1, o2, . . . , on} with oi being the

ith one, and we can observe two views, i.e. X and Y , of the

training instances. Moreover, SePH requires the view-specific

feature matrices X ∈ R
n×dx and Y ∈ R

n×dy of the training

data, which are respectively built with the dx-dimensional

feature vectors in X and the dy-dimensional feature vectors

in Y row by row. Specifically, the ith row of X , denoted

as Xi,· ∈ R
dx , is the feature vector of oi in the view X ,

and likewise the ith row in Y , denoted as Yi,· ∈ R
dy , is the

feature vector of oi in the view Y . The affinity matrix of the

training data, denoted as A ∈ R
n×n, is also required by SePH

to provide supervised information. Here A is supposed to be

symmetric, i.e. ∀1 ≤ i, j ≤ n,Ai,j = Aj,i, where Ai,j ∈ [0, 1]

IEEE TRANSACTIONS ON CYBERNETICS 4

F(X) à H

Hash Functions for X

G(Y) à H

Hash Functions for Y

 FunctionsHa X

Predicted Hash Code with

Output Probabilities from X

1 0 1

0.6 0.51 0.76

1 1 1

0.71 0.82 0.58

Predicted Hash Code with

Output Probabilities from X

1 0 1

0.6 0.51 0.76

1 1 1

0.71 0.82 0.58

Predicted Hash Code with

Output Probabilities from Y

Training of SePH: 1) Learning semantics-preserving hash codes of the training data (red dotted rectangle), via

approximating the probability distribution in semantic space (P) with that in Hamming space (Q) , 2) Learning

hash functions for each view (green dotted rectangle)

Out-of-sample Extension: 1) Predicting hash codes from observed views, 2)

Determining the unified hash code with a proposed probabilistic approach

1 0.75 0.65 0.98 0.1 0.61

0.75

0.65

0.98

0.10

0.61

1 0.28 0.72 0.35 0.31

0.28 1 0.7 0.34 0.29

0.72 0.7 1 0.07 0.78

0.35 0.34 0.07 1 0.26

0.31 0.29 0.78 0.26 1

Provided Affinity Matrix of

Training Data

1 0 1

1

0

1

0

1

0 0

0 1

0 1

1 0

1 1

Learnt Semantics-Preserving Hash

Codes of Training Data (H)
1 1 1

Unified Hash Code

Merging Predicted View-

specific Hash Codes

Un

View X of Training Data

View Y of Training Data

 Y

Unseen Instance

d Affinity M

raining Da
antics-Pres

Training D

Probability Distribution in

Semantic Space (P)

Probability Distribution in

Hamming Space (Q)

Fig. 2. Framework of the proposed SePH, illustrated with two-view toy data. For training, SePH firstly learns semantics-preserving hash codes of the training
data and then learns hash functions for each view. For out-of-sample extension, SePH firstly predicts view-specific hash codes and derive or estimate their
corresponding output probabilities, and then merges them into a unified one.

TABLE I
IMPORTANT SYMBOLS IN SEPH.

n the number of training instances

oi the ith training instance

X , Y view-specific feature matrices of training instances

dx , dy view-specific feature dimensions

A the given semantic affinity matrix of training instances

H to-be-learnt binary hash code matrix of training instances

Ĥ relaxed H , real-valued hash code matrix

dc hash code length

pi,j probability of observing the similarity between oi and
oj in semantic space

qi,j probability of observing the similarity between oi and
oj in Hamming space

Xi,· , Yi,·,

Hi,· , Ĥi,·

the ith row of each matrix, corresponding to oi

h(k) the kth column of H , corresponding to the kth bit

x, y view-specific feature vectors of an unseen instance

cX , cY predicted view-specific hash codes of an unseen instance

c unified hash code of an unseen instance

indicates the semantic affinity between oi and oj . Generally,

we can derive A from manual scoring, or estimate it from

correlations between semantic labels of the training instances,

like cosine similarities. With A, semantics-preserving hash

codes of the training instances can be learnt by SePH, which

form a hash code matrix H ∈ {−1, 1}n×dc row by row.

Specifically, the ith row in H , denoted as Hi,· ∈ {−1, 1}dc,

is the dc-bit hash code of oi. Note that for model simplicity,

here we utilize {−1, 1} to represent binary hash codes, and

they can be directly mapped into {0, 1}. Table I summarizes

the important symbols in this paper, which will be frequently

used in the later description of SePH.

B. Semantics-Preserving Hashing

For preserving semantic affinities, if oi and oj are se-

mantically similar, their corresponding hash codes should

also be similar, and vice versa. As mentioned before, unlike

previous related researches that utilize the given semantic

affinities for independently weighting each pairwise distance

(similarity) between hash codes, SePH can further incorporate

the correlations between distances (similarities) to make the

semantic affinities of training instances be better preserved by

their to-be-learnt hash codes. Specifically, as illustrated in Fig.

2, in SePH the given semantic affinities are firstly transformed

into a probability distribution P , and then another probability

distribution Q is derived from all the pairwise Hamming

distances between to-be-learnt hash codes to approximate P
in Hamming space. In that way, by transforming each pairwise

Hamming distance into a probability, SePH standardizes them

and makes them dependent on each other, and thus correlations

between Hamming distances are incorporated.

To derive the probability distribution P in semantic space,

we define pi,j as the probability of observing the semantic sim-

ilarity between oi and oj among all pairs of training instances.

Assuming that pi,j is proportional to Ai,j , i.e. the correspond-

ing semantic affinity, we can derive pi,j as the following

formula, which guarantees that
∑n

i=1

∑n
j=1,j 6=i pi,j = 1.

pi,j =
Ai,j

∑n
i=1

∑n
j=1,j 6=i Ai,j

(1)

To derive the probability distribution Q in Hamming space,

we define qi,j as the probability of observing the similarity

between oi and oj in Hamming space. Following t-SNE

[41], a Student t-distribution with one degree of freedom is

utilized for transforming each pairwise Hamming distance into

a probability, as formulated as follows.

qi,j =
(1 + h(Hi,·, Hj,·))−1

∑n
k=1

∑n
m=1,m 6=k(1 + h(Hk,·, Hm,·))−1

(2)

where h(·, ·) denotes the Hamming distance between two hash

codes. Considering that ∀1 ≤ i ≤ n,Hi,· ∈ {−1, 1}dc, for any

two binary hash codes we can derive their Hamming distance

IEEE TRANSACTIONS ON CYBERNETICS 5

from their corresponding squared Euclidean distance, as shown

in formula (3).

h(Hi,·, Hj,·) =
1

4
‖Hi,· −Hj,·‖

2
2 (3)

By substituting formula (3) into formula (2), we can rewrite

qi,j as follows to make it more tractable for optimization.

qi,j =
(1 + 1

4‖Hi,· −Hj,·‖22)
−1

∑n
k=1

∑n
m=1,m 6=k(1 +

1
4‖Hk,· −Hm,·‖22)

−1
(4)

As mentioned previously, SePH aims to learn an optimal

binary H that can enable Q to well approximate P , so as

to preserve the semantic affinities modelled by P . Here we

take the Kullback-Leibler divergence to measure the difference

between Q and P , as defined as follows.

DKL(P‖Q) =

n
∑

i=1

n
∑

j=1,j 6=i

pi,j log
pi,j

qi,j
(5)

Then by minimizing DKL(P‖Q), SePH can learn the optimal

binary hash code matrix H of the training data. And thus the

objective function of SePH is formulated as follows.

Ψ0 = min
H∈{−1,1}n×dc

n
∑

i=1

n
∑

j=1,j 6=i

pi,j log
pi,j

qi,j
(6)

where pi,j is defined as formula (1) and qi,j as formula (4).

The objective function above, however, is NP-hard for directly

deriving the optimal binary H . To make it more tractable, like

previous work, here H is relaxed to be a real-valued matrix

Ĥ . Moreover, as shown in the following formula, to make the

learnt Ĥ near to the optimal binary H , we further introduce

a quantization loss term in the objective function to lead the

entries of Ĥ to be near to −1 or 1.

Ψ = min
Ĥ∈Rn×dc

n
∑

i=1

n
∑

j=1,j 6=i

pi,j log
pi,j

qi,j
+

α

C
‖|Ĥ| − I‖22

s.t. qi,j =
(1 + 1

4‖Ĥi,· − Ĥj,·‖22)
−1

∑n
k=1

∑n
m=1,m 6=k(1 +

1
4‖Ĥk,· − Ĥm,·‖22)

−1

(7)

where I is a matrix with each entry being 1, and ‖|Ĥ | − I‖22
measures the quantization loss from real-valued Ĥ to binary

H . Additionally, α is a model parameter for weighting the

quantization loss term, and C = n×dc is a normalizing factor

to make the parameter tuning for α less affected by the hash

code length and the training set size.

C. Solution and Implementation Issues

The objective function Ψ of SePH is an unconstrained

non-convex optimization problem. Actually, its non-convexity

comes from both the KL-divergence term and the quantization

loss term. And thus for optimizing Ψ, we can only derive

a locally optimal Ĥ . Compared to other hashing methods

that utilize a convex objective function, it may seem to be a

weakness of the proposed SePH. However, as our experiments

will demonstrate, the performance of SePH is fortunately not

sensitive to the local optimality of its objective function. For

optimizing Ĥ , various effective gradient descent methods can

be utilized. Specifically, for the ith row of Ĥ , i.e. Ĥi,·, we can

derive its corresponding gradient as follows.

∂Ψ

∂Ĥi,·

=

n
∑

j=1,j 6=i

(pi,j − qi,j)(1 +
1

4
‖Ĥi,· − Ĥj,·‖

2
2)

−1(Ĥi,· − Ĥj,·)

+
2α

C
(|Ĥi,·| − 1

T)⊙ σ(Ĥi,·)

(8)

where 1 is a dc-dimensional column vector with each entry

being 1, ⊙ denotes entry-wise multiplication between vectors,

and σ(Ĥi,·) is a dc-dimensional row vector made up of the

signs of entries in Ĥi,·. Actually, here σ(Ĥi,·) =
∂|Ĥi,·|
∂Ĥi,·

,

and the gradients w.r.t non-differentiable zero entries are

simply set as 0. For detailed derivations, one can refer to the

supplementary material.

By calculating ∂Ψ
∂Ĥi,·

for all 1 ≤ i ≤ n, effective gradient

descent methods can be applied to derive an optimal Ĥ .

Then by getting the signs of entries in Ĥ , we can derive an

optimized binary hash code matrix H , i.e. H = sign(Ĥ), with

the signs of zero entries in Ĥ set as 1. For gradient descent

methods, the time complexity of deriving H is O(Tn2dc),
where T is the number of needed iterations.

D. Learning Hash Functions

With the learnt hash codes of training instances, i.e. H ,

SePH will independently learn hash functions for each view

to perform out-of-sample extension. Actually, for SePH, any

effective predictive models can be utilized as hash functions.

Hence linear ridge regression, support vector machine (SVM)

or its variants like bagging-based SVM [42], logistic regres-

sion, kernel logistic regression, and many other models can be

utilized.

In this paper, we respectively utilize linear ridge regression,

logistic regression and kernel logistic regression, to learn the

projections from features to hash codes for each view. Linear

ridge regression is widely-used in many previous researches

on hashing, while for logistic regression and kernel logistic

regression, they are employed because both can naturally

provide output probabilities w.r.t the predicted hashing results,

which, as will be explained later, are required for determining

the unified hash code of an unseen instance. Note that here

hash functions are learnt independently in different views. And

thus for ease of presentation, in the following, only the hash

function learning process in the view X is described, which

can be directly extended to other views.

Like [26] and [23], here we learn hash functions bit by bit.

Actually, considering that bits in the hash codes may not be

independent of each other in cases, more sophisticated learning

methods that incorporate the correlations between bits can also

be investigated to obtain performance improvements, which

is left to our future work. Denote the column corresponding

to the kth bit in the learnt hash code matrix H as h(k) ∈
{−1, 1}n, i.e. the kth column of H . For linear ridge regression,

its objective function to project features, i.e. X , into h(k), is

given as follows.

F (k) = min
u(k)

‖h(k) −Xu(k)‖22 + µ‖u(k)‖22 (9)

IEEE TRANSACTIONS ON CYBERNETICS 6

where u(k) ∈ R
dx is the to-be-learnt weighting vector, and

µ is a weighting parameter for the regularizer. By setting
∂F(k)

∂u(k) = 0, the optimal u(k) can be directly derived as

u(k) =
(

XTX + µE
)−1

XTh(k), where E ∈ R
dx×dx is an

identity matrix. Here the time complexity for deriving u(k) is

O(2nd2x + d3x). Then by learning u(k) for all 1 ≤ k ≤ dc, we

can derive {u(k)}dc

k=1 as the hash function set based on linear

ridge regression for the view X . Here SePH with linear ridge

regression as hash functions is denoted as SePHlinear .

Regarding logistic regression, its objective function is for-

mulated as follows.

G(k) = min
w(k)

n
∑

i=1

log
(

1 + e−h
(k)
i

Xi,·w
(k)
)

+ η‖w(k)‖22 (10)

where h
(k)
i ∈ {−1, 1} is the ith entry in h(k), w(k) ∈ R

dx

is the to-be-learnt weighting vector, and η is a parameter

for weighting the regularizer. Here G(k) can be optimized

with gradient descent methods, and the corresponding time

complexity will be O(T
(k)
1 ndx) with T

(k)
1 being the number

of needed iterations. By optimizing G(k) for all 1 ≤ k ≤ dc,

the derived {w(k)}dc

k=1 will work as the hash function set based

on logistic regression for the view X . Here SePH with logistic

regression as hash functions is denoted as SePHlr.

Furthermore, we introduce kernel logistic regression as hash

functions, expecting to utilize kernel tricks to better handle

non-linear projections from features to hash codes. Here we

map each feature vector Xi,· to the Reproducing Kernel

Hilbert Space (RKHS) as φ(Xi,·), and utilize them to build

a kernel feature matrix Φ row by row. In RKHS, for kernel

features φ(Xi,·) and φ(Xj,·), we can efficiently calculate their

inner product φ(Xi,·)φT (Xj,·) as κ(Xi,·, Xj,·) with kernel

tricks, where κ(·, ·) denotes a kernel function. Then similarly,

with kernel features, the objective function of kernel logistic

regression corresponding to the kth bit can be formulated as

follows.

H(k) = min
w(k)

n
∑

i=1

log
(

1 + e−h
(k)
i φ(Xi,·)w

(k)
)

+ λ‖w(k)‖22

(11)

where λ is a parameter for weighting the regularizer. Following

kernel CCA [43], here w(k) is required to be in the span

of the training kernel features, i.e. w(k) = ΦTv(k) where

v(k) is the to-be-learnt spanning weights. Then φ(Xi,·)w(k)

in formula (11) is rewritten as (φ(Xi,·)ΦT)v(k), where we

can calculate φ(Xi,·)ΦT as κ(Xi,·, X). It can be observed

that, for kernel logistic regression, its costs for training and

predicting will be proportional to n, i.e. the training set size,

which is unsuitable for large training sets. As pointed out by

Hu et al. [44], generally the training kernel features would

be redundant for spanning w(k). And thus here we propose

to sample kernel features from Φ via random sampling or

other alternative methods like k-means to build a much smaller

one for spanning w(k), which is denoted as Φ̂. Suppose that

the sampling size is s(s ≪ n). Then we need to learn a s-

dimensional weighting vector v̂(k) for spanning w(k) with Φ̂,

i.e. w(k) = Φ̂T v̂(k). And formula (11) can be rewritten as

follows.

H(k) = min
v̂(k)

n
∑

i=1

log
(

1 + e−h
(k)
i (φ(Xi,·)Φ̂

T)v̂(k)
)

+ λ‖Φ̂T v̂(k)‖22

(12)

In this case, for kernel logistic regression, its costs for training

and predicting will be proportional to the sampling size s

rather than the training set size n. Then its training can become

more scalable and its predicting can be more efficient. Here

H(k) can also be optimized with gradient descent methods, and

the corresponding time complexity will be O(K + T
(k)
2 ns),

where T
(k)
2 is the number of needed iterations and K is the

costs of calculating ΦΦ̂T and Φ̂Φ̂T . By optimizing H(k) for

all 1 ≤ k ≤ dc, we can derive {Φ̂, v̂(1), v̂(2), . . . , v̂(dc)}
as the non-linear hash function set based on kernel logistic

regression for the view X . It should be noticed that here all

v̂(k)(1 ≤ k ≤ dc) share an identical Φ̂, which can further

reduce the training and predicting costs for all dc kernel

logistic regressions. For example, the total training costs for

the dc kernel logistic regressions will be O(K+
∑dc

k=1 T
(k)
2 ns)

rather than O(Kdc +
∑dc

k=1 T
(k)
2 ns). Here SePH with kernel

logistic regression as hash functions is denoted as SePHklr .

E. Generating Hash Codes

With learnt hash functions, the view-specific hash codes of

any unseen instance ou can be predicted. Taking the view X
as an example, assume that the feature vector of ou is x, and

its predicted view-specific hash code is denoted as cX , with

the kth bit denoted as cXk . Then we can derive that cXk =
sign(xu(k)) for linear ridge regression, cXk = sign

(

xw(k)
)

for logistic regression, and cXk = sign
(

(φ(x)Φ̂T)v̂(k)
)

for

kernel logistic regression, with sign(·) denoting the sign of an

expression. By predicting cXk for 1 ≤ k ≤ dc, we can get the

predicted view-specific hash code cX . The time complexity for

linear ridge regression, logistic regression and kernel logistic

regression to predict cX are respectively O(dxdc), O(dxdc)
and O(K ′ + sdc), where K ′ denotes the costs of calculating

φ(x)Φ̂ in kernel logistic regression.

Given an unseen instance ou, if only one view is observed,

its predicted view-specific hash code can be directly utilized as

its unified hash code. Meanwhile, if both views are observed,

we need to determine its unified hash code by merging

predicted view-specific hash codes from both views, especially

in cases where the predicted view-specific hash codes conflict,

as illustrated in Fig. 2. To tackle that, we propose a novel

probabilistic approach in this paper for determining the value

of each bit in the unified hash code of ou. As mentioned

previously, the proposed combining approach requires the

output probabilities w.r.t each bit of the predicted view-specific

hash codes, i.e. p(cZk = b|z) where Z ∈ {X ,Y}, 1 ≤ k ≤ dc,

b ∈ {−1, 1} and z ∈ {x,y}.

Taking the view X as an example, here we introduce an

effective method to estimate p(cZk = b|Z) for hash functions,

especially for linear ridge regression and similar methods that

cannot naturally provide output probabilities with predicted

IEEE TRANSACTIONS ON CYBERNETICS 7

results. Inspired by Gaussian Mixture Model (GMM) [45],

for linear ridge regression and similar methods, to estimate

p(cXk = −1|x) and p(cXk = 1|x), we assume that the corre-

sponding original predicted result (i.e. xu(k) for linear ridge

regression) comes from either of two Gaussian distributions

that respectively correspond to −1 and 1. The two Gaussian

distributions are modelled as follows. During training, given

h(k) ∈ {−1, 1}n, the training instances are separated into

two sets, one consisting of training instances with the kth bit

of their corresponding hash codes being −1 and the other

consisting of those with the kth bit being 1. Suppose that

features of training instances in the first set forms a feature

matrix Xn, and those in the second set forms another feature

matrix Xp. With the learnt weighting vector u(k), we can

derive Xnu
(k) and Xpu

(k), and both are assumed to be

respectively sampled from the two to-be-modelled Gaussian

distributions corresponding to −1 and 1. Then we take the

mean value µn and the standard deviation σn of Xnu
(k) to

model the Gaussian distribution corresponding to −1, and

similarly take the mean value µp and the standard deviation σp

of Xpu
(k) to model the Gaussian distribution corresponding

to 1. Similar to GMM, with both Gaussian distributions, the

output probabilities p(cXk = −1|x) and p(cXk = 1|x) for any

x can be estimated as follows.

gn = 1
σn

√
2π

exp
(

− (xu(k)−µn)
2

2σ2
n

)

gp = 1
σp

√
2π

exp
(

−
(xu(k)−µp)

2

2σ2
p

)

p(cXk = −1|x) = gn
gn+gp

p(cXk = 1|x) =
gp

gn+gp

(13)

As for logistic regression and kernel logistic regression, the

required output probabilities are naturally provided, and can

be respectively derived as the following formulas, with b ∈
{−1, 1}.

p(cXk = b|x) =
(

1 + e−bxw(k)
)−1

(14)

p(cXk = b|x) =
(

1 + e−b(φ(x)Φ̂T)v̂(k)
)−1

(15)

With output probabilities derived or estimated, the predicted

view-specific hash codes can be merged into a unified one.

Suppose that for an unseen instance ou, its feature vectors

in X and Y are respectively denoted as x and y, and c ∈
{−1, 1}dc is its to-be-determined unified hash code, with the

kth bit denoted as ck . Then bit by bit, ck is determined as the

following formula.

ck = sign
(

p(ck = 1|x,y)− p(ck = −1|x,y)
)

(16)

Assuming that X and Y are conditionally independent on ck,

we can derive the following formula with Bayes’ theorem.

ck = sign
(

p(x|ck = 1)p(y|ck = 1)p(ck = 1)

−p(x|ck = −1)p(y|ck = −1)p(ck = −1)
) (17)

Moreover, with the Bayes’ theorem, we can further transform

the formula above into the following one.

ck = sign
(p(ck = 1|x)p(ck = 1|y)

p(ck = 1)

−
p(ck = −1|x)p(ck = −1|y)

p(ck = −1)

)

(18)

where p(ck = b|z) = p(cZk = b|z) with b ∈ {−1, 1}, z ∈
{x,y},Z ∈ {X ,Y}, and all these probabilities can be derived

with formula (13) / (14) / (15) or using other more sophisti-

cated estimation methods. Here p(ck = −1) and p(ck = 1)
are the priori probabilities for the kth bit being −1 or 1. In

our previous work [40], both priori probabilities are simply

set to be equal, i.e. p(ck = 1) = p(ck = −1). However, the

assumption about the balance between −1 and 1 in [40] can

sometimes be unreasonable, especially in some imbalanced

datasets. Therefore, here we propose that p(ck = −1) and

p(ck = 1) should be dataset-dependent, and statistics-based

or learning-based methods are expected to be utilized for

estimating them. Specifically, in this paper, p(ck = −1) and

p(ck = 1) are respectively estimated as the relative frequencies

of −1 and 1 in h(k), i.e. p(ck = −1) =
∑n

i=1 Cond(h
(k)
i

=−1)

n

and p(ck = 1) =
∑n

i=1 Cond(h
(k)
i

=1)

n
where Cond(·) is a

condition function returning 1 if the condition holds and 0
otherwise. Actually, our experiments show that such a dataset-

dependent estimation method can help SePH to obtain fur-

ther performance improvements, compared to simply setting

p(ck = 1) = p(ck = −1). We will further investigate other

more sophisticated estimation methods in our future work.

For the unseen instance ou, with all ck(1 ≤ k ≤ dc)
determined, SePH will generate its unified hash code c. Note

that alternatively one can utilize multi-view learning methods

like [46], [47] to learn hash functions for each combination of

views and then directly generate unified hash codes without

combining, but that can probably lead to much higher learning

costs due to the “exponential explosion” of view combinations.

F. Extensions

Actually, for cases with more than two views, we can per-

form training for SePH in nearly the same way, except that we

need to learn hash functions for more views. Meanwhile, for

out-of-sample extension, after predicting view-specific hash

codes in the same manner, it is slightly different to merge

them into a unified one. Specifically, we extend formula (18)

as follows for cases of more views with similar derivations.

ck = sign

(

∏m
i=1 p(ck = 1|zi)

(p(ck = 1))
m−1 −

∏m
i=1 p(ck = −1|zi)

(p(ck = −1))
m−1

)

(19)

where m ≥ 1 indicates how many views are observed, and

zi denotes the feature vector in the ith view. Here all needed

probabilities can be derived or estimated in the same way as

those in formula (18).

IV. EXPERIMENTS

A. Experimental Settings

In this paper, we conduct experiments on three benchmark

datasets to evaluate the proposed SePH. Specifically, the

benchmark datasets include Wiki [48], MIRFlickr [49] and

NUS-WIDE [50], and they are all with an image view and a

text view. Table II gives some statistics of them.

Wiki is made up of 2,866 instances collected from

Wikipedia. For each instance, a 128-D Bag-of-Visual-Words

IEEE TRANSACTIONS ON CYBERNETICS 8

TABLE II
STATISTICS OF THREE BENCHMARK DATASETS.

Wiki MIRFlickr NUS-WIDE

Dataset Size 2,866 16,738 186,577
Retrieval Set 2,173 15,902 184,711
Training Set 2,173 5,000 5,000
Query Set 693 836 1,866
Nr. of Labels 10 24 10

SIFT feature vector is provided to describe its image view and

a 10-D topic vector is given to describe its text view. Each

instance is mannually annotated with one semantic label from

10 candidates. Following [23], [24], we take 25% of Wiki to

form the query set, and the rest works as the retrieval set.

MIRFlickr originally contains 25,000 instances collected

from Flickr. Each instance consists of an image and its

associated textual tags, and is manually annotated with one

or more of 24 provided semantic labels. To avoid noises,

here we remove textual tags that appear less than 20 times

in the dataset, and then delete instances without textual tags

or semantic labels. After pretreatment, we get 16,738 instances

left. For each instance, a 150-D edge histogram is provided to

describe its image view, while its text view is represented as

a 500-D feature vector derived from PCA [51] on its binary

tagging vector w.r.t the remaining textual tags. We take 5%

of MIRFlickr to form the query set, and the rest works as the

retrieval set.

NUS-WIDE is a large dataset originally containing 269,648

instances. Like MIRFlickr, each instance in NUS-WIDE con-

sists of an image and its associated textual tags, and is

manually annotated with one or more semantic labels from 81

candidates. Following [23], [24], here we only keep the top 10

most frequent labels and the corresponding 186,577 instances

annotated with them. For each instance, a 500-D Bag-of-

Visual-Words SIFT feature vector is provided to describe its

image view, while its text view is represented as a binary

tagging vector w.r.t the top 1,000 most frequent tags. We also

take 1% of NUS-WIDE to form the query set, and the rest

works as the retrieval set.

Considering the small size of Wiki, we follow [23] and take

its retrieval set as the training set. As for the large MIRFlickr

and NUS-WIDE, to simulate real-world cases where only

the supervised information of a small fraction of the data is

provided, for either dataset we just sample 5,000 instances

from the corresponding retrieval set to form the training set.

It should be noticed that, the learnt hash codes of training

instances in the training process of SePH will be discarded

after hash functions are learnt, and then SePH generates hash

codes for all instances in the dataset with the learnt hash

functions. Moreover, although each bit in the hash codes

generated by SePH is in {−1, 1}, in our experiments we map

them into {0, 1} and compactly store them bit by bit. Like

most previous hashing methods, to perform ANN retrieval for

any query hash code Hq, its Hamming distance to any ith

hash code Hi in the retrieval set, denoted as h(Hq, Hi), is

calculated as h(Hq, Hi) = bit count(Hq ⊕ Hi), where ⊕
denotes XOR operation between the bits of Hq and Hi, and

bit count counts the number of 1 in the binary XOR result.

Then we rank all instances in the retrieval set based on their

corresponding Hamming distances in an ascending order and

take the top ones as the ANNs for the query instance.

In our experiments, the annotated semantic labels of any

training instance are represented as a binary labelling vector.

Then we derive the affinity matrix of each dataset, i.e. A in

formula (1), as the cosine similarities between labelling vectors

of training instances. The only model parameter α in the

objective function of SePH (i.e. formula (7)) is empirically set

as 0.01 for all datasets. As for the learning of hash functions

in each view, µ in formula (9) for linear ridge regression

in SePHlinear , η in formula (10) for logistic regression in

SePHlr, and λ in formula (12) for kernel logistic regression

in SePHklr , are automatically set via 5-fold cross-validation on

the corresponding features and learnt hash codes of training in-

stances. Particularly, for kernel logistic regression in SePHklr ,

a RBF kernel is utilized, with its parameter σ2 set as the mean

squared Euclidean distance between feature vectors of training

instances. Additionally, on all datasets the sampling size for

Φ̂ in formula (12) is empirically set as 500. We perform both

random sampling and k-means sampling for SePHklr , which

are denoted as SePHklr+rnd and SePHklr+km respectively. To

encourage further developments, the codes of SePH will be

published in a near future.

We employ the supervised CMSSH [26], CVH [27], KSH-

CV [34], SCM-Orth and SCM-Seq [35], and the unsupervised

IMH [21], LSSH [24], CMFH [23] as baselines to compare

with the proposed SePH. Note that for IMH, we calculate its

required affinity matrices with the provided semantic labels of

training instances, and thus it is actually supervised here. To

make fair comparisons, we carefully perform parameter tuning

for baselines, and report their best performance in this paper.

We perform 10 runs for SePH and any compared baseline with

a non-convex objective function with different initial values,

and report the average performance.

Following previous researches, we utilize mean average

precision (mAP) to measure the retrieval performance of all

cross-view hashing methods. A higher mAP value means

better retrieval performance. Here the definition of mAP is

given as follows.

mAP =
1

|Q|

|Q|
∑

i=1

1

mi

mi
∑

j=1

precision(Ri,j) (20)

where Q is the query set with its size being |Q|, and for the ith

query, 1
mi

∑mi

j=1 precision(Ri,j) denotes its average precision

(AP), mi denotes the number of its ground-truth relevant

instances in the retrieval set, Ri,j is a subset of its ranked

retrieval result consisting of instances from the top one to the

jth ground-truth relevant one, and precision(Ri,j) measures

the precision value in Ri,j . Like [23], [24], an instance is

ground-truth relevant to a query if they share at least one

semantic label.

B. Experimental Results

The cross-view retrieval performance of the proposed SePH

and the compared baselines on all datasets is reported in

IEEE TRANSACTIONS ON CYBERNETICS 9

TABLE III
CROSS-VIEW RETRIEVAL PERFORMANCE OF THE PROPOSED SEPH (i.e. SEPHlinear , SEPHlr , SEPHklr+rnd AND SEPHklr+km) AND COMPARED

BASELINES ON ALL BENCHMARK DATASETS WITH DIFFERENT HASH CODE LENGTHS, IN TERMS OF mAP . FOR SEPH, THE STANDARD ERRORS OF mAP
OVER 10 RUNS ARE ALSO REPORTED.

Wiki MIRFlickr NUS-WIDE
16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

Image
Query

v.s.

Text
Database

CMSSH [26] 0.1877 0.1771 0.1646 0.1552 0.5728 0.5743 0.5706 0.5706 0.4063 0.3927 0.3939 0.3739
CVH [27] 0.1257 0.1212 0.1215 0.1171 0.6067 0.6177 0.6157 0.6074 0.3687 0.4182 0.4602 0.4466
IMH [21] 0.1573 0.1575 0.1568 0.1651 0.6016 0.6120 0.6070 0.5982 0.4187 0.3975 0.3778 0.3668
LSSH [24] 0.2141 0.2216 0.2218 0.2211 0.5784 0.5804 0.5797 0.5816 0.3900 0.3924 0.3962 0.3966
CMFH [23] 0.2132 0.2259 0.2362 0.2419 0.5861 0.5835 0.5844 0.5849 0.4267 0.4229 0.4207 0.4182
KSH-CV [34] 0.1965 0.1839 0.1701 0.1662 0.5793 0.5767 0.5732 0.5744 0.4229 0.4162 0.4026 0.3877
SCM-Orth [35] 0.1598 0.1460 0.1383 0.1131 0.5854 0.5751 0.5704 0.5649 0.3787 0.3668 0.3593 0.3520
SCM-Seq [35] 0.2210 0.2337 0.2442 0.2596 0.6237 0.6343 0.6448 0.6489 0.4842 0.4941 0.4947 0.4965

SePHlinear
0.2479 0.2589 0.2788 0.2833 0.6672 0.6724 0.6757 0.6782 0.5465 0.5603 0.5660 0.5694

±0.0023 ±0.0027 ±0.0017 ±0.0016 ±0.0009 ±0.0005 ±0.0006 ±0.0003 ±0.0023 ±0.0009 ±0.0007 ±0.0005

SePHlr
0.2375 0.2531 0.2619 0.2686 0.6640 0.6699 0.6736 0.6757 0.5393 0.5503 0.5562 0.5601
±0.0030 ±0.0024 ±0.0016 ±0.0013 ±0.0011 ±0.0004 ±0.0003 ±0.0004 ±0.0013 ±0.0016 ±0.0006 ±0.0005

SePHklr+rnd
0.2835 0.3003 0.3099 0.3204 0.6727 0.6792 0.6833 0.6860 0.5450 0.5532 0.5605 0.5650
±0.0028 ±0.0022 ±0.0024 ±0.0014 ±0.0007 ±0.0005 ±0.0007 ±0.0006 ±0.0011 ±0.0012 ±0.0006 ±0.0008

SePHklr+km
0.2838 0.3009 0.3074 0.3207 0.6733 0.6793 0.6829 0.6864 0.5477 0.5568 0.5640 0.5666
±0.0026 ±0.0023 ±0.0019 ±0.0015 ±0.0008 ±0.0007 ±0.0005 ±0.0005 ±0.0014 ±0.0010 ±0.0008 ±0.0009

Text
Query

v.s.

Image
Database

CMSSH [26] 0.1630 0.1617 0.1539 0.1517 0.5715 0.5732 0.5699 0.5697 0.3874 0.3849 0.3704 0.3699
CVH [27] 0.1185 0.1034 0.1024 0.0990 0.6026 0.6041 0.6017 0.5972 0.3646 0.4024 0.4339 0.4255
IMH [21] 0.1463 0.1311 0.1290 0.1301 0.5895 0.6031 0.6010 0.5930 0.4053 0.3892 0.3758 0.3627
LSSH [24] 0.5031 0.5224 0.5293 0.5346 0.5898 0.5927 0.5932 0.5932 0.4286 0.4248 0.4248 0.4175
CMFH [23] 0.4884 0.5132 0.5269 0.5375 0.5937 0.5919 0.5931 0.5919 0.4627 0.4556 0.4518 0.4478
KSH-CV [34] 0.1710 0.1665 0.1696 0.1576 0.5786 0.5763 0.5728 0.5715 0.4088 0.3906 0.3869 0.3834
SCM-Orth [35] 0.1553 0.1389 0.1262 0.1096 0.5857 0.5747 0.5672 0.5604 0.3756 0.3641 0.3565 0.3523
SCM-Seq [35] 0.2134 0.2366 0.2479 0.2573 0.6133 0.6209 0.6295 0.6340 0.4536 0.4620 0.4630 0.4644

SePHlinear
0.5431 0.5619 0.5809 0.5872 0.7188 0.7285 0.7356 0.7385 0.6375 0.6532 0.6633 0.6674

±0.0042 ±0.0017 ±0.0015 ±0.0014 ±0.0013 ±0.0006 ±0.0004 ±0.0003 ±0.0022 ±0.0012 ±0.0005 ±0.0004

SePHlr
0.5531 0.5724 0.5888 0.5966 0.7176 0.7283 0.7347 0.7385 0.6291 0.6455 0.6545 0.6597
±0.0050 ±0.0025 ±0.0016 ±0.0008 ±0.0009 ±0.0006 ±0.0004 ±0.0004 ±0.0013 ±0.0007 ±0.0006 ±0.0004

SePHklr+rnd
0.6310 0.6512 0.6633 0.6692 0.7216 0.7296 0.7372 0.7408 0.6283 0.6415 0.6530 0.6584
±0.0031 ±0.0015 ±0.0015 ±0.0015 ±0.0005 ±0.0007 ±0.0006 ±0.0006 ±0.0013 ±0.0015 ±0.0008 ±0.0005

SePHklr+km
0.6310 0.6516 0.6652 0.6701 0.7247 0.7328 0.7410 0.7437 0.6378 0.6513 0.6612 0.6674

±0.0024 ±0.0018 ±0.0018 ±0.0013 ±0.0011 ±0.0011 ±0.0010 ±0.0008 ±0.0011 ±0.0012 ±0.0007 ±0.0011

Table III, including both the performance of retrieving text

with image (i.e. “Image Query v.s. Text Database”) and that

of retrieving image with text (i.e. “Text Query v.s. Image

Database”). For the former task, the image view of instances

in the query set is utilized to generate their corresponding

query hash codes, while for the latter one, the text view is

utilized. As for any instance in the retrieval set, like CMFH

and LSSH, SePH generates one unified hash code for both

views. Moreover, considering that the objective function of

SePH is non-convex, here we also report the standard errors

w.r.t the performance of SePHlinear , SePHlr, SePHklr+rnd

and SePHklr+km over the ten runs on each dataset, so as to

investigate how different initial values of Ĥ can affect the

performance of SePH

From Table III, we can get the following observations. 1)

Even with varying hash code lengths, the proposed SePH,

including SePHlinear , SePHlr, SePHklr+rnd and SePHklr+km,

significantly outperforms all compared baselines on all the

three benchmark datasets, which well demonstrates its effec-

tiveness. The superiority of SePH is attributed to both its

capability of better preserving semantic affinities in Hamming

space and the effectiveness of the learnt hash functions. 2) On

all datasets, the performance of SePH keeps increasing as the

hash code length increases, meaning that it can well utilize

longer hash codes for better preserving the semantic affinities.

Meanwhile, as also observed in [23], [34], [35], the perfor-

mance of CMSSH, KSH-CV and SCM-Orth decreases, which

may be caused by the imbalance between bits in the hash

codes learnt by singular value decomposition or eigenvalue

decomposition. 3) The standard errors w.r.t the performance

of SePHlinear , SePHlr, SePHklr+rnd and SePHklr+km are

quite small on all datasets (less than 2% of the corresponding

mAP value), meaning that the performance of SePH is not

sensitive to the local optimality of its objective function. 4)

Generally, SePHlinear and SePHlr are inferior to SePHklr+rnd

/ SePHklr+km, while on the large MIRFlickr and NUS-WIDE,

the performance of SePHlinear and that of SePHlr are quite

comparable to that of SePHklr+rnd / SePHklr+km. That, on

one hand, shows the superiority of kernel logistic regression

in modelling the non-linear projections from features to bi-

nary hash codes, and on the other hand, also reflects the

effectiveness of utilizing linear ridge regression or logistic

regression as hash functions. 5) On all datasets, it can be

seen that SePHklr+km is generally superior to SePHklr+rnd,

but the superiority is insignificant (less than 2%). Therefore,

the performance of SePHklr is not sensitive to the sampling

strategy for the learning of kernel logistic regression.

Furthermore, we perform paired-sample t-test [52] for eval-

uating the significance of the improvements achieved by the

proposed SePH over the compared baselines in both cross-

view retrieval tasks on all datasets with different hash code

lengths. For each algorithm, we take the corresponding AP

(average precision) values of the query set as samples from

its AP distribution, and compare them between algorithms

for significance tests. The significance level is set as a typical

value 0.01 here. And we find that the maximal P-value in

IEEE TRANSACTIONS ON CYBERNETICS 10

16 bits 32 bits 64 bits 128 bits

0.4

0.5

0.6

0.7

0.8

0.9

1
(a)

Hash Code Length

Im
a

g
e

 Q
u

e
ry

 v
.s

.
T

e
x
t

D
a

ta
b

a
s
e

o
n

 t
h

e
 T

ra
in

in
g

 S
e

t
o

f
N

U
S

−
W

ID
E

CMSSH
CVH
IMH
LSSH
CMFH
KSH−CV
SCM−Orth
SCM−Seq
SePH

16 bits 32 bits 64 bits 128 bits

0.4

0.5

0.6

0.7

0.8

0.9

1
(b)

Hash Code Length

T
e

x
t

Q
u

e
ry

 v
.s

.
Im

a
g

e
 D

a
ta

b
a

s
e

o
n

 t
h

e
 T

ra
in

in
g

 S
e

t
o

f
N

U
S

−
W

ID
E

CMSSH
CVH
IMH
LSSH
CMFH
KSH−CV
SCM−Orth
SCM−Seq
SePH

Fig. 3. Cross-view retrieval performance of all algorithms on the training set
of NUS-WIDE with different hash code lengths, which reflects the quality of
the hash codes learnt by each algorithm for a training set.

all significance tests between variants of SePH and compared

baselines is around 10−7, which is far less than the significance

level 0.01, meaning that the improvements gained by SePH

over the compared baselines are statistically significant.

To get more inside details about the superiority of SePH,

we further analyse the quality of the learnt hash codes of

training instances. Specifically, on the training set of each

dataset, we utilize the corresponding learnt hash codes to

perform cross-view retrieval, repeatedly using one as a query

to retrieve nearest neighbours from the rest, and then measure

the corresponding mAP value. Since we utilize the semantic

labels of instances to define their ground-truth relevance for

calculating mAP , the derived mAP values can quantitatively

reflect how well the learnt hash codes can preserve the given

semantic affinities of training instances. Fig. 3 illustrates the

performance of learnt hash codes by SePH in the two cross-

view retrieval tasks on the training set of the largest NUS-

WIDE, with the hash code length varying from 16 to 128.

Fig. 3 also presents the performance of baselines for com-

parison. We can observe that SePH significantly outperforms

the baselines, with the corresponding mAP being above 0.9.

Actually, similar results can also be observed on Wiki and

MIRFlickr, with the corresponding mAP value of SePH being

1.0 on Wiki and above 0.9 on MIRFlickr. For more details,

one can refer to the supplementary material. Therefore, it can

be seen that the hash codes learnt by SePH can well preserve

the semantic affinities of training instances. Additionally, by

comparing Fig. 3 and Table III, one can observe that the

retrieval performance of the learnt hash codes of training

0 50 100 150 200
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n
 V

a
lu

e

Iterations

NUS−WIDE

0 50 100 150 200
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q
u

a
lit

y
 o

f
L

e
a

rn
t

H
a

s
h

 C
o

d
e

s

o
f

th
e

 T
ra

in
in

g
 S

e
t

Fig. 4. Variances of the objective function value and the corresponding quality
of learnt hash codes of training instances in SePH as the number of iterations
increases, on NUS-WIDE with the hash code length fixed as 16 bits.

instances is significantly better than that of the hash codes

generated by learnt hash functions. We attribute this to: 1) the

view-specific features of the three datasets are somewhat weak

and may not well describe the instance in the corresponding

view, 2) the employed predictive models, i.e. linear ridge

regression, logistic regress and kernel logistic regression, may

not be capable enough. Therefore, stronger features and more

powerful predictive models need to be further investigated.

In our experiments, we utilize the method of gradient

descent with a momentum of 0.5 to optimize the objective

function Ψ (i.e. formula (7)) of SePH. Here we further conduct

experiments to analyse the convergence of the optimization

process and see how the quality of the learnt hash codes of

training instances varies with iterations. Specifically, by fixing

the hash code length as 16 bits, we perform 200 iterations

of gradient descent on Wiki, MIRFlickr and NUS-WIDE to

optimize Ψ. Then for each iteration, we calculate the value of

Ψ. Meanwhile, we take the corresponding value of Ĥ to derive

hash codes of the training instances, and analyse their quality

by measuring their retrieval performance on the corresponding

training set. Note that since SePH learns one unified hash

code for each training instance, the retrieval performance of

learnt hash codes in “Image Query v.s. Text Database” will

be identical to that in “Text Query v.s. Image Database” on

the training set, and thus we just report one. The experimental

results on the largest NUS-WIDE is illustrated in Fig. 4, and

those on Wiki, MIRFlickr are provided in the supplementary

material due to the limited space. Then we can obtain the

following observations. 1) The optimization process for SePH

can generally converge in around 100 iterations, and for Wiki

and MIRFlickr it can even converge faster. 2) As the number

of iterations increases, the quality of the learnt hash codes of

training instances quickly increases and then converges.

C. Experimental Validations of the Proposed Probabilistic

Approach for Determining Unified Hash Codes

To validate the proposed probabilistic approach for de-

termining the unified hash code of an unseen instance, i.e.

formula (18) and (19), we further conduct experiments on all

datasets to see whether it can help to improve the cross-view

retrieval performance. As all datasets contain only two views,

IEEE TRANSACTIONS ON CYBERNETICS 11

TABLE IV
COMPARISONS BETWEEN THE PROPOSED PROBABILISTIC APPROACH (i.e. SEPHlinear , SEPHlr , SEPHklr+rnd AND SEPHklr+km) AND OTHER

STRATEGIES FOR DETERMINING THE UNIFIED HASH CODES OF UNSEEN INSTANCES.

Wiki MIRFlickr NUS-WIDE
16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

Image
Query

v.s.

Text
Database

SePHlinear[Img] 0.1443 0.1503 0.1557 0.1574 0.6128 0.6153 0.6169 0.6184 0.4608 0.4674 0.4707 0.4743
SePHlinear[Txt] 0.2281 0.2334 0.2491 0.2518 0.6585 0.6637 0.6668 0.6688 0.5211 0.5309 0.5354 0.5408
SePHlinear[Rand] 0.1901 0.2054 0.2255 0.2336 0.6528 0.6602 0.6647 0.6679 0.5226 0.5389 0.5479 0.5552
SePHlinear[Equal] 0.2407 0.2477 0.2677 0.2710 0.6673 0.6724 0.6756 0.6779 0.5431 0.5554 0.5608 0.5660
SePHlinear 0.2479 0.2589 0.2788 0.2833 0.6672 0.6724 0.6757 0.6782 0.5465 0.5603 0.5660 0.5694

SePHlr[Img] 0.1463 0.1527 0.1574 0.1596 0.6110 0.6143 0.6163 0.6172 0.4612 0.4668 0.4707 0.4725
SePHlr[Txt] 0.2333 0.2480 0.2556 0.2618 0.6550 0.6611 0.6649 0.6671 0.5226 0.5329 0.5384 0.5428
SePHlr[Rand] 0.1959 0.2163 0.2320 0.2422 0.6484 0.6569 0.6619 0.6652 0.5254 0.5403 0.5494 0.5558
SePHlr[Equal] 0.2311 0.2454 0.2545 0.2608 0.6633 0.6693 0.6729 0.6750 0.5366 0.5463 0.5516 0.5558
SePHlr 0.2375 0.2531 0.2619 0.2686 0.6640 0.6699 0.6736 0.6757 0.5393 0.5503 0.5562 0.5601

SePHklr+rnd[Img] 0.1882 0.2018 0.2099 0.2163 0.6263 0.6311 0.6332 0.6352 0.4640 0.4705 0.4756 0.4784
SePHklr+rnd[Txt] 0.2689 0.2815 0.2900 0.2994 0.6624 0.6686 0.6725 0.6752 0.5222 0.5310 0.5375 0.5417
SePHklr+rnd[Rand] 0.2415 0.2644 0.2815 0.2953 0.6597 0.6691 0.6745 0.6782 0.5256 0.5399 0.5496 0.5560
SePHklr+rnd[Equal] 0.2801 0.2954 0.3052 0.3161 0.6723 0.6787 0.6829 0.6856 0.5428 0.5509 0.5581 0.5626
SePHklr+rnd 0.2835 0.3003 0.3099 0.3204 0.6727 0.6792 0.6833 0.6860 0.5450 0.5532 0.5605 0.5650
SePHklr+km[Img] 0.1867 0.1989 0.2070 0.2149 0.6257 0.6298 0.6323 0.6346 0.4653 0.4726 0.4780 0.4795
SePHklr+km[Txt] 0.2698 0.2825 0.2871 0.2992 0.6630 0.6689 0.6721 0.6755 0.5267 0.5364 0.5432 0.5464
SePHklr+km[Rand] 0.2406 0.2640 0.2785 0.2950 0.6600 0.6685 0.6737 0.6783 0.5287 0.5443 0.5541 0.5585
SePHklr+km[Equal] 0.2805 0.2956 0.3027 0.3160 0.6729 0.6788 0.6824 0.6859 0.5455 0.5547 0.5620 0.5644
SePHklr+km 0.2838 0.3009 0.3074 0.3207 0.6733 0.6793 0.6829 0.6864 0.5477 0.5568 0.5640 0.5666

Text
Query
v.s.

Image
Database

SePHlinear[Img] 0.2158 0.2350 0.2481 0.2568 0.6335 0.6387 0.6415 0.6435 0.4999 0.5116 0.5169 0.5199
SePHlinear[Txt] 0.5320 0.5489 0.5615 0.5667 0.7121 0.7213 0.7279 0.7304 0.6170 0.6301 0.6393 0.6457
SePHlinear[Rand] 0.4561 0.5078 0.5377 0.5553 0.6961 0.7088 0.7173 0.7216 0.6065 0.6297 0.6448 0.6531
SePHlinear[Equal] 0.5419 0.5595 0.5768 0.5828 0.7198 0.7293 0.7361 0.7390 0.6371 0.6511 0.6611 0.6669
SePHlinear 0.5431 0.5619 0.5809 0.5872 0.7188 0.7285 0.7356 0.7385 0.6375 0.6532 0.6633 0.6674
SePHlr[Img] 0.2251 0.2444 0.2572 0.2645 0.6316 0.6368 0.6401 0.6421 0.4987 0.5085 0.5141 0.5173
SePHlr[Txt] 0.5415 0.5573 0.5742 0.5808 0.7075 0.7184 0.7250 0.7286 0.6111 0.6282 0.6371 0.6426
SePHlr[Rand] 0.4604 0.5131 0.5475 0.5643 0.6907 0.7044 0.7130 0.7184 0.6034 0.6269 0.6415 0.6494
SePHlr[Equal] 0.5553 0.5731 0.5916 0.5996 0.7173 0.7282 0.7345 0.7384 0.6287 0.6452 0.6543 0.6597
SePHlr 0.5531 0.5724 0.5888 0.5966 0.7176 0.7283 0.7347 0.7385 0.6291 0.6455 0.6545 0.6597

SePHklr+rnd[Img] 0.3916 0.4325 0.4520 0.4625 0.6521 0.6582 0.6621 0.6648 0.4966 0.5066 0.5134 0.5169
SePHklr+rnd[Txt] 0.5761 0.5884 0.5989 0.6035 0.7089 0.7167 0.7237 0.7271 0.6019 0.6159 0.6260 0.6303
SePHklr+rnd[Rand] 0.5675 0.6129 0.6397 0.6505 0.7021 0.7141 0.7231 0.7281 0.5960 0.6176 0.6324 0.6404
SePHklr+rnd[Equal] 0.6302 0.6514 0.6643 0.6702 0.7215 0.7294 0.7371 0.7405 0.6267 0.6398 0.6522 0.6575
SePHklr+rnd 0.6310 0.6512 0.6633 0.6692 0.7216 0.7296 0.7372 0.7408 0.6283 0.6415 0.6530 0.6584

SePHklr+km[Img] 0.3813 0.4194 0.4422 0.4522 0.6528 0.6583 0.6633 0.6655 0.5018 0.5118 0.5178 0.5216
SePHklr+km[Txt] 0.5762 0.5882 0.5991 0.6036 0.7118 0.7199 0.7273 0.7301 0.6148 0.6287 0.6377 0.6440
SePHklr+km[Rand] 0.5637 0.6107 0.6381 0.6485 0.7044 0.7162 0.7260 0.7304 0.6060 0.6282 0.6420 0.6508
SePHklr+km[Equal] 0.6304 0.6510 0.6653 0.6709 0.7246 0.7326 0.7408 0.7435 0.6359 0.6494 0.6601 0.6661
SePHklr+km 0.6310 0.6516 0.6652 0.6701 0.7247 0.7328 0.7410 0.7437 0.6378 0.6513 0.6612 0.6674

i.e. image and text, for comparison, we introduce the following

baselines with other strategies. 1) SePH•[Img]: using the

predicted hash code from the image view as the unified one, 2)

SePH•[Txt]: using the predicted hash code from the text view

as the unified one, 3) SePH•[Rand]: randomly taking −1 or 1
for a bit when predicted values from different views conflict,

4) SePH•[Equal]: using the proposed approach but setting

p(ck = 1) = p(ck = −1) for all bits in formula (18) and (19),

which is used in our previous work [40]. Here SePH• stands

for SePHlinear , SePHlr , SePHklr+rnd or SePHklr+km. And

different combining strategies will result in different unified

hash codes for instances in the retrieval sets. The experimental

results are shown in Table IV. And we can observe that on

all datasets with different hash code lengths, 1) SePH• and

SePH•[Equal] generally outperform SePH•[Img], SePH•[Txt]

and SePH•[Rand], which well demonstrates the superiority

of the proposed probabilistic approach for determining the

unified hash codes of unseen instances, and 2) SePH• gen-

erally outperforms SePH•[Equal], which demonstrates the

reasonableness of making p(ck = 1) and p(ck = −1)
dataset-dependent and the effectiveness of estimating them

with relative frequencies of −1 and 1 in the corresponding

bit of the learnt hash codes of training instances.

TABLE V
OFF-LINE TRAINING COSTS AND ON-LINE HASHING COSTS FOR

COMPARED HASHING METHODS THAT USE LINEAR RIDGE REGRESSION AS

HASH FUNCTIONS, IN TERMS OF SECOND.

Wiki MIRFlickr NUS-WIDE

Off-line
Training
Costs

CMSSH [26] 367.506 1017.434 2040.297
CVH [27] 0.982 5.366 18.657
IMH [21] 8.564 92.149 95.987
LSSH [24] 387.848 878.047 889.888
CMFH [23] 3.510 35.115 26.956
SCM-Orth [35] 0.015 0.078 1.264
SCM-Seq [35] 3.588 9.500 187.824
SePHlinear 47.066 198.511 202.801

On-line
Hashing
Costs

CMSSH [26] 0.015 0.109 2.262
CVH [27] 0.015 0.140 2.278
IMH [21] 0.031 0.251 3.869
LSSH [24] 18.627 112.367 1252.604
CMFH [23] 0.031 0.203 4.478
SCM-Orth [35] 0.016 0.141 2.168
SCM-Seq [35] 0.016 0.125 2.215
SePHlinear 0.031 0.265 3.432

D. Comparison of Training and Hashing Costs

Apart from theoretical analyses, here we also conduct ex-

periments to compare the off-line training costs and the on-line

IEEE TRANSACTIONS ON CYBERNETICS 12

0 0.0001 0.001 0.01 0.1 1
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

α

Q
u

a
lit

y
 o

f
L

e
a

rn
t

H
a

s
h

 C
o

d
e

s

o
f

th
e

 T
ra

in
in

g
 S

e
t

Wiki
MIRFlickr
NUS−WIDE

(a) Effects of Model Parameter α

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

x 10
4

0.35

0.4

0.45

0.5

0.55

Training Set Size for NUS−WIDE

Im
a

g
e

 Q
u

e
ry

v
.s

.
T

e
x
t

D
a

ta
b

a
s
e

SePH
linear

SePH
lr

SePH
klr+rnd

SePH
klr+km

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

x 10
4

0.4

0.45

0.5

0.55

0.6

0.65

Training Set Size for NUS−WIDE

T
e

x
t

Q
u

e
ry

v
.s

.
Im

a
g

e
 D

a
ta

b
a

s
e

SePH
linear

SePH
lr

SePH
klr+rnd

SePH
klr+km

(b) Effects of Training Set Size

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.5

0.51

0.52

0.53

0.54

0.55

Sampling Size for NUS−WIDE

Im
a
g
e
 Q

u
e
ry

v
.s

.
T

e
x
t
D

a
ta

b
a
s
e

SePH
klr+rnd

SePH
klr+km

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.54

0.56

0.58

0.6

0.62

0.64

Sampling Size for NUS−WIDE

T
e
x
t
Q

u
e
ry

v
.s

.
Im

a
g
e
 D

a
ta

b
a
s
e

SePH
klr+rnd

SePH
klr+km

(c) Effects of Sampling Size

Fig. 5. Analyses on affecting factors. Sub-figure 5a illustrates the effects of the only model parameter α on the quality of the learnt hash codes of the training
set in each dataset. Sub-figure 5b and 5c respectively illustrate the effects of the training set size on the performance of SePH and the effects of the sampling
size for learning kernel logistic regression (i.e. hash functions) on the performance of SePHklr . Both are conducted on the largest NUS-WIDE with the hash
code length fixed as 16 bits.

hashing costs of the proposed SePH with those of baselines.

Considering that most baselines utilize linear ridge regression

as hash functions, here we only take SePHlinear , CMSSH

[26], CVH [27], IMH [21], LSSH [24], CMFH [23], SCM-

Orth and SCM-Seq [35] for comparison. Specifically, by fixing

the hash code length as 128 bits to make the comparisons

more significant, we perform each compared hashing method

on Wiki, MIRFlickr and NUS-WIDE, and then measure its

time costs for training and generating hash codes for all

instances in each dataset. The experiments are conducted on a

server with 2 Intel Xeon E5645 CPUs and 48GB RAM, with

all compared methods run on Matlab 2014a. For simplicity,

here we perform 100 iterations for optimizing the objective

function of SePH on each dataset, which can well guarantee

convergence. Experimental results are reported in Table V.

Note that for SePHlinear , the training costs include those

of learning the hash codes of training instances and those

of learning view-specific hash functions. It can be seen that

for off-line training, SePHlinear generally costs more time

than most baselines, but still costs significantly less than the

boosting based CMSSH and the sparse coding based LSSH.

As for on-line hashing, SePHlinear costs slightly more time

than most baselines, as it needs extra time to estimate the

output probabilities. Meanwhile, its on-line hashing costs are

still much lower than those of LSSH, which generally needs

to perform sparse coding for view-specific features. Actually,

on average SePHlinear costs less than 0.1 millisecond for

generating the hash code of an instance, which would generally

be acceptable in real-world applications.

E. Effects of Model Parameters

In previous experiments, for training SePH, the only model

parameter α in its objective function (i.e. formula (7)) is

empirically set as 0.01. Here we further conduct experiments

to analyse its effects. Actually, the effects of α on SePH come

from its effects on the quality of the learnt hash codes of the

training set. And thus in our experiments, by fixing the hash

code length as 16 bits on each dataset and using identical

initial values for Ĥ , we vary α in {0, 10−4, 10−3, . . . , 1} to

learn the hash codes of the corresponding training set. For each

setting of α, the quality of learnt hash codes is measured with

their cross-view retrieval performance on the training set. Like

the experiments of converge analyses, considering that the

retrieval performance of learnt hash codes on a training set in

the two cross-view retrieval tasks would be equal, here we only

report one, as illustrated in Fig. 5a. It can be observed that as

α increases from 0 to 1, the quality of the learnt hash codes of

the training sets in MIRFlickr and NUS-WIDE firstly increases

and then decreases, while that w.r.t Wiki keeps unchanged with

an optimal mAP value of 1.0. The reasonable experimental

results show that an appropriate positive α can make the learnt

real-valued hash code matrix Ĥ close to the optimal binary

one H via reducing the quantization loss, while a large α can

lead the KL-divergence term to be less optimized and thus

disable the learnt hash codes to well preserve the semantic

affinities. It should also be noticed that the empirical value

0.01 is near to the optimal settings for α on all datasets and

it consistently yields superior performance than α = 0.

F. Effects of Training Set Size

To analyse how the training set size affects the performance

of SePH, by fixing the hash code length as 16 bits, we increase

the training set size of each dataset from 100 to 20, 000
(2, 000 for Wiki and 14, 000 for MIRFlickr), and measure the

corresponding cross-view retrieval performance of SePH on

the query set for each size. The experimental results on the

largest NUS-WIDE are illustrated in Fig. 5b. It can be seen

that as the training set size increases, the performance of SePH,

i.e. SePHlinear , SePHlr, SePHklr+rnd and SePHklr+km, keeps

increasing and finally tends to converge. Actually, on NUS-

WIDE, when the training set size increases to around 3, 000,

the performance of SePH begins to converge. Considering that

a training set size of 3000 is less than 2% of the retrieval set

size, the experimental results well demonstrate that SePH is

capable of exploiting the limited supervised information of a

dataset. And thus it can be applicable for large-scale datasets,

since SePH can be well trained with only the supervised

information of a small fraction. Similar experimental results

IEEE TRANSACTIONS ON CYBERNETICS 13

can also be observed on Wiki and MIRFlickr, as provided in

the supplementary material.

G. Effects of Sampling Size for Kernel Logistic Regression

In previous experiments w.r.t SePHklr , we empirically uti-

lize a sampling size of 500 to learn kernel logistic regressions

on all datasets. Here we further conduct experiments to in-

vestigate its effects. Similarly, we fix the hash code length

as 16 bits. And for each dataset, with learnt hash codes of

training instances, we increase the sampling size from 100
to 5, 000 (2, 000 for Wiki), and respectively utilize random

sampling and k-means sampling for each size to learn the

corresponding kernel logistic regressions as hash functions.

Moreover, for each sampling size, we measure the cross-view

retrieval performance on the query set with the hash codes

generated by the corresponding learnt hash functions. Fig. 5c

shows the experimental results on the largest NUS-WIDE, and

we can see that the performance of SePHklr , i.e. SePHklr+rnd

and SePHklr+km, firstly increases and then converges quickly

as the sampling size increases. Actually, on NUS-WIDE, when

the sampling size increases to around 1, 000, the performance

of SePHklr begins to converge. Moreover, the empirical setting

of sampling size in our experiments (i.e. 500) achieves more

than 98% of the performance achieved by the largest sampling

size (i.e. 5, 000), while its training and predicting costs, as

theoretically analysed before, would be much lower. And thus

it is reasonable to perform sampling for learning kernel logistic

regression in SePHklr . Additionally, we can observe that at

small sampling sizes (e.g. 100), k-means sampling shows more

significant superiority over random sampling. It is because

that in those cases the sampled kernel feature vectors are

not sufficient enough for spanning the to-be-learnt weighting

vector and k-means sampling can probably select better ones.

V. CONCLUSIONS

In this paper, we propose a supervised cross-view hashing

method termed SePH. For training, given the semantic affini-

ties of training data, SePH firstly transforms them into a prob-

ability distribution and aims to approximate it with another

one derived from to-be-learnt binary hash codes of training

instances in Hamming space. Then with the hash codes learnt,

any kind of effective predictive models can be learnt as hash

functions in each view to project the corresponding features

into binary hash codes, such as linear ridge regression, logistic

regression and kernel logistic regression, etc. To perform out-

of-sample extension, given an unseen instance, the learnt hash

functions firstly predict view-specific hash codes and derive

or estimate the corresponding output probabilities in each of

its observed views, and then a novel probabilistic approach

is utilized to determine a unified hash code. Experiments on

three benchmark datasets show that SePH yields state-of-the-

art performance for cross-view retrieval.

ACKNOWLEDGMENT

This research was supported by the National Natural

Science Foundation of China (Grant No. 61271394 and

61571269). The authors would like to thank the anonymous

reviewers for their valuable comments.

REFERENCES

[1] Z. Jin, C. Li, Y. Lin, and D. Cai, “Density sensitive hashing,” IEEE

Transactions on Cybernetics, vol. 44, no. 8, pp. 1362–1371, 2014. 1

[2] J. Song, Y. Yang, X. Li, Z. Huang, and Y. Yang, “Robust hashing with
local models for approximate similarity search,” IEEE Transactions on

Cybernetics, vol. 44, no. 7, pp. 1225–1236, 2014. 1

[3] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for
finding best matches in logarithmic expected time,” ACM Transactions

on Mathematical Software, vol. 3, no. 3, pp. 209–226, Sep. 1977. 1

[4] A. W. Moore, “The anchors hierarchy: Using the triangle inequality
to survive high dimensional data,” in Proceedings of the Sixteenth

Conference on Uncertainty in Artificial Intelligence, 2000. 1

[5] T. Liu, A. W. Moore, K. Yang, and A. G. Gray, “An investigation
of practical approximate nearest neighbor algorithms,” in Advances in

Neural Information Processing Systems, 2004. 1

[6] T. Liu, C. Rosenberg, and H. Rowley, “Clustering billions of images with
large scale nearest neighbor search,” in IEEE Workshop on Applications

of Computer Vision, 2007. 1

[7] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high dimen-
sions via hashing,” in Proceedings of the 25th International Conference

on Very Large Data Bases, 1999. 1

[8] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Advances

in Neural Information Processing Systems, 2009. 1, 3

[9] D. Zhang, J. Wang, D. Cai, and J. Lu, “Self-taught hashing for fast
similarity search,” in Proceedings of the 33rd International ACM SIGIR

Conference on Research and Development in Information Retrieval,
2010. 1, 2

[10] Y. Gong and S. Lazebnik, “Iterative quantization: A procrustean ap-
proach to learning binary codes,” in IEEE Conference on Computer

Vision and Pattern Recognition, 2011. 1

[11] F. Shen, C. Shen, Q. Shi, A. Hengel, and Z. Tang, “Inductive hashing
on manifolds,” in IEEE Conference on Computer Vision and Pattern

Recognition, 2013. 1

[12] G. Irie, Z. Li, X. Wu, and S. Chang, “Locally linear hashing for
extracting non-linear manifolds,” in IEEE Conference on Computer

Vision and Pattern Recognition, 2014. 1

[13] P. Zhang, W. Zhang, W. Li, and M. Guo, “Supervised hashing with
latent factor models,” in Proceedings of the 37th International ACM

SIGIR Conference on Research & Development in Information Retrieval,
2014. 1

[14] G. Lin, C. Shen, Q. Shi, A. Hengel, and D. Suter, “Fast supervised hash-
ing with decision trees for high-dimensional data,” in IEEE Conference

on Computer Vision and Pattern Recognition, 2014. 1

[15] L. Chen, D. Xu, I.-H. Tsang, and X. Li, “Spectral embedded hashing
for scalable image retrieval,” IEEE Transactions on Cybernetics, vol. 44,
no. 7, pp. 1180–1190, 2014. 1

[16] Z. Jin, D. Zhang, Y. Hu, S. Lin, D. Cai, and X. He, “Fast and accurate
hashing via iterative nearest neighbors expansion,” IEEE Transactions

on Cybernetics, vol. 44, no. 11, pp. 2167–2177, 2014. 1

[17] X. Liu, Y. Mu, D. Zhang, B. Lang, and X. Li, “Large-scale unsupervised
hashing with shared structure learning,” IEEE Transactions on Cyber-

netics, vol. 45, no. 9, pp. 1811–1822, 2015. 1

[18] R. Ye and X. Li, “Compact structure hashing via sparse and similarity
preserving embedding,” IEEE Transactions on Cybernetics, vol. PP,
no. 99, pp. 1–1, 2015. 1

[19] W. W. Y. Ng, X. Tian, Y. Lv, D. S. Yeung, and W. Pedrycz, “Incremental
hashing for semantic image retrieval in nonstationary environments,”
IEEE Transactions on Cybernetics, vol. PP, no. 99, pp. 1–13, 2016. 1

[20] X. Zhu, Z. Huang, H. Shen, and X. Zhao, “Linear cross-modal hashing
for efficient multimedia search,” in Proceedings of the 21st ACM

International Conference on Multimedia, 2013. 1, 2

[21] J. Song, Y. Yang, Y. Yang, Z. Huang, and H. Shen, “Inter-media
hashing for large-scale retrieval from heterogeneous data sources,” in
Proceedings of the 2013 ACM SIGMOD International Conference on

Management of Data, 2013. 1, 2, 8, 9, 11, 12

[22] Y. Zhen, Y. Gao, D.-Y. Yeung, H. Zha, and X. Li, “Spectral multimodal
hashing and its application to multimedia retrieval,” IEEE Transactions

on Cybernetics, vol. 46, no. 1, pp. 27–38, 2016. 1, 2, 3

[23] G. Ding, Y. Guo, and J. Zhou, “Collective matrix factorization hashing
for multimodal data,” in 2014 IEEE Conference on Computer Vision and

Pattern Recognition, 2014. 1, 2, 3, 5, 8, 9, 11, 12

[24] J. Zhou, G. Ding, and Y. Guo, “Latent semantic sparse hashing for cross-
modal similarity search,” in Proceedings of the 37th International ACM

SIGIR Conference on Research & Development in Information Retrieval,
2014. 1, 2, 3, 8, 9, 11, 12

IEEE TRANSACTIONS ON CYBERNETICS 14

[25] L. Xie, J. Shen, and L. Zhu, “Online cross-modal hashing for web image
retrieval,” in AAAI Conference on Artificial Intelligence, 2016. 1, 2, 3

[26] M. Bronstein, A. Bronstein, F. Michel, and N. Paragios, “Data fusion
through cross-modality metric learning using similarity-sensitive hash-
ing,” in IEEE Conference on Computer Vision and Pattern Recognition,
2010. 1, 3, 5, 8, 9, 11, 12

[27] S. Kumar and R. Udupa, “Learning hash functions for cross-view
similarity search,” in Proceedings of the Twenty-Second International

Joint Conference on Artificial Intelligence, 2011. 1, 2, 3, 8, 9, 11, 12

[28] Y. Zhen and D. Yeung, “Co-regularized hashing for multimodal data,”
in Advances in Neural Information Processing Systems, 2012. 1, 3

[29] ——, “A probabilistic model for multimodal hash function learning,”
in Proceedings of the 18th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, 2012. 1, 3

[30] D. Zhai, H. Chang, Y. Zhen, X. Liu, X. Chen, and W. Gao, “Parametric
local multimodal hashing for cross-view similarity search,” in Proceed-

ings of the Twenty-Third International Joint Conference on Artificial

Intelligence, 2013. 1, 3

[31] J. Masci, M. Bronstein, A. Bronstein, and J. Schmidhuber, “Multimodal
similarity-preserving hashing,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 36, no. 4, pp. 824–830, 2014. 1, 3

[32] Z. Yu, F. Wu, Y. Yang, Q. Tian, J. Luo, and Y. Zhuang, “Discriminative
coupled dictionary hashing for fast cross-media retrieval,” in Proceed-

ings of the 37th International ACM SIGIR Conference on Research &

Development in Information Retrieval, 2014. 1, 3

[33] Z. Yu, Y. Zhang, S. Tang, Y. Yang, Q. Tian, and J. Luo, “Cross-media
hashing with kernel regression,” in IEEE International Conference on

Multimedia and Expo, 2014. 1, 3

[34] J. Zhou, G. Ding, Y. Guo, Q. Liu, and X. Dong, “Kernel-based super-
vised hashing for cross-view similarity search,” in IEEE International

Conference on Multimedia and Expo, 2014. 1, 2, 3, 8, 9

[35] D. Zhang and W. Li, “Large-scale supervised multimodal hashing with
semantic correlation maximization,” in AAAI Conference on Artificial

Intelligence, 2014. 1, 2, 3, 8, 9, 11, 12

[36] B. Wu, Q. Yang, W. Zheng, Y. Wang, and J. Wang, “Quantized
correlation hashing for fast cross-modal search,” 2015. 1, 3

[37] Q. Jiang and W. Li, “Deep cross-modal hashing,” CoRR, 2016.
[Online]. Available: http://arxiv.org/abs/1602.02255 1, 3

[38] T. Zhang and J. Wang, “Collaborative quantization for cross-modal
similarity search,” in 2016 IEEE Conference on Computer Vision and

Pattern Recognition, 2016. 1, 3

[39] J. Tang, K. Wang, and L. Shao, “Supervised matrix factorization hashing
for cross-modal retrieval,” IEEE Transactions on Image Processing,
vol. 25, no. 7, pp. 3157–3166, 2016. 1, 3

[40] Z. Lin, G. Ding, M. Hu, and J. Wang, “Semantics-preserving hashing
for cross-view retrieval,” in 2015 IEEE Conference on Computer Vision

and Pattern Recognition, 2015. 2, 7, 11

[41] L. V. and G. Hinton, “Visualizing data using t-sne,” Journal of Machine

Learning Research, vol. 9, no. 2579-2605, p. 85, 2008. 4

[42] D. Tao, X. Tang, X. Li, and X. Wu, “Asymmetric bagging and random
subspace for support vector machines-based relevance feedback in
image retrieval,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 28, no. 7, pp. 1088–1099, 2006. 5

[43] D. Hardoon, S. Szedmak, and J. Shawe-taylor, “Canonical correlation
analysis: An overview with application to learning methods,” Neural

Computation, vol. 16, no. 12, pp. 2639–2664, 2004. 6

[44] M. Hu, Y. Chen, and J. Kwok, “Building sparse multiple-kernel svm
classifiers,” IEEE Transactions on Neural Networks, vol. 20, no. 5, pp.
827–839, 2009. 6

[45] C. M. Bishop, Pattern Recognition and Machine Learning. Springer-
Verlag New York, Inc., 2006. 7

[46] C. Xu, D. Tao, and C. Xu, “Large-margin multi-view information bottle-
neck,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 36, no. 8, pp. 1559–1572, 2014. 7

[47] ——, “Multi-view intact space learning,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 37, no. 12, pp. 2531–2544, 2015.
7

[48] J. Pereira, E. Coviello, G. Doyle, N. Rasiwasia, G. Lanckriet, R. Levy,
and N. Vasconcelos, “On the role of correlation and abstraction in
cross-modal multimedia retrieval,” Transactions of Pattern Analysis and

Machine Intelligence, vol. 36, no. 3, pp. 521–535, 2014. 7

[49] M. Huiskes and M. Lew, “The mir flickr retrieval evaluation,” in
Proceedings of the 2008 ACM International Conference on Multimedia

Information Retrieval, 2008. 7

[50] T. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng, “Nus-wide: A
real-world web image database from national university of singapore,” in

Proceedings of the ACM International Conference on Image and Video

Retrieval, 2009. 7
[51] I. Jolliffe, Principal Component Analysis. Springer-Verlag New York,

1986, vol. 487. 8
[52] J. McDonald, Handbook of Biological Statistics (3rd ed.). Sparky House

Publishing, 2014. 9

Zijia Lin received his B.Sc. degree from School
of Software, Tsinghua University, Beijing, China in
2011, and currently is a Ph.D. candidate in Depart-
ment of Computer Science and Technology in the
same campus. His research interests include multi-
media information retrieval and machine learning.

Guiguang Ding received his Ph.D degree in elec-
tronic engineering from XiDian University. He is
currently an associate professor of School of Soft-
ware, Tsinghua University. Before joining School
of Software in 2006, he worked as a postdoctoral
researcher in Automation Department of Tsinghua
University. His current research centers on the area
of multimedia information retrieval and mining, in
particular, visual object classification, automatic se-
mantic annotation, content-based multimedia index-
ing, and personal recommendation. He has published

about 40 research papers in international conferences and journals and applied
for 18 Patent Rights in China.

Jungong Han received the Ph.D. degree in telecom-
munication and information system from XiDian
University, Xian, China, in 2004. During his Ph.D.
study, he spent one year with the Internet Media
Group of Microsoft Research Asia, Beijing, China.
From 2005 to 2010, he was with Signal Processing
Systems Group, Technical University of Eindhoven,
Eindhoven, The Netherlands. In 2010, he joined
the Multiagent and Adaptive Computation Group,
Centre for Mathematics and Computer Science, Am-
sterdam, The Netherlands. In 2012, he served as a

Senior Scientist with Civolution Technology, Eindhoven (a combining synergy
of Philips Content Identification and Thomson STS). His current research
interests include multimedia content identification, multisensor data fusion,
and computer vision. He has authored and co-authored over 70 papers.

Jianmin Wang graduated from Peking University,
China, in 1990, and received the ME and Ph.D.
degrees in computer software from Tsinghua Uni-
versity, China, in 1992 and 1995, respectively. He
is a full professor in the School of Software, Ts-
inghua University. His research interests include
unstructured big data management, workflow and
BPM technology, and large-scale data analytics.
He has published 100 papers in major journals
and conferences, including TKDE, DMKD, WWWJ,
SIGMOD, VLDB, ICDE, SIGKDD, SIGIR, AAAI,

CVPR, and ICCV. He led to develop a product data/lifecycle management
system, which has been implemented in hundreds of enterprises in China. He
leads to develop an unstructured big data management system, LaUDMS.

http://arxiv.org/abs/1602.02255

	I Introduction
	II Related Work
	III Proposed SePH
	III-A Problem Formulation
	III-B Semantics-Preserving Hashing
	III-C Solution and Implementation Issues
	III-D Learning Hash Functions
	III-E Generating Hash Codes
	III-F Extensions

	IV Experiments
	IV-A Experimental Settings
	IV-B Experimental Results
	IV-C Experimental Validations of the Proposed Probabilistic Approach for Determining Unified Hash Codes
	IV-D Comparison of Training and Hashing Costs
	IV-E Effects of Model Parameters
	IV-F Effects of Training Set Size
	IV-G Effects of Sampling Size for Kernel Logistic Regression

	V Conclusions
	References
	Biographies
	Zijia Lin
	Guiguang Ding
	Jungong Han
	Jianmin Wang

