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CROSSCAPS AND KNOTS
BRADD EVANS CLARK

1. Introduction

Seifert demonstrated in 1934 that every knot can be spanned by
an orientable surface. These Seifert surfaces lead to numerous knot
invariants. The purpose of this paper is to demonstrate the existence
of a parallel theory concerning connected nonorientable surfaces.
These surfaces give rise to additional knot invariants.

If X is a point set we let cl{X) stand for the closure of X,
int(X) stand for the interior of X, and 98X stand for the boundary of X,
If S is a surface, let yx(S) stand for the Euler characteristic of S.
I K is a knot in Euclidean 3-dimensional space, E3, let g(k) stand
for the genus of k as defined by Seifert in [4].

This paper deals with piecewise linear topology. As such, all

manifolds and maps will be considered to be piecewise linear.

2., The Crosscap Number

3 2
Let k be a knot in E3, and EZ < E3 a plane with 7 : E- — E
the orthogonal projection. We say that EZ is regular for k provided

every 1r-1(x), X € E2 intersects k in at most two points; and if
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1r-l(x) N k contains two points, neither is a vertex of k. Reidemeister
in [3] described the ‘'checkerboard surfaces'' associated with a regular

projection of k.

2
Theorem 2.1. If k is a nontrivial knot and E is any plane
which is regular for k, then at least one of the associated checkerboard

surfaces is nonorientable.

Proof: Let us call the checkerboard surfaces associated with

k and the orthogonal projection 7 : E3 — EZ, S1 and SZ' At each
crossing of k, both S1 and SZ contain a disk which is twisted with
respect to 7. We place an orientation on k. Then one of the twisted

disks must disagree with the orientation given k. Suppose that Sl is

the surface which contains that twisted disk .

Figure 1

If S1 is orientable, then we can use the orientation of the

surface to reorient the knot. At the crossing under consideration, we
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would have to leave one arc of k with the same orientation and another
arc of k would have to change its orientation. Since k is a simple
closed curve, this is a contradiction. Therefore S1 is nonorientable.
Consider a nonorientable surface S which spans a knot k. If
we were to sew a disk to 38S, we would obtain a nonorientable closed
2-manifold. This manifold could be considered as the connected sum

of n projective planes. Let C(S) =1 - x(S) =n.

Definition: The crosscap number of a knot k, C(k), is the
minimum value for C(S) where S stands for any nonorientable surface
spanning k in E3. For completeness we shall define C(k) = 0 if

and only if k is the unknot.

Proposition 2.2, C(k) =1 ifand only if k isa (2,n) cable

knot.

Proof: If C(k) =1, then there is a Mbbius band B which
spans k. The centerline of B is a knot, which makes k a (2, n)
cable about that knot. If k is a (2,n) cable about a knot, the construc-
tion of a spanning Mtbius band is clear.

A study of embeddings of M8bius bands in S3 was made by

Kyle in [2].

Corollary 2.3, There exist knots of arbitrarily large genus

with C(k) = 1.
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If S is a nonorientable surface spanning a knot k, we can
think of S as a disk D and a collection of handles {hi}' Aso, DN h,

will consist of two arcs, a,. and a,.,. We can find an embedding f

il i2
of DX I into S3 such that f(D X {';-}) =D and £§(DxI) N hi e, U a,

for all i. We can also find a collection of embeddings fi of hi X I
1 ce s s
such that £(h, X {2}) = hi, fi(hi x I) Nl fj(hj XI)=9 if i £j, and
f(DxI)N f(h, X 1) = £((a,, U a,) X D) =£((a,, U a,,) X I).
Definition: We define D(S), the double of S, to be
n
£(h, x {0,1}) U £(D x {0, 1}).
i=1
Theorem 2.4. D(S) is a connected orientable surface which

has a cable link of two components about k for its boundary and

double covers 8.

Proof: It is clear that D(S) double covers S since it does
so locally. Also D(S) is connected since S contains a nonorientable
handle, which causes D(S) to contain two handles connecting f(D X {0})
to f(D X {1}). Let M = rlfl £(h, X I) Uf(Dx I). Then M isa
3 -manifold with boundaryl;,rlnbedded in S3. D(S)c oM c S3, which
implies that D(S) is orientable. Also the knot k<« M. Since M

is orientable, and dM - D(S) is a regular neighborhood of k in &M,

M - D(S) is an annulus, So 8D(S) is a link,
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Let 8D(S) be the two simple closed curves 11 and 12. Clearly

Il and 12 are isotopic to k and in fact are (1,n) cables about k.

The value of n will depend upon the surface S.

Definition: A k-triple (Cn,A, n) is a cube-with-n-holes,
possibly knotted, Cn’ a nonseparating annulus A < 3Cn, and a
fixed point free involution » on cl{ 3Cn - A), such that identifying
each point x ¢ cl(aCn - A) with g(x) will yield a cube-with-k-knotted

hold.

Theorem 2.5. C(k) =n if and only if the minimal number of

holes needed for a k-triple is n.

Proof: Let S be a nonorientable surface spanning k. We
construct D(S) as described above and find a regular neighborhood
of k in S3, N(k), with 9D(S) < 8N(k) and N(k) 1 S a collar for k
in S.

D(S) separates the cube-with-k-knotted hole, cl(S3 - N(k)),

n
into two pieces. One piece is U fi(hi x 1) U f(D X I) whichis a

=1
cube-with-n-handles. Since | fi(hi x I) Uf(DxI)U N(k) is homeo-
n i=1
morphic to U fi(hi x I) U §(D x I), we must have that
i=1
3 n
Cn =el(s” - (U fi(hi x I) U (D x I) U N(k))) is a cube-with-n holes.
i=1

aC_ = D(S) UA where A is an annulus contained in 8N(k).

Since by Theorem 2.4, IX(S) is connected, A must be a nonseparating

annulus.
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Finally we note that D(S) is a double cover of S. Let P be
the natural projection from D(S) to S. If x e S we can find exactly

two points x.,x_ ¢ D(S) such that P(xl) = P(XZ) = x, Define

1772

r : D(S) ~-D(S) by 7r(x1) =x. and n(xz) =% Clearly r is a fixed

2
point free involution on cl(E)CI1 - A) = D(S), and identifying x ¢ D(S)

with g(x) will yield a cube-with-k-knotted hole. Thus (Cn,A, m) is

a k-triple, and the number of holes in Cn depends on the number of
handles in S. Thus the minimal number of holes needed for a k-triple

is less than or equal to C(k).

Now let (Cn’ A, 1) be a k-triple, We perform the identification
which yields a cube-with-k-knotted hole. We think of k as lying in the
boundary of the cube-with-k-knotted hole, and note that the image of
cl(z’iCn - A) is a 2-manifold S which spans k. Cn can be reconstructed
by removing an open regular neighborhood of S from the cube-with-k-
knotted hole. If S were orientable, then the annulus A from the k-triple
will separate 8Cn. Thus S must be nonorientable and the number of
holes in Cn is greater than or equal to C(k).

The importance of k-triples to covering space theory will be
demonstrated in the next section.

Mark Kidwell has pointed out that any ori;entable surface spanning

a knot can be changed to a nonorientable surface by performing a

Reidemeister move on the projection. By adding a trivial loop we can
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add a nonorientable handle to the surface. This means that the cross-

cap number of a knot is bounded by the genus of the knot.

Proposition 2.6. C(k) < 2g(k) + 1.

Proof: Let S be an orientable surface of minimal genus span-

ning k. Then x(S) =1 - 2g(k). By changing the surface to a

nonorientable surface as described above we obtain S' with

x(S") = -2g(k). So C(S') = 2g(k) + 1.

Question: Do there exist knots for which C(k) = 2g(k) + 1?

Could the alternating pretzel knots have this property?

Let k1 and k2 be knots, We let kl #kZ stand for the

""connected sum'' of k. and k_. Suppose that S. is a surface of

1 2 1

maximal Euler characteristic spanning k., and S2 is a surface of

1

maximal Euler characteristic spanning kZ'

Lemma 2.7. The maximal Euler characteristic for a surface

spanning k1 # k2 is X(Sl) +X(SZ) - 1.

k

1

A proof of this lemma can be found in [1].

Theorem 2.8. C(k;) + C(k,) - 1 < C(k; #k,) < C(k,) + C(k,).

Proof: Applying Lemma 2.5 to a nonorientable surface spanning

and a nonorientable surface spanning k2 gives us that
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C(k1 # kz) < C(kl) + C(kz). In fact, if these surfaces are of maximal

Euler characteristic for those spanning k., and k_, we get equality,

1 2
However, if one of these knots, say kl’ has C(kl) = Zg(kl) +1, we

can replace the nonorientable surface spanning k, by an orientable

1
surface of maximal Euler characteristic. By Lemma 2.5 we'd then

have C(k1 # kz) = C(kl) + C(kz) - 1.

3. Covering Space Theory

Seifert used his orientable spanning surfaces to form various
covering spaces. In a like manner we shall use our nonorientable
surfaces to form various covering spaces. As we saw in Theorem 2. 5,
each nonorientable spanning surface can be associated with a k-triple.
Let (Cn, A, ) and (Cx'1’A" 7') be identical copies of a k-triple. Let

id : cl(BCn - A) = cl( 8CI'1 - A') be the identity map.

Theorem 3.1. Identifying x ¢ c1(8Cn - A) with gr'(idix))e cl(ac;l- A')

forms a two-fold cover C of a cube-with-k-knotted hole K.

Proof: Obviously int Cn U int CI'1 is a double cover of int(K - S),
A U A' is a double cover of 9K, and cl(E)Cn -A) = cl(ac;‘ -A') is a
double cover of S. All we need to show is that these double covers
agree. Let xe¢ S and N(x) a ball about x which is split into a left
half and a right half by S. Then N(x) will lift to a left half ball and

a right half ball in Cn and a left half ball and a right half ball in Cr|1'
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But 7'(id(N(x) N S)) sews the left half ball of Cn to the right half ball
of CI’1 and the right half ball of Cn to the left half ball of C;l. So
indeed we have a double cover of K.

Of course, any covering space of C is also a covering space
of K. Thus we really have an infinite number of covering spaces
associated with the nonorientable surface S.

The Cn in Theorem 3.1 is a fundamental region in our covering
space. A similar situation occurs in Seifert's covering spaces, If S
is an orientable surface spanning k, then N(8), a regular neighborhood
of S in K will be a cube-with-handles. Thus a fundamental region in
the usual cyclic coverings is also a cube-with-holes.

In this light, the question in Section 2, asking if there is a knot
k with C(k) = 2g(k) + 1, translates to '"does there exist a knot k all
of whose double covers with fundamental region having the fewest

?I/

possible number of holes are associated with orientable surfaces!

Theorem 3.2, For any knot k, and any integer n, there exists

a nonorientable surface S such that 8D(S) has linking number n.

Proof: Let 1’1 and 1’2 be the boundary curves for D(S') where

S' is any nonorientable surface spanning the knot k. Then since 1:2 is

isotopic to k in the complement of 1‘1 in S3, the linking number of

1'1 with 1'2 is the same as the linking number of !‘1 with k,
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We can change k in an arbitrarily small neighborhood by
adding a trivial loop. This will change the surface S' to a surface
S which has one more handle and agrees with S' except in an

arbitrarily small neighborhood.

Figure 2

If 11 and 12 are the boundary components of D(S), we have

that 11 and 12 agree with 1'1 and 1‘2 in all but an arbitrarily small

neighborhood, and the linking number of £ with lz is either one more

1
or one less than the linking number of 1’1 with 1'2.
This theorem shows that we can find a double cover of a cube-

with-k-knotted hole which has a cube-with-n-holes for a fundamental

region for any n > C(k).
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orientable surface. These Seifert surfaces lead to numerous knot invari-
ants. The purpose of this paper is to demonstrate the existence of a
parallel theory concerning connected nonorientable surfaces. These surfaces
give rise to additional knot invariants.
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