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CROSSED PRODUCTS AND INNER ACTIONS
OF HOPF ALGEBRAS

ROBERT J. BLATTNER, MIRIAM COHEN AND SUSAN MONTGOMERY

ABSTRACT. This paper develops a theory of crossed products and inner
(weak) actions of arbitrary Hopf algebras on noncommutative algebras. The
theory covers the usual examples of inner automorphisms and derivations, and
in addition is general enough to include "inner" group gradings of algebras.
We prove that if 7r : H —► H is a Hopf algebra epimorphism which is split as
a coalgebra map, then H is algebra isomorphic to A #„ H, a crossed product
of H with the left Hopf kernel A of it. Given any crossed product A #CT H
with H (weakly) inner on A, then A #CT if is isomorphic to a twisted product
AT[H] with trivial action. Finally, if H is a finite dimensional semisimple Hopf
algebra, we consider when semisimplicity or semiprimeness of A implies that
of A #„ H; in particular this is true if the (weak) action of H is inner.

Introduction. The purpose of this paper is to begin to lay the foundations
of a general theory of actions of Hopf algebras on noncommutative algebras. The
importance of such a theory derives from three special cases in which the Hopf
algebra is a group algebra, an enveloping algebra of a Lie algebra, or the dual of a
group algebra. These cases show that the theory encompasses the study of actions
of groups as automorphisms of algebras, the study of actions of Lie algebras as
derivations of algebras, and the study of group graded rings, respectively. Each of
these areas of study have been quite active lately (see [16, 9, 5]).

A fundamental concept in the first two cases has been the notion of inner action.
One of the major purposes of this paper is to study inner actions of Hopf algebras;
as a new example, we will investigate what is meant by an inner grading. Another
important concept in the first two cases is that of a semidirect product (smash
product): for group actions we have skew group rings and for Lie algebra actions
we have differential polynomial rings. This notion is also defined for Hopf algebra
actions. More generally one can consider crossed products A ffa H of an algebra
A with a Hopf algebra H, where the multiplication of the copy of H in A ffa H is
twisted by a cocycle o, and their study is the other major purpose of this paper. It
turns out that these two concepts (inner actions and crossed products) are closely
interrelated.

Now inner actions and crossed products of Hopf algebras were both studied by
Sweedler [24] in the context of the cohomology theory of Hopf algebras. The present
paper owes a great debt to Sweedler's work, especially in §§1 and 4. However, his
set-up was restricted at crucial places to the situation where H is a cocommutative
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672 R. J. BLATTNER, MIRIAM COHEN AND SUSAN MONTGOMERY

Hopf algebra and A is an abelian //"-module algebra. This is inadequate for our
purposes, as we now show.

Let G be a group, N a normal subgroup, and k a field. We would like things
to be formulated in a general enough way that we can write kG in the form
kN #CT k\G/N\. Here k[G/N\ is our Hopf algebra, kN is the algebra on which
it acts, and a is a suitable cocycle. This general crossed product is already an
object of study in ring theory [12, 18] and has proved useful in studying group
rings [14]. It is constructed as follows:

For each x € G = G/N, choose a coset representative ^(x) e x. For convenience
choose 'y(l) = 1. Extending 7 linearly to kG we see that -7 linearly splits the exact
sequence kG —► kG —> 0. Although 7 is not an algebra homomorphism, it is a
coalgebra homomorphism.

Clearly we have kG = kN^(G). Representing the elements of kG as linear
combinations of elements of the form n^(x), n G N, x E G, we see that they
multiply as in a "classical" crossed product:

(n-7(x))(m-y(y)) = n(7(x)m-y(x)-1)(T/(x)7(y)'y(xj/)-1)7(xy)

= n(x ■ m)a(x,y)i(xy),

where
x ■ m = (ad^(x))m and cr(x,y) = '/(x)'y(y)7(äy)_1.

Since N is normal in G, kN is stable under this action of G and o has values in N.
Extended linearly, this is the multiplication of kN #CT kG.

Unlike the classical situation, kN is not a G-module in general, kN is not com-
mutative, and the values of a do not necessarily lie in the center of N. Instead, G
is mapped into Ant(kN) nonhomomorphically (we say G acts weakly on kN) and
the cocycle a satisfies a "twisted module" condition:

(0.1) [x - (y • n)]cr(x, y) = o(x, y)(xy ■ n)

for all x, y 6 G and n € N. Consequently, o has values central in N if and only if
kN is a G-module.

Thus our general set-up must involve "weak" actions of H on a noncocommuta-
tive A (that is, A satisfies all the conditions for being an Jï-module algebra except
for being an if-module) and cocycles a which take noncommuting values. In addi-
tion, in order that the theory be applicable to group gradings, H must be allowed
to be noncommutative.

One feature of our approach to inner weak actions already appears in Sweedler:
It does not seem to be possible (or desirable) to define what it means for an element
of a Hopf algebra to act in an inner fashion, as can be done in the cases of inner
automorphisms and inner derivations; instead, it is necessary to speak of inner
actions of Hopf subalgebras. We shall see this clearly in our example of inner
gradings.

This paper is organized as follows: in §1, we introduce the basic definitions of
weak actions, inner (weak) actions, strongly inner actions, and outer actions, with
a number of examples. In §2, we replace actions by coactions and consider the
definitions corresponding to those in §1. §3 consists of two examples studied in
more depth: inner and outer group gradings, and the semicenter of a Hopf algebra.
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CROSSED PRODUCTS AND INNER ACTIONS 673

In §4 we introduce crossed products A #CT H. The main result of this section
(and perhaps the main result of this paper) is Theorem 4.14 in which it is shown
that if H —y H —> 0 is an exact sequence of Hopf algebras with coalgebra splitting,
then H ~ A #CT H, where A is the left Hopf kernel of 7r and a is a suitable cocycle.

§5 investigates the interrelationship between inner actions and crossed products:
if H is inner on A, we see that any crossed product A ffa H is isomorphic to a
twisted product AT [H] with trivial action; moreover when also a is trivial, A # H =
A® H ii and only if the action of H is strongly inner. We then consider various
natural actions of H or H° on A # H, or H° # H, and determine conditions under
which they are inner or outer. In particular it is shown that the RL-condition of
Blattner and Montgomery [2] can be reformulated in terms of whether a certain
action is inner. Much of the work in this section can be best viewed in terms
of nonabelian cohomology of Hopf algebras; however this will be discussed in a
subsequent paper.

Finally in §6 we consider Maschke-type theorems for Hopf algebras. In particular,
we apply one of the results of §5 to prove that if if is a finite-dimensional semisimple
Hopf algebra actng on a semiprime ring A, such that the action is inner, then A# H
is semiprime. The general question, if H is not inner, remains open.

Throughout we shall follow the notation and conventions of Sweedler's book [25].
In particular, if H is a Hopf algebra, A will denote its comultiplication and £ its
counit. H° — {/ G H* : / vanishes on an ideal of finite codimension} is also a
Hopf algebra [25, Chapter VI]. Consistent use will be made of "sigma notation"
(see [25, §1.2]). The letter k will denote a field. If V and W are fc-vector spaces,
Homfe(Vr, W) will denote the space of fc-linear maps from V to W and Endfc V will
denote Homk(V,V). All algebras over k will have a unit 1. If A and B are fc-
algebras, then Alg(A, B) will denote the space of morphisms of algebras with 1
from A to B. The space of isomorphisms in Alg(A, A) will be denoted by Aut A,
while the space of fc-linear derivations of A will be denoted by Der/c A. The spaces
of inner automorphisms and inner derivations of A will be denoted by Int A and
Int-Der/t A, respectively.

If C is a coalgebra with counit and A is an algebra, then Homk(C,A) becomes
an algebra under convolution [25, pp. 69-70]. If A is an algebra and H a Hopf
algebra, we can define a map i: A® H —> Homk(H°, A), by i(b ® h)(g) = (g, h)b
for all b € A, h e H, and g G H°. We give Homfc(//°,A) the finite discrete
topology. We leave it to the reader to verify that Homk(H°,A) is a complete
topological algebra under convolution, that i(A®H) is dense in Homk(H°,A), and
that t e Alg(A g H, Homk(H°, A)).

The first and third authors thank the Mathematical Sciences Research Institute,
Berkeley, and the second author thanks the University of Southern California and
the University of California, Los Angeles, for their hospitality while this work was
done.

1. Inner actions. In this section we discuss some basic notions: weak actions,
inner actions, strongly inner actions, and outer actions.

The definition of an inner action of a Hopf algebra H on an algebra A appears
in Sweedler's paper [24]. For the applications we treat in §4, we must generalize
his notion somewhat: our weak actions need not turn A into an //-module.
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674 R. J. BLATTNER, MIRIAM COHEN AND SUSAN MONTGOMERY

DEFINITION 1.1. Let H be a Hopf algebra and A an algebra. By a weak action
of H on A we mean a bilinear map (h,a) —» h ■ a of H x A —» A such that, for
he H,a,beA,

(1) hab= Y,(h)(h(i) ■ a)0(2) ■ b),
(2) h-l = e(h)l,
(3) 1 ■ a = a.
By an action oî H on A we mean a weak action such that
(4) h ■ (I ■ a) - hi ■ a for h,l G //, a G A.
Conditions (1) and (2) say that H measures A [25, p. 139].
DEFINITION 1.2. A weak action of H on A is inner if there exists an invertible

u in the convolution algebra Homk(H, A) such that, for h G H and a G A,

h-a = ^u(/i(i))au"1(/i(2)),
(h)

where u~x is the convolution inverse of u. We say that u implements the weak
action.

We shall give some standard examples of these notions in a minute. But first we
introduce an object that will occur again and again in this paper, and we prove a
lemma.

DEFINITION 1.3. Let u be invertible in Homk(H,A). Then the bilinear map
t : H x H —* A is defined by

t(h,l)= Y^ u"1(^(i))u^1(/í(i))w('l(2)í(2))-
(h)(1)

LEMMA 1.4.   Let u be invertible in Yiomk(H, A) and set

h-a = y^u(h(f))au~x (h(2f)
(h)

for h G H, a G A. Then u(l) is invertible in A and u(l)-1 = u~x(l). Moreover,
a necessary and sufficient condition that (h,a) »—> h ■ a be a weak action is that
u(l) G Z(A), in which case we have an action if and only ift(H x //) Ç Z(A).

PROOF. Conditions (1) and (2) of Definition 1.1 are automatically satisfied for
any invertible u G Romk(H, A). Indeed,

h- ab = ^u(h(1))o¿ni"1(/i(2)) = ^u(h(f))au"x(h(2y)u(h(3y)bu~x(/j(4))
(h) (h)

= YJ(hWa)(hWb)'
(fc)

and
hl = ^u(/i(i))u-1(/i(2)) = e(h)l.

(h)

Clearly, u(l)u~x(l) = u~x(l)u(l) = e(l)l = 1 so that u(l) is invertible and
u'x(l) = u(l)~x.   Now 1 • a = u(l)au~x(l) so that (1 • a)u(l) = u(l)a for all
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a G A. Thus u(l) G Z(A) if and only if 1 ■ a — a for all a G A, which is condition
(3). Let h,lGH,aGA. Then

hla=  Y^ u(/l(i)'(i))au"1(/l(2)'(2)),
(h)(1)

while
h-(l-a)= Y u(/l(i))w(í(i))au~1('(2))u_1(/i(2))-

(h)(1)

Thus condition (4) holds if and only if

t(h,l)= Y u~1{l(i))u~1(h(i))u(h(2)l(^))
(h)(i)

commutes with all a G A for all h, l G H.    O
We now turn to our examples.
EXAMPLE 1.5. The trivial action oî H on A is given by h ■ a — £(h)a for

h G H, a G A. The trivial action is always inner: set u(h) = e(/i)l G A for h G H.
Conversely, if A is any commutative algebra, then any inner weak action of H on
A is trivial.    D

EXAMPLE 1.6. Let G be a group and A an algebra, and set H = kG. Since
G is a basis for H, a bilinear map (h, a) t-> h ■ a of H x A —► A determines and is
determined by a map a: G -^ Endfc A by a(x)a — x ■ a for x G G, a G A. It is easy
to see that the bilinear map is a weak action if and only if a(G) Ç Alg(A, A) and
a(l) = id. We claim that a weak action of H is inner if and only if a(G) C Int A. In
fact, a map u G Homk(H, A) is determined by its values on G and any map from G
to A extends uniquely to such au. If it, v G Homk(H, A), then (u*v)(x) = u(x)v(x)
for x G G, since Ax = x ® x. Thus u is invertible in ïlomk(H, A) if and only if u(x)
is invertible in A for all x G G, and then u~x(x) = u(x)~x. Finally,

V]it(x(1))ou_1(x(2)) = it(x)au(x)_1    for x G G, a G A.
(x)

From this the claim follows easily.    D
EXAMPLE 1.7. Let L be a Lie algebra and H — U(L) its enveloping algebra, and

let A be an algebra. A bilinear map (h, a) h-> h ■ a of H x A —> A determines a linear
map 6: L —> Homk(A, A) by 6(x)a = x-a for x G L, x G A. Since Ax = xgl + lgx
for x G L, we see that, if the bilinear map is a weak action, then 6(L) C Der¿ A.
Conversely, suppose that we are given a linear map 6: L —» Derfc A. We claim that
there exists a (generally nonunique) weak action (h,a) i—> ha oí H on A such that 6
arises from it as above. In fact, let {xQ} be an ordered basis of L. Then the ordered
monomials {xQl ■ • • xQn : c*i < a.<¡ < • •• < a„,0 < n G Z} form a linear basis of
H. Set S(xai •••xQJ = ¿(xQl)---¿(xQri) G Endfc A for Qi < a2 < •■• < an,
extend 6 to a linear map of H to Endfc A, and set h ■ a — 6(h)a for h G H, a G A.
Since A is an algebra homomorphism and since £(xai ■ • • xQn) = 0 if n > 1, it is
straightforward to check that (h, a) *-> h • a is a weak action.

Suppose that 6(L) Ç Int-Derfc(A). Then there exists a (nonunique!) linear
u: L —► A such that 6(x)a — [u(x),a] for x G L, a G A. Extend u to H by
setting u(xai ■ ■ ■ xan) = u(xai) ■ ■ ■ u(xan) for ax < a2 <   ■•■ < an.   Then it is
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straightforward to check that u is invertible in Homfc(//, A), that u_1(xai • • • xQn) =
(-l)nu(xan) ■ • ■ u(xai), and that h- a = J2in)U(h^f))au~x(hi2y) for a G A and
h = xQl ■ ■ ■ xan with ctf < ■•• < an, where h ■ a is defined above. The same then
holds for all h G H by linearity. Conversely, suppose the weak action of H on A is
inner and is implemented by u G Homfc (//, A). Then

x ■ a = u(x)au~x(l) + u(l)ait_1(x) = u(x)u(l)~xa + au(l)u~x(x)

for x G L, a G A, because u~x(l) — u(l)~x andu(l) G Z(A) by (1.4). Setting a = 1,
we get it(x)u(l)-1-r-u(l)u-1(x) = x-1 = e(x)l = 0. Therefore xa = [u(x)u(l)~x,a\
so that 6(L) C Int-Derfc(A).    D

EXAMPLE 1.8. Any Hopf algebra H acts on itself via the adjoint action [11],
defined by (adh)k — Yl(h) h(i)k(Shr2y). This extends the usual notions for H —
kG, where (adx)y = xyx~x for x,y G G; and for H = U(L), where (adx)h =
xh — hx for x G L, h G H. Clearly this is an inner action: set u = id#.    D

EXAMPLE 1.9. Any action of H on A becomes inner on A # //: set u(h) =
1 # h for h G H. Then u~x(h) = 1 # S h and the weak action of H on A # H
defined by u as in Lemma 1.4 takes the form

h ■ (a # 0 = £(1 # h{1))(a # i)(l # Sh(2))
(h)

= £(fyi)-a)#(fc(2)iSfc(3))
(»0

= lOV) 'a) # (ad/i(2))i.
(h)

In particular h • (a # 1) = (h • a) # 1. It follows from Lemma 1.16 below that this
weak action of H on A # H is actually an action.    D

For some purposes it is convenient to reformulate Definition 1.2 as follows: For
each a G A, define â G Homfc(//, A) by setting

(1.10) â(h) = £(h)a.

The map a >-+ â is an injective homomorphism of algebras with 1. Then the formula
in (1.2) is just

(1.11) h-a=(u*â*u-x)(h).

DEFINITION 1.12. Let u,v G Uomk(H, A) be invertible and satisfy u(l),v(l) G
Z(A). We say u is equivalent to v, written u ~ v, if u and v induce the same weak
action of H on A as in Lemma 1.4.

The next lemma describes the notion of equivalence precisely.

LEMMA 1.13. (1) Let u,v be as in (1.12). Then u ~ v if and only ifv~x * u G
Eomk(H,Z(A)).

(2) Let u be as in (1.12). Then there exists v as in (1.12) such that u ~ v and
u(l) = l.

PROOF. (1) Using (l.ll), we see that u ~ v if and only if u*â*u~x = v*â*v~x
for all a G A if and only if (v~x * u) * â = â * (v"x * u) for all a G A. But this is the
same as (v~x * u)(h)a = a(v~~x * u)(h) for all a G A, h G H.

(2) Let v — u * u~x(l) and apply Lemma 1.4, part (1) above.    D
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Lemmas 1.4 and 1.13 say that the inner weak actions of H on A are in natu-
ral bijective correspondence with the right cosets Q/Qz, where Ç consists of the
invertible u G Homk(H, A) such that u(l) = 1 and Qz = {u G Q: u(H) Ç Z(A)}.

We require one more technical lemma. The proof is easy and is the same as in
Sweedler [24]; hence we omit it.

LEMMA 1.14. Let (h,a) i—> ha be a weak action of H on A. Then the following
are equivalent:

(1) the weak action is inner,
(2) there exists an invertible u G i\omk(H, A) such that

u(h)a = \   (h(i) ' a)u(h(2)),     all h G H, o G A;
(h)

(3) there exists an invertible v G Romk(H, A) such that

av(h) — V]i'('i(i))(/i(2) ' a)>     all h G H, a G A.
CO

Moreover, u or v~x implements the inner weak action.

DEFINITION 1.15. A weak action of H on A is strongly inner if it can be
implemented by some u G Alg(Z/, A).

LEMMA 1.16. Let u G Alg(//,A). Then u is convolution invertible in
Homfc(//, A), u~x = u o S (so in particular u~x is an algebra antihomomorphism),
and the weak action implemented by u is in fact an action.

PROOF. Since u is an algebra homomorphism and since S is defined as the
convolution inverse of id# in Endfc //, it follows that uoS is the convolution inverse
of u in Homk(H, A). We compute, as in (1.4),

t(h,l)= £ u(S{lw))u(S{h(l)))u(hmll2))
(h)(i)

= «( £ 5(/(1))5(/i(1))/i(2)/(2) I
VCOC) J

= £(h)£(l)u(l) G Z(A).

Thus our weak action is an action.    D
We return to Examples (1.5)-(1.9). The trivial action, the adjoint action, and

the action of (1.9) are all strongly inner. In (1.6), if a(G) Ç Int A, the corresponding
weak action of kG is strongly inner precisely if it can be implemented by a u which is
(the linear extension of) a homomorphism of G into the group of invertible elements
of A.

Suppose the weak action in (1.7) of U(L) on A is strongly inner. It is then an
action, whence 6 is a Lie algebra homomorphism of L into Derfc A. The action may
be implemented by some u G Alg({7(L), A). Then u\ ¿ is a Lie algebra homomor-
phism of L into A (under commutation). Conversely, suppose u: L —► A is a Lie
algebra homomorphism. Then the extension of u to U(L) given in (1.7) belongs
to Alg(i/(L), A). Defining 6(x)a = [u(x),a], x G L, a G A, we see that 6 is a Lie
homomorphism of L into Derfc A. So extending 6 to U(L) as in the first paragraph
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of (1.7), we see that the action of U(L) on A corresponding to 6 is strongly inner.
Note that the extensions of u and 6 to U(L) are basis independent in this case,
unlike in the more general situation of (1.7).

It is easy to give examples of inner actions which are not strongly inner.
EXAMPLE 1.17. Let A = C2 (k), the Clifford algebra over a field fc of character-

istic not 2 generated by 1 and by ei, e2 such that e\ = e2 = — 1 and eie2 + e2ei = 0.
Let Z2 = {l,x} act as automorphisms of A via x ■ a — —e2ae2, a G A. The action
of fcZ2 so determined is inner: set u(l) = 1, u(x) = e2. If the action were strongly
inner, then u would be equivalent to an algebra homomorphism v, so v(x) = Xe2
for some A G Z(A), and 1 = v(l) = v(x2) = (Xe2)2 = -X2. But Z(A) = fcl. Thus
fc would have to contain a square root of —1. And this is sufficient.    D

More generally, any inner Z2-action on an algebra A is strongly inner if Z(A)
is closed under square roots. This is false for groups other than Z2, as the next
example shows.

EXAMPLE 1.18. Let A = C2(k), as in (1.17). Let G = Z2 x Z2 = {l,x,y,xy}
with x2 = y2 = 1, xy = yx, act as inner automorphisms of A via x ■ a = —e2ae2,
y ■ a = -eiaef, a G A; that is u(l) = 1, u(x) — e2, u(y) = ei, u(xy) — eie2.
If this action were strongly inner, then u ~ v, an algebra homomorphism. Then
v(x) = Xe2, v(y) = pef with X,p G fc, and v(x)v(y) = v(xy) = v(yx) = v(y)v(x).
But this implies Ape2ei = Apeie2, which is false since charfc ^2.    D

Since a strongly inner weak action of H on A is actually an action (1.16), A is
an //-module algebra, and we can form A # //. The next result shows that A # H
can be trivialized. It is actually a special case of Theorem 5.3; however the present
argument is so much simpler that it is worth doing now (cf. Corollary 5.5).

PROPOSITION 1.19. Suppose H acts on A in a strongly inner way. Then
A # H ~ A ®fc H, as algebras with 1.

PROOF. Let u G Alg(//, A) implement the given action. Define

<t>: A#//-> A®kH   by 0(a#/i) = £au(/i(1)) <g> h(2).
CO

Then <f> has an inverse

ip: A®kH -•• A#H    given by    ip(a®h) = y^au~x(hw) # /i(2),
CO

so it suffices to check that d> is a homomorphism:

<p((a # h)(b # ¿)) = 4> l Y<hw ■b) * hml

= Y a(hw ■ b)u(hc2)hi)) ® h(3)lm
(hm

=   Y   au(/l(l))Öu_1(/l(2))W(/l(3))"('(l))®N4)i(2)
(h)(1)

=   Y   au(/l(l))ím(í(l))®'l(2)¿(2)
(h)(1)

= <P(a#h)4>(b#l).    D
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We will prove a converse to this result in Corollary 5.5.
The last important concept in this section is that of an outer weak action.
DEFINITION 1.20. A weak action of H on A is outer if H is not trivial and if,

for every Hopf subalgebra L of H, the induced weak action of L on A is inner only
if L is trivial.

In Example 1.6, a weak action of H = kG on A is outer if and only if G ^ {1}
and the only subgroup of G contained in a_1(Int A) is {1}. This is simply because
the Hopf subalgebras of kG are just the fcGi for Gi a subgroup of G. If the weak
action of H on A is an action, then a is a homomorphism of G into Aut A and
so the action is outer if and only if a_1(Int A) = {1}, and we recover the normal
notion of outer group action.

In Example 1.7, the situation is trickier in general. So we restrict attention
to an action of H = U(L) on A with L ^ {0}, and suppose that charfc = 0.
Then the action is outer if and only if no nonzero Lie subalgebra Lf of L acts
as inner derivations of A. In fact, in characteristic zero, the Hopf subalgebras of
U(L) are just the U(Lf) for Lf a Lie subalgebra of L. Suppose that the action
of H restricted to U(Lf) is inner. Then we already know that Lf acts by inner
derivations. Conversely, if the action of H restricted to Lf is by inner derivations,
then the construction of it G Homk(U(Lf), A) of paragraph two of Example 1.7
shows that the action of H restricted to U(Lf) is inner. The situation for a weak
action of H on A is unclear, even in characteristic zero.

Let A be an //-module algebra. Recall [25] that A # H becomes an //°-module
algebra by setting

(1.21) / • (a # h) = a # (/ - h) = Ya # </.fc(3)>*(i)
CO

for / G H°, a G A, h G H. Our last example in this section gives conditions under
which this action is outer.

THEOREM 1.22. If the action of H on A is strongly inner, then the action of
H° on A ff H is outer if H° is not trivial.

PROOF. We first prove the theorem for the special case when the action of H
on A is trivial (Example 1.5). In this case A # H = A®kH.

Let L be a Hopf subalgebra of H° and suppose the action of L on A® H is inner.
Then there exists an invertible w G Homfc (L, A (g)k H) so that

a g £(/, hw)htí) = f ■ (a g h) = £ü(/(1))(a g h)ü-x(f{2))
(h) (f)

for ail / G L°, a G A, h G H. Apply the homomorphism e — id g e to this equation
and set a = 1. Then

£" ( 1 ® £</- h{2))hw    = £(/, hm)e(hw)l = (/, h)l
V        CO J       CO
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whereas

qEät/uXlghJü-1^))] =e(h)Ye{ñ(f(1)))ls(ü-1(ft2)))
\(f) J (/)

= e(h)elY,*(fw)*-Hfo)) I = e(h)ë((f, 1)1 g 1)

= e(h)(f,1)1.
Thus / = (/, l)e so that L is trivial. This shows that the action of H° on A g H
is outer.

For the general case, let the strongly inner action of H on A be implemented
by u G Alg(Z/, A). By Proposition 1.19, <f>: A # H —» A gfc H is an isomorphism
of algebras, where <p(a # h) — 13(h) au(^(i)) g ^(2)- The theorem will follow if we
show that d> is an i/°-module morphism. In fact,

<t>(f ■ (a # h)) = (p yY a # (/. /l(2))^(i)     = £(/, fys) Wfyi)) g h{2)
\(h) J      (h)

= /•    £aii(/i(i))g/i(2)     =/-0(o#/i)
VCO /

for / G //°, a G A, /i G //, as desired.    D

2. Coactions. In this section we consider weak, inner, strongly inner, and outer
coactions of a Hopf algebra H on A, and relate these notions to the corresponding
notions of §1.

Just as a weak action of H on A turns A into an //-module algebra, except for
the condition that A be an //-module, so a weak coaction of H on A turns A into
an //-comodule algebra, except for the condition that A be an //-comodule. More
precisely, we have

DEFINITION 2.1. Let H be a Hopf algebra and A an algebra. By a weak
coaction oî H on A we mean a linear map p: A —» A gfc H such that, for a,b G A,

(1) p(ab) = p(a)p(b),
(2)p(l) = lgl,
(3) (id g £)p(a) = a.

(Conditions (1) and (2) merely say p G Alg(A, A g H).) By a coaction of H on A
we mean a weak coaction such that

(4) (p g id) o p = (id g A) o p.
Each of the four conditions of Definition 2.1 is the formal dual of the correspond-

ingly numbered condition of Definition 1.1. The following notions are each formal
duals of the corresponding notions for weak actions.

DEFINITION 2.2. Let p be a weak coaction of H on A.
(1) p is inner if there exists an invertible s G A g H such that p(a) — s(a®l)s~x

for all a G A. We say that s implements p.
(2) p is strongly inner if there exists s as in (1) so that

p(sgs) = (id g A)s,
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where p: Ag//gAg//—> A g // g // is defined by

p(a g/ig&g/) = a6g/ig/.

(3) p is outer if H is not trivial and if, whenever 7r: //—>// is a surjective Hopf
algebra morphism such that the induced weak //-coaction p = (id g it) o p is inner,
then // is trivial.

EXAMPLE 2.3. The trivial coaction of H on A is defined by p(a) = a g 1. It is
strongly inner. For we may let s = 1a g 1h and then p(s g s) = 1a g Iff g 1# =
(idgA)s.    D

EXAMPLE 2.4. The natural coaction p = A of H on itself is outer if // is not
trivial. In fact, let 7r ://—►// be a surjective Hopf algebra map, and suppose that
p is inner. Then there exists s G H g H such that

Y, fyi) ® 7r'l(2) = ph = s(h g î)s_1    for ail h G H.
(h)

Apply the homomorphism 9 = e g id to H g //. We get

££(/i(1))7T/i(2) = (Mei/OÏKfa-1) = e(A)ï,
CO

so that 7t/i = e(/i)ï for ail h G H. Since 7r is surjective, this says that H is trivial,
as desired. Note that this proof is simply a transcription of the first part of the
proof of Theorem 1.21.    D

Now any weak coaction of H on A determines a weak action of H° on A by
setting, for / G H°, a G A,

(2.5) / • a = i(p(a))(f),
where ¿ is the map from A g H to Homjt(//°, A) mentioned in the Introduction.
That conditions (l)-(3) of Definition 2.1 for p imply conditions (l)-(3) of Definition
1.1 for (/, a) —* / • a is left to the reader. For ease of notation, we will write s for
i(s), s G A g //, in what follows.

Of course, H° can be very small (see Lemma 2.7 below). The map i is injective
precisely when H° is dense in H* or, equivalently, whenever H is residually finite
dimensional (see [2, §1]). If H is finite dimensional, then i is a bijection.

PROPOSITION 2.6. Let p be a weak coaction of H on A, and consider the
corresponding weak action of H° on A, as above.

(1) If p is inner, implemented by s G A®H, then the weak action of H° is inner,
implemented by s G Homk(H°, A).

(2) If p is strongly inner, implemented by s as in Definition 2.2(2), then s G
Alg(//°, A) and so the H° action is strongly inner.

(3) Suppose H is finite dimensional. Then the converse of (1) and (2) hold.
Moreover, p is outer if and only if the weak action of H* is outer.

PROOF. (1) By hypothesis, p(a) = s(a g l)s~x and so p(a) = s * (a g 1) * s~x,
since i is an algebra homomorphism. In the notation of (1.10), a g 1 = ô, with H°
replacing H. Thus f ■ a = p(a)(f) = (s * à * s~x)(f) and so the weak //°-action is
inner by (1.11).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



682 R. J. BLATTNER, MIRIAM COHEN AND SUSAN MONTGOMERY

(2) We must check that s(fg) = s(f)s(g) for all /, g G H° and that s(l) = 1.
Let $ : A g H g H -* Homfc(//° g //°, A) be defined by

$(a g h g !)(/ g g) = (/, Ji)(ff, i)a.
Now _

(a g /i)(/g) = (h, fg)a = (Ah, f g g)a
so that $((id g A)s)(/ g g) = s(/g), while (a g h)(f)(b® Z)(g) = (/, h) (g, h)ab so
that

$(p(s g s))(f g r;) = s(f)s(g),    for ail s G A g //.
Thus p(s g s) = (id g A)s implies that s(f)s(g) = s(fg) for ail f,g G i/°. To
see that s(l) = 1, observe that by the foregoing s(l) is an idempotent which, by
Lemma 1.4, is invertible.

(3) If H is finite dimensional, then H° = H* and the maps i and $ are bijective.
Thus the arguments of (1) and (2) are reversible in this case. Finally, we must show
that outer coactions of H correspond to outer actions of H* if dinifc H < oo. This
follows from the facts that if 7r ://—>// is a Hopf epimorphism, then 'tt: (//)* —>
//* is a Hopf monomorphism and conversely, and that A g H is isomorphic to
Homfc((//)*, A) via the analogue of i, in finite dimensions. Thus, if p is a weak
coaction of H on A with associated weak action of //*, then the induced weak
coaction p of H of A is inner if and only if the restriction of the weak action of H*
to (//)* inner.    D

If H is not finite dimensional, the relationship between outer coactions of H
and outer actions of H° is much more complex: neither property implies the other.
Before giving our examples, we need the following

LEMMA 2.7. For any field k, there exists a simple group G such that (kG)° is
trivial.

PROOF. Let K be a field of cardinality greater than that of fc; if fc is finite,
assume K is infinite. Let G = PSL(2,/Í), a simple group, and set H = kG. We
claim that H° is trivial. In fact, let / G H° and write A/ = Yljifj ® aj- Then
for any h G H, h —' / = £) ■ ™(gj, h)fj so that V = H —* / is a finite dimensional
representation space for H and hence for G. Let 7r denote this representation of G
on V. Since G is simple, either 7r is faithful or else rr = id. If 7r were faithful it would
give us an injection of G into GLfc(V), contradicting our cardinality assumption.
Hence x —■■ / = (ttx)/ = / for all x G G and we have h —>■ / = £(h)f for h G H,
and so

(/, h) = (h- f, 1) = £(h)(f, 1) = ((/, 1)£, h)    for all hGH.
Therefore / = (/, l)e for all / G H°, that is, dimfc H° = 1.    D

EXAMPLE 2.8. Let G be as in Lemma 2.7, set A = H - kG. Then the
natural coaction of H on A is outer by Example 2.4, but H° is trivial and hence
the corresponding action of H° is inner and not outer.    □

EXAMPLE 2.9. We produce a Hopf algebra //, an algebra A, and a coaction
of H on A such that the coaction is not outer, but the corresponding i/°-action is
outer. Let 1—►AT-^+.F^+G—>lbean exact sequence of groups with F free and
G as in Lemma 2.7. Let H = kF and A = kN. Our coaction p is given by

p: kN ^ kN g fcA id-^a kN g kF.
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This coaction is not outer: let H = kG. Then n: kF —► kG —> 0 and the corre-
sponding

p = (id g ir) o (id g a) o A = (id g e) o A = id g Î,

the trivial coaction, which is certainly inner.
However we claim that the corresponding action of H° is outer. In fact, H° is

dense in H* since kF is residually finite dimensional (any free group is residually
finite [15, p. 414]). Thus H° is not trivial. Let L be a Hopf subalgebra of H° such
that the induced action of L on A is inner. The argument of the second paragraph of
Theorem 1.22 (with A trivial and H replaced by kN) shows that (/, h) — e(h)(f, 1)
for all / G L, h G kN, that is, f(x) = f(l) for all x G N. In particular, f(uN) '= 0,
where u>n — (Kere) n kN. But then /(wjv • kF) — 0, since oj^ ■ kF is spanned by
all (l-n)xfornG N, x G F, and f((l-n)x) = (A/, (1-n)gx), and AfeLßL.

Now Ker(7T : kF —► kG) — u¡n ■ kF and so each / G L is of the form/ = f on.
Clearly, / G (fcG)°. By Lemma 2.7, (fcG)° is trivial. Thus /(y) = /(l) for all
y G G, which implies /(x) = f(l) for all x G F. Therefore / = (/, l)e for all f G L
and so L is the trivial Hopf algebra.    D

This last example pinpoints exactly the obstruction to proving Z/°-outer implies
//-outer: H has a nontrivial homomorphic image H with (H)° trivial. Indeed, we
have

LEMMA 2.10. Let H be a Hopf algebra such that whenever H is a Hopf homo-
morphic image of H with (H)° trivial then H is trivial. Let p be a weak coaction
of H on A such that the corresponding action of H° is outer.  Then p is outer.

PROOF. Let it: H —► H be a Hopf algebra epimorphism and suppose p —
(id g 7f) o p is inner. As in the proof of Proposition 2.6(3), 7r°: (H)° —► H°,
where tt0 = É7r| ijj.o, is a Hopf algebra monomorphism, and the weak action of
(H)° corresponding to p is just the pullback via 7r° of the weak action of H°
corresponding to p. By Proposition 2.6(1), the weak action of (H)° is inner and so
(H)° is trivial. By hypothesis, so is //.    D

A good class of Hopf algebras to which the lemma applies consists of all H such
that every Hopf homomorphic image is residually finite dimensional. If H = kG,
this means that every homomorphic image of G should be residually linear over fc.
Moreover all U(L), L a finite dimensional Lie algebra over fc, belong to this class,
if fc has characteristic zero [23, 7].

The following remark and example show that finding reasonable conditions on
infinite dimensional H such that //°-inner implies H inner is a pretty hopeless task.

REMARK 2.11. Let p: A —> A®H be an inner weak coaction implemented by s G
A g H. Writing s — £3¿ h g /t¿ and s~x = £\- cj ® lj, we have pa = £^ • • biacj g hilj.
Let V be the linear span of {h-ilj} in H. Then pA Ç A g V, where dimfc V < 00.

EXAMPLE 2.12. Let H be any cocommutative Hopf algebra. Then H is an
//°-module algebra and we may form A = H # H°. Define p: A —> A g H by

(2.13) p(h#f) = Y(h(D#f)®h(2)-
CO

A simple calculation shows that p is a //-coaction on A: properties (2)-(4) of
Definition 2.1 are immediate, and the verification of (1) follows from [2, Lemma
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l.l(i)] using cocommutativity. The corresponding rZ°-action is given by

9-(h*f) = £(<?,h,2))hw #f=(g^h)#f,
CO

and this is just the strongly inner action of H° on H # H° implemented by
u G Uomk(H°,H # H°) defined by u(g) - 1 # g as in Example 1.9 (note that
the adjoint action of H° on itself is trivial since H° is commutative). Now suppose
dimfc H — oo. We then claim p is not inner. If p were inner, then we would
have pA Ç A g V for some finite dimensional V. Set / — 1 in (2.13) and apply
(£# g £ffo ) g id to both sides. We get

h = Y£HÍh(i))£no{l)h(2) = ((£h ® eHo) ® id)p(h# 1)
CO

e(£H®eHo)(A)V ÇV

for all h G H, a contradiction.    D
The difficulties appearing in Examples 2.8, 2.9, and 2.12 suggest that the defi-

nition of inner and outer coactions are defective and should be changed. When H
is residually finite dimensional, there is a reasonable alternative. For in that case
Homfc(Z/°, A) is a completion of Ag// via the injection z, and so it is natural to call
a weak coaction p: A —► A g H "inner" if it becomes inner in Homk(H°, A), that
is, if there exists invertible it G Homk(H°, A) such that i(p(a)) = u*i(ag 1) *u_1.
Now ¿(a g 1) = â as in (1.10). In view of (2.5) and (1.11), p "inner" merely says
that the weak i/°-action corresponding to p is inner.

The process of completing A g H to E.omk(H°, A) via i is reminiscent of the
method used in G*-algebras [22] and in W* -algebras [21]. Note that the unitary
coactions of [10] are in fact strongly "inner", where "inner" here means that it is
obtained by conjugating the trivial coaction in the authors' closure of A g H.

Returning to our situation with H residually finite dimensional, our examples
suggest that p should be called "outer" if for any residually finite dimensional Hopf
homomorphic image H of //, p "inner" implies H trivial. For with this definition
we only consider H such that Homfc((Z/)°, A) is a completion of A g H.

As we will see at the end of the next section, these notions of "inner" and "outer"
may be more useful for gradings than the notions of Definition 2.2, which turn out
to be extremely restrictive.

3. Two applications: graded algebras; semicenters of Hopf algebras. A
major application of the notions in §2 is found in the theory of graded algebras.

Let A be a fc-algebra. Recall that A is graded by the group G if A = 2~2x€G ®AX,
where each Ax is a fc-subspace of A, and if AxAy ç Axy for all x, y G G. It is
not difficult to see that the G-gradings of A are in bijective correspondence with
the coactions of kG on A: the coaction p: A —> A gfc kG corresponding to a given
grading of A is given by pa = ^2xeG ax g x, where a — YlxeG a* w^^ a* e ^x for
x G G [2, Lemma 4.8].

As in §2, it follows that a G-graded algebra A is a (fcG)°-module algebra. The
converse is false. If kG is residually finite dimensional (i.e., G is residually linear
[23]), then a (fcG)°-module algebra A is graded in such a way that the coaction p
of kG gives rise to the original (fcG)°-action if and only if that action is fcG-locally
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finite (see [2, Corollary 4.9]). If G is finite, the (fcG)*-action is given in terms of
the grading by

(3.1) f-a=YUix)ax
xeG

for o G A, /G(fcG)*.
In the special case when G is finite abelian of exponent n and fc contains a prim-

itive nth root of 1, then (kG)* is Hopf isomorphic to kG, where G = Hom(G, fcx)
is the dual group. Then a G-grading of A coincides with a G action on A: if
A G G Ç (kG)*, then A • o is given by (3.1). Conversely, if G acts on A, then the
G-grading is given by

(3.2) Ax = {a G A: X ■ a = (X,x)a for all A G G}.

We now wish to consider inner gradings.
DEFINITION 3.3. A G-grading of A is inner (resp. strongly inner, resp. outer)

if the corresponding fcG-coaction is inner (resp. strongly inner, resp. outer) in the
sense of Definition 2.2.

Let us clarify the notion of outer grading. If H = kG and if H is a Hopf
homomorphic image of //, then H = kG, where G is a homomorphic image of the
group G. In fact, if n ://—►// is a Hopf epimorphism, then n maps G into the set
of group-like elements of H and is a group homomorphism. Let G = ttG. Clearly,
H is spanned by G, and since distinct group-like elements in a Hopf algebra are
linearly independent [25, p. 56] we have H = kG. The converse of this statement
is obvious. Next we observe that if A is G-graded and G is a homomorphic image
of G, then the G-grading of A as in Definiton 2.2(3) is gotten as follows: if x G G,
then Ax = J2xex ®AX. In fact,

pa = (id g 7r)pa = V] ax g x = V] I /J ax ] g x.
xeG xeG \xex    )

Consequently, we have

COROLLARY 3.4. A G-grading of A is outer if and only if G ^ {1} and,
whenever the G-grading of A given by Ax = ¿^,xex ®AX, x G G, G a homomorphic
image of G, is inner, then G = {1}.

We next consider strongly inner gradings.

PROPOSITION 3.5. Let A be strongly inner G-graded. Then there exists a finite
subset T C G and an injective map x t—> ex ofT onto an orthogonal set of nonzero
idempotents of A such that J2xeT ex — 1 and such that

(3.6) ax =    Y    e2/aex-'y
yernxT

for all x G G, a G A.  In particular Ax = {0} ifTilxT = 0, so that Ax ^ {0}
implies that x G TT~1.

Conversely, letT be any finite subset of G and suppose we are given an injective
map n-»ej. of T onto an orthogonal set of nonzero idempotents of A such that
2^x&Tex = 1-  Then (3.6) defines a strongly inner G-grading of A.
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PROOF. From Definition 2.2(2), there exists an invertible s G A g fcG such that
pa = s(a g l)s_1 for all o G A and such that p(s g s) = (id g A)s. Expanding s
with respect to the basis G of fcG, we write s = Y1x<et e* ® x, where T is a finite
subset of G and ex ^ 0 for x G T. We have

2J exey g x g y = p(s g s) = (id g A)s
x,y€T

= £< e^ g x g x.
xëT

for x,y G T so that {e
set of nonzero idempotents.   Let e = X^xer e
invertible, so is e g 1 and hence so is e. Thus e

It follows that eTe„ Qxy^x X G T} is an orthogonal
Then (e g l)s = s.   Since s is

1. Then direct calculation shows
Ex €T ' x    . Finally

^   a2 g z = s(a 1
s€G

iK1 = £ CTUC<1, xy -1

x,y€T

2GG V
£
xeT-'iST

Gt-Í*C?

verifying (3.6).
Conversely, if the ex, x G T are given, set

Ax=   Y eyJ\ez for all xGG.
yz  -=x
y,zET

It is then easy to check that the {Ax : x G G} form a G-grading of A and that
the corresponding maps a *—► ax, x G G, are given by (3.6). Finally, setting s =
¿^,xeTex gz, we see that s~x = £xGTex gx_1, that Y,x&Gax ®x = s(ag l)s_1,
and that p(s g s) = (id g A)s, all by direct calculation.    G

When G is finite, Proposition 3.5 can be proved by noting that a fcG-coaction is
just a (fcG)"-action, and that as an algebra (fcG)* is just a direct sum of |G| copies
of fc: (fcG)* = ©i6g kpx, where {px : x G G} is the basis dual to {x: x G G}. Thus
the {px : x G G} are an orthogonal set of idempotents in (fcG)* and J2xeG px — 1-
If u G Alg((fcG)*, A), we may set ex = u(px), x G G, and obtain an orthogonal set of
idempotents in A summing to 1. By Lemma 1.16, the strongly inner action of (fcG)*
implemented by u just gives px ■ a — YlyeGeyaex-1y^ which is (3.6). Conversely,
any map x h-> ex, from G to an orthogonal set of idempotents in A summing to 1
gives rise to it G Alg((fcG)*, A) such that ex = u(px), xGG.

Turning to examples, we note that any matrix ring A = Mn(R) can be strongly
inner graded by any group G such that |G| > n: just apply Proposition 3.5 to any
bijection between a subset T Ç G with |T| = n and the matrix units {e¿¿: i =
l,...,n}oíMn(R).

Other examples of our concepts can be obtained from some examples from §§1
and 2 above.

First, consider the group algebra A = fcG. A is naturally G-graded: let Ax = fcx,
x G G. As an H — fcG-coaction this is just an instance of Example 2.4: p — A.
Hence the G-grading of fcG is outer if G / {1}.
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Next, consider a twisted group algebra A = kT[G], where r: G x G —> fc is
a normalized 2-cocycle. Recall that A has a fc-basis {x: x G G} and that the
multiplication in A is given by xy = r(x, y)xy. Again, A is naturally G-graded by
letting Ax = fcx, x G G. Unlike the previous case (where r = 1), this grading need
not be outer, as we now show:

EXAMPLE 3.6. Let A = G2(fc), G = Z2 x Z2, as in Example 1.18, whose
notation we use here. Settin Ï = 1, x = ei, y = e2, and xy = eie2 we see that
A = fcT[G] for suitable t. Thus A is G-graded. We compute the corresponding
G-action and compare it with the G-action described in the earlier example. Let
w i—> A™ be the isomorphism of G onto G given by Ax(x) = Xy(y) = —1 and
Xx(y) = Xy(x) = 1. Then the definition of the action of G in Example 1.18 comes
to x ■ z — Xx(z)z and y ■ z = Xy(z)z for z G G, so that w ■ z = Xw(z)z for z, w G G.
But (3.1) says that A ■ z = X(z)z for A G G, z G G. We conclude that w ■ z — Xw ■ z
for all z, w G G, that is, w and Xw have the same action on A for all w G G. Now
the action of G on A was shown to be inner, but not strongly inner. Therefore
the natural G-grading of fcT [G] is inner, but not strongly inner. It is certainly not
outer.    D

We next consider the relation between G-gradings for G infinite and the corre-
sponding (fcG)°-actions. Examples 2.8 and 2.9 are examples of fcG-coactions and
hence of G-gradings, and Example 2.12 becomes a graded ring example by choosing
H — fcG, G any infinite group whatsoever. Thus it is possible for a G-grading to
be outer but the action of (fcG)0 to be inner, for the (fcG)°-action to be outer but
not the G-grading, or for the (fcG)°-action to be inner but not the G-grading. On
the positive side, we can combine Lemma 2.10 (and the remarks following it) with
Corollary 3.4 to get

COROLLARY 3.7. Let G be a group such that every homomorphic image of
G is residually k-linear. Let A be a G-graded algebra such that the corresponding
(kG)°-action is outer.  Then the G-grading is outer.

Finally we note that for any inner G-gradings, only a finite number of components
Ax can be nonzero according to Remark 2.11. This is very restrictive indeed.
Intuitively the grading of Example 2.12 with H = kG ought always to be an inner
grading: for example, if G = Z, then G = fcx, the multiplicative group of nonzero
elements of fc, and G acts on A in an inner fashion. When G is such that all
homomorphic images are residually fc-linear, the notions of "inner" and "outer"
(see end of §2) are probably preferable.

We now turn to our second application.
When a Hopf algebra H acts on an algebra A, one can form the subring AH of

//-invariants, defined by

A" = {aG A: h ■ a = e(h)a,all h G H}.

In the case of automorphisms and derivations, a larger subalgebra of A, called
the "semi-invariant" subalgebra has been studied. For a group G acting on A, an
element o G A is a semi-invariant for A G G if g ■ a = X(g)a, for all g G G; similarly
if a Lie algebra L acts on A, then o is a semi-invariant for A G L* if x • a = A(x)a,
for all x G L. This idea has proved particularly interesting in the case of L acting
on U(L) and its quotient division ring via the adjoint representation [6].   These
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notions extend to an arbitrary Hopf algebra and illustrate some of the concepts
developed above.

DEFINITION 3.8. Let H act on A and let A G H*. Set

A\ = {a G A: h ■ a = X(h)a for all h G H}.

Uag/í* ^a 's called the set of //-semi-invariants of A.
Note that Ae = AH, so that an invariant is a semi-invariant. Also compare with

(3.2) above.

LEMMA 3.9.   (1) // A\ 7¿ {0}, then X G Alg(H,k) = G, the group of grouplike
elements of H°.

(2) IfX,pG G, then AxAß Ç AXu.
(3) The sum J2X€G A\ is direct.

PROOF.   (1) Suppose 0 ^ a G A\ and let h,l G H.  Then X(hl)a = hi ■ a =
h ■ (I ■ a) = X(h)X(l)a and A(l)o = 1 • a = a. Thus A G Alg(//, fc) = G.

(2) Let a G Ax, b G Au, h G H. Then

h-ab = Y(hd) ■ a)(h(2) ■ b) = £ X(h(i))Ll(hw)ab = {*p)(h)ab.
CO CO

(3) is well known.    D
DEFINITION  3.10.   The semi-invariant subalgebra Sa of A is defined to be

¿2\eG Ax-
Note that Lemma 3.9 assures us that Sa is closed under multiplication. Moreover

1 G AE. Thus Sa is a subalgebra of A. Also note that Lemma 3.9 says that 5,4 is
graded by G.

We now specialize to the case where A — H and H acts on H by the adjoint
action (Example 1.8). In this case Sh is called the semicenter of H. Let A G G.
Define <j>x : H -» H by <px(h) = h - A"1 = £(h) A"1^!))^)-

LEMMA 3.11.   The map X i—► <px is a homomorphism of G into Aut//.

PROOF. We have

MM) =   Y   A_1(/l(D/(l))/l(2)'(2) =   Y   A_1(Nl))A"1('(l))'í(2)¿(2)
(h)(1) (h)(1)

= 4>x(h)<Px(l),
and <px(l) = 1 — A"1 = 1.

Finally,

<MM = h - (Ap)"1 = (fc - pT1) - A"1 = <K(4vW)
and

«kW = ££Cl(l))fy2) =fc-     a
(h)

PROPOSITION 3.12.   Lei Zf aeí on itself via the adjoint action.
(1) a G Hx, X G G, if and only if ah = (px(h)a for all h G H.
(2)<pli(Hx) = HliXli-l.
(3) The center Z(H) of H equals Hs(= HH).
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PROOF. (1) Let a G Hx, h G H. Then by Lemma 1.14 and [2, Lemma 1.1], we
have

4>x(h)a = (h- X-X)a = Y [(fyi) - A_1) • °] hW = EA(/l(D "- X~>hW
(h) (h)

= Yx~l(h(i))X(h(2))ah(3) = E£(/l(l))a/l(2) = ah.
(h) (h)

Conversely, suppose ah — <px(h)a for all h G H. Then

ha = Yh(i)a(Sh(2)) = YhW^Sh(2^a = Ylh(x)(ShW "~ A_1)a
(h) (h) (h)

= ^A-1(S/i(3))/i(1)(S/i(2))a = X~x(Sh)a = X(h)a   for all fcG//.
(h)

(2) Let o G Hx, h G H. Then by (1) we have acpli-i(h) = (pXß-i(h)a. Apply-
ing <pß to both sides gives <pu(a)h = <PßXß-i(h)(pß(a). Thus (pu(Hx) Ç H^-i.
Therefore (p^-^H^-i) Ç Hx so that HßXli-i C <pß(Hx).

(3) a G H£ if and only if ah = (p£(h)a = ha for all fc G // by (1).    D
We remark that Proposition 3.12 shows that the semicenter S h of H contains the

center and not only is graded by G but also is acted upon by G. Also Proposition
3.12(3) answers a question of Nichols [8, p. 45].

When H = U(L), it is known that the semicenter of H is commutative [6,
Proposition 4.3.5]. Although false in general for H = kG, it is true whenever fcG
is prime. For in that case, the torsion f.c. subgroup A+(G) = 1, and so the f.c.
subgroup A(G) is torsion free abelian. If a G (kG)x, then (adx)a = xax~x — X(x)a
for all x G G implies that a G fcA; thus any two such semi-invariants commute.
Thus we ask: is it always true that the semicenter of a prime cocommutative Hopf
algebra is commutative?

If fc is algebraically closed of characteristic 0, recent work of Montgomery and
Passman [20] shows that the answer is "yes". That argument used the fact that
in this case, H = U(L) * G. In this section we show that any two semi-invariants
"almost" commute—that is, they commute up to a central element in a localization
of//.

LEMMA 3.13. Let H be a prime Hopf algebra. Then the set S of nonzero
semi-invariants is a (left) Ore set for H.

PROOF. First, the product of two semi-invariants is a semi-invariant by Lemma
3.9. Second, S consists of non-zero-divisors. For if s G Hx, s ^ 0, but xs = 0, then
0 = xsH = xtpx(H)s = xHs. Since H is prime, x = 0. Similarly sx — 0 implies
x = 0. Thus S is a multiplicatively closed set of regular elements. Moreover, given
any s G S and fc G H, sh — (px(h)s for some A G G; thus the (left) Ore condition is
satisfied.    D

We may thus form the localization H$ = {s_1fc| fcG//, s G S}.

THEOREM 3.14.   Let H be any prime Hopf algebra.
(1) The center Z(H$) = {s~[ s2: there exists X with Si,s2 G Hx, Si ^ 0}.
(2) If Sf,s2 G Hx, any X, then SfS2 = s2Sf.
(3) If H is cocommutative and s G Hx, t G H^,, then st = zts, where z G Z(H$).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



690 R. J. BLATTNER, MIRIAM COHEN AND SUSAN MONTGOMERY

PROOF. (I) Note that in Hs, 4>\(h) = SfhSf1 = s2hs2x, and thus s¡~1s2 is
central. Conversely, say that z = s~xh G Z(H$), where s G Hx. Then for all
/ G H, s-xhl = ls~xh. That is, hi = sls~xh = <px(l)h, for all / G //. Now by part
(1) of Proposition 3.12, fc G Hx also.

(2) If 0 ^ Sf,s2 G Hx, then by (1) SfXs2 G Z(HS). Thus (sfXs2)s2 = s2(sfxs2).
Since s2 is invertible in H$, this gives SfXs2 = s2syx. But then s2Sf = SfS2.

(3) Since H is cocommutative, Xp = pX. Thus both st and ts are in HXu. Then
by (2), (st)(ts) — (ts)(st), and so st — \(ts)~x(st)]ts = zts, since z = (ts)~xst G
Z(Hs) by (1). The theorem is proved.    D

Notice that the above arguments show that each semi-invariant of H determines
an automorphism of H which becomes inner on H$ ; such automorphisms are called
"AT-inner" [16] (although the usual definition of X-inner uses the Martindale quo-
tient ring Qo(H) of//, it is easy to see that Hs Ç Q0(H)). In the case H = U(L), it
is known that the only X-inner automorphisms of H are induced by semi-invariants
of Qo(H) [17]; however for H = fcG, and more generally for H = U(L) # fcG, other
A-inner automorphisms are possible [19, 20].

We note that part (1) of Theorem 3.14 cannot be improved to elements of the
form ZfXz2, for zuz2 G Z(H). For, this is false for H = U(L) [6, §4.9.8].

4. Crossed products. We now turn our attention to crossed products, that is,
smash products where the multiplication is twisted by a cocycle o. As mentioned
in the Introduction, we want to consider the very general situation where H is an
arbitrary Hopf algebra acting weakly on an algebra A and where o is some sort of
cocycle from H x H to A. The correct setting for this sort of construction is the
following:

DEFINITION 4.1. Let H be a Hopf algebra with a weak action on the algebra
A, and let o: H x H —* A be a fc-bilinear map. Let A #a H be the (in general
nonassociative) algebra (in general without 1) whose underlying vector space is
A gfc H and whose multiplication is given by

(4.2) (agfc)(6g/)=   E a(fc(i) •6)o-(fc(2),/(1))gfc(3)/(2)
CO.C)

for all a,b G A, fc, / G H. The element a g fc of A #a H will usually be written
a # fc to remind us that H is (weakly) acting on A. The algebra A ffa H is called
a crossed product if it is associative with 1 # 1 as identity element.

We now determine simple necessary and sufficient conditions on o and the weak
action for A #CT H to be a crossed product.

DEFINITION 4.3. A bilinear map cr: H x H —> A is called normal if o(l, fc) =
o-(fc, 1) = e(fc)l for all hGH.

LEMMA 4.4. 1 # 1 is the identity element of A #a H if and only if a is
normal.

Proof.

(1 # l)(a # fc) = £(1 -aV(l,fc(1)) # fc(2) = £acr(l,fc(1)) # fc(2)
CO CO
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by Definitions 4.2 and 1.1(3). Thus a(l, h) = e(h)l, all fc G H implies 1 # 1 is a left
identity. Conversely, suppose 1 # 1 is a left identity. Setting a = 1 and applying
id g £ to both sides, we get

£(fc)lgl = ^<7(l,fc(i))g£(fc(i))l = <r(l,fc)gl.
(fc)

Similarly, 1 # 1 is a right identity if and only if o(h, 1) = £(fc)l, all fcG//.    D

LEMMA 4.5. Assume that o(h,l) = e(fc)l, all h G H. Then A #(T H is
associative if and only if the following two conditions hold:

(1) (cocycle condition) For all h,l,m G H we have

Y      tV) •°"('(l)>™(l))]0~(/l(2),¿(2)m(2)) =   Y  a(h(l)'l(l))a(h(2)l(2)'m)-
(h)(l)(m) (h)(1)

(2) (twisted module condition) For all h,l G H, a G A we have

Y (hW ' ('W ' a))<T(/l(2)»'(2)) =   Y  a(h(l)>l(l))(h(2)l(2) " a)-
COO coo

(This is our generalization of (0.1).)

PROOF. Suppose A #„ H is associative. Then (1) and (2) follow from

(1 # fc)[(l # 0(1 # m)\ = [(1 # fc)(l # i)](l # m)
and

(1 # fc)[(l # l)(a # 1)] = [(1 # fc)(l # l)}(a # 1),
respectively, by applying id g £ to both sides (and using the hypothesis on o in
the second case only). Conversely, suppose (1) and (2) hold. Let a,b,c G A and
h,l,mG H. Then

(a # fc)[(6 # l)(c # m)]

=        X]       "(fyl) ' Wfl) 'C)<TC(2).m(l))])<T(/l(2)^(3)m(2)) #'l(3)i(4)"»(3)
(h)(I)(m)

=        5^       aC»(l) •fc)C'(2) • C(l) -c))Cl(3) ■<TC(2).rrHl))M'i(4).'(3)nI(2)) # 'l(5)i(4)"»(3)
(h)(l)(m)

=        2J       aCl(l) • i>)Cl(2) ■ C(l) ■ c))ffCl(3)-'(2))<rCl(4)'(3),"l(l)) # fe(5)'(4)m(2)
eo(o(m)

=        5Z       "('»(l) ' 6)<TCl(2).'(l))Cl(3)i(2) ■ c)<TCi(4)'(3)-"^(l)) # Ä(5)'(4)'"(2)
(fc)(l)(m)

= [(o#fc)(6#l)](c#m).

The first and fifth equalities come from (4.2), the second from (1.1(1)), and the
third and fourth from (1) and (2) above, respectively.    D

COROLLARY 4.6. A #a H is a crossed product if and only if o is a normal
cocycle and the twisted module condition holds.

Let us return for a moment to Sweeder's situation in [24, §8] : H is cocommuta-
tive and A is a commutative //-module algebra. Our twisted module condition is
then automatically satisfied, and our cocycle condition is equivalent to that of [24,
Lemma 8.1(a)]. We have the following partial converse.
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LEMMA 4.7. Let o and the weak action of H on A satisfy the twisted
module condition. Suppose H is cocommutative, o is invertible as a member of
Eomk(H g //, A), and o(H x H) Ç Z(A). Then A is an H-module.

PROOF. Let a G A and define p\,p2 G Romk(H g //, A) by pi(h,l) = h ■ (I ■ a)
and p2(fc, I) — hi • a. Then the twisted module condition is just pi * o = o * p2,
which equals p2 * a since H is cocommutative and a has central values. Since a is
invertible, p\—p2.    Ü

Here is a partial converse in a different direction:

PROPOSITION 4.8. Let A be an H-module algebra and suppose that o and
this H-action satisfy the twisted module condition. If H is cocommutative, then
o(H xH)C Z(A).

PROOF. It suffices to prove this when fc is algebraically closed. Then H is
pointed and we have H = ©xGq Hx, where G is the group of group-like elements
in H and where Hx is the irreducible component of H containing x as its unique
group-like element [25, p. 174]. For each x G G, set H§ = fcx and define inductively

//* = {fcG//x: AhGx®Hx + Hx®H*_f)

for n = 1,2,.... Then [25, p. 185] we know that Hx+1 D Hx and that Hx = (jn Hx.
Set Hxf = {0}. Now let fc G Hx. Then Afc = xgfc'" + £t h'^h'f with fc'", h\ G Hx
and h'/ G Hx_v Applying £ g id we get fc = h!" + 2Zi£(h'i)h" so that h'" = h
(modHx_f). We may therefore replace fc'" by fc, absorbing the difference into the
other terms. We have shown that fc G Hx, n > 0, implies

Afc = x g h + Y K ® h'l
i

with fc¿ G Hx, fc" G Hx_ f. H cocommutative gives also

Afc = h g x + Y hï ® K
i

with the same fc's.
Now partially order Z x Z by (n', m') < (n, m) if n' <n,m'< m. Let x, y G G.

Clearly a(Hl,Hlf) = {0} Ç Z(A) if (n,m) £ (0,0). So assume (n,m) > (0,0) and
that o(Hl,,Hyml) Ç Z(A) for (n',m') < (n,m). Let h G Hx, l G H^ and write Afc
as above and also

Al = y g Z + Y l'j ® lj = l ® y + ̂ 2 l"j ® l'j-
j j

Substituting these expressions into 4.5(2) we get

(xy ■ a)o(h, I) + YWj ■ aMh>l") + Yl^y ■ aWh^Z)
3 i

+ Yt(h'il'j.a)a(h'¡,l'¡)
ij

= o(h, l)(xy ■ a) + Y°(h< '")« • a) + YaW> 0(^2/ ■ o)
3 i

+ Y°{ti!,l'¡)(Kl'ra)
ij
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for a G A, since A is an //-module. By the induction hypothesis, the a(h, /"),
<j(fc", I), and o(h'¡, /") are all central. Hence cr(h, I) commutes with all xy ■ a, a G A.
But G acts as automorphisms of A, so xy • A = A. Therefore o(h, l) G Z(A) and
our induction is complete.    D

We next consider several important special cases of crossed products.
EXAMPLE 4.9. Suppose that o is the trivial cocycle, that is, o(h,l) — £(h)£(l)l

for all h,l G H. Note that 4.5(1) is automatically satisfied so that o is a cocycle.
Condition 4.5(2) is equivalent to A being an //-module algebra and the multiplica-
tion in A #CT H becomes (a # h)(b # I) — £(h)(¡) a(^i 'b) # h2l. That is, A#a H
is just A # //, the usual smash product.    D

EXAMPLE 4.10. Suppose that the //-action is trivial (Example 1.5). We
then write A^f//] instead of A #> H. Then condition 4.5(2) holds if and only if
o(H x H) Ç Z(A). If in addition a is a cocycle for the trivial action, ACT[//] is
a crossed product, called the twisted product of A with //. The multiplication in
ACT[//] becomes

(agfc)(6g/)=  Y aW^i)'^!)) ® ̂ (2)'(2),
(h)(i)

where we write a g fc instead oí a if h because the //-action is trivial. This
example extends the usual notion of twisted group algebra. If also o is trivial, we
have A[H] = A g //, the usual tensor product of algebras.    D

EXAMPLE 4.11. Suppose we are given a weak inner action of H on A imple-
mented by an invertible u G Homk(H,A) with u(l) = 1 (Lemma 1.13(2)). Define
t : H x H -» A by

t(h,l)= Y u(h(i))u(l(i))u~l(hV)h2))-
(h)(1)

Clearly t is normal and it is easy to check that it is a cocycle (both sides of 4.5(1)
reduce to

Y      W(/l(l))U(/(l))U(m(l))U_1(/l(2)'(2)m(2)))
(fc)O(m)

and that the twisted module condition is satisfied (both sides of 4.5(2) reduce to

Y u(h(i))u(l(i))au~1(h(2)hv))-
(hm

Thus A #t H is a crossed product. We call t the inner cocycle defined by it.
Corollary 5.4 will show that A #¿ H is algebra isomorphic to A g H.    O

Our next objective is to express any Hopf algebra H with Hopf homomorphic
image H as a crossed product A #a H, where A is a subalgebra of H. As we shall
see, this can be done provided //—►//—> 0 is a split coalgebra sequence.

For the remainder of this section H -^ H —* 0 will be an exact sequence of Hopf
morphisms.

DEFINITION 4.12. The (left) Hopf kernel of n is the set

LHKer7T = {fcG//: (id g tt) Afc - fcgï}.
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LEMMA 4.13.  LHKerrr is an ad H-stable subalgebra of H.

PROOF. Let A — LHKer7r. Since A and id g n are algebra morphisms, A is a
subalgebra of //. To see that A is ad //-stable, choose a G A, h G H and set

a' = (adfc)a = y^h^a(Sh^).
(fc)

Then
Aa'=  Y fyi)a(i)(5''l(4))gfc(2)a(2)(S'fc(3)),

COCO
remembering that ASI = £\,n S/(2) g S'(i), all l G //, and so

(idg7r)Aa'=   Y h(i)a(i)iSh(i)) ® 7rC1(2))7r(a(2))7r(S,fc(3))-
(fc)(o)

Using J2(a) a(i) ® 7r(a(2)) = a g Ï, this becomes

Y h(l)a(Sh(4)) ® ̂ (^(Sfc^))) = X] tylH5^)) ® 7r(£(/l(2))l)
(fc) (fc)

= Y h(i)a(Shí2y) g ï = a' g ï.
(fc)

Thus a' G A, proving our contention.    G

THEOREM 4.14. Let H —> // —> 0 be an exact sequence of Hopf algebras which
is split as a coalgebra sequence; that is, there exists a coalgebra map 7: H —► H
such that n o -y = id. Suppose also ^(ï) = 1. Then H ~ A #CT // as algebras, where
A = LHKer7r, ifce weafc action of H on A is given by

(4.15) fc • o = (ad -y(fc))o    for fc G H, a G A,
and where o : H x H —► A ¿s gwen 61/

(4.16) <r(fc,í) =  X] 7(fc(i)b(í(i))[SMW(2))]-
(h)(D

PROOF. By Lemma 4.13, ff • A C A. Now

fc-l=  Ç l(fc)(i)[SMÄ)(a)] = e('Y(Ä))l = e(fc)l
(-ï(fc))

since £07 = £, and ï-a = (adl)a = o since ^(1) = 1, verifying condition 1.1(2),(3).
Thus (h,a) t-> fc • a will be a weak action if we verify condition 1.1(1). But this
follows from the fact that the adjoint action of H on H satisfies 1.1(1) and the
assumption that ~y preserves comultiplication:

fc • ab = (ad-y(fc))a& =   Y [(ad-/(>i)(1))a][(acl^(/i)(2))&]
(->(fc))

= Ç[(ad7(fc(i)))a][(ad^(fc(2)))6] = Ç(fc(1) • a)(fc(2) • b).
(fc) (fc)

Thus (4.15) defines a weak action of H on A.
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We next check that a(H x H) Ç A for o as in (4.16). Let fc, / G //. Then

(id®n)Ao(hJ) = (idgrr) Y l&likvM^lihM&Slihvh))]
(fc)O

= (idgTr)   Y   -y(^(l)h(^(l))[S^(Ñ4)¿"(4))]®^(fc(2))'y(í"(2))[^(fc(3)í(3))]
(fc)O

=   Y   T'(\l))^(/"(l))['5')'(Ñ4)'(4))]®^(2)í~(2)[5(fc(3)/"(3))]
COO

= J2 Tf(fc(i)h(ï(i))[5Tf(fc(a)Î(a))] ® ï = <KM ® Ï.
CO O

as desired.
We may now form A #a H. We shall show that this is a crossed product

(and hence that o is a normal cocycle satisfying the twisted module condition) by
showing that it is algebra isomorphic to //, certainly an associative algebra, via a
map $: A #CT H —► H such that $(1 # Ï) = 1. This will prove the theorem.

Define $ by $(o # fc) = a-y(fc) fora G A, fc G 77. Clearly $(1 # Ï) = 1 since
7(1) = 1. Now let a, 6 G A and fc, l G H. Then

$((o # fc)(6 # Î)) = * I  £ a(ÑD • b)<r(h(2)J{l)) # fc(3)í(2)
V(fc)0

= Y a^(i))M5'7(Ñ2))]'7(fc(3))'7('~(i))[57(fc(4)í(2))]T'(fc(5)í"(3))-
CO O

Since 7 preserves comultiplication, this collapses to a^(h)b^(l), that is, to
$(a # fc)$(6 # /). We have shown that $ is an algebra morphism sending 1 # ï
to 1.

To show that $ is bijective we will construct an inverse V : H —> A #CT H. To
this end, define Q: H —> // by Q(fc) = X)(fc) 'l(i)(S'T,"fc(2))- We first claim that
Q(H) Ç A. In fact,

(id g 7r)AQfc = (id g ir) ̂ [Afc(i)][AS,77rfc(2)]
(fc)

= (id g tt) Y h(i) [Sinh(4)] g fc(2) lSlirhi3)}
(fc)

= Y hd) ¡S^hi)} ® (nh(2))(Sirh{3))
(fc)

= ¿2 hW [5T7r'l(4)] ® Ah(2) (Sh{3)))
(fc)

= Y 'l(l)[5^7r'l(2)] g TTl = (Qfc) g ï-
(fc)

Now we define * by *fc — ̂ ^ Qfc(i) # 7rfc(2), and we have \I> : H —> A #a //.
We claim that ^^fc = fc and 4»$(a # fc) = o # fc for all o G A, fc G i/, and fc G 77.
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In fact,

"h = £CQfyl))(Tr'l(2)) = Y h(l)(S^h(2))(l^h(3)) = h,
(fc) (fc)

because 7 and n preserve comultiplication and counit. Moreover

m(a # fc) = *(o7(fc)) =  Y QKi)^(i))) # *(*(2)l(h(2)))
(a)(fc)

= Y Q(a(i)i(hi)))#(™(2))h2) = YQ(ai(hi)))#h2)>
(a)(h) (fc)

since 7 preserves comultiplication and (id g n) Aa — a g ï. Now

Q(ai(î)) = Y a(i)T('"(i))('S'T[(7ra(2))7r'y(í"(2))])
(a) O

= Ya^ki))(Sl(h2))) = ae(7(î)) = «(i)
O

for l G H, since 7 preserves A and (id g 7r)Aa = a g ï. Substituting this into the
previous equation, we get

*$(o # fc) = 5^ae(fc(1)) # fc(2) = a # fc,
(fc)

as desired.    D
Since H is a Hopf algebra, A #CT H also has a Hopf algebra structure which may

be formed by pulling back Ah, Sh via $. The resultant formulae are repellent, so
we skip them except in the following case.

COROLLARY 4.17. Assume the hypotheses of (4.14) and in addition assume
that A is a Hopf subalgebra of H. Then H ~ A #CT H as Hopf algebras, where the
comultiplication, counit, and antipode of A #CT H are given by

A(a # fc) =   Y K1) * fyi)) g (a(2) # fc(2)),
(o)(fc)

£(a # fc) = £(a)£(fc), and
S (a #h) = Y^~^Sjl(2)À3)) # Shw)(Sa # Ï),

(Ä)
wfcere a-1, ifce inverse of a in Homk(H g //, A), ¿s given 61/

a-^fc,/") = Y lCh(i)hi))[Sl(k2))][Sl(k2))}.
(h)(1)

PROOF. Left to reader.    D
We remark that the expression for SAj,-¡j cannot be simplified, even when

H — fcG and 77 = k[G/N]. The difficulty is that in general one cannot find 7 so
that 7 o S = S o 7: in the group case, 7r_1{x} may contain no elements of order 2
when x has order 2.
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Corollary 4.17 raises the question of determining when A is a Hopf subalgebra
of H. Sweedler proves in [25, Lemma 16.1.1] that this is always true when H is
cocommutative. But this condition is not necessary. For example, let H = A g //,
where A and H are arbitrary Hopf algebras, and set n(a g fc) = £(a)h. Then n
is a Hopf algebra map with coalgebra splitting 7 given by 7(fc) = 1 g fc. Also
LHKer 7r = A g î, a Hopf subalgebra of H. The key to answering our question is:

DEFINITION 4.18. The right Hopf kernel of 7r: H -> 77 is the set RHKer7r =
{h G H : (n g id) Afc = ï g fc}.

Clearly RHKer n = LHKer n if H is cocommutative, and the same is true in the
preceeding example. And in fact we have

PROPOSITION 4.19. Let A = LHKer7r and A' = RHKern. Let S denote the
antipode of H.  Then

(1) SA Ç A' and SA' Ç A, with equality holding if S is bijective.
(2) If A = A', then A is a Hopf subalgebra of H.
(3) If A is a subcoalgebra of H, then A Ç A' and A is a Hopf subalgebra of H.

Moreover, A = A' if S is bijective.

PROOF. (I) Recall that A o S = T o (S g S) o A, where T is the twist map
T(h g Z) = l g fc. Thus if o G A,

(n g id)ASo = (n g id)T(S g S)Aa = T(id g n)(S g S)Ao
= T(S g 5)(id g tt)Ao = T(S g S)(a g ï) = ï g Sa.

Thus Sa G A'. Similarly SA' Ç A.
Suppose that S is bijective with inverse S. The foregoing proof works for S as

well as S, and so SA Q A' and SA' Ç A. Then A' = S S A' Ç SA so that SA = A',
and similarly SA' — A.

(2) The proof of [25, Lemma 16.1.1] actually shows that AA Ç H® A. Similarly
AA' Ç A' g H. Thus if A = A' we conclude that AAC//gAnAg// = AgA,
so A is a subcoalgebra of H. Part (1) above then shows that SA Ç A. Thus A is
a Hopf subalgebra of H.

(3) First note that for any a G A, na = £(a)l. In fact,

e(o)l g ï = (e g id)(a g ï) = (e g id)(id g 7r)Aa
= (id g 7r)(£ g id)Aa = (id g 7t)(1 g a) = 1 g 7ra.

Since A is a subcoalgebra of H, AA Ç A g A. Hence if a G A, we have (7rgid)Aa =
(Ï£ g id) Aa = ï g a so that a G A'. Thus A Ç A'. But from this and (1) we deduce
SA Ç SA' Ç A so that A is a Hopf subalgebra of H. Finally, if S is bijective then
A' = SA Ç A by (1) and the previous sentence. Therefore A = A'.    O

We now turn to three examples of the situation of Theorem 4.14. The first
is the group algebra example discussed in the Introduction. The 7 there is our
coalgebra splitting, the weak action there of fcG on kN is just given by (4.15),
and the o defined there is just given by (4.16). Moreover, it is easy to check that
LHKer n — kN, a Hopf subalgebra of fcG.

For our next example we turn to Lie algebras.
EXAMPLE 4.20. Let L be a Lie algebra over fc and let A be a Lie ideal of L.

Set L = L/N and consider the exact sequence of Lie algebras L A I -+ 0, where
7T is the canonical projection.   Then U(L) —* U(L) —> 0 is an exact sequence of

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



698 R. J. BLATTNER, MIRIAM COHEN AND SUSAN MONTGOMERY

Hopf algebras. Let {xa} be an ordered basis of L. For each a, choose xaG L such
that 7Txa = xa. We define 7 G ríomk (U(L),U(L)) by 7(xai •••xan) = xai ■••xa„
ior a>f < a2 < ■ ■ ■ < an, n = 0,1,— Since A is an algebra homomorphism
and since £(xai •••xQn) = £(xQl •••xQ„) for n > 1, it is immediate that 7 is a
coalgebra splitting of U(L) A U(L) —► 0. VTe cZaim ífcaí LHKer 7r = U(N), a Hopf
subalgebra of i/(L). In fact, let a G U(N)_. Then tto = e(o)ï. Since AcT(jV) Ç
[/(A) g l/(JV) we have (id g 7r)Ao = (id g le)Aa = a g ï and hence a G LHKer n.
Thus U(N) Ç LHKer 7T = A, say. Now the proof of Theorem 4.14 shows that the
map of A g U(L) —► U(L) given by a g fc 1—► 07(fc) is a linear isomorphism. But the
Poincaré-Birkhoff-Witt Theorem says that the restriction of this map to U(N) g
U(L) maps onto U(L). Therefore A = U(N). (The claim can also be established by
direct calculation.) Thus Corollary 4.17 says that U(L) ~ U(N) #CT U(L) as Hopf
algebras, where the weak action of U(L) on U(N) is given by (4.15), o is given by
(4.16), and the Hopf algebra structure of U(N) #„ U(L) is given by (4.17).    D

Our last example is interesting because LHKer n is not a Hopf subalgebra of H.
EXAMPLE 4.21. Let G be a finite group with nonnormal subgroup L such

that there exists an algebra homomorphism p: fcG —> fcL satisfying p| kL = id. Let
H = (kG)* and H = (kL)*. The map 7r: //—>// is the transpose of the injection
fcL —► fcG and hence is a surjection given by restriction of / G H to kL. Let
7 = p* : H —► //. Then 7, being the transpose of an algebra map, is a coalgebra
map. Moreover p| ki = id gives us that tto7 = id. Thus we have an exact sequence
//—*//—» 0 of Hopf algebra morphisms with coalgebra splitting 7.

It is easy to check that A — LHKer 7r = {/ G (kG)* : f is constant on the right
cosets of L in G} and A' = LHKer 7r = {/ G (fcG)* : / is constant on the left cosets
of L in G}. Clearly SA = A', SA' = A (here S is a bijection), but A^ A' since L
is not normal in G. Thus A is not a Hopf subalgebra of H by Proposition 4.19(3).
However by Theorem 4.14, it is still true that H ~ A #CT H.

An explicit example of such a fc, G, L, and p is the following: Let fc be a finite field
of characteristic not 2 or 3 containing a primitive cube root w of 1, let G = GL2(fc),
and let L — S3. Now kL is algebra isomorphic to fc © fc © M2(fc), this isomorphism
<p carrying L into the group generated by

(r,-i,(; ;)) - (,,,(; «)).

Note that G is embedded into fc © fc © AÍ2(fc) by x >-> (l,Detx,x) so that ip(G) 2
(p(L). Extending ip linearly we can set p = <p~x o ip. Then fc, G, L, and p satisfy
our conditions.    D

5. Crossed products and inner actions. We now look more closely at
crossed products in the case that the weak action of H on A is inner.

Let A be an algebra, H a Hopf algebra, and it a (convolution) invertible element
in Homfc(Z/, A) such that u(l) = 1. Let ipu denote the inner weak action of H on A
implemented by it (Lemma 1.4). Lemma 1.13(2) shows that all inner weak actions
are of the form ipu for some such u. Let ipf denote the trivial action.

Let a, t be bilinear maps from H x H to A such that

(5.1) r(h,l)=  Y u~1(l(i))u~1(h(i))(T(h(2)^(2))u(h(3)l(3))
(h)(1)
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for fc, l G H. Since it is invertible, this is clearly equivalent to

(5.2) o(h,l)= Y u(h(i))u(lw)T(h(2)^(2))u~1(h(3)l(3))-
(h)(1)

As in Definition 4.2 and Example 4.10, we may form A#„ H and AT[//] using
the pairs (ipu,o) and (ipf,r), respectively. The main result of this section is

THEOREM 5.3.   Let A#c H and AT[H] be as above.  Then
(1) A #„ H ~ AT[//] as (possibly nonassociative) algebras (possibly without

unit).
(2) a is normal if and only if r is normal.
(3) (ipu,a) satisfies the twisted module condition 4.5(2) if and only if (ipi,r)

satisfies 4.5(2).
(4) If (ipu,cr) (equivalently (ipf,r)) satisfies 4.5(2), then (ipu,o) satisfies the co-

cycle condition 4.5(1) if and only if (ipi,r) satisfies 4.5(1).
(5) A #CT H is a crossed product if and only if AT[H] is a twisted product, and

they are isomorphic as algebras with 1.

PROOF. (1) Let (p: A #CT H -> AT[H] be defined as in Proposition 1.19. The
proof there shows that <p is bijective. We check that it is a homomorphism. Let
a, 6 G A, h,l G H. Then

<P((a # h)(b #l)) = <p\Y a(hW ■ b)°(h(2),hi)) # fc(3)i(2)
VC0O J

=   Y  a(hW •k)tK/l(2),'(l)Mfc(3)Z(2))®fc(4)'(3)
(h)(1)

=   Y  au('l(l))bu_1(/l(2))^(fc(3),'(l))«(^(4)Z(2))® fc(5)¿(3)
(h)(1)

=   Y  au{h(l))bu(l(l))T(h(2)^(2)) ® h(3)l(3)
(h)(1)

=   \YaU(hWÏ®h(2)\   \Ybu^l(l))®l(2)\
Vco Mo J

= <p(a # h)<t>(b # 0,
where the fourth equality follows from (5.1) together with the invertibility of it.

(2) is a trivial consequence of u(l) — 1.
(3) By example 4.10, (ipf,r) satisfies 4.5(2) if'and only if t(H x H) C Z(A).

Now the left side of equation 4.5(2) for (ipu,o~) is

Y (fyl) ' (*(1) ' a))(T(h(2)J(2))
(h)(1)

=  Y u(/l(i))u(í(i))aM~1(/(2))w~1(fc(2))<r(fc(3),/(3))
(fc)O

=   Y   U(/l(l))U(/(l))ar(/l(2)./(2))w~1(fc(3)Z(3)),
(h)(1)
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while the right side is

Y  (T(h(l)>l(l))(h(2)l(2)-a)=   Y  <T(/l(l)'í(l))U(/l(2)Z(2))aW-1(fc(2)/(2))
(h)(1) (h)(1)

=   Y   U(h(l))U(l(l))T(h(2)>l(2))aU~1(h(3)h))'
(h)(1)

using (5.1) and the invertibility of u.   Thus 4.5(2) for (ip\,r) implies 4.5(2) for
(ipu,cr), and the converse follows using the invertibility of it.

(4) The left side of 4.5(1) for (ipu,o) is

Y [fyl) ■ (T(l(l)'mW)](T(h(2)'k2)m(2))
(h)O(m)

=       Y      U(hl))a(l(l)'m(l))U~1(h(2))v(h(3)'l(2)m(2))
(h)(l)(m)

=       Y      UCl(l))U(í(l))U(m(l))r(¿(2),m(2))T(fc(2),/(3)m(3))lí_1(fc(3)/(4)m(4))
(fc)O(m)

while the right side is

Y <7(h(l)'l(l))(J(h(2)l(2)>m)
(fc)O(m)

=     Y    u('l(i))u(í(i))r(/l(2)./(2))w(m(i))r(fc(3)/(3),m(2))ii"1(fc(4)/(4)m(3))
(h)O(m)

using (5.2) and the invertibility of it. Since 4.5(2) is true for (ipi,r), t(H x H) Ç
Z(A), and the right side of 4.5(1) for (ipu,cr) becomes

Y      tt('l(l))U('(l))U(m(l))r(,l(2).'(2))T(fc(3)¿(3),W(2))w"1(V)/(4)m(3))-
(fc)(l)(m)

Now 4.5(1) for (ipi,r) is just

Y   T(/(l)'m(l))r('l''(2)m(2)) =    Y   T(/l(l)'/(l))r(/l(2)i(2),m),
(l)(m) (h)(1)

so that this yields 4.5(1) for (ipu,o). Conversely, 4.5(1) for (ipu,<^) yields 4.5(1) for
(ipf,r), using the invertibility of u.

(5) follows from (l)-(4) and Corollary 4.6.    D
Here are two special cases to which Theorem 5.3 applies.

COROLLARY 5.4. Let t be the inner cocycle attached to the weak inner action
ipu as in Example 4.11. Then A #♦ H ~ A g H.

PROOF. Let t be trivial in Theorem 5.3 and note that then o — t and AT\H) =
Ag//.    D

COROLLARY 5.5. Let u implement an inner action on A and define t as in
Definition 1.3. Then A # H ~ At[//]. Moreover, At[H] = A g H if and only if
uGAlg(//,A).

PROOF. Applying Theorem 5.3 to the case where o is trivial, and noting that
t = t, gives our first assertion. Since it is invertible, t is trivial if and only if it G
Alg(//, A), litis trivial, then plainly At[H] = Ag//. Conversely, if At[H] = Ag//,
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then
Y   *(tyl)> '(!)) ® /l(2)'(2) = (1 ® fc)(l ® 0 = 1 ® hi

(h)(1)

for all h,l G H. Applying id g £ to both sides, we obtain t(h, I) = e(hl)l, so that t
is trivial. This yields the second assertion.    D

Thus once again we obtain Proposition 1.19. The first assertion of Corollary 5.5
was already known for H — fcG (see [16, p. 107]). The correct setting for the sort of
things considered in Theorem 5.3 and its corollaries is the nonabelian cohomology
theory of Hopf algebras. This will be taken up in a later paper.

Several times in what follows we will make use of the fact that for any weak
action of H on A and any bilinear map o : H x H —> A, the space A #CT H is a
right //-comodule algebra via the map

p = id g A : A #„ H - (A #„H) g H,

that is, p satisfies (3) and (4) of Definition 2.1. (Indeed, the weak action and bilinear
map play no part in this fact.)

Let A be a strongly inner G-graded algebra. Then Proposition 1.19 says that
A#(kG)° ~ A g (kG)°. Our next example shows that we cannot weaken the hy-
pothesis to only requiring A to be inner graded. First we need a slight strengthening
of [4, Theorem 3.2].

PROPOSITION 5.6 (DUALITY FOR TWISTED GROUP ACTIONS). Let B #CT(fcG)
be a crossed product with \G\ — n < oo. Then B #a(kG) is graded by G in the
usual way and

(B #CT(fcG)) # (fcG)* ~ B g Mn(k).

PROOF. Exactly the same proof given in [4] works here.    D
Note that the G-grading of B #CT(fcG) is exactly that arising from the right

fcG-comodule structure on B #CT (fcG) discussed above. Also note that the proof of
duality for coactions of finite groups in [4] does not carry over to the twisted case.

EXAMPLE 5.7. Let A = C2(k) as in Example 3.6. In the notation of that
example, A = fcT[G], that is, A — k #T(fcG) with trivial G-action on fc. The G-
grading of A was shown to be inner but not strongly inner. Now (fcG)* acts on A,
and we have A # (kG)* ~ fc g AÍ4(fc) = M4(fc) by Proposition 5.6. On the other
hand, A g (fcG)* ~ A4 = G2(fc)4, since (fcG)* is a direct sum of four copies of fc.
Thus A # (fcG)* eft A g (fcG)* even though the G-grading is inner.    G

We now turn to possible twisted analogues of Theorem 1.22. First note that since
A #<j H is a right //-comodule, it is a left Z/°-module, and one can check that if
A #CT H is a crossed product, it is an Z/°-module algebra. Now the direct analogue
of Theorem 1.22 is false. For, consider Example 3.6 again. Then fcT[G] = fc #T(fcG),
where the action of fcG on fc is trivial and so is certainly strongly inner. However,
the action of (fcG)* on fc #T(fcG) is inner and not outer.

It is true in Example 3.6 that the action of (fcG)* on fc #T(fcG) is not strongly
inner. This fact can be generalized to general crossed products as follows.

THEOREM 5.8. Let H be a nontrivial residually finite dimensional cocommu-
tative Hopf algebra and let A #„ H be a crossed product. If H° is strongly inner
on A #„ H, then H is outer on A.
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To prove Theorem 5.8, we require three lemmas, the first of which depends on
Theorem 5.3.

LEMMA 5.9. //Centa#„h(A #ct 1) Ç A #CT 1, and H is not trivial, then H
is outer on A.

PROOF. Let L be a Hopf subalgebra of H which is inner on A. Then Theorem
5.3 implies that A #„ L ~ AT[L] via a map <p such that (p(a # 1) = a g 1.
So applying <p to our hypothesis that Cent a #a h(A # 1) Ç A # 1, we obtain
Cent^ [#] (A g 1) Ç A g 1. But in AT [L], 1 g L centralizes Agi since t is normal
and the action of L on A is trivial. Thus IgL Ç Agi, so that L must be trivial.    D

Recall that the set of invariants of any Hopf algebra K acting on an algebra B
is the set BK = {b G B: fc • b = £(fc)6,all fc G K}.

LEMMA 5.10.   If H is residually finite dimensional, then

(A #a H)H° = A #a 1.

PROOF. By hypothesis, H° is dense in H*. Using (2.5), it follows that

(A #a H)H° = {b G A #CT //: p6 = b g 1},

where
p = id g A : A #CT // ^ (A #<, //) g //

is the right //-comodule structure on A #a //. Clearly A #CT 1 Ç (A #CT //)ff .
Conversely, suppose p6 = 6 g 1. Then b = (id g £ g id)pè = (id g £ g id)(6 g 1) G
A #CT 1, as desired.    D

LEMMA 5.11. Suppose that the action of K on B is inner, implemented by u G
Hom(/í, B). Then u(K) is a commutative subset of B if and only if CentB(BK) Ç
BK.

PROOF. Suppose that b G CentB(u(K)). Then

h-b = ^u(fc(1))6u_1(fc{2)) = Ybu(h(i))u~1(h(2)) = e(h)b
(fc) (fc)

for all fc G K, so that b G BK. Suppose, conversely, that b G BK. Then by Lemma
1.14,

u(h)b = Y(hW " b)u(h(2)) = X^V^M/W = bu(h)
(fc) (fc)

for all fc G K, that is, b G CentB(u(K)). So we have shown that Cents(it(Ä")) =
BK. Suppose that u(K) is commutative. Then u(K) Ç Centß(u(K)) — BK, which
implies that CentB(ßK) Ç CentB(u(/í")) = BK. Conversely, if CentB(ßK) C BK,
then u(K) Ç CentB(CentB(u(K))) = CentB(BK) Ç BK = CentB(u(K)) and so
u(K) is commutative.    D

PROOF OF THEOREM 5.8. Let K = H° be strongly inner on B = A #a H,
implemented by u G Alg(K,B). Since H is cocommutative, K is commutative
and hence so is u(K). By Lemma 5.11, CentB(BK) Ç BK. But by Lemma 5.10,
BK = A #CT 1 and so we have Cent^ #„ //(A #CT 1) Ç A #CT 1. Then Lemma 5.9
says that H is outer on A.    D

There is one simple situation in which the direct analogue of Theorem 1.22 does
hold for crossed products: when dim// = 2.
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COROLLARY 5.12. If dim H = 2 and H is inner on A, then H* is outer on
A#*H.

PROOF. If //* is not outer on A #„ H, then it is inner, since H* has no
proper Hopf subalgebras. So let the inner action of H* on A #CT H be implemented
by u G Hom(//*,A #CT //). But then u(H*) is commutative since it is spanned
by 1 = it(l) and one other element of A #ff //. As in the proof of Theorem 5.8,
Lemmas 5.9-5.11 imply that the weak action of H on A is outer, a contradiction.    □

We conclude this section with two results which relate inner actions to right-left
symmetry conditions of the sort considered in [2]. The set-up is as follows: Let H be
a Hopf algebra with bijective antipode, and let U be a Hopf subalgebra of H° with
bijective antipode. Let S denote the (ordinary!) inverse of the antipode of U. The
homomorphism A: H # U —> Endfc H defined by A(fc # /)/ = h(f —' /) for fc,/ G
H, f G U, is injective [2, Corollary 2.3(i)]. There is also an antihomomorphism
p:U #H - Endfc H defined by p(f # h)l = (I *- f)h = £(i)(Mi)>f(2)fc. The
RL-condition on H and U [2, Definition 1.3] is p(U # 1) Ç X(H # U). We first
show that the RL-condition is closely related to the innerness of the weak action ip
of U on H # U given by

g ■ (fc # /) = (fc - g) # / = (p(g # l)fc) # /.
PROPOSITION 5.13. The RL-condition implies that ip is inner. The converse

holds provided CentEndt H A(ZZ # U) is scalar (e.g. ifU is dense in //*).

PROOF. We first show that our weak action is always inner in Endfc //, in fact
that X(g ■ b) = (adp(g # 1))A(6) for all g G U, b G H # U. Let h,leH,f,geU.
Then

£p(o(i)#l)A(fc#/)p(S<7(2)#l)/
(9)

= £(50(2),/(1))p(g(1)#l)A(fc#/)Z(2)
(g)(1)

=   Y (Sa(2),l(l))(f,l(3))p(g(l) # l)fc'(2)
(g)(1)

=    Y   (Sa(2)J(i))(fJ(4))(9(i),h(i)l(2))hi2yli3)
(g)(h)(i)

=      Y     (Sa(3)J(l))(fJ(4))(9(l),hlfy)(g(2)J(2))h(2)l(3)
(g)(h)(i)

=    Y   ((Sa(3))9(2),l(i))(f,l(3))(9(i),h(i))h{2)l{2)
(g)(h)(i)

=      Y     (£(9(2))lJ(l))(f,l(3))(9(l)'h(l))h(2)l(2)
(g)W(i)

= Y <M2)>(o,fc(i)>fc(2)/(i) = (A- g)(f -i) = Kg■ (h # /))/,
(hm

as desired.   (Note that setting fc # / = 1 # 1 shows that g i-> p(5g # 1) is the
convolution inverse of g i—> p(g # 1) in Honifc([/, Endfc //).)
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Suppose that the RL-condition holds. Then p(g # 1) Ç X(H # U) so that there
exists a unique it(g) G H # U such that p(g # 1) = A(u(g)). Then the foregoing
shows that Yi(g) u(9(i)){h # f)u(Sgç2)) = g ■ (fc # /) so that the weak [/-action is
inner.

Conversely, suppose that the weak action is inner, implemented by

uGrlom(U,H#U).

Applying A, we see that (adp(g # 1))A(6) = (ad A(u(g)))A(6) for all g G U, b G
H #U. Set p(g) = p(g # 1) and c = (A o it"1) * p in Hom(t/, Endfe H). Then c(g)
centralizes X(H # U) for ail g G H° and so is a scalar by our centralizer hypothesis.
Thus p — (A o u) * c so that p(U) Ç X(H # U), which is the RL-condition.    D

We remark that if H is cocommutative, the RL-condition is always satisfied and
we are back to Example 2.12. Our second result uses a different right-left symmetry
condition and relates it to the standard action of H on H # U, viz.

I ■ (h # /) = fc # (I - f)
iorh,lGH,fGU.

PROPOSITION 5.14. //p(l # //) Ç X(H # U), then the standard action of H
on H # U is inner. If CentEndfc h X(H # U) is scalar, then the converse holds.
Moreover, if the standard action is inner, it is strongly inner.

PROOF. One shows, as in the proof of Proposition 5.13, that

A(/-6) = (adp(l#5/))A(6)

for l G H, b G H # U and then proceeds as before. The last assertion follows from
the fact that I h-> p(l # SI) belongs to Alg(//, Endfe H).    D

COROLLARY 5.15. If dim H < oo, then the weak action of H* on H # //* is
inner and the standard action of H on H # H* is strongly inner.

6. Maschke-type theorems for crossed products. The classical version
of Maschke's theorem states that for a finite group G, the group algebra fcG is
semisimple if and only if |G|_1 G fc. This has been generalized to crossed products
of groups over rings in several ways. Consider A #CT (fcG) = A*G, where |G|_1 G fc.
Standard arguments show that if V is a (left) A* G module which is completely
reducible as an A-module, then it is completely reducible as an A*G-module (see for
example [13]). As a consequence of this, if A is semisimple, then A*G is semisimple,
since if W is a faithful completely reducible A-module, then W = (A*G) g¿ W =
£ 6G g g VF is a faithful completely reducible A * G-module. A more general such
result is a theorem of Fisher and Montgomery [16, p. 109]: if A is semiprime, then
A * G is semiprime.

We are concerned in this section with to what extent analogs of these results can
be proved for A #CT //, where H is a finite dimensional semisimple Hopf algebra.
Such results are known when o is trivial and H = (kG)* or it(L), the (restricted)
enveloping algebra of a finite dimensional restricted Lie algebra; more generally,
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when H is commutative [4, 1]. For arbitrary semisimple H, Cohen and Fishman
have proved the first of the above results when o is trivial [3], based on an argument
of Larson and Sweedler [11]:

PROPOSITION 6.1. Let H be finite dimensional semisimple and A an H-module
algebra. IfV is a (left) A jf H-module which is completely reducible as an A-module,
then it is completely reducible as an A # H-module.

An immediate consequence of Proposition 6.1 is that if A is semisimple Artinian,
then so is A # H [3]. However, the corresponding question for semiprimeness
remains open.

In this section, we first show that Proposition 6.1 extends to crossed products,
under the additional hypotheses that H is cocommutative and o is invertible in
Homfc(// g //, A). We then consider the semiprimeness question and show that it
holds in the following two cases.

(1) Any A # //, provided the action of H is inner.
(2) Any A<,[//], provided H is cocommutative and o is invertible.
To begin, consider any crossed product A #„ H such that o is invertible. Define

7 G Hom(//, A #„ H) by 7(fc) = 1 # fc, and define p G Hom(//, A #„ H) by

p(h) = Y°-1(Sh(2),hi3)) # Sh{1).
(fc)

LEMMA 6.2.   (1) p is a left convolution inverse for 7.
(2) // H is cocommutative, then p is also a right convolution inverse for 7.

Moreover, A #a H = (A #„ l)p(H).

PROOF. Let fcG//. Then

(p * 7)(fc) = $>-1(5fc(2). fc(3)) # Sh(1))(l # fc(4))
(fc)

= X/Cr_1(S''l(3),fc(4))^(5fc(2),fc(5)) # (S'fc(1))fc(6)
(fc)

= X>(5N2))£(fc(3))1  # (Sfc(1))fc(4)
(fc)

= £l#(Sfc(1))fc(2)=£(fc)l#l.
(fc)

Thus p is a left inverse for 7.
(2) Let fcG//. Then

(7 * p)(h) = £(1 # h{f))(o-X(Shi3), fc(4)) # Sh{2))
(fc)

= Yih(l) ■ °'"1('5A(6),fc(7))]ff(fc(2),5fc(5)) # fc(3)(S'fc(4))
(fc)

= ^[A(i) • <T"1(S,fc(4), fc(5))]<r(fc(2), Sfc(3)) # 1.
(fc)
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Thus we wish to show that

(*) Y\hW • (T_1(S'/l(4),fc(5))]CT(A(2), 5/1(3)) = £(fc)l.
(fc)

Now for any Hopf algebra //, if a is a normal cocycle, we have

Ylh(l) •<7(S'fc(4),fc(5))]CT(A(2),(Sfc(3))fc(6)) = ^<T(fc(1),Sfc(4))rj(/l(2)(5fc(3)),fc(5))
(fc) (fc)

= Ya(h(i)>Sh(3))£(h(2)Mh('i)) = Ya(h(x)>Sh(2)}-
(fc) (fc)

When H is cocommutative, the left side of this equation becomes

Ylh(l) ■ CT(5fc(2), A(3))]o(fc(4), (5/l(5))fc(6))
(fc)

= YlhW ■ ̂(5fc(2), fc(3))]£(fc(4))e(fc(5)) = X] hW ' ̂ (5fc(2), fc(3))-
(fc) (fc)

Substituting this, with shift of subscript, for the <r(fc(2),S'fc(3)) factor in the left
side of (*), we get

Yih(l) •(T"1('5/l(5),fc(6))][fc(2) •^(Sfc(3),fc(4))]
(fc)

= YhW ' (°'~1(5/l(4)^(5))o-('5fc(2),fc(3))]
(fc)

= ^fc(1)-[£(5fc(2))£(fc(3))l] = £(fc)l,
(fc)

as desired. (Cocommutativity was used again for the second to last equality.) Thus
p is also a right inverse for 7, and so p — 7_1.

Since H is cocommutative, SH = H, and thus to show that A ffa H =
(A #CT l)p(H) it will suffice to check that 1 # Sfc G (A #CT l)p(H) for any
fcG //. Now

l#Sfc = X>(Sfc(1))£(fc(2))#Sfc(3)
(fc)

= 2_,<T(S,fy2),/i(3))tf~1(Sfyi),fy4)) # ^(5)
(fc)

= X]<7(5'l(1)'^(2))CT~1^'l(4)''l(5)) # 5fc(3)
(fc)

= X>(Sfc(i),fc(2))#l)p(fc(3)),
(fc)

where cocommutativity was used again for the second to last equality.    D

LEMMA 6.3. Let H be a finite dimensional Hopf algebra, and let x be a left
integral in H (i.e. xh = e(h)x, all fc G H).   Let A #CT H be a crossed product
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with o invertible, 7 invertible, and A #ff H — (A #„ 1)7-1(//).  Let V,W be left
A #„ H-modules and let X G Hom^^ i(V,W). Define X: V —> W by

X(V) = Y1'1^^ ' A(t(X(2)M>
(*)

for allvGV. Then X G HomA #oH(V,W).

PROOF. For ease of notation, we will regard A as embedded in A jfa H and
write a in place of a # 1, a G A.

Since A #CT H — (A # 1)7" X(H), it suffices to show that A is an A-module map
and that

X(1-x(h)v) = 1-\h)X(v),

all fc G //, v G V.
We first check that A is an A-module map. Since 7(fc)a = J2(h)(h(i) • a)~/(h(2y),

any fcG//, and since 7 is invertible, it follows that

ha= ^7(fc(i))a,7"1(^(2))-
(fc)

Thus for any a G A,

AM = S'T1(I(l))A(T(a:(2))<M>)
(«)

= 5]l'"1(X(1))A((X(2) - ah(X(3))v)
(*)

= Xl'>'_1(:C(1))(:r(2) •(X)AWX(3))W)
(x)

= X]^~1(;r(1))'>'(a;(2))a'1'~1(a;(3))A^(a;(4))1;)
(x)

= X]£(:E(1))a^"1(a;(2))A('/(a;(3))v)
(I)

(x)

To check that A(7-1(fc)v) = 7_1(fc)A(i;), we need the fact that x is a left integral:
that is, xfc = £(fc)x, for all fc G H. It follows that

(Ax) g fc = Y M£{h(i))x) g fc(2)
(fc)

= ^A(xfc(1))gfc(2)
(fc)

= ^X(1)fc(1) g X(2)fc(2) g fc(3).
(fc)
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Then
~X(!-X(h)v) = ^7-1(x(i))A(7(x(2))7-1(fc)i;)

(x)

= Y i'1(x(i)h(i))xd(x(2)h(2)h~1(h3))v)
(x)CO

=    J2   "i~1(X(l)h(l))Xl<T~1(X(2)^h(2)hiX(3)h(h(3)) ■ 7"X(fc(4)H
(x)(fc)

=    Y   l~1(X(l)h(l))Xl(T~1(X(2)>h(2)h(X(3)Mh(3))V\
(x)(h)

=    Y^   l~1(X(l)h(l))(T~1(X(2)'h(2))X(l(X(3))v)
(x)(h)

=    Y  [l~1(hl)h~1(X(l))a(X(2)'h(2))}<T~1(X(3)ih{3))X(l(X(4))V)
(x)(fc)

=    Y   1~1(h(l)h~1(X(l))£(X(2))£(h(2))X(l(X(3))v)
(x)(h)

= l-1(h)Yl-1(x(i))X(l(x(3))v)=l-\h)X(v).    O
(x)

THEOREM 6.4. Let H be a finite dimensional semisimple cocommutative Hopf
algebra, and A #CT H a crossed product with o invertible. If W Ç V are (left)
A #CT H modules so that W has an A-complement in V, then W has an A #CT H-
complement in V.

PROOF. Since H is finite dimensional and semisimple, there exists a left integral
x G // with £(x) ^ 0 [25, p. 103]. Consequently H contains a left integral e so that
e(e) = l.

Since W has an A-module complement in V, there exists an A-module projection
tt: V^W.

Since H is cocommutative, 7 is invertible and A #CT H = (A # 1)7" X(H) by
Lemma 6.2. We may therefore apply Lemma 6.3, to conclude that the map

*(v) = 5I'T~1^(1))7r(')'(e(2))î;)
(e)

is an A #CT //-module map.
We claim that ñ is also a projection of V onto W. For if w G W, then 7r(iz;) — w,

and thus
7? = X^'T1(e(i))7rHe(2)M = Y1'1^1^1^2^ = £^w = w-

(e) (e)

Thus W has an A #CT //-complement, namely KerTr = (/ - ñ)V.    D
We can now obtain our version of Maschke's theorem.

COROLLARY 6.5. Let H be a finite dimensional semisimple cocommutative
Hopf algebra, and A#a H a crossed product with a invertible.

(1) Let V be a (left) A #CT H-module. If V is completely reducible as an A-
module, then V is completely reducible as an A #a H-module.

(2) If A is semisimple Artinian, so is A #„ H.
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PROOF. (1) is immediate from Theorem 6.4. Now (2) follows from (1), using the
fact that an algebra is semisimple Artinian if and only if every module is completely
reducible.    D

We next consider semisimplicity, when A is not Artinian. For twisted products,
the standard method of induced modules works.

COROLLARY 6.6. Let H be finite dimensional and semisimple, and A #CT H a
crossed product with A a semisimple algebra. Then A #CT H is semisimple in the
following cases.

(1) o is trivial and the action of H is inner,
(2) o is invertible, H is cocommutative, and the action of H is trivial.

PROOF. From Corollary 5.5, in the case o is trivial and the action is inner we
know that A # H = At[//]. Thus in both cases (1) and (2), we are actually dealing
with twisted products.

Now for any twisted product ACT[//], and any (left) A-module V, we form the
induced ACT[//]-module V — ACT[//] g 4 V. Since the elements of A commute with
the elements of //, V = Yli=i ®^ ^ an A-module, where dimfc H = n. Thus if V
is a completely reducible A-module, so is V.

An algebra A is semisimple if and only if there exists a faithful completely re-
ducible A-module, say V. Constructing V as above, V is certainly faithful as an
Aa \H\-modnle. It is also completely reducible as an Aa [//¡-module: use Proposi-
tion 6.1 in case (1) and Corollary 6.5 in case (2). Thus ACT[//] is semisimple since
it has a faithful completely reducible module.    D

The foregoing argument does not extend to A #CT H when the action of H on A
is not inner, since it is false in general that, if V is a completely reducible A-module,
V = (A #CT H) ®a V is completely reducible as an A-module even when o is trivial,
as we show in our next example.

EXAMPLE 6.7. Let G be a finite group. Let A = fcG, H = (fcG)*, V the trivial
one dimensional G-module fc, and form V — (A # H) g¿ V. Let {px: x G G} be
the basis of H dual to the basis G of A. We have

(1 #py)(x # 1) = x #px-iy

for x,y G G, which shows that A # H is a free right A-module with basis
{1 # px : x G G}. Thus we may identify V with H: px <-► (1 # px) g¿ 1. Moreover,
the left action of A on V corresponds to the action of A on H given by x py = pxy.
In fact,

(X    #     1)(1     #    Py)    gA     1     =     (1     #    Pxy)(X    #     1)    g^     1     =     (1     #   Pxy)    gA     1.

This shows that as an A-module, V is isomorphic to A under the left regular
representation of A on itself. Now if the characteristic of fc divides the order of G,
fcG is not completely reducible as a left G-module.    G

Despite this example, it is always true that A semisimple implies A # (fcG)* is
semisimple, using other methods [4].

We are able to show that A semiprime implies A #„ H semiprime in the two
cases of Corollary 6.6. Our method is to use the "primitivity machine" of Lorenz
and Passman [13] to reduce to the semisimple situation.
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If R is any ring with 1, let \\R denote the complete direct product of copies
of R indexed over the natural numbers, and let Yl R denote the direct sum. Now
define

r-Ur/Er
and denote the elements of n R by (an).

LEMMA 6.8 [13].   The following are equivalent:
(1) S is semiprime,
(2) S has no nonzero nil ideals,
(3) S is semiprime.

The next lemma was proved in [13] for H = fcG.

LEMMA 6.9. Let A #a H be a crossed product, with H finite dimensional.
Then

a#Th = A#aH.
PROOF. The (weak) action of H on A can be extended to \\ A by letting it act

on each component; since J^ A is stable under this action, the induced action of H
on A is well defined. Similarly a: H xH —» A may be extended to ö: H x H —> A
by defining

¿r(fc, fc) = (o(h, fc),..., o(h, k),...) + Y A.
Clearly A #a H is a crossed product.

The fact that A #„■ H = A #CT H follows by exactly the same argument used
by Lorenz and Passman [13], except that a fixed basis {fci,..., hn} oî H is used
instead of the group elements {g | g G G}.    G

THEOREM 6.10. Let H be finite-dimensional and semisimple, and A #„ H a
crossed product with A a semiprime algebra. Then A #<, H is semiprime in the
following two cases.

(1) a is trivial and the action of H is inner,
(2) o is invertible, H is cocommutative, and the action of H is trivial.

PROOF. We form A #CT //; by Lemma 6.9, it suffices to show A #CT H is
semiprime; by Lemma 6.9, this is equivalent to showing A ffa H is semiprime.

Now since A is semiprime, A has no nil ideals by Lemma 6.8. Thus the polyno-
mial ring A[x] is semisimple by Amitsur's theorem. By Corollary 6.6, A[x] #CT H
is also semisimple, where A[x] #CT H makes sense by letting H act trivially on x.
But then Â[x] #CT H = (Â #CT H)[x] is semisimple. Thus A #&. H has no nilpotent
ideals, so is semiprime.    G
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