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CROSSED PRODUCTS BY SEMIGROUPS OF ENDOMORPHISMS

AND THE TOEPLITZ ALGEBRAS OF ORDERED GROUPS

SRIWULAN ADJI, MARCELO LACA, MAY NILSEN, AND IAIN RAEBURN

(Communicated by Palle E. T. Jorgensen)

Abstract. Let r+ be the positive cone in a totally ordered abelian group F.

We construct crossed products by actions of r1" as endomorphisms of C-

algebras, and give criteria which ensure a given representation of the crossed

product is faithful. We use this to prove that the C* -algebras generated by

two semigroups V, W : P" —» B{H) of nonunitary isometries are canonically

isomorphic, thus giving a new, self-contained proof of a theorem of Murphy,

which includes earlier results of Coburn and Douglas.

Introduction

Let T be a totally ordered abelian group with positive cone T+. Murphy
showed in [6] that the C*-algebras generated by two semigroups V, W: T+ -+

5(77) of nonunitary isometries are canonically isomorphic [6, Theorem 2.9],

generalising well-known theorems of Coburn [3] for the case Y = Z, and of

Douglas [5] for subgroups of R. His proof involved an analysis of the ideal

structure of the ordered group T, and used results of Olesen and Pedersen
[9, §8.11] on the primitivity of certain crossed products. Here we obtain a

characterization of faithful representations of crossed products by semigroups
of endomorphisms, and use it to give a short, self-contained proof of Murphy's

theorem.
In § 1, we discuss our notion of crossed products by semigroups of endomor-

phisms of C*-algebras, which is based on ideas of Stacey [11]. Our charac-

terization of faithful representations in Theorem 1.2 extends that for crossed
products by single endomorphisms in [1]; we prove a more general theorem than

we need later, because we want to fill a gap in [1] — see the remarks preceding
Lemma 1.3. In §2, we show that the universal C*-algebra C*(r+) for isometric
representations of T+ is such a crossed product (Proposition 2.2). To prove the

main result, Theorem 2.4, we need to verify that the hypotheses of Theorem 1.2

hold when the isometric representation consists of nonunitary isometries, and
we do this by adapting an argument from [4]. It follows immediately that the

Toeplitz algebra of an ordered group is isomorphic to C*(T+).
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1. Crossed products

Throughout T will be a totally ordered discrete abelian group with positive

cone r+. An isometric representation of T+ is a homomorphism of the semi-
group r+ into the semigroup of isometries Isom(77) on a Hubert space 77.
We now give our basic definitions.

Definition. A dynamical system is a triple (A,T+, a) where A is a unital

C*-algebra, and a is an action of T+ on A by endomorphisms. A covariant

representation of a dynamical system (A,T+, a) is a pair (n, V), where n is a

nondegenerate representation of A on 77, and V is an isometric representation

of T+ on 77 suchthat n(ax(a)) = Vxn(a)V* for a £ A and x £ T+ . A crossed

product for a dynamical system (A, T+, a) is a unital C*-algebra B together

with a unital homomorphism iA : A —► B and a homomorphism i\-+ of T+ into

the semigroup of isometries in B satisfying

1-  Ía{(*x(<2)) = ir+(x)ÍA(a)ir+(x)* for a £ A , x £ T+ ;
2. for every covariant representation (n, V) of (A, T+, a), there is a unital

representation n x V of B with (n x V) o iA = n and (n x V) o ir+ = V ; and

3. B is generated by {/¿(a)} and {ir-+(x)} .

Remark 1.1. (i) In fact, B is spanned by {ir+(x)*iA(a)ir+(y): a£ A, x,y £
r+};cf. [1, Lemma 1.1].

(ii) As in [10, Proposition 3] and [11, Proposition 3.2], each system has, up

to isomorphism, exactly one crossed product, denoted by (AxaT+, iA, i'r+) •

(iii) If there is a covariant representation (n, V) with n faithful, condition 2

implies that i a is injective. However, there might not be such a representation;

see [11, 2.2].

Theorem 1.2. Suppose (n, V) is a covariant representation of (A, T+ , a) such

that

(i)  n is faithful, and
(ii) for all finite subsets F of T+ and all choices of aXyy £ A,

E Vx**(*x
xeF

c)Vx <

x.yeF

x,y Wy

Then n x V is a faithful representation of A xa T+.

Proof. Our strategy is a familiar one. The uniqueness of the crossed product

gives a continuous action ß of the compact group T on A xQ T+ , characterised

by fiy(U(<i)) = U(o) and ßy(ir+(x)) = y(x)ir+(x) (ß is the dual action). The
formula 6(b) = fcßy(b)dy defines a norm-decreasing projection 6 of A xa T+

onto the fixed-point algebra (A xaT+) , which is faithful in the sense that if

6(b*b) = 0 for some b £ A xa T+ , then b = 0 (e.g., see the proof of [1, Lemma

2.2]). Since / y(y - x) dy = 0 for x 7¿ y, we have

(1.1) 6[^'^2irAx)*ÍA(ax,y)ir*(y)) = Ysir+(x)*ÍA(ax,x)irAx),

nx K (0(ô)) || <||7rx V(b)\\ for all

x,y

and the inequality in (ii) above extends to

b£Ax„r+.
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CROSSED PRODUCTS BY SEMIGROUPS OF ENDOMORPHISMS 1135

The theorem will follow once we show that n x V is faithful on the fixed-

point algebra (A xa T+) = 6(A xa T+). For if n x V(b*b) = 0, then n x

V(6(b*b)) = 0; because n x V is faithful on the range of 6, this forces

6(b*b) = 0, and hence also b = 0.

So we have only to prove that n x V is faithful on (A xa T+) . From (1.1)

and the continuity of 6, we deduce

(1.2) (A xar+/ = spañ{ir+(x)*iA(a)ir+(x): a£A, xeT}.

If we had the extra condition

(1.3) ir+(x)*ÍA(A)iMx)ciA(A),

o

it would immediately follow that (A xaT+) = ¿a(A) , and n x V would be

faithful there because it = (n x V) o iA is faithful on A by assumption (i).

Since (1.3) holds in the situation of §2, the weaker version of Theorem 1.2 we

have just proved would suffice there.

One reason we want to prove Theorem 1.2 in the stated generality is to

complete the proof of Proposition 2.1 of [1], which is the special case T+ = N,

and where the extra generality was crucial for the proposed improvement to

[8]; it was not checked in [1] that n x V is faithful on the fixed-point algebra.

Lemma 1.5 will complete the proof of Theorem 1.2 by verifying this. First, we
need a basic lemma about ideals of direct limits which is implicit in [2, Lemma

3.1].   D

Lemma 1.3. Let C be a C*-algebra, and {Ba} a family of C*-subalgebras such

that C = \JaBa. If J is a closed ideal in C, then J = [ja(J n Ba).

Proof. Let Ja = J U Ba . We want to show that J = (ja Ja . Obviously |J0 7a c

/, so suppose x 0 (J« J°> • Then infj,euya \\x - y\\ = e > 0. Since C = (ja Ba,

we can choose X and Xx £ Bx such that \\x¿ - x\\ < § . Thus, for any y in Jx,

e     2e
Ita-yH > ll*-:H|-||*-*;ill >e-U*-**ll>e-£ = y.

If p : C -» C/J is the quotient map, then kerp\B¿ = J n Bx = Jx, and we have

\\p(xx)\\= inf\\xx-y\\ > -^,
yeJi i

because p induces an isomorphism of the C*-algebra Bx/Jx onto p(Bx) which
is necessarily isometric. Then

\\p(x)\\ = \\p(xx) + p(x - xx)\\ > \\p(xx)\\ - \\p(x - xx)\\ > y - I,

since p is norm-decreasing. Hence p(x) ^ 0, and x & ker p = J.   o

Remark 1.4. This is the proof of [2, Lemma 3.1], slightly modified to avoid
using the hypothesis that the Ba form an increasing sequence. The finite-

dimensionality of B„ was not used in [2] except to ensure that Bn is a C*-

algebra.
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1136 SRIWULAN ADJI, MARCELO LACA, MAY NILSEN, AND IAIN RAEBURN

Lemma 1.5. Let (n, V)  be as in Theorem 1.2.   Then % x V is faithful on

[AXaT+y.

Proof. We claim that n x V is faithful on soan{ix-+(x)*iA(a)ix-+(x) : a£ A, x £
o

r+}, which is dense in (^xar+)   by (1.2). Suppose b = Y,x ít+(x)*ía(<1x)ít+(x)

satisfies n x V(b) = 0, so that Y,x Vxn(axWx = 0. Choose jc0 greater than

every x for which ax ^ 0. Then

o= v«(J2v;n(ax)vx)v¿ = EvXo.xvxv;n(ax)vxv;v;o_x
X X

(1.4) = E VXo-xit(ax(l)axax(l))V;a_x
X

= ^Tn(aXo-x(ax(l)axax(l))),

X

so, since 7t is faithful, Y,xaxo-x(ax(î)ax<Xx(l)) = 0 in .4, and

^(Eajco-xK(l)ûx^(l))) =0   in A xQr+.
X

Thus, reversing calculation (1.4), we obtain

b = M*o)*(M*o) b iMxo)*)ir+(xo) = 0,

verifying the claim.
Next, let

Bz = span{/'r+(x)* iA(a) ir+(x) : a £ A, 0 < x < z g r+},

so that (jz€r+Bz is dense in (AxaT+) by (1.2). We claim that each Bz isa

C* -algebra. It is certainly a *-algebra, so it is enough to show Bz is closed. Sup-

pose {bn} c Bz and b„ —► c in A xa T+. This implies that ir+(z) bn ir+(z)* —»

ir-+(z)cir+(z)*. A calculation like (1.4), with z in place of Xo, shows that

each ir+(z)b„ir+(z)* has the form /^(ût,) for some a„ in A. Since {iA(a„)}

is Cauchy and the range of iA is closed, ir+(z)b„ ir+(z)* = ^(fl7i) converges

to iA(a), for some a in A. But then bn = ir+(z)*ir+(z)bn i'r+(z)*zr+(z) con-

verges to the element ir+(z)* iA(a)ir+(z) of Bz, and Bz is closed. We can

now apply Lemma 1.3 to deduce that ker (n x V) = (jz ker(n x V) n Bz. Since

we proved in the first paragraph that n x V is faithful on (jz Bz, we have

(Jker(7Tx F)nßz = ker(>Tx V) n (|J^) = {°}-

This completes the proofs of Lemma 1.5 and Theorem 1.2.   □

2. The C*-algebra generated by a semigroup of isometries

We now consider a particular crossed product which is universal for isometric
representations of T+, in a sense to be made precise in Proposition 2.2. The

algebra in the dynamical system is the closed subspace Br+ of i°°(r) spanned
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CROSSED PRODUCTS BY SEMIGROUPS OF ENDOMORPHISMS 1137

by {lx : x £ T+} , where

1 (v) = il    if y-x'
XK"     \0    otherwise;

since we have 1*1,, = lmax{x,y}, this space is actually a C*-subalgebra of

i00(T+). For each x e T+, the automorphism xx £ Aut¿°°(r) defined by
rx(f)(y) = fi(y - x) satisfies xx(ly) = lx+y , and hence t restricts to an action
a of T+ by endomorphisms of B\-+. (The algebra Br+ was introduced in [5],
and is the restriction to T+ of the algebra TT^xT) used in [6].) Before proving
that Br+ xa T+ has the required universal property, we need a lemma.

Lemma 2.1. Let P¡ be a finite family of projections such that Px > P2 > • • • > TV.
Then for any A, G C,

N n

y^A/P,-   < max   V^A,- ;
1=1 —     1=1

we have equality if Pi ̂  Pi+X for all i.

Proof. Since the projections P„ - Pn+X are mutually orthogonal, the result fol-
lows from the identity

N N-X       Ti N

E^' = E (EA')(P" -p«+') + (E^)^-   D
1=1 71=1 1=1 1=1

Proposition 2.2. Let F be a totally ordered abelian group and let Br+ xaT+ be

the crossed product of the system defined above.

(i) If p is a nondegenerate representation of B^+ xaT+, then p o j'r+ is an
isometric representation of T+.

(ii) Whenever V: T+ —► Isom(77) is an isometric representation of T+, there

is a representation ny of B\-+ such that (ny, V) is a covariant representation

of (Br+, r+, q) . If each Vx is nonunitary, then ny is faithful.
(iii) Br+xaT+ is generated by {ir+(x): x G T+} —indeed,

Br+ xa r+ = spañ{/r+(x)/r+(y)*: x, y £ T+}.

(iv)  ißr* '• Br+ -» Br+ xa T+ is injective.

Proof. The first part is clear because each ir+(x) is an isometry. For (ii), we
note that the representation ny must satisfy

ny (E^1*) = [J2^v(ax(l))\ = E^W-
\xeF       I      \xeF )     xeF

We show that this formula gives a well-defined linear map ny on spanfl* :

x £ r+}, and simultaneously that ny extends to 5p+, by showing that

E«f;| < |Eaxi

Given a finite linear combination Y^xeF^x\x> we can index F so that xx <

x2 < ••• < xN because T is totally ordered. Then Y,xXxlx = 2/Li^*, 1*,
is a linear combination of projections such that lXl > lx, > • • • > 1XN, and

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1138 SRIWULAN ADJI, MARCELO LACA, MAY NILSEN, AND IAIN RAEBURN

Lemma 2.1 implies
71

EAjclv   = max   y*Ar, .
X X<n<N\^   X'\

xeF —     i=i

For y > x,

(2.1) vxv* - vyv; = vxvx* - vxvy.xv;_xv; = vx(i - vy.xv;_x)v;,

so VXV* > VyV*. Thus Ylx^pXxVxV* is a linear combination of projections

VXi V* such that VXl V* > VX2 V*2>---> Vx„ VX*N , and Lemma 2.1 gives

(2.2) || E**vxv;|| = IE¿xivXlv;t\\< m** |¿K\ = \\ E^ix\\,
xeF i=i - -     i=i xeF

as claimed. Finally, ny is a *-homomorphism because 1*1,, = lmax{x,v} anc*

vxV*VyV* = Vmax{x,y}l/^!lx{x,y} ■ It follows easily from the formula ax(ly) =

lx+y that (ny, V) is covariant on span{ lx : x £ T+} , and hence, by continuity,

on Br+.
Suppose now that F is a nonunitary representation. Then for y > x, 1 —

Vy-xV*_x is a nonzero projection, (2.1) gives VXV* > VyV*, and Lemma 2.1

gives equality in (2.2). Thus in this case ny is actually isometric, and hence

faithful on Br+. This proves (ii).

The elements /r+(x)*/Br+(ly)/r+(^) = ir+(x)*ir+{y)ir+(y)*ir+(z) span a dense

subspace of BT+ xa T+. We claim that, for any x,y, zeT,

(2.3) M*)*fr*()0»r*Ö0*M*) = M«)M*)' -

for some a, b G T+. There are six cases which need to be considered separately,

and in each case we can write down formulas for a and b. For example, if

z < y < x, writing /' for z'r+ ,

i(xyi(y)i(yyi(z) = (i(y)i(x-y)Yi(y)(i(z)i(y-z)Yi(z)

= i(x - y)* i(y - z)*

= (i(y - z)i(x - y))* = i(x - z)*,

so a = 0 and b = x - z will do. The other orderings of x, y, and z
can be handled similarly, and (iii) follows. To prove (iv), it is enough by Re-
mark 1.1 (iii) to produce an isometric representation V of T+ for which ny

is faithful, and hence, by (ii), enough to produce one consisting of nonunitary

isometries. The semigroup T on ¿2(T+) defined by Tx(Sy) = Sy+X will do.   D

Remark 2.3. Parts (i) and (ii) of Proposition 2.2 say that Br+ xa T+ has the

universal property which characterises the C*-algebra C*(T+) of the semigroup

r+ , as studied in [7] (see [7, p. 324]).

Theorem 2.4. Let T be a totally ordered abelian group and V : T+ -> Isom(77)

an isometric representation of F+. Then the representation ny x V o/Proposi-

tion 2.2(h) is an isomorphism of C*(r+) = Br+ xa T+ onto C*(VX: x £ P1") if

and only if V is nonunitary.

Proof. Since nv x V(ir+(x)) = VX, and {ir+(x): xeT} generates Br+ xar+,
the range of ny x V is precisely C*(VX: x £ T+). If Vz is unitary for some
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nonzero z, then nv x V(iBr+(l - lz)) = ny(l — lz) = 1 - VZV* = 0. Since

isr+ is injective and 1 - lz / 0, this shows that ny x V is not faithful.

Suppose now that V is nonunitary. Then Proposition 2.2 says that ny is

faithful, so by Theorem 1.2, ny x V will be faithful if

lE^^^MI    S    VxMfx,y)Vy
xeH x.yeH

for all finite subsets 77 of T+ and all choices of fx >y £ By* . Since span{ ly : y £

T+} is dense in Br+ , it suffices to show

¿^/¿x,y ,xVx Vy'y'x —   Z-,^*>J'>Z x *y*y *z

for all ßx,y,z G C.  As in (2.3), for each choice of x, y, z g T+, there are

a, b £ r+ such that
V* V V* V — V V7 •'x 'y'y '2 ~ 'a'b  '

an inspection of the cases shows that, because each Vx is nonunitary, a =

b precisely when x = z. Thus it is enough to show || Y,xeFXX!XVxVx\\

^ llEx.yefk.v^^ll for all nnite subsets F of T+ and Xx<y g C. To
do this, we borrow an idea from the proof of [4, Proposition 1.7]: given

Y^x,yeF^-x,yVxV*, we construct a projection Q such that

(2.4) QVXV;Q = 0    for x, y £ F with x ¿ y,

and

(2.5)

so that

|ß(E^>* W)ö|| = 1 Y.kx,xVxV;
xeF xeF

^x,yVxv;\\ >||o(E^>^F/)ß| = \\q{T,xx,xVxv;)q\
x,y

=\\T,*x,xVxVx*\

x,y

By Lemma 2.1 we can find Xm £ F such that

(2.6) |E**.*w| = | E**.*
xeF x<xM

Let ô = min{x - y: x, y £ F and x > y} , and take Q = VXti(l - VSV¡)V*M.
We prove condition (2.5) first. For x £ F, x > Xm implies x >Xm + S, and

hence

Qvxv; = vXMv;Mvxv; - vXm+sv;m+svxv;

(2.7)

x¡n

V V*vxyx Vxv; o if x > Xm ,

VxM V*M - VXM+5 V;m+ô = Q    if x < xM.

By (2.6) it follows that

|ß(EA*.*w)ß|HI E^.*e|H EM = ||£a*.*f*fx
xeF x<xM x<xM xeF
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as required. To prove condition (2.4), we note from (2.7) that QVyV* is self-

adjoint for every y g F, so Q commutes with VyV*. Thus

nv v*n - jQyx-yvyv;Q = QVx-yQVyV;    if x > y,
uvxVyU- \Qv;_xVyV;Q = Qv;_xQVyv;   if x < y,

and it is enough to show QVx-yQ = 0 whenever x > y and x, y £ F . But

Qvx-yQ = vXM(i - vsvs*)v;Mvx-yvXu(i - vsv;)v;M

= vXM(i - vsvs*)vx_y(i - vsvs*)v;M,

which equals zero because (1 - VgVs*)Vx^y = Vx-y - VsVx_y_s = 0. This com-

pletes the proof of Theorem 2.4.   D

Corollary 2.5 [6, Theorem 2.9]. Let T be a totally ordered abelian group, and

V, W two representations of T+ as nonunitary isometries on Hubert space.
Then the map Vx \-> Wx extends to an isomorphism of C*(VX: x G T+) onto

C*(Wx:x£T+).

Proof. Theorem 2.4 gives us isomorphisms   ny x V   of  B\-+ xa T+ onto

C*(VX: x G r+) such that nv x V(ir+(x)) = Vx, and nw x W of Br+ xa T+

onto C*(WX: x £ Y+) such that nw x W(iT+(x)) = Wx.  Then (nw x W)

0 (ny x V)~x is the isomorphism we want.   D

Definition. The family {e* : x £ Y} of evaluation maps is an orthonormal basis

for L2(T), and the Hardy space 772(T+) is by definition the closed linear span

of {ex: x £ r+}. Let P denote the projection of L2 onto 772. For each

<j> G C(f), the Toeplitz operator T^ with symbol <f> is the operator on 772(r+)
defined by T+(f) = P(<j>f). The Toeplitz algebra ^(T) of the totally ordered
abelian group T is the C*-subalgebra of B(H2(T+)) generated by the Toeplitz

operators {7^ : <j> g C(T)} .

Corollary 2.6 [6, Theorem 3.14]. Let T be a totally ordered abelian group and

V a representation of T+ as nonunitary isometries on Hubert space. Then
there is a unique isomorphism (j> of 77~(T) onto C*(VX: x £ F+) such that

(f>(Tix) = Vxfiorallx£T+.
Proof. Since the map <f> i-> T^ is '-linear, the Stone-Weierstrass theorem implies

that 77~(T) is generated by the semigroup {T(x : x £ r+} . Since each T(x is a

nonunitary isometry, the result follows from Corollary 2.5.   D

Our next corollary says that every nonzero ideal in C*(T+) = Br+ xa T+ has
nonzero intersection with the copy of 5r+. We believe that this will be a useful

tool in understanding the ideal stucture of C*(T+).

Corollary 2.7. Let Y be a totally ordered abelian group. If I isa nonzero closed

ideal in C*(T+) = Br+ xa T+, then there exists a nonzero x £F+ with

1 - ir+(x)ir+(x)* £ I.
Proof. The quotient (5p+ xaT+)/7 is generated by the semigroup of isometries
ir+(x) +1 with x G T+.  Since 7 is nonzero, the quotient map determined
by ir+M ^ ¡r+(x) + 7 is not an isomorphism. Thus, by Theorem 2.4, there
exists a nonzero x £ T+ for which ir+ (x) + I is unitary, that is, for which

1 - ir+(x)ir+(x)* G 7.    D
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To finish, we shall discuss the relationship between these corollaries and other
interesting results on C*(T+) in [6]. First, it follows immediately from Corol-
lary 2.7 that C*(T+) is prime: indeed, the intersection of any two nonzero
ideals meets ÍBr+(Br+) (cf. [6, Theorem 2.11]). As Murphy points out, one

can also prove this by showing that the Toeplitz representation is faithful and

irreducible: the irreducibility can be proved directly (the result for partially

ordered groups in [6, Theorem 3.13] is harder), the faithfulness follows from

Corollary 2.6, and that primitive implies prime is an elementary argument.
Second, the simplicity of the commutator ideal f (T) of C*(T+) for T c 1
follows from Corollary 2.5, exactly as in [5, p. 147] and even more easily from

Corollary 2.7; the same applies to Murphy's generalisation [6, Theorem 2.11].
Murphy also proved, conversely to Douglas's theorem, that ^(T) simple im-
plies rci; again, his result concerns partially ordered groups, and is relatively

straightforward if one is only interested in totally ordered groups (cf. [6, p. 324-

325]).
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