
IEEE Transactions on Dielectrics and Electrical Insulation    Vol. 17, No. 1; February 2010 

1070-9878/10/$25.00 © 2010 IEEE 

157

Cross-wavelet Transform as a New Paradigm for Feature 
Extraction from Noisy Partial Discharge Pulses  

 

D. Dey, B. Chatterjee, S. Chakravorti and S. Munshi  
Jadavpur University 

Department of Electrical Engineering 

Kolkata 700032, India 

 

ABSTRACT 
In this work a new approach based on cross-wavelet transform towards identification 

of noisy Partial Discharge (PD) patterns has been proposed. Different partial discharge 

patterns are recorded from the various samples prepared with known defects. A novel 

cross-wavelet transform based technique is used for feature extraction from raw noisy 

partial discharge signals. Noise is a significant problem in PD detection. The proposed 

method eliminates the requirement of denoising prior to processing and therefore it 

can be used to develop an automated and intelligent PD detector that requires minimal 

human expertise during its operation and analysis. A rough-set theory (RST) based 

classifier is used to classify the extracted features. Results show that the partial 

discharge patterns can be classified properly from the noisy waveforms. The 

effectiveness of the feature extraction methodology has also been verified with two 

other commonly used classification techniques: Artificial Neural Network (ANN) based 

classifier and Fuzzy classifier. It is found that the type of defect within insulation can 

be classified efficiently with the features extracted from cross-wavelet spectra of PD 

waveforms by all of these methods with a reasonable degree of accuracy.  

   Index Terms — Artificial neural network (ANN), cross-wavelet transform, cross-

wavelet spectrum, fuzzy classifiers, partial discharge (PD), pattern classification, rough 

set theory. 

 

1   INTRODUCTION 

PARTIAL Discharge (PD) is an electrical discharge that 

occurs across a portion of the insulation between two 

electrodes, without completely bridging the gap. PD occurs 

within an electrical insulation without any significant 

manifestation outside and leads to unwanted failure. After 

initiation, PD can propagate and develop into electrical trees 

until the insulation is so weakened that it fails completely with 

permanent breakdown. It is necessary therefore, to ascertain 

the type of discharge present to judge its severity. Noise 

contamination is one of the significant problems of PD 

detection. PD signals have high frequency components 

making it difficult to distinguish them from noises. Therefore, 

denoising is an important issue in PD pattern classification. 

Researchers have reported several efficient methodologies for 

denoising of PD signals with various types of noise 

contamination [1-4]. Different algorithms are also reported for 

PD pattern classification in [5-9]. Most of the classification 

methods require denoised PD pulses and almost all denoising 

schemes need expert operator. This work is aimed at proper 

classification of PD patterns from noisy waveforms recorded 

in the laboratory environment without denoising them so that, 

the method can be used to develop an automated and 

intelligent PD detector that requires minimal human expertise 

during its operation and analysis.  

It is known that PD patterns can be classified on the basis 

of the phase locations and frequency contents of the pulses 

[2]. Cross-wavelet transform method, which is an extension of 

wavelet analysis, gives a measure of correlation between two 

waveforms in time-frequency domain. So, cross-wavelet 

spectrum finds the regions in time-frequency plane where two 

waveforms possess high common power. Keeping this in 

mind, feature extraction based on cross-wavelet transform is 

proposed as a new methodology for PD pulse pattern 

classification in the present work. The features obtained from 

cross-wavelet spectra between noisy PD waveforms and that 

superposed on power frequency reference signal are used to 

classify different defects in the insulation. 

Cross-wavelet transform has already been used successfully 

for impulse fault classification of transformers by the authors 

[10]. Moreover, the cross-wavelet spectrum analysis has also 

been reported by other researchers in geosciences [11-12], 

biomedical signal processing [13] and transient analysis [14].  

A Rough set theory (RST) based decision support system is 

used for classification of defect patterns in the present Manuscript received on 14 January 2009, in final form 12 July 2009. 
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approach. Moreover, the efficiency of the feature extraction 

methodology has also been judged with other classification 

methods like, Artificial Neural Network (ANN) and Fuzzy 

logic based classifiers.  

To justify the proposed approach four common types of 

defects have been emulated in the samples and the respective 

PD waveforms are recorded with standard laboratory setup 

and data acquisition hardware. 

Results show that the proposed feature extraction method 

gives acceptable accuracy with all three classification tools, 

thus establishing the effectiveness of the proposed scheme. 

2 PD DATA ACQUISITION SETUP 

The PD pulses are acquired through a real-life laboratory 

setup. The schematic is shown in Figure 1 and the photograph 

of the setup is given in Figure 2. When a test voltage, above 

PD inception, is applied across the sample under test, partial 

discharge takes place within the void and PD pulses are 

filtered out from the applied high voltage signal through the 

coupling capacitor. The PD signal appears across the inductor, 

where the role of the damping resistor is to prevent sustained 

oscillatory signal across the inductor in the case of a PD pulse. 

C1 and C2 constitute the potential divider for the power 

frequency high voltage and the corresponding low voltage is 

used for phase-reference of PD pulses as indicated in Figure 1. 

The complete connection diagram of the data acquisition setup 

is shown in Figure 3. It is worth mentioning here that the 

bandwidth of the used detector is 50 MHz. 

3 OVERVIEW OF CROSS-WAVELET 

TRANSFORM 

As stated earlier, Cross-wavelet transform may be 

considered as an extension of wavelet based analysis. Though 

the detailed mathematical background can be found in [11-

14], an overview of cross-wavelet transform is given below. If 

x(t) and y(t) are two time domain signals, the cross-wavelet 

transform is defined as: 
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Here, ),( τsW x  and ),( τsW y  are the wavelet transform of 

x(t) and y(t), respectively, with respect to a mother wavelet 

ψ(t). ‘s’ and ‘τ’ are  usual ‘dilation’ and ‘translation’ 

parameters. In the present study Morlet mother wavelet is 

considered. This choice of mother wavelet is purely dependent 

on the nature of the problem. In this case it has been found 

that the performance of the scheme using Morlet wavelet is 

better than other commonly used mother wavelets. However, 

depending on the problem some other mother wavelet may be 
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   It is evident from equation (1) that cross-wavelet spectrum 

shows regions in time-frequency plane where two waveforms 

are having high common power. The Cross-wavelet spectrum 

is plotted using the magnitude of 
xyW  and the phase angle, 
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= −φ . Here, }{ xyWℜ and }{ xyWℑ indicate the real 

and imaginary part of 
xyW  respectively. 

 

 
 

Figure 1.  Schematic of PD data acquisition setup. 

 

 
 

Figure 2. Photograph of the developed PD data acquisition setup 

 

 
 

Figure 3. Wiring diagram of the developed PD data acquisition setup. 
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4  FEATURE EXTRACTION USING CROSS-

WAVELET TRANSFORM 

4.1  INSULATION DEFECTS UNDER STUDY 

The defects that occur within the insulation can commonly 

be classified as i) narrow void (less than 1 mm2 cross-section 

area), in contact with the electrode; ii) narrow void, away 

from the electrode; iii) large void (greater than 1mm2 cross-

section area), in contact with the electrode; iv) large void, 

away from the electrode. PD pulse patterns depend on the 

nature (size) and location of voids. In the present study, these 

four usual patterns of PD pulses are classified by the 

developed methodology.  

The test samples are prepared using acrylic resin. Voids are 

created in the base material (i.e. acrylic resin) to simulate the 

defect inside an insulation. A representative diagram 

alongwith a photograph of a sample are shown in Figure 4. 

Plane-plane electrode system is used in the present study. A 

photograph of the electrodes placed across the sample under 

test is given in Figure 5.  

4.2  FEATURE EXTRACTION FROM NOISY PULSES 

The present study is aimed at the development of a scheme 

that is useful for classification of the PD pulses, recorded in 

laboratory environment. PD pulses get contaminated by noise 

even in a shielded laboratory environment. But in this case 

noise level is low compared to that in the outdoor or on-field 

PD measurements. However, this low noise too, could deform 

the signal upto such extent that it becomes difficult to detect 

the defect type and location from the recorded signals even for 

a human expert. It has been observed that the lowest value of 

signal to noise ratio is about -10 dB under different 

measurement conditions. These noises are mostly random in 

nature. So, denoising schemes are often used to cater to this 

problem. A typical spectrum of the noise is shown in Figure 6. 

In recent times Wavelet analysis based denoising 

techniques are in use for this purpose. Shim et al [1] proposed 

use of wavelet transforms to improve their capability for 

detection and location of PDs in shielded distribution cables. 

Ma et al [2] applied continuous wavelet transforms for PD 

pattern recognition. They also implemented wavelet 

transforms to separate PD from electrical noise and proposed 

a wavelet transform based threshold value selection method. 

Satish et al [3] also employed wavelet transforms for PD 

denoising and comparison of performance with various noise 

sources. Hang et al [15] described application of the wavelet 

transform to extract PD signals from narrow-band 

interference. Zhang et al [4] utilized wavelet transforms to 

remove narrow band interference and white noise in on-line 

PD measurement. Ming et al [5] reported wavelet applications 

for characterization of PD, based on laboratory studies. 

Wavelet transform based denoising techniques were also 

applied by Tian et al [6] to improve signal to noise ratio 

(SNR) for detecting PD within a HV cable joint. 

But the significant problem with most of these denoising 

methods is that they require an expert operator for the 

denoising scheme to work. The expertise is required for 

selection of threshold values of denoising, observation of PD 

inception voltage and noise level present in that case etc. 

 

 
Figure 4.  Sample prepared for PD simulation (a) Schematic  (b) Actual 

Photograph. 

 

 
 

Figure 5.   Actual Photograph of the electrode placement across the sample. 

Authorized licensed use limited to: JADAVPUR UNIVERSITY. Downloaded on March 29,2010 at 08:53:22 EDT from IEEE Xplore.  Restrictions apply. 



D. Dey et al.: Cross-wavelet Transform as a New Paradigm for Feature Extraction from Noisy Partial Discharge Pulses 160 

The aim of the present work is not only developing a 

scheme to eliminate the effect of noises from PD pulses but to 

do it in such a way that requires minimal human expertise, so 

that the scheme can be used in an intelligent, integrated and 

automated PD detection unit. Therefore, cross-wavelet 

transform method is used in the present study. 

 

 
Figure 6. Typical frequency spectrum of recorded noise. 

 

In this work, noisy PD signals are recorded from various 

samples with different defect (void) types. These waveforms are 

then superposed on the reference power frequency signal. This 

superposition is performed by the algebraic addition of the 

digitally stored data samples. One of such recorded data is 

shown in Figure 7a. The recorded PD waveforms were 

corrupted with noises which is evident from Figure 7a. Figure 

7b shows the waveform when this noisy data is superposed on 

the power frequency reference signal. The random nature of the 

noise is responsible for low value of correlation of noise with 

itself, because random signals have very low auto-correlation 

sequence. Cross-wavelet transform gives the correlation of two 

signals in time-frequency domain. It basically uses continuous 

wavelet transform of two signals. Due to the random nature of 

the noise, its contribution in the wavelet coefficient values in the 

time-frequency domain is randomly distributed, which is not the 

case for PD pulses. So, when the correlation of such wavelet 

coefficients are computed for Cross-wavelet transform, the 

contribution of noise becomes low in terms of coefficient values 

in cross-wavelet spectrum. Therefore, prior denoising of the 

recorded waveforms could be avoided in the present analysis. 

Raw noisy waveforms are therefore used for processing. Cross-

wavelet transforms between the superposed waveform and the 

corresponding original noisy waveform are obtained for all the 

recorded signals. Seven features, explained later, are extracted 

from these cross-wavelet spectra to classify the defect type [10].  

The reason behind the choice of these two waveforms (i.e. 

PD pulses and the superposed waveform) to obtain the cross-

wavelet spectra is explained below: 

It is known that the nature of PD patterns depend on the 

phase locations and frequency contents of the pulses. So, the 

defect may be classified on the basis of this information, if 

they can be extracted from PD pulses [2]. As cross-wavelet 

transform gives a measure of correlation between two 

waveforms in time-frequency domain, it is a possible choice 

for extracting the hidden features from the PD pulse patterns 

to classify the type of defects. In the present case of 

application two types of signals are recorded: a) the noisy PD 

pulses; b) the power frequency reference signal. So, the 

possible cross-wavelet spectrum which can be used for feature 

extraction to classify PD patterns may be one of the following: 

 

i) Cross-wavelet spectrum obtained from the cross-

wavelet transform of noisy PD pulse and the power 

frequency reference signal 

ii) Cross-wavelet spectrum obtained from the cross-

wavelet transform of noisy PD pulse with itself  

iii) Cross-wavelet spectrum obtained from the cross-

wavelet transform of PD pulse and power frequency 

reference signal superposed on noisy PD pulse 

 

 

 
Figure 7. Signals considered for Cross-wavelet Transform: (a) Noisy PD 

signal (b) PD signal superposed on power frequency reference. 

 

In the first case, as the frequency content of the noisy PD 

signal is very high with respect to the power frequency signals, 

the coefficient values for cross-wavelet spectrum are low and 

close to each other, thus giving poor performance in 

classification. 

In the second case, the phase information has been lost 

because two waveforms used in cross-wavelet transform are 

same. So, there occurs a loss of information, causing poor 

performance of the classification algorithm. 

It has been found in the present case that the third one gives 

acceptable performance for classification of the PD pulses using 

the scheme studied in this work.  So, this method is applied in the 
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present study. A pictorial representation of the scheme is shown 

in Figure 8. However, there exist other possibilities of selecting 

different combinations of waveforms for some other problem. 

Cross-wavelet spectrum of the waveforms shown in Figure 

7 is given in Figure 8.  

In Figure 8, xyW  values at different ‘time’ and ‘scale’ are 

plotted. The x-axis is considered as ‘time’ axis and y-axis 

shows the ‘scale’, which can be considered as the inverse of 

frequency. The color of the figure at a point shows the value 

of xyW  at that location time-frequency plane. The color-bar 

given on the right side of Figure 8 indicates the value 

corresponding to a color. Higher the value, higher is the 

common power at that time-frequency point. 

Black arrows show the phase angle. Arrows shown in 

Figure 8, pointing towards right indicate “in-phase” (i.e. phase 

difference in zero) and arrows pointing left indicate “anti-

phase” (i.e. phase difference is 180 degrees) conditions. In 

general, the angles made by the arrows with the time axis 

indicate their respective phase angles.  

The ‘U’ shaped and black colored line shows the “cone of 

influence” (COI) which indicates the effective region for the 

analysis. COI separates the region where edge effects due to 

zero padding are significant. Similar to spectral analysis, 

errors will occur at the edges (i.e. beginning or end) of the 

waveform in the case of cross-wavelet because of the finite 

length of time series. Padding with zeros introduces 

discontinuities and the amplitude of the coefficients near the 

edge decreases at larger scales as more zeroes are added. The 

cone of influence is the region of the cross-wavelet spectrum 

in which these effects become important. This is defined as 

the e-folding time for the autocorrelation of wavelet power at 

each scale. It ensures that the power for a discontinuity drops 

by a factor of e-2 (where, e= 2.7182…) and the edge effects 

are negligible beyond this point. 

Feature extraction is the most important aspect of any 

classification or clustering problem. Choice of the features for 

a particular problem may be considered as a combination of 

trial-and-error method and application of experience. For 

identification of PD patterns seven features are extracted from 

each of the cross-wavelet spectra, in a way similar to that 

followed in the case of impulse fault identification in [10] by 

the authors. These parameters represent the significant 

features of the xyW  surface and produced good results in 

impulse fault identification [10]. 

The features (from A1 to A7) are described below: 
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Figure 8.  Scheme to obtain Cross-wavelet spectrum for feature extraction 

 

However, one may choose some other features like, 

location of local peaks of xyW  surfaces, if any, or some 

features from phase angle information ),( τφ s  depending upon 

the nature of the problem. In the present case, the seven 

features mentioned above are found to be sufficient for 

classification of PD patterns for four common types of 

defects. The computation time for this feature extraction 

method on a Pentium IV processor (2.68 GHz, with 1 GB 

RAM) based Personal Computer (PC), is found as 30 s 

approximately. 
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5  CLASSIFICATION OF EXTRACTED 

FEATURES 

To classify the extracted features, a classification technique 

based on Rough set theory (RST) is used. It is evident that 

there is no apriori knowledge regarding which features of the 

cross-wavelet spectrum will be suitable and should be taken 

for classification of PD patterns. So, the data table obtained 

after the extraction of the features may contain imprecise or 

superfluous information. As Rough sets are well-suited for 

this kind of problems [16-21], a classifier based on Rough sets 

is preferred here. However, other classification techniques can 

also be used for the same purpose. So, the classification 

performances have also been studied with two other 

commonly used classification tools: ANN based classifier and 

Fuzzy c-means clustering. As these two techniques are well 

known, an overview of RST based classification is given here 

only. 

In RST, data is presented in a decision table in which each 

row represents an object (e.g. information regarding the 

occurrence of PD for different defect types in different test 

samples) and each column represents an attribute. For 

example, in the present problem decision table contains 

extracted features (A1-A7) as the 7 condition attributes and the 

defect type as the decision attribute. For decision attribute the 

following notation is followed in the present problem: D1= 

narrow void (less than 1 mm2 cross-section area), in contact 

with the electrode; D2= narrow void, away from the electrode; 

D3= large void (greater than 1mm2 cross-section area), in 

contact with the electrode; D4= large void, away from the 

electrode.  The normalized decision table used for training or 

rule generation is shown in Table 1.  

Mathematically, information system 〉〈= fVQUT ,,, . 

Here, U is the finite set of objects and Q is the set of 

attributes. ∪
Qq

qVV
∈

= , where Vq is the domain of the values of q 

and f denotes decision function as, VQUf →×: . If the 

table is having a large number of attribute values i.e. card(Vq) 

is very high for some Qq∈ , then there is a very low chance of 

classifying a new object by the rules generated directly from 

the table. Here, card() means cardinality operator, which 

means “number of elements of a set”. Therefore, discretization 

of the decision table is required for large real-valued decision 

table. Discretization of a data table indicates some partitioning 

of the attribute values. In the present problem Maximal 

Discernible (MD) heuristic is followed which is discussed in 

details in [22]. The discretized decision table is shown in 

Table 2. 

In RST, for different attributes, objects are called 

indiscernible, i.e. similar, if they are characterized by the same 

information. If QP ⊆  and Uxx ji ∈, , then xi and xj are 

indiscernible wrt the set of attributes P, 

if Pqqxfqxf ji ∈∀= ),,(),( . For example, let P= {A1}. The 

part of the discretized decision table given in Table 2 shows 

that, at least objects 2, 3, 4, 6 are indiscernible with attribute 

A1, as all these objects are having same value (i.e. value=1) 

for this feature. Similarly objects 5,…, 67 and 70 are also 

indiscernible using A1 as they possesses same values (i.e. 

value =3) for these objects.  An elementary set is the set of all 

indiscernible objects. So, for QP ⊆ , an equivalence relation 

on U, called P-indiscernibility relation is given by IP. 

Considering the previous example of P= {A1}, it can be found 

that the P-elementary set includes sets like {2,3,4,6,…}, 

{5,…,67,70}, {…,68,69,71,72} and {1,…} etc., because all 

the elements of each of these sets are having same attribute 

values for attribute A1. 

 
Table 1. Decision table considered for Rule generation or Training 

Condition Attributes Decision 

Attribute 

Objects 

A1 A2 A3 A4 A5 A6 A7  

1 0.52 0.35 0.86 0.79 0.48 0.29 0.86 D1 

2 0.48 0.29 0.86 0.87 0.48 0.25 0.86 D2 
3 0.48 0.25 0.86 0.90 0.48 0.27 0.86 D2 

4 0.48 0.27 0.86 0.90 0.55 0.38 0.79 D4 
5 0.60 0.49 0.70 0.62 0.56 0.38 0.79 D1 
6 0.44 0.29 0.86 0.88 0.46 0.27 0.89 D3 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 
67 0.66 0.52 0.52 0.39 0.66 0.55 0.52 D4 

68 0.71 0.62 0.56 0.42 0.66 0.55 0.56 D1 

69 0.71 0.55 0.53 0.40 0.66 0.52 0.50 D1 

70 0.66 0.52 0.50 0.38 0.71 0.55 0.50 D3 
71 0.71 0.59 0.59 0.47 0.74 0.66 0.67 D4 

72 0.7 0.66 0.61 0.47 0.71 0.59 0.56 D4 

 
Table 2. Discretized Decision table for Rule generation 

Condition Attributes Decision 

Attribute 

Objects 

A1 A2 A3 A4 A5 A6 A7  

1 2 2 4 3 1 0 5 D1 

2 1 2 4 4 1 0 5 D2 

3 1 1 4 5 1 0 5 D2 

4 1 2 4 5 2 1 4 D4 

5 3 3 3 2 2 1 4 D1 

6 1 2 4 4 1 0 6 D3 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 
67 3 3 1 0 2 3 0 D4 

68 4 4 1 1 2 3 1 D1 

69 4 3 1 1 2 3 0 D1 

70 3 3 1 0 3 3 0 D3 

71 4 3 1 1 3 4 2 D4 

72 4 4 2 1 3 4 1 D4 

 

  For any rough set Y, YP and YP  are called P-lower and 

P-upper approximation of Y and defined as, 

})(|{ YxIYxYP P ⊆∈=  and })(|{ φ≠∩∈= YxIYxYP P
 

respectively. This indiscernibility relation can reduce a 

decision table. This can be done by keeping only one element 
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of an equivalence class and also keeping those attributes 

which preserve the indiscernibility relation. In other words, 

keeping all the information intact and removing the 

superfluous attributes. Thus obtained minimal sets of 

attributes are called Reduct. The CORE is the set of relations 

occurring in every Reduct, i.e. )()( PREDPCORE ∩= . 

From the CORE and Reducts one can generate the decision 

rules. Usually these rules are considered in “IF…THEN” 

formats. This is illustrated in the following paragraphs. For 

better understanding of the method a small decision table 

having six objects with three condition attributes and one 

decision attribute is considered and is shown as Table 3.  

For a given subset QP ⊆ , an attribute Pq∈  is dispensable 

in P if and only if, 
}){( qPP II −= ; otherwise q is indispensable. 

If every element in P is indispensable then P is called 

independent otherwise dependent. Let QP ⊆  and QD ⊆  

have equivalence relations in U. The P-positive region of D is 

indicated as, YPDPOS
DIY

P ∪
∈

=)( . In other words, it denotes 

the set of elements that can correctly be classified into D-

elementary sets obtained from ID using the knowledge 

described by IP. If Pq∈  and )()( }){( DPOSDPOS qPP −=  

then q is D-dispensable in P, otherwise q is D-indispensable in 

P. If the set of attributes G ( PG ⊆ ) is a D-independent in P 

and )()( DPOSDPOS PG = , then G is called D-reduct of P or 

in general Reduct of P. 

All these definitions can be explained using Table 3. 

For example, if P is taken as, P = {A1, A2, A3}, and D = 

{‘type of defect’} (i.e. decision attribute), then IP= {1}, 

{2}, {3}, {4}, {5} and {6}; ID = {1,2}, {3,4} and {5,6}. 

Also, }6,5,4,3,2,1{)( =DPOSP
. If the attribute A1 is 

removed from P then, }5,4,3,2{)(}){( 1
=− DPOS AP

. Clearly, 

)(}){( 1
DPOS AP−

 ≠ )(DPOSP
. Therefore the attribute A1 is 

D-indispensable in P. Similarly, removing attribute A2 

gives, }6,4,3,2{)(}){( 2
=− DPOS AP )(DPOSP≠ . Therefore 

attribute A2 is also D-indispensable in P. Again, for 

attribute A3 it is easy to observe that, 

)(}6,5,4,3,2,1{)(}){( 3
DPOSDPOS PAP ==− . So, A3 is D-

dispensable in P. Thus, the set {A1, A2} is the D-reduct of P. 

Therefore, the simplified or reduced form of Table 3 is given 

in Table 4. ‘-’ indicates “don’t care” (i.e. dispensable) 

condition. It can be said that, attribute values, (A1=4 ∧ A2=2) 

is the characteristic for decision class ‘D1’. Similarly, (A1=3 ∧ 

A2=3) is the characteristic of decision class ‘D2’ and (A1=4 ∧ 

A2=1) ∨ (A1=0∧ A2=2) is the characteristic of ‘D3’. ‘∧’ and 

‘∨’ are logical “AND” and “OR” operators respectively. 

Intersections of these Reduct values for each of the decision 

class (i.e. D1, D2 and D3) will give the CORE for the 

respective class. For decision class ‘D1’ the intersection of 

(A1= 4 ∧ A2= 2) and (A1= 4 ∧ A2= 2) gives CORE values 

A1=4 and A2=2. Similarly, for ‘D2’ the CORE values are A1=3 

and A2=3. Again, for the decision class ‘D3’ no such CORE 

value is obtained from the Table 4, as the intersection of 

(A1=4 ∧ A2= 1) and (A1=0 ∧ A2= 2) is null. Furthermore, this 

reduced Table 4 can be used to generate decision rules. The 

decision rules obtained from the Reduct and CORE values are 

given in Table 5. 
Table 3. A typical Decision table for illustration 

Condition Attributes Object 

A1 A2 A3 

Decision 

Attribute 

1 4 2 2 D1 

2 4 2 1 D1 

3 3 3 0 D2 

4 3 3 2 D2 

5 4 1 2 D3 

6 0 2 2 D3 

 
Table 4. Reduced form of Table 3  

Condition Attributes Object 

A1 A2 A3 

Decision 

Attribute 

1 4 2 - D1 

2 4 2 - D1 

3 3 3 - D2 

4 3 3 - D2 

5 4 1 - D3 

6 0 2 - D3 

 
Table 5. Decision Rules obtained from CORE and Reducts 

Statement of the Rule Decision 

Rule No. 
IF THEN 

1 (A1=4 ∧ A2=2)  The defect type is D1 

2 (A1=3 ∧ A2=3) The defect type is D2 

3 (A1=4 ∧ A2=1) ∨ (A1=0∧ 

A2=2) 

The defect type is D3 

 

6  RESULTS AND DISCUSSIONS 

Using the data acquisition setup, detailed previously, PD 

signals are recorded in the laboratory over one full cycle of 

power frequency wave (i.e. 20 ms) for four common types of 

defects: D1 to D4. These data are contaminated with real-life 

noises (i.e. these noises are not simulated or synthetically 

added) present in the laboratory environment. The total 

number of acquired PD pulse data sets is 120. Each of the four 

classes has 30 data sets and the total number of cross-wavelet 

spectra is 120. The complete data table obtained after feature 

extraction, has 120 rows (objects), and 8 columns with 7 

condition attributes (i.e. extracted feature vector) and one 

decision attribute (defect type). 60% of the data (i.e. 72 data 

sets), randomly chosen, are considered to obtain the decision 

rules (or during training), as evident from Table 1. The 

remaining 40% of the data (i.e. 48 data sets) are used for 

testing.  

To obtain the decision rules for classification of defect 

patterns from the extracted features using Rough set theory, 
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following steps are followed: 

Step 1: The data table is discretized. A part of the discretized 

decision table is shown in Table 2. 

Step 2: Identical Attributes and cases are eliminated 

Step 3: Dispensable attributes are removed 

As in the present case no identical attributes or cases are 

observed and all the attributes have been found to be 

‘indispensable’, the discretized table remains unchanged after 

these steps for the present problem. 

Step 4: CORE values are obtained from Reducts. 

The sample computation of Reduct and CORE is described 

earlier. Following the same procedure the final form of the 

decision table is obtained and is shown in Table 6. 

Step 5: Decision rules are generated from the final table of 

CORE and Reducts. Finally 4 IF…THEN rules are obtained. 

The rule-set obtained finally is shown in Table 7.  

 
Table 6. Simplified form of the Decision table for Rule generation 

Condition Attributes Decision 

Attribute 

Objects 

A1 A2 A3 A4 A5 A6 A7  

1 2 - 4 - - 0 - D1 

2 1 - 4 - 1 0 - D2 
3 1 - 4 - 1 0 - D2 

4 1 - - 5 2 - 4 D4 
5 3 - 3 - - 1 - D1 
6 - 2 4 4 - - - D3 
· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 

· 
67 3 - - 0 2 - 0 D4 

68 4 - 1 - - 3 - D1 

69 4 - 1 - - 3 - D1 

70 - 3 1 0 - - - D3 
71 4 - - 1 3 - 2 D4 

72 4 - - 1 3 - 1 D4 

 
Table 7. Decision Rules obtained from CORE and Reducts 

Statement of the Rule Decision 

Rule No. 
IF THEN 

1 (A1=4 ∧ A3=1 ∧ A6=3)  Type of Defect is D1 

2 (A1=1 ∧ A3=4∧ A5=1 ∧ A6=0) Type of Defect is D2 

3 (A2=2 ∧ A3= 4 ∧ A4=0) Type of Defect is D3 

4 (A1= 4 ∧ A4=1 ∧ A5 =3 ∧ 

A7=2) 

Type of Defect is D4 

        

It is worth mentioning here that the rules presented in 

Table 7 do not satisfy some of the objects used for rule 

generation in Table 2. The objects marked by grey color in 

Table 6 are those cases. The corresponding values of the 

attributes which are responsible for the mismatch are also 

indicated in grey color. Among the 72 objects considered for 

rule generation, only 7 such cases were found. As only 12 

objects among the total 72 cases are shown in the Tables 2 

and 6, it is unlikely that these cases appear within those 12 

objects when all of 72 cases are arranged at random. Such a 

decision table may create an impression that CORE and 

Reducts are obtained by using all the objects during rule 

generation. To avoid this misconception, all of the 7 odd 

cases are shown in the tables intentionally. The rest of the 

cases are chosen randomly. 

It is observed that using all the 72 objects, the number of 

CORE values obtained were very low. While a closer look 

revealed that removal of some objects improves the 

performance significantly. Those cases were object number 

1, 4, 5, 6, 67, 70 and 72 as shown in Table 6. These objects 

are considered as garbage or ‘improper’ data in the 

information system. So, these cases are not considered 

during the computation of decision rules.  

The test dataset is discretized and tested by the generated 

decision rules to judge the validity of the rules. Among the 

48 test data, the decision rules have classified the PD pattern 

correctly 42 times. 

To judge the efficiency of the features for classification of 

PD patterns, two common classification techniques- 

Artificial Neural Network (ANN) based classification and 

Fuzzy C-Means (FCM) clustering- have also been used.  

A feed-forward neural network having a network 

structure as (7-30-4) i.e. seven neurons are in the input 

layer, thirty neurons are in the hidden layer and four neurons 

in the output layer, is used in this work. Sigmoidal 

activation function is used in the network. Gradient based 

back propagation algorithm is used for training of the 

network. The seven dimensional feature vector is given as 

the input to this ANN and the output from the network is the 

type of PD pattern, i.e. one of the four common defect types 

as stated earlier. 1000 iterations are considered during 

training. 

60% of the total data (i.e. 72 data sets), randomly chosen, 

are considered for training of ANN and the remaining 40% 

of the data are used for testing, as before. Among the 48 test 

data the ANN has correctly identified the defect type 40 

times. So, the percentage of success is about 83%, which is 

reasonable for classification of noisy PD data.  

Similarly, Fuzzy C-Means (FCM) clustering [23] is also 

applied on the extracted features for classification with the 

same data. The scatter-plot of the extracted features with 

respect to the first feature (A1) is shown in Figure 9. In this 

case the number of correct identification is 41 out of 48, 

which is quite acceptable, too. 

To judge the efficiency of the scheme against noise 

contamination, the same methodology is applied on the 

recorded data but in this case the recorded signals are 

denoised by wavelet decomposition technique, detailed in 

[4], prior to processing. In a similar way features are 

extracted and classified with different techniques. Moreover, 

the sensitivity of the proposed scheme on the number of data 

is also given in Table 8.  

It is evident from the results that there is not much 

difference in terms of performance of the three 

classification techniques. All the three methods give 

acceptable range of accuracy in detection of the type of 

defect with noisy waveforms. Though the features extracted 

from denoised waveforms give better results than those of 

the noisy pulses, the performance with the noisy waveforms 
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too, have acceptable level of accuracy. It is a significant 

aspect of the present study because it can be used to 

develop an automated and intelligent PD detector that 

requires minimal human expertise during operation and 

analysis.  

 

 
Figure 9. Scatter-plot of the extracted features with respect to the first feature 

(A1). 

 
Table 8. Effect of no. of data sets and noise on performance of the proposed 

scheme 

No. of Successful identifications 

 (% success) 

No. of 

Training 

Datasets  

Noisy or 

Denoised 

No. of 

Testing 

Datasets 
RST ANN FCM 

72 Noisy 48 42 

(87.5%) 

40 

(83.3%) 

41 

(85.4%) 

60 Noisy 60 50 

(83.3%) 

50 

(83.3%) 

49 

(81.6%) 

30 Noisy 30 21 (70%) 18 (60%) 21 (70%) 

72 Denoised 48 44 

(91.6%) 

45 

(93.7%) 

44 

(91.6%) 

60 Denoised 60 54 (90%) 52 

(86.6%) 

51 (85%) 

30 Denoised 30 22 

(73.3%) 

20 

(66.6%) 

23 

(76.6%) 

 

The RST has the capability to extract information from 

imprecise or superfluous (noisy) data as explained in [16-

22]. So, RST has a slight edge over the other two 

classification tools in terms of the performance in the 

present case, which is also evident from the relative 

comparisons shown in Table 8. 

7 CONCLUSIONS AND FUTURE WORK 

It has been shown in this work that cross-wavelet spectrum 

may be considered as an efficient feature extraction tool for 

PD pattern classification from noisy PD pulses. Successful 

classifications with real-life experimental data provide the 

justification of this approach. However, the methodology, 

presented here, is intended for PD detection in the laboratory 

environment. Performance of the scheme for outdoor testing 

(e.g. on-field PD detection for cables etc.) has not been 

investigated, which lie well within the scope of future work. 

Nevertheless, it does not reduce the importance of the 

findings in the present work. Because, majority of the PD 

testing is performed in the laboratory environment and noise 

contamination is also a significant problem there. The 

proposed methodology is proved to be very efficient for 

classification of those noisy PD pulses. So, the developed 

scheme can be used in an automated and intelligent PD 

detector that requires minimal human expertise during 

operation and analysis, which is a significant feat. 
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