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Introduction

This book is meant to provide the tools necessary to begin doing research involving
crossed product C∗-algebras. Crossed products of operator algebras can trace their
origins back to statistical mechanics, where crossed products were called covariance
algebras, and to the group measure space constructions of Murray and von Neu-
mann. Now the subject is fully developed with a vast literature. Crossed products
provide both interesting examples of C∗-algebras and are fascinating in their own
right. Simply put, a crossed product C∗-algebra is a C∗-algebra A⋊αG built out of
a C∗-algebra A and a locally compact group G of automorphisms of A. When the
C∗-algebra A is trivial, that is, when A is the complex numbers, then the crossed
product construction reduces to the group C∗-algebra of harmonic analysis. In fact,
the subject of crossed product C∗-algebras was introduced to me as the harmonic
analysis of functions on a locally compact group taking values in a C∗-algebra. This
is a valuable analogy and still serves as motivation for me and for the approach in
this book.

The subject of crossed products is now too massive to be covered in a single
volume. This is especially true for this treatment as I have tried to write at a level
suitable for graduate students who are just beginning to search out research areas,
and as I also want to make the treatment reasonably self-contained modulo a modest
set of prerequisites (to be described below). As a result, it has been necessary to
leave out many important topics. A list of what is covered is given below in the
“Reader’s Guide”. (A brief discussion of what is not covered is given under “Further
Reading” below.) In choosing what to include I have been guided by my own
interests and bounded by my ignorance. Thus the central theme of this book is to
uncover the ideal structure of crossed products via the Mackey machine as extended
to C∗-algebras by Rieffel and to crossed products by Green. Crossed products,
just as group C∗-algebras, arise via a subtle completion process, and a detailed
structure theorem determining the isomorphism classes of such algebras is well out
of reach. Instead, we try to understand these algebras via their representations.
Thus a key objective is to determine the primitive ideals of a given crossed product
and the topology on its primitive ideal space. (We settle for primitive ideals in the
general case, since it is not practicable to try to collect the same sort of information
about irreducible representations of non-type I algebras.) If we have an abelian C∗-
algebraB = C0(X), then the spectrum and primitive ideal space coincide with X as
topological spaces. Thus, a description of X and its topology contains everything
there is to know about C0(X). If B is arbitrary, then the primitive ideal space

xi



xii Introduction

PrimB is a modest invariant, but it still contains a great deal of information about
B. For example, we can recover the lattice of ideals of B. (Hence the term “ideal
structure”.)

The basic paradigm for studying Prim(A⋊αG) is to recover the primitive ideals
via induction from the algebras A ⋊α|H H where H is a closed subgroup of G.
Loosely speaking, this process is the “Mackey machine” for crossed products. The
centerpiece for this is the GRS-Theorem (“GRS” stands for Gootman, Rosenberg
and Sauvageot), and we devote a fair chunk of this book to its proof (Chapter 9
and several appendices).

Errata

There are mistakes and typographical errors in this book. I only wish that the
previous sentence were one of them. As I become aware of typographical errors
and other mistakes, I will post them at http://math.dartmouth.edu/cpcsa. If
you find a mistake that is not listed there, I would be grateful if you would use the
e-mail link provided there to send me a report so that I can add your contribution
to the list.

Prerequisites and Assumptions

I have tried to keep the required background to a minimum in order to meet the goal
of providing a text with which a graduate student in operator algebras can initiate
an investigation of crossed products without having to consult outside sources. I do
assume that such a student has had the equivalent of a basic course in C∗-algebras
including some discussion of the spectrum and primitive ideal space. For example,
the first few chapters of Murphy’s book [110] together with Appendix A of [139]
should be enough. Since it is a bit harder to pick up the necessary background
on locally compact groups, I have included a very brief introduction in Chapter 1.
Of course, this material can also be found in many places, and Folland’s book [56]
is a good source. Rieffel’s theory of Morita equivalence is assumed, and I will
immodestly suggest [139] as a reference. Anyone interested in the details of the
proof of the GRS-Theorem will have to sort out Borel structures on analytic Borel
spaces. While some of that material can be found in the appendices, there is no
better resource than Chapter 3 of Arveson’s beautiful little book [2]. Of course, I
also assume a good deal of basic topology and functional analysis, but I have tried
to give references when possible.

I have adopted the usual conventions when working in the subject. In particu-
lar, all homomorphisms between C∗-algebras are assumed to be ∗-preserving, and
ideals in C∗-algebras are always closed and two-sided. Unless otherwise stated, a
representation of a C∗-algebra on a Hilbert space is presumed to be nondegenerate,
and our Hilbert spaces are all complex.

I have tried to use fairly standard notation, and I have provided a “Notation
and Symbol Index” as well as the usual index. The canonical extension of a rep-
resentation π of an ideal I in an algebra A to A is usually denoted by π̄. When
using the notation sH for the cosets becomes too cumbersome, I will use ṡ instead.
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If X is a locally compact Hausdorff space, then C(X), Cb(X), C0(X), Cc(X) and
C+
c (X) denote, respectively, the algebra of all continuous complex-valued continu-

ous functions onX , the subalgebra of bounded functions in C(X), the subalgebra of
functions in Cb(X) which vanish at infinity, the subalgebra of all functions in C0(X)
which have compact support and the cone in Cc(X) of nonnegative functions.

In general, I have not made separability assumptions unless, such as in the
case in the proof of the GRS-Theorem, they cannot be avoided. With the possible
exception of Section 4.5, this causes little extra effort. Some arguments do use
nets in place of sequences, but this should cause no undue difficulty. (I suggest
Pedersen’s [127, §1.3] as a good reference for nets and subnets.)

Reader’s Guide

Chapter 1 provides a very quick overview of the theory of locally compact groups
and Haar measure. As we will repeatedly want to integrate continuous compactly
supported functions taking values in a Banach space, we review the basics of the
sort of vector-valued integration needed. More information on groups can be found
in Appendix D, and for those who want a treatment of vector-valued integration
complete with measurable functions and the like, I have included Appendix B.
Anyone who is comfortable with locally compact groups, and/or the integrals in
the text, may want to skip or postpone this chapter.

In Chapter 2, we define dynamical systems and their associated crossed prod-
ucts. We show that the representations of the crossed product are in one-to-one
correspondence with covariant representations of the associated dynamical system.
We also prove that a crossed product A⋊αG can be defined as the C∗-algebra gen-
erated by a universal covariant homomorphism. We talk briefly about examples,
although it is difficult to do much at this point. Working out the details of some
of the deeper examples will have to wait until we have a bit more technology.

In Chapter 3, partially to give something close to an example and partially
to provide motivation, we take some time to work out the structure of the group
C∗-algebra of both abelian and compact groups. We also look at some basic tools
needed to work with crossed products. In particular, we show that if G is a semidi-
rect product N ⋊ϕH , then the crossed product A⋊αG decomposes as an iterated
crossed product (A ⋊α|N N) ⋊β H . We also prove that G-invariant ideals I in A
correspond naturally to ideals I ⋊α G in A⋊α G.

In Chapter 4, we turn to the guts of the Mackey machine. One of the main
results is Raeburn’s Symmetric Imprimitivity Theorem, which provides a common
generalization of many fundamental Morita equivalences in the subject and implies
the imprimitivity theorems we need to define and work with induced representa-
tions. Since this finally provides the necessary technology, we give some basic exam-
ples of crossed products. In particular, we show that for any group G, C0(G) ⋊ltG
is isomorphic to the compact operators on L2(G). More generally, we also show
that C0(G/H)⋊ltG is isomorphic to C∗(H)⊗K

(
L2(G/H, β)

)
, where β is any quasi-

invariant measure on the homogeneous space G/H . This result is a bit unusual, as
it requires we use a suitably measurable cross section for the natural map of G onto
G/H . This briefly pulls us away from continuous compactly supported functions
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and requires some fussing with measure theory.
In Chapter 5, we define induced representations of crossed products and develop

the properties we’ll need in the sequel. We also introduce the important concept of
inducing ideals, and we show that the induction processes are compatible with the
decomposition of crossed products with respect to invariant ideals.

In Chapter 6, we expand on our preliminary discussion of orbit spaces in Sec-
tion 3.5 and add quasi-orbits and the quasi-orbit space to the mix. A particularly
important result is the Mackey-Glimm dichotomy for the orbit space for a second
countable locally compact group G action on a second countable, not necessarily
Hausdorff, locally compact space X . Simply put, the orbit space is either reason-
ably well-behaved or it is awful. When the orbit space is awful, it is often necessary
to pass to quasi-orbits, and we discuss this and its connection with the restriction
of representations.

In Chapter 7, we get to the heart of crossed products and prove a number of
fundamental results. In Section 7.1, we prove the Takai Duality Theorem, which
is the analogue for crossed products by abelian groups of the Pontryagin Duality
Theorem. In Section 7.2, we look at the reduced crossed product and show that in
analogy with the group C∗-algebra case, the reduced and universal crossed products
coincide when G is amenable. (The necessary background on amenable groups is
given in Appendix A.) In Section 7.3, we look at the special case where the algebra
A is the algebra of compact operators. Since this leads naturally to a discussion of
projective and cocycle representations (discussed in Appendix D.3), I couldn’t resist
including a short aside on twisted crossed products. This also allows us to show that,
in analogy with the decomposition result for semidirect products in Section 3.3, we
can decompose A⋊αG into an iterated twisted crossed product wheneverG contains
a normal subgroup N . In Section 7.5, we give a very preliminary discussion of when
a crossed product is GCR or CCR. This is a ridiculously difficult problem in general,
so our results in this direction are very modest. We have more to say in Section 8.3
about the case of a transformation group C∗-algebra C0(X) ⋊lt G with G abelian.

In Chapter 8, we take on the ideal structure of crossed products. In Section 8.1,
we see that one can obtain fairly fine information if the action of G on PrimA is
“nice”. (In the text, the formal term for nice is “regular”. In the literature, the
term “smooth” is also used.) In Section 8.2, we face up to the general case. When
(A,G, α) is separable and G is amenable, we can use the GRS-Theorem to say quite
a bit. However, the proof of this result is very difficult and occupies all of Chapter 9
(and a few appendices). In Chapter 8, we merely concentrate on some of its wide
ranging implications. In particular, we devote Section 8.3 to a detailed analysis
of the ideal structure of C0(X) ⋊lt G when G is abelian. Although extending the
results in Section 8.3 to cases where either G or A is nonabelian appears to be very
formidable, this section provides a blueprint from which to start.

The remainder of this book consists of appendices that are meant to be read
“as needed” to provide supplements where material is needed which is not part
of the prerequisites mentioned above. As a result, I have definitely not tried to
completely avoid overlap. Appendix A gives a brief overview of the properties of
amenable groups which are needed in our treatment of reduced crossed products,
and in the proof of the GRS-Theorem. Appendix B is a self-contained treatment of
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vector-valued integration on locally compact spaces. Although we make passing use
of this material in Chapter 9, I have included this appendix primarily to satisfy those
who would prefer to think of A ⋊α G as a completion of L1(G,A). This material
may be useful to anyone who wishes to extend the approach here to Busby-Smith
twisted crossed products.

Appendix C is a self-contained treatment of C0(X)-algebras. These algebras
are well known to be a convenient way to view an algebra as being fibred over X .
In addition to developing the key properties of these kinds of algebras, we prove
an old result of Hofmann’s which implies, at least after translating his results onto
contemporary terminology, that any C0(X)-algebra is the section algebra of a bona
fide bundle which we call an upper semicontinuous-bundle of C∗-algebras over X .

Appendix D contains additional information about groups — particularly Borel
structure issues. Appendices E and F give considerable background on represen-
tations of C∗-algebras and on direct integrals in particular. The direct integral
theory is needed for the proof of the GRS-Theorem. In particular, we need direct
integrals to discuss Effros’s decomposition result for representations of C∗-algebras,
called an ideal center decomposition, which is proved in Appendix G and which is
essential to the proof of the GRS-Theorem.

Appendix H is devoted to a discussion of the Fell topology on the closed subsets
of a locally compact space and its restriction to the closed subgroups of a locally
compact group. This material is essential to our discussion of the topology on
the primitive ideal space of C0(X) ⋊lt G with G abelian and to the proof of the
GRS-Theorem.

Further Reading

As I mentioned above, no book at this level, or perhaps any level, could adequately
cover all there is to talk about when it comes to crossed products. Even a modest
expository discussion of the material that I wished I could have included would in-
volve several chapters, or even a short book by itself. Instead, I will just give a short
list of topics and references to some of the major omissions. There is a good deal in
Pedersen’s classic book [126] that won’t be found here, and Green’s original paper
[66] and Echterhoff’s Memoir [38] are full of ideas and results about the Mackey
Machine for crossed products. In fact, both [66] and [38] work with twisted crossed
products A⋊τ

α G, which are quotients of A⋊α G, and which get only a brief aside
in this text. There is even another flavor of twisted crossed products, called Busby-
Smith twisted crossed products, which is not dealt with at all [15, 100, 119–121].
One serious research question about crossed products is under what conditions is a
crossed product simple. This is particularly important today with the intense study
of separable, nuclear, purely infinite nuclear C∗-algebras [89, 90, 128, 152]. One of
the tools for this sort of question is the Connes spectrum. Its relationship to crossed
products was studied extensively in [63, 114–116]. Many of the key points can be
found in [126]. The fundamental obstacle to extending many of the results for
transformation group C∗-algebras to the general case is the appearance of Mackey
obstructions as touched on in Section 7.3. Understanding the ideal structure in this
case requires a subtle analysis involving the symmetrizer subgroup of the stability
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group. For example, see [42, 83] and [38] in particular. We have nothing here to
say about the K-theory of crossed products. This is a difficult subject, and the key
results here are the Pimsner-Voculescu six-term exact sequence for Z-actions, the
Thom isomorphism for R-actions, and a variety of results about embedding certain
transformation group C∗-algebras into AF C∗-algebras. Summaries and references
for these results can be found in Blackadar’s treatise [8]. As we shall see in Chap-
ter 4, proper actions of groups on spaces are especially important and there is a
bit of an industry on extending this notion to actions of groups on noncommuta-
tive C∗-algebras [79, 80, 107, 150, 151]. Also, there was no time to discuss Morita
equivalence of dynamical systems and its implications [16,19,20,41,79,95,122,172],
nor was there space to talk about imprimitivity theorems for the reduced crossed
product [78, 131]. We have not touched on coactions, their crossed products, and
the powerful theory of noncommutative duality. An overview of non-abelian dual-
ity for reduced crossed products is provided in [40, Appendix A]. The theory for
full crossed products is less well-developed, but this is a topic of current interest
(see, for example, [85]). There is also a short introduction to the main ideas of the
subject in [135].
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Chapter 1

Locally Compact Groups

Crossed products are built from locally compact group actions on C∗-algebras.
Therefore, we will need to have a bit of expertise in both of these components.
Fortunately, there are several nice introductory treatments on C∗-algebras available.
As a result, this material is considered as a prerequisite for this book. On the other
hand, the background on locally compact groups needed is a bit more difficult to
sort out of the literature, and this chapter is devoted to providing a quick overview
of the material we need here. Of course, there is nothing here that can’t be found
in [71] and/or [56]. A more classical reference is [129], and much more than we
need on group C∗-algebras can be found in the second part of [28].

The first two sections cover topological considerations. In Section 1.3, we talk a
bit about Haar measure and its basic properties (including the modular function).
In Section 1.4, we take a short detour to talk about harmonic analysis on locally
compact abelian groups. The primary purpose of this excursion is to provide a bit
of motivation for the constructions to come. (A secondary purpose is to provide a
bit of a break from definitions and preliminary results.) After this, we finish with
a long section on integration on groups with particular emphasis on vector-valued
integration of continuous compactly supported functions. The material in the last
section concerning integration on groups is fairly technical and may be skipped
until needed.

While it is the philosophy of this book that group C∗-algebras and crossed
products should be thought of as completions of families of continuous (compactly
supported) functions, it is possible to work with L1-algebras as in classical abelian
harmonic analysis. For those interested, the details of vector-valued integration of
measurable functions are discussed in Appendix B. We have also shunted off to
Appendix D some technicalities on groups and measure theory on groups as this
material won’t be needed until much later.
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2 Locally Compact Groups

1.1 Preliminaries on Topological Groups

Definition 1.1. A topological group is a group (G, ·) together with a topology τ
such that

(a) points are closed in (G, τ), and

(b) the map (s, r) 7→ sr−1 is continuous from G×G to G.

Condition (b) is easily seen to be equivalent to

(b′) the map (s, r) 7→ sr is continuous, and

(b′′) the map s 7→ s−1 is continuous.

It is shown in [71, §4.20] that neither (b′) nor (b′′) by itself implies (b).

Remark 1.2. To avoid pathologies, we’ve insisted that points are closed in a topo-
logical group.1 As we will see in Lemma 1.13 on page 4, this assumption actually
guarantees that a topological group is necessarily Hausdorff and regular.

Topological groups are ubiquitous in mathematics. We’ll settle for a few basic
examples here.

Example 1.3. Any group G equipped with the discrete topology is a topological
group.

Example 1.4. The groups Rn, Tm and Zd are all topological groups in their usual
topologies.

Example 1.5. If G and H are topological groups, then G×H is a topological group
in the product topology. In particular, if F is any finite group (with the discrete
topology), then G = Rn × Tm × Zd × F is a topological group. If F is abelian,
these groups are called elementary abelian groups in the literature.

Examples 1.4–1.5 are of course examples of abelian groups. Our next example
is certainly not abelian, nor is the topology discrete.

Example 1.6. Let H be a complex Hilbert space of dimension at least two and let

U(H) := {U ∈ B(H) : U∗U = UU∗ = 1H }

with the strong operator topology. Then U(H) is a topological group.

Verifying that U(H) is a topological group requires a bit of work. It is imme-
diate that U(H) is Hausdorff — in fact, B(H) is Hausdorff in the strong operator
topology. Suppose that Un → U and Vn → V . Since ‖Un‖ = 1 for all n, it is easy
to see that hn → h in H implies that Unhn → Uh in H. Using this, it is immediate
that UnVnh → UV h for all h ∈ H. Thus (b′) is easy. To see that (b′′) holds, we
have to prove that U∗

nh→ U∗h for any h. But

‖U∗
nh− U∗h‖2 =

(
U∗
nh− U∗h | U∗

nh− U∗h
)

= 2‖h‖2 − 2 Re(U∗
nh | U∗h).

1In terms of the classical separation axioms of point-set topology, a topological space X is
called a T1-space when points in X are closed. We say that X is a T0-space if distinct points
have distinct closures, and a Hausdorff space is said to be T2. Some authors call a space which is
regular and T1 a T3-space.
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But (U∗
nh | U∗h) = (h | UnU∗h) → ‖h‖2, and it follows that ‖U∗

nh − U∗h‖ → 0 as
required.

The case where dimH < ∞ in Example 1.6 is particularly important. Our
assertions below follow from elementary linear algebra.

Example 1.7. If H = Cn, then we can identify U(Cn) with the set Un of invertible
n× n-matrices whose inverse is given by the conjugate transpose. Specifically, we
identify U with the matrix (uij) where uij := (Uej | ei). If we give Un the relative

topology coming by viewing Un as a closed subset of Cn2

, then U 7→ (uij) is a
homeomorphism of U(Cn) onto Un.

Example 1.7 is merely one of many classical matrix groups which are topological
groups in their inherited Euclidean topology.

Example 1.8. Let A be a C∗-algebra. Then the collection AutA of ∗-automor-
phisms of A is a group under composition. We give AutA the point-norm topology;
that is, αn → α if and only if αn(a) → α(a) for all a ∈ A. Then AutA is a
topological group.

As in Example 1.6, the only real issue involved in showing that AutA is a
topological group is to show that αn → α implies α−1

n → α−1. This is not hard
to show using the fact that any automorphism of a C∗-algebra is isometric (cf.
[139, Lemma 1.3]).

Lemma 1.9. If G is a topological group, then s 7→ s−1 is a homeomorphism of G
onto itself. Similarly, if r ∈ G, then s 7→ sr and s 7→ rs are also homeomorphisms.

Proof. These statements are easy consequences of Definition 1.1 on the preceding
page; for example, s 7→ sr−1 is a continuous inverse for s 7→ sr.

Although straightforward, Lemma 1.9 has important consequences. In particu-
lar, it asserts that the topology of G is determined by the topology near the identity
e. The topology near a point is usually described via a neighborhood basis.2

Definition 1.10. A family N of neighborhoods of x ∈ X is called a neighborhood
basis at x if given a neighborhood W of x, there is a N ∈ N such that N ⊂W .

Therefore the statement that the topology on G is determined locally amounts
to the following corollary of Lemma 1.9.

Corollary 1.11. Let N be a neighborhood basis of e in a topological group G. Then
{Nr }N∈N and { rN }N∈N are both neighborhood bases of r in G. In particular,
if N consists of open neighborhoods of e, then β = {V r : V ∈ N and r ∈ G } is a
basis for the topology on G.

Of course, rV simply stands for the elements of G that are products of r and
an element of V . More generally, if A and B are subsets of G, AB := { ab :
a ∈ A and b ∈ B }. Thus A2 is the set of products ab with both a, b ∈ A; it is not
the set of squares of elements in A. Also, A−1 := { a−1 : a ∈ A }.

2In these notes, a neighborhood of a point is any set containing an open set containing the
point.
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Lemma 1.12. Let V be a neighborhood of e in G. Then V ⊂ V ⊂ V 2.

Proof. Note that s ∈ V if and only if every neighborhood of s meets V . Since sV −1

is a neighborhood of s, it must meet V . Thus there is a t ∈ V of the form sr−1

with r ∈ V . But then s = tr ∈ V 2, and V ⊂ V 2.

Lemma 1.13. If G is a topological group, then G is Hausdorff and regular.

Proof. Suppose that F ⊂ G is closed and that s /∈ F . Multiplying by s−1 allows us
to assume that s = e. Since F is closed, W := G r F is an open neighborhood of
e, and the continuity of multiplication implies there is an open neighborhood V of
e such that V 2 ⊂ W . Thus V ⊂ W by Lemma 1.12. Then U := Gr V is an open
neighborhood of F which is disjoint from V . This shows that G is regular. Since
points in G are closed by assumption, G is also Hausdorff.

Comments on Nets and Subnets

Before proceeding, a few comments about nets and subnets are in order. Any-
one who is willing to restrict to second countable spaces—a perfectly reasonable
decision—can ignore this discussion and continue to replace the word “net” with
sequence, and “subnet” with subsequence.

A good reference for nets and subnets is Pedersen’s Analysis Now [127, §1.3].
For now, recall that a net is formally a function x from a directed set I into a space
X . A sequence is just a net based on I = N. Just as with sequences, it is standard
to write xi in place of x(i). Except for the fact that convergent nets need not be
bounded, nets behave very much like sequences. However, subnets are a bit more
subtle than subsequences.

Definition 1.14. A net { yj }j∈J is a subnet of a net { xi }i∈I if there is a function
N : J → I such that

(a) y = x ◦N ; that is yj = xNj for all j ∈ J , and

(b) for all i0 ∈ I, there is j0 ∈ J such that j ≥ j0 implies that Nj ≥ i0.

We generally write { xNj }j∈J in place of { yj }j∈J to suggest the similarity to
a subsequence, and some authors like to replace Nj with ij to further strengthen
the analogy. Generally, in this text, we prefer to dispose of double subscripts if
at all possible. When we pass to a subnet, we will usually have no more need of
the original net and so we will relabel the subnet and replace the original net, say
{ xi }, with the subnet and not change the notation.

Proposition 1.15 ([54, Proposition II.13.2]). Let p : X → Y be a surjection. Then
p is an open map if and only if given a net { yi }i∈I converging to p(x) in Y , there
is a subnet { yNj }j∈J and a net { xj }j∈J indexed by the same set which converges
to x in X, and which also satisfies p(xj) = yNj .

Proof. Suppose that p : X → Y is an open map and that { yi }i∈I a net converging
to p(x) in Y . Let N (x) be the collection of neighborhoods of x in X and define

J = { (i, U) ∈ I ×N (x) : U ∩ p−1(yi) 6= ∅ }.



1.2 Preliminaries on Locally Compact Groups 5

Define
(i, U) ≤ (i′, U ′) ⇐⇒ i ≤ i′ and U ⊃ U ′.

Then given (i′, U ′) and (i′′, U ′′) in J , p(U ′ ∩U ′′) is a neighborhood of p(x) and we
eventually have yi in p(U ′ ∩ U ′′). Therefore we can find i0 dominating both i′ and
i′′ with yi0 ∈ p(U ′ ∩ U ′′). Thus (i0, U

′ ∩ U ′′) ∈ J and dominates both (i′, U ′) and
(i′′, U ′′). Thus J is a directed set. Let N : J → I be the obvious map: N(i,U) = i.
Thus { z(i,U) }(i,U)∈J = { yN(i,U)

}(i,U)∈J is easily seen to be a subnet of { yi }i∈I .
For each (i, U), let x(i,U) be an element of U such that p(x(i,U)) = yi = yN(i,U)

.
Now we clearly have { xj }j∈J converging to x, and by construction p(xj) = zj for
all j ∈ J . This proves the “only if” portion of the proposition.

Now assume that p is a surjection with the given lifting property. Suppose that
U is an open set in X such that p(U) is not open in Y . Then there is a net { yi }i∈I
such that yi → p(x) ∈ p(U) with yi /∈ p(U) for all i ∈ I. By assumption, there is
a subnet { zj }j∈J and a net { xj }j∈J converging to x such that p(xj) = zj . But
xj is eventually in U , and so zj is eventually in p(U). But the zj = yNj (for some
N : J → I), so this is nonsense. It follows that p is open.

1.2 Preliminaries on Locally Compact Groups

Definition 1.16. A topological space is called locally compact if every point has a
neighborhood basis consisting of compact sets.

If a space is Hausdorff — such as a topological group — then Definition 1.16
can be replaced with a simpler condition that makes no mention of neighborhood
bases.

Lemma 1.17. If X is Hausdorff, then X is locally compact if and only if every
point in X has a compact neighborhood.

Proof. Suppose that K is a compact neighborhood of x in X . We’ll show that x
has a neighborhood basis of compact sets. (This will suffice as the other implication
is clear.) Thus we need to see that any neighborhood U of x contains a compact
neighborhood of x. Let V be the interior of U ∩ K. Then V is compact and
Hausdorff, and therefore regular. Furthermore, V r V is a closed subset of V not
containing x. Thus there is an open set W in V such that x ∈W ⊂W ⊂ V . Thus,
W is open in X and W is a compact neighborhood of x with W ⊂ U .

Definition 1.18. A locally compact group is a topological group for which the
underlying topology is locally compact.

Remark 1.19. Since topological groups are Hausdorff, Corollary 1.11 on page 3
implies a topological group G is locally compact if and only if there is a compact
neighborhood of e. In fact, G is locally compact if and only if there is a nonempty
open set with compact closure.

Now some basic examples.

Example 1.20. Any discrete group G is a locally compact group.
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Example 1.21. Any elementary abelian group G = Rn × Tm × Zd × F is locally
compact. More generally, any Lie group3 is a locally compact group.

Example 1.22. Since Un is (topologically) a closed subset of Cn2

, Un is a locally
compact group. The set GLn(R) of invertible n × n matrices may be viewed as

an open subset of Rn2

and is easily seen to be a locally compact group. Similar
considerations apply to other classical matrix groups. (Alternatively, these are all
Lie groups, but it requires a bit more work to see this.)

Remark 1.23. In the previous example, we made use of the observation that open
and closed subsets of a locally compact Hausdorff space are locally compact in
the relative topology. It is not hard to see that the same is true in possibly non-
Hausdorff locally compact spaces, and that the intersection of an open subset and
a closed subset is locally compact. However, we will see shortly that not every
subset of a locally compact Hausdorff space will be locally compact in the relative
topology.

Definition 1.24. A subset Y of a space X is called locally closed if each point in
Y has an open neighborhood P in X such that P ∩ Y is closed in P .

Lemma 1.25. If X is a topological space and Y ⊂ X, then the following are
equivalent.

(a) Y is locally closed in X.

(b) Y is open in Y .

(c) Y = C ∩O where C is closed in X and O is open in X.

Proof. (a) =⇒ (b) Fix y ∈ Y and P as in Definition 1.24. It will suffice to see that
Y ∩ P ⊂ Y . But if x ∈ Y ∩ P , then there is a net { xn } ⊂ Y such that xn → x.
Since x ∈ P and P is open, we eventually have xn ∈ P ∩ Y . Since P ∩ Y is closed
in P , x ∈ P ∩ Y ⊂ Y as required.

(b) =⇒ (c) This is clear: by definition, there is an open subset O such that
Y = O ∩ Y .

(c) =⇒ (a) Let Y = C ∩ O as above and fix y ∈ Y . Choose P open such that
y ∈ P ⊂ O. (We could take P = O.) Now I claim P ∩Y is closed in P . To see this,
suppose that { xn } ⊂ Y ∩ P ⊂ C and xn → x ∈ P . Since C is closed, x ∈ C. On
the other hand, x ∈ P ⊂ O. Thus x ∈ Y ∩ P .

Lemma 1.26. Let Y be a subspace of a topological space X. If X is Hausdorff
and Y is locally compact, then Y is locally closed in X. If X is a (possibly non-
Hausdorff) locally compact space and if Y is locally closed in X, then Y is locally
compact.

Proof. The second assertion follows from Remark 1.23 and Lemma 1.25. To prove
the first assertion, fix y ∈ Y . Let U be an open neighborhood of y in X such that
U ∩ Y has compact closure B in Y . Since B is compact in Y , it is also compact in
X , and therefore closed as X is Hausdorff. It suffices to see that U ∩ Y is closed

3A Lie group is a topological group for which underlying space is a manifold and the structure
maps are smooth.
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in U . Let { xn } ⊂ U ∩ Y ⊂ B be such that xn → x ∈ U . Since B is closed,
x ∈ B ⊂ Y . Therefore x ∈ Y ∩ U and Y is locally closed.

Example 1.27 (The ax + b group). Let G = { (a, b) ∈ R2 : a > 0 }. Then G is a
group with the operations (a, b)(c, d) := (ac, ad + b) and (a, b)−1 = ( 1

a ,− b
a ). We

call G the ax + b group as it is easily identified with the affine transformations
x 7→ ax+ b of the real line.

Example 1.28. If dimH = ∞, then U(H) is not locally compact. If it were, then
some basic open neighborhood

V = {U ∈ U(H) : |Uhi − hi| < ǫ for i = 1, 2, . . . , n }
would have compact closure. But the span of { h1, . . . , hn } is certainly finite di-
mensional. Therefore there is an infinite orthonormal set { ei }∞i=1 contained in the
orthogonal complement of the span of the hi. Then we can find unitaries Un such
that Unhi = hi for all i and Une1 = en. But {Une1 } converges weakly to 0 in H, as
does any subnet. Consequently, {Un } ⊂ V has no subnet converging to a unitary
U in the strong operator topology. Thus, V can’t be compact.

If A is infinite dimensional, then AutA is another example of a topological group
which is rarely locally compact, but is nonetheless important to our purpose here.
We now take a slight detour to give a description of AutA in the case A is abelian
and therefore isomorphic to C0(X) for some locally compact Hausdorff space X .

Definition 1.29. Suppose that X and Y are topological spaces and that C(X,Y )
is the collection of continuous functions from X to Y . Then the compact-open
topology on C(X,Y ) is the topology with subbasis4 consisting of the sets

U(K,V ) := { f ∈ C(X,Y ) : f(K) ⊂ V }
for each compact set K ⊂ X and open subset V ⊂ Y .

The compact-open topology5 is usually as nice as Y is; for example, C(X,Y )
will be Hausdorff in the compact-open topology if Y is. If X is discrete, then
the compact-open topology is the topology of pointwise convergence, and C(X,Y )
with the compact-open topology is homeomorphic to the product Y X with the
product topology. If Y = C, then the compact-open topology on C(X) := C(X,C)
is the topology of uniform convergence on compacta [168, Theorem 43.7]. The
following lemma will prove useful in understanding the compact-open topology in
the examples we have in mind.

Lemma 1.30. Let X and Y be locally compact Hausdorff spaces and give C(X,Y )
the compact-open topology. Then fn → f in C(X,Y ) if and only if whenever
xn → x in X we also have fn(xn) → f(x) in Y .

4A subbasis for a topology on a set X is any collection of subsets of X. The associated topology
is the collection of all unions of finite intersections of elements of the subbasis. The whole space
arises as the union over the empty set. Thus the collection of all finite intersections of elements
of the subbasis is a basis for the associated topology which may also be viewed as the smallest
topology on X containing the subbasis.

5The compact-open topology is treated in detail in many topology books. Section 43 of
Willard’s book [168] is a nice reference.
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Proof. Suppose that fn → f and xn → x. Let V be an open neighborhood of f(x)
and let K be a compact neighborhood of x such that f(K) ⊂ V . Then f ∈ U(K,V ).
Thus we eventually have both fn ∈ U(K,V ) and xn ∈ K. Therefore we eventually
have fn(xn) ∈ V . Since V was arbitrary, this proves that fn(xn) → f(x).

Now assume that xn → x implies fn(xn) → f(x). To show that fn → f , it
is enough to show that fn is eventually in any U(K,V ) that contains f . Thus if
fn 6→ f , then we can pass to a subnet and assume that there is a K ⊂ X and
V ⊂ Y such that f ∈ U(K,V ) and fn /∈ U(K,V ) for all n. Therefore there are
xn ∈ K such that fn(xn) /∈ V . We can then pass to another subnet and assume
that xn → x ∈ K. By assumption fn(xn) → f(x). Since X r V is closed, we must
have f(x) /∈ V . This is a contradiction.

Definition 1.31. Let X be a locally compact Hausdorff space. We give Homeo(X)
the topology with subbasis consisting of the sets

U(K,K ′, V, V ′) := { h ∈ Homeo(X) : h(K) ⊂ V and h−1(K ′) ⊂ V ′ }

with K and K ′ compact in X and V and V ′ open in X .

Remark 1.32. Notice that hn → h in Homeo(X) if and only if both hn → h and
h−1
n → h−1 in the compact-open topology. In particular, hn → h in Homeo(X) if

and only if both hn(xn) → h(x) and h−1
n (xn) → h−1(x) whenever xn → x.

Now it is clear that Homeo(X) is a topological group under composition; our
subbasis has been constructed so that hn → h clearly implies h−1

n → h−1. If X is
locally compact Hausdorff and locally connected, then the topology on Homeo(X)
reduces to the compact open topology [12, Chap. X.3, Exercise 17a]. In general it
is necessary to add the condition on the inverse (cf. [12, Chap. X.3, Exercise 17b]6

or [23]).
Now we have the technology to consider the special case of Example 1.8 on

page 3 where A = C0(X). This example will be of interest later.

Lemma 1.33. Let A = C0(X). If α ∈ AutC0(X), then there is a h ∈ Homeo(X)
such that α(f)(x) = f

(
h(x)

)
for all f ∈ C0(X). The map α 7→ h is a homeomor-

phism of AutC0(X) with Homeo(X).

Proof. The theory of commutative Banach algebras implies that x 7→ evx is a
homeomorphism of X onto the set ∆ of nonzero complex homomorphisms from
C0(X) to C when ∆ is given the relative topology as a subset of C0(X)∗ equipped

6Let X = {x ∈ R : x = 0 or x = 2n for n ∈ Z }. Then X is closed in R and therefore locally
compact. For each n ∈ Z, let hn be defined by

hn(x) =

8

>

>

>

>

>

<

>

>

>

>

>

:

0 if x = 0,

2(k−1)n if x = 2kn with k ∈ Z r { 0, 1 },
2−n if x = 2n,

1 if x = 1, and

x otherwise.

Then h−1
n = h−n, each hn ∈ Homeo(X) and hn → id as n→ ∞. However since h−n(2−n) = 2n,

h−1
n = h−n 6→ id as n→ ∞.
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with the weak-∗ topology. (See [127, 4.2.5] or [139, Example A.23].) The transpose
of α is a continuous map α∗ : C0(X)∗ → C0(X)∗ defined by α∗(ϕ) := ϕ ◦ α.
Since the restriction of α∗ to ∆ is clearly a homeomorphism, we get a commutative
diagram of homeomorphisms

∆
α∗

// ∆

X

ev

OO

h //___ X

ev

OO

where h is given by evh(x) = α∗ ◦ evx. In particular,

α(f)(x) = evx ◦α(f) = α∗ ◦ evx(f) = evh(x)(f) = f
(
h(x)

)
.

We still have to check that α 7→ h is a homeomorphism. Let αn ∈ AutC0(X) be
given by αn(f) = f ◦ hn. Suppose first that αn → α. If, contrary to what we wish
to show, xn → x and hn(xn) 6→ h(x), then there must be a f ∈ C0(X) such that
f
(
hn(xn)

)
6→ f

(
h(x)

)
. But then αn(f) 6→ α(f) in C0(X). This is a contradiction

and we must have hn → h in the compact-open topology. Since α−1
n → α−1, we

also have h−1
n → h−1 in the compact-open topology. Thus hn → h in Homeo(X)

by Remark 1.32 on the preceding page.
Now assume that hn → h in Homeo(X). We need to show that given f ∈ C0(X),

f ◦ hn → f ◦ h in C0(X). If not, then we can pass to a subnet so that there are
xn ∈ X such that

|f
(
hn(xn)

)
− f

(
h(xn)

)
| ≥ ǫ0 > 0 for all n. (1.1)

Now we can pass to a subnet and assume that either { hn(xn) } or { h(xn) } be-
longs to the compact set K := { x ∈ X : |f(x)| ≥ ǫ0

2 }. Suppose first that that
{ hn(xn) } ⊂ K. Then we can pass to a subnet and assume that hn(xn) → y ∈ K.
Since h−1

n → h−1 in the compact-open topology, Lemma 1.30 on page 7 implies that
xn → h−1(y). But the continuity of h implies h(xn) → y. Now the continuity of f
and (1.1) lead to a contradiction. On the other hand, if { h(xn) } ⊂ K, then we can
assume h(xn) → y ∈ K. Thus xn → h−1(y). Since hn → h in the compact-open
topology, we also have hn(xn) → y. Thus we get a contradiction as above.

1.2.1 Subgroups of Locally Compact Groups

If G is a topological group, then any subgroup H of G is a topological group in the
relative topology. However, if G is locally compact, then H can be locally compact
if and only if it is locally closed (Lemma 1.26 on page 6).

Lemma 1.34. A locally closed subgroup of a topological group is closed.

Proof. Let H be a locally closed subgroup of a topological group G. Therefore,
there is an open neighborhood W of e in G such that W ∩ H is closed in W
(Definition 1.24 on page 6). Let U and V be neighborhoods of e in G such that

V 2 ⊂ U ⊂ U2 ⊂W.
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Now fix x ∈ H . Let { xn } be a net in H converging to x. Notice that x−1 ∈ H as
well. Since x−1V is a neighborhood of x−1, it must meet H . Let y ∈ x−1V ∩H .
Now xn is eventually in V x and xny is eventually in

V x(x−1V ∩H) ⊂ V 2 ∩H ⊂ U ∩H ⊂W ∩H.

It follows that xy ∈ U ⊂ U2 ⊂W . SinceW∩H is closed in W , we have xy ∈W∩H .
But then x = (xy)y−1 ∈ H .

Corollary 1.35. If H is a subgroup of a topological group G and if either

(a) H is open, or

(b) H is discrete, or

(c) H is locally compact,

then H is closed.

Proof. In all three cases, H is locally closed and therefore closed: in (a) this is
trivial and in (c), this follows from Lemma 1.26 on page 6. In (b), there must be
an open set W such that W ∩H = { e }. Now use Definition 1.24 on page 6.

Remark 1.36. That open subgroups are closed also follows from Lemma 1.12 on
page 4: H ⊂ H ⊂ H2 = H .

Definition 1.37. A locally compact Hausdorff space X is called σ-compact if
X =

⋃∞
i=1 Cn where each Cn is a compact subset of X .

Note that σ-compactness is a relatively weak condition. Every second countable
locally compact space is σ-compact.7 Note that any uncountable discrete set fails to
be σ-compact; more generally, the topological disjoint union of uncountably many
locally compact spaces will fail to be σ-compact.

Lemma 1.38. Every locally compact group G has an open σ-compact subgroup
H (which could be all of G). In particular, every locally compact group is the
topological disjoint union of σ-compact spaces.

Proof. Let V be a symmetric open neighborhood of e in G with compact closure.8

Let H :=
⋃∞
n=1 V

n. Then H is an open subgroup of G. Since Lemma 1.12 on

page 4 implies that V
n ⊂ V 2n, H =

⋃
V
n

is σ-compact. Therefore, for each s ∈ G,
sH is a clopen σ-compact subset of G, and G is the disjoint union

⋃
s∈G sH .

Corollary 1.39. Every connected locally compact group is σ-compact.

7To see this, let {On } be a countable basis for the topology. Since X is locally compact, the
subset consisting of those On which have compact closure is still a basis.

8That is, V = V −1. Symmetric neighborhoods of e are easy to find. If W is any neighborhood,
let V = W ∩W−1.
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1.2.2 Remarks on Separability Hypotheses

In a monograph such as this, it would not be profitable to devote enormous amounts
of time and space to issues particular to locally compact spaces and groups which
are not second-countable or even σ-compact. Nevertheless, we don’t want to invoke
blanket assumptions when much of the general theory can be presented relatively
painlessly without such assumptions. One price that must be paid for this is that
we must work with nets; even a compact group — such as an uncountable product
— can fail to have a countable neighborhood basis at the identity. However, with
some exceptions, nets can be treated like sequences and can certainly be replaced
by sequences if the group or space in question is assumed to have a second countable
topology.

Definition 1.40. A Hausdorff topological space X is paracompact if every open
cover of X has a locally finite refinement. (Recall that a cover is locally finite if
each point in X has a neighborhood that meets only finitely many elements of the
cover.)

A σ-compact locally compact Hausdorff space is always paracompact [127,
Proposition 1.7.11]. Thus it follows from Lemma 1.38 on the preceding page that
all locally compact groups are paracompact and are therefore normal as topologi-
cal spaces [168, Theorem 20.10]. Thus we can use Urysohn’s Lemma [127, Theo-
rem 1.5.6] and the Tietze Extension Theorem [127, Theorem 1.5.8] at will.

The situation for locally compact spaces is less clean. Although a compact
Hausdorff space is always normal, a locally compact Hausdorff space need not be.
However there are suitable versions of Urysohn and Tietze available provided we
work with compact sets and compactly supported functions.

Lemma 1.41 (Urysohn’s Lemma). Suppose that X is a locally compact Hausdorff
space and that V is a an open neighborhood of a compact set K in X. Then there is
a f ∈ Cc(X) such that 0 ≤ f(x) ≤ 1 for all x, f(x) = 1 for all x ∈ K and f(x) = 0
if x /∈ V .

Proof. Since X is locally compact, there is an open neighborhood W of K with
compact closure W ⊂ V . Since W is compact and therefore normal, we can find
h ∈ C(W ) such that 0 ≤ h(x) ≤ 1 for all x, h(x) = 1 for all x ∈ K and h(x) = 0 if
x /∈ W . Now define

f(x) :=

{
h(x) if x ∈ W , and

0 if x /∈ W .

Lemma 1.42 (Tietze Extension Theorem). Suppose that X is a locally compact
Hausdorff space and that K ⊂ X is compact. If g ∈ C(K), then there is a f ∈
Cc(X) such that f(x) = g(x) for all x ∈ K.

Proof. Let W be an open neighborhood of K with compact closure. By the usual
Tietze Extension Theorem for normal spaces, there is a k ∈ C(W ) extending g. By
Lemma 1.41, there is a h ∈ Cc(X) such that h(x) = 1 for all x ∈ K and h(x) = 0
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if x /∈ W . Now let

f(x) :=

{
k(x)h(x) if x ∈ W , and

0 if x /∈ W .

Lemma 1.43 (Partitions of Unity). Suppose that X is a locally compact space and
that {Ui }ni=1 is a cover of a compact set K ⊂ X by open sets with compact closures.
Then for i = 1, . . . , n there are ϕi ∈ Cc(X) such that

(a) 0 ≤ ϕi(x) ≤ 1 for all x ∈ X,

(b) suppϕi ⊂ Ui,

(c) if x ∈ K, then
∑n

i=1 ϕi(x) = 1, and

(d) if x /∈ K, then
∑n

i=1 ϕi(x) ≤ 1.

Proof. Let C =
⋃n
i=1 Ui. Then C is a compact neighborhood of K. Since C is

compact, there is a partition of unity {ϕi }ni=0 ⊂ C(C) subordinate to the cover
{CrK,U1, . . . , Un } [139, Lemma 4.34]. Since suppϕi ⊂ Ui (i ≥ 1) and continuous
on C, we may view ϕi as a continuous compactly supported function on all of X by
setting it equal to zero off Ui. Now the ϕi satisfy the requirements of the lemma.

1.2.3 Homogeneous Spaces

Suppose that H is a subgroup of a topological group G. The set of left cosets,
G/H , inherits a topology — called the quotient topology — from G which is the
smallest topology making the quotient map q : G→ G/H continuous. Since

τ := {U ⊂ G/H : q−1(U) is open in G }

is a topology on G/H , we have U ⊂ G/H open in the quotient topology if and only
if q−1(U) is open in G.

Lemma 1.44. If H is a subgroup of a topological group G, then the quotient map
q : G→ G/H is open and continuous.

Proof. Since q is continuous by definition of the topology on G/H , it suffices to see
that it is open as well. If V is open in G, then

q−1
(
q(V )

)
=

⋃

h∈H

V h.

Since V h is open in G for all h, q−1
(
q(V )

)
is open in G. This shows that q(V ) is

open in G/H . Hence q is open as claimed.

Remark 1.45 (Homogeneous Spaces). A topological space X is called homogeneous
if for all x, y ∈ X , there is a homeomorphism h ∈ Homeo(X) such that h(x) = y.
If H is a subgroup of G and if s ∈ G, then ϕs(rH) := srH defines a bijection of
G/H onto itself with inverse ϕs−1 . If V is open in G, then U := { rH : r ∈ V } is a
typical open set in G/H . Furthermore, ϕs(U) = { srH : r ∈ V } = { aH : a ∈ sV }
is open in G/H . Thus ϕs is an open map. Since ϕ−1

s = ϕs−1 is also open, ϕs is a
homeomorphism. It follows that G/H is a homogeneous space.
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Lemma 1.46. Suppose that H is a subgroup of a topological group G and that
{ siH }i∈I is a net in G/H converging to sH. Then there is a subnet { sij }j∈J and
hij ∈ H such that sijhij → s.

Remark 1.47. When applying this result, we are often only interested in the subnet.
Then, provided we’re careful to keep in mind that we’ve passed to a subnet, we
can relabel everything, and assume that there are hi ∈ H such that sihi → s. This
allows us to dispense with multiple subscripts.

Proof. Since q : G→ G/H is open, Proposition 1.15 on page 4 implies that there is
a subnet { sij }j∈J and a net { rj }j∈J such that rj → s and such that rjH = sijH .
But then there are hij such that rj = sijhij .

Proposition 1.48. Let H be a subgroup of a topological group G. The left coset
space G/H equipped with the quotient topology is Hausdorff if and only if H is
closed in G. If G is locally compact, then G/H is locally compact. If G is second
countable, then G/H is second countable.

Proof. Suppose that H is closed, we’ll show that G/H is Hausdorff. For this, it
suffices to see that convergent nets have unique limits. So suppose { snH } converges
to both sH and rH . Since the quotient map q : G → G/H is open, we can pass
to a subnet, relabel, and assume that sn → s (see Remark 1.47). Passing to a
further subnet, and relabeling, we can also assume that there are hn ∈ H such that
snhn → r. Since we also have s−1

n → s−1,

hn = s−1
n (snhn) → s−1r.

Since H is closed, s−1r ∈ H , and sH = rH . Therefore G/H is Hausdorff as
claimed.

On the other hand, if H is not closed, then there is a net hn → s with s ∈ GrH .
Since q is continuous, it follows that sH ∈ { eH }. Thus G/H is certainly not
Hausdorff.

Suppose that {Vn } is a countable basis for the topology on G. Let Un := q(Vn).
Let W be an open set in G/H and let sH ∈ W . Since the Vn are a basis, there is
a n such that s ∈ Vn ⊂ q−1(W ). Then sH ∈ Un ⊂ W , and the Un are a basis for
the topology on G/H .

Suppose that G is locally compact. Since G/H may not be Hausdorff, we have
to verify that Definition 1.16 on page 5 holds. However, the above argument shows
that the forward image of any basis in G is a basis for G/H . Since G has a basis
of compact sets, and since the continuous image of a compact set is compact, it
follows that G/H has a basis of compact sets. That is, G/H is locally compact.

Corollary 1.49. If H is a normal closed subgroup of a locally compact group G,
then G/H is a locally compact group with respect to the usual multiplication of
cosets: (sH)(rH) = srH.

Proof. We only have to see that multiplication and inversion are continuous. Sup-
pose snH → sH and rnH → rH . Since it suffices to see that every subnet of
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{ snrnH } has a subnet converging to srH , we can pass to subnets at will. In par-
ticular, we can pass to a subnet, relabel, and assume that there are hn ∈ H such
that snhn → s in G. Similarly, we can pass to another subnet, relabel again, and
assume that there are h′n ∈ H such that rnh

′
n → r in G. But then snhnrnh

′
n → sr

and the continuity of the quotient map q implies that

snhnrnh
′
nH = snrnH → srH.

Similarly, s−1
n H → s−1H , and G/H is a topological group.

1.2.4 Group Extensions

Theorem 1.50. Suppose that H is a closed subgroup of a topological group G.
Then G is locally compact if and only if both H and G/H are locally compact.

Proof. Suppose that G is locally compact. Since any closed subset of G is locally
compact, H is locally compact, and G/H is locally compact by Proposition 1.48 on
the previous page.

Now assume that H and G/H are locally compact. Since G is Hausdorff, to
show that G is locally compact, it will suffice to produce a compact neighborhood
of e in G. Let U1 be a neighborhood of e in G such that U1∩H has compact closure
in H . Since e2 = e, we can find a neighborhood U of e in G such that U2 ⊂ U1.
Thus U ⊂ U1 (Lemma 1.12 on page 4), and U ∩H is a compact neighborhood of
e in H . Choose an open neighborhood V of e in G such that V 4 ⊂ U so that we
have (V )2 ⊂ U . Since π(V ) is a neighborhood of eH in G/H and since G/H is
locally compact, we can find a compact neighborhood C of π(e) = eH in G/H with
C ⊂ π(V ).

Let K = π−1(C) ∩ V . Then K is a closed neighborhood of e in G and it will
suffice to see that K is compact. Since K is closed, it will suffice to see that any
net { sα } in K has a convergent subnet (in G). Since { π(sα) } ⊂ C and since
C ⊂ π(V ) we can pass to subnet, relabel, and assume that π(sα) → π(s) for some
s ∈ V . Using Lemma 1.46 on the previous page, we can pass to another subnet,
relabel, and assume that there are tα ∈ H such that sαtα → s in G. Since V is
open and s ∈ V , we eventually have sαtα ∈ V . But then

tα ∈ s−1
α (V ∩H) ⊂ (V )2 ∩H ⊂ U ∩H.

Since U ∩H is compact, we can pass to a subnet, relabel, and assume that tα → t
in H . But then

sα = (sαtα)t−1
α → st−1.

If N , G and E are groups, then E is called an extension of N by G if there is a
short exact sequence of groups

e // N
i // E

j // G // e .

This allows us to algebraically identify N with a normal subgroup of E, and to
algebraically identify the quotient groupE/N with G. IfN , G and E are topological
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groups, then we certainly are going to want i and j to be continuous. This forces
i(N) to be closed in E and the natural map ̄ : E/i(N) → G to be a continuous
bijection. However a continuous bijection between locally compact groups need not
be a homeomorphism. For example, consider the identity map from Rd — the real
line with the discrete topology — to R with the usual topology. Therefore we make
the following definition.

Definition 1.51. If N , G and E are topological groups, then an algebraic short
exact sequence

e // N
i // E

j // G // e (1.2)

of groups is called a short exact sequence of topological groups if i is a homeomor-
phism onto its range and j is a continuous open surjection.

Note that if (1.2) is a short exact sequence of topological groups, then we can
identify N with i(N) and E/N with G as topological groups. In particular, we get
as an immediate corollary to Theorem 1.50 on the facing page the following.

Corollary 1.52. If

e // N
i // E

j // G // e

is a short exact sequence of topological groups, then E is locally compact if and only
if N and G are.

The definition of a short exact sequence of topological groups is certainly what
we want, but it would seem that a lot of checking is required to show that a
particular algebraic short exact sequence is topological. But in the presence of some
separability, it suffices merely to check that the connecting maps are continuous. To
prove this requires some fairly hard, but very important, results showing that Borel
homomorphisms are often necessarily continuous. These “automatic continuity
results” are proved in the appendices.

Proposition 1.53. Suppose that N , G and E are second countable locally compact
groups and that

e // N
i // E

j // G // e (1.3)

is an algebraic short exact sequence with i and j continuous. Then (1.3) is a short
exact sequence of topological groups.

Proof. We have to show that i is a homeomorphism onto its range and that j is
open. Recall that a second countable locally compact group is Polish and therefore
analytic as a Borel space (Lemma D.9 on page 372). Since i(N) is closed in E, it
is Polish, and the generalized Souslin Theorem ([2, Corollary 2 of Theorem 3.3.4])
implies that i : N → i(N) is a Borel isomorphism. Thus i−1 is a Borel homo-
morphism, and therefore continuous (Theorem D.3 on page 370). Thus i is a
homeomorphism as required.

On the other hand, E/i(N) is locally compact and therefore an analytic group.
Just as above ̄ is a Borel isomorphism and ̄−1 is a continuous homomorphism.
Since q : E → E/i(N) and ̄ are open, so is j.
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Remark 1.54. With just a bit more work (using [2, Chap. 3] or Theorem D.11 on
page 372), we can weaken the hypotheses in Proposition 1.53 on the preceding page
to allow N , G and E to be Polish, and the connecting maps to be Borel.

1.3 Haar Measure

We concentrate on locally compact groups because they have a uniquely defined
measure class which respects the group structure. First some terminology. A
measure µ on a locally compact space G is called a Borel measure if each open set
is measurable. If for each open set V ⊂ G,

µ(V ) = sup{µ(C) : C ⊂ V and C is compact },

and for each measurable set A,

µ(A) = inf{µ(V ) : A ⊂ V and V is open },

then µ is called Radon measure.9 If G is a group, then we say that µ is left-invariant
if

µ(sA) = µ(A) for all s ∈ G and A measurable.

Of course, if µ(As) = µ(A) we say that µ is right-invariant. If µ is both left- and
right-invariant, we say it is bi-invariant.

Definition 1.55. A left-invariant Radon measure on a locally compact group G is
called a left Haar measure. A right-invariant Radon measure is called a right Haar
measure. The term Haar measure is reserved for left-invariant measures.

Remark 1.56. Our preference for left over right Haar measures is strictly convention.
If µ is a left Haar measure, then ν(E) := µ(E−1) is a right Haar measure. We’ll
have more to say about the relationship between left and right Haar measures in
Lemma 1.67 on page 20.

The fundamental result is the following.

Theorem 1.57. Every locally compact group G has a Haar measure which is unique
up to a strictly positive scalar.

The proof of Theorem 1.57 need not concern us here. (I suggest [56, Theorems
2.10 and 2.20] as a succinct and handy reference.) What we need to keep in mind
is that obtaining a Haar measure is equivalent to constructing a linear functional

I : Cc(G) → C (1.4)

which is positive in that I(f) ≥ 0 if f(s) ≥ 0 for all s ∈ G, and which satisfies

I
(
λ(r)f

)
= I(f) for all r ∈ G and f ∈ Cc(G), (1.5)

9For more on Radon measures, see the beginning of Appendix B.1. For the moment, be aware
that the precise formulation of the regularity conditions (given by the supremum and infimum
conditions) varies a bit from reference to reference (if the group is not second countable).
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where
λ(r)f(s) := f(r−1s).

Then the Riesz Representation Theorem [156, Theorem 2.14] implies that (1.4)
gives us a Radon measure µ such that

I(f) =

∫

G

f(s) dµ(s), (1.6)

and (1.5) implies that
∫

G

f(r−1s) dµ(s) =

∫

G

f(s) dµ(s),

which is equivalent to µ being left-invariant.10 A positive linear functional (1.4)
satisfying (1.5) is called a Haar functional on G.

It is not hard to see that every Haar measure assigns finite measure to each
compact set, and [56, Proposition 2.19] implies that a Haar measure assigns strictly
positive measure to each nonempty open set.

These elementary properties guarantee that

‖f‖1 :=

∫

G

|f(s)| dµ(s)

defines a norm on Cc(G). The completion with respect to this norm is L1(G). I’ll
generally try to avoid working with L1(G) and measure theory if at all possible.
Even so, from time to time, we’ll refer to ‖ · ‖1 as the L1-norm.

In practice, the Haar measure on a given group G is usually the natural choice.
This is especially true for the sort of groups we work with in dealing with crossed
products.

Example 1.58. If G is discrete, then counting measure is a Haar measure on G.
Thus if G = Z, then ∫

Z

f(n) dµ(n) =
∑

n∈Z

f(n).

Example 1.59. If G is Rn or Tm, then Haar measure is Lebesgue measure.

Note that the measures in Examples 1.58 and 1.59 are bi-invariant. This need
not always be true. Folland gives a number of additional examples [56, p. 41], and
several of these are not bi-invariant. In fact, Haar measure on the ax + b group is
not bi-invariant, and we look at this measure in the next example.

Example 1.60. Let G = { (a, b) ∈ R2 : a > 0 } be the ax + b group described
in Example 1.27 on page 7. Then Haar measure on G is given by the functional
I : Cc(G) → C defined by

I(f) :=

∫ ∞

−∞

∫ ∞

0

f(x, y)
1

x2
dx dy. (1.7)

10Once we know (1.5) holds for all f ∈ Cc(G), it then holds for all L1 functions. Since left-
invariance is just (1.5) for characteristic functions, we’re in business — at least for all compact
sets. Then regularity takes care of the rest.
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Since I is clearly a positive linear functional, to verify the above assertion, we
only have to check left-invariance. But

I
(
λ(a, b)f

)
=

∫ ∞

−∞

∫ ∞

0

f
(
(a, b)−1(x, y)

) 1

x2
dx dy.

=

∫ ∞

−∞

∫ ∞

0

f
(x
a
,
y

a
− b

a

)(a
x

)2 dx

a

dy

a
.

=

∫ ∞

−∞

∫ ∞

0

f
(
u,
y

a
− b

a

) 1

u2
du

dy

a

=

∫ ∞

−∞

∫ ∞

0

f
(
u, v − b

a

) 1

u2
du dv

= I(f).

Thus I gives us a Haar measure on G. Note that if we have a measurable
rectangle

R = { (x, y) ∈ G : a < x < b and c < y < d },
then

µ(R) =

∫ d

c

∫ b

a

1

x2
dx dy =

(1

a
− 1

b

)
(d− c).

To see that Haar measure on the ax+ b group is not right-invariant, notice that
a Haar measure µ is right-invariant exactly when

∫

G

f(sr) dµ(s) =

∫

G

f(s) dµ(s) for all r ∈ G and f ∈ Cc(G). (1.8)

Alternatively, if we define ρ(r)f(s) := f(sr), then a Haar functional I yields a
bi-invariant measure when I

(
ρ(r)f

)
= I(f) for all r and f .

Thus to see that the Haar measure on the ax + b group is not bi-invariant we
compute

I
(
ρ(a, b)f

)
=

∫ ∞

−∞

∫ ∞

0

f(ax, bx+ y)
1

x2
dx dy

=

∫ ∞

−∞

∫ ∞

0

f(u,
b

a
u+ y)

1

u2
du ady

= a

∫ ∞

0

∫ ∞

−∞

f(u, y +
b

a
u)

1

u2
dy du

= aI(f).

Since (1.8) holds only for r = (a, b) if a = 1, it follows that Haar measure on
the ax+ b group is not right-invariant.

Lemma 1.61. Let µ be a Haar measure on a locally compact group G. Then there
is a continuous homomorphism ∆ : G→ R+ such that

∆(r)

∫

G

f(sr) dµ(s) =

∫

G

f(s) dµ(s) (1.9)
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for all f ∈ Cc(G). The function ∆ is independent of choice of Haar measure and
is called the modular function on G.

Proof of all but continuity assertion: Let Jr : Cc(G) → C be defined by

Jr(f) :=

∫

G

f(sr) dµ(s).

Then a straightforward computation shows that Jr
(
λ(t)f

)
= Jr(f) for all f and

all t ∈ G. The uniqueness of Haar measure then implies that there is a strictly
positive scalar ∆(r) such that (1.9) holds. Furthermore, on the one hand

∆(tr)

∫

G

f(str) dµ(s) =

∫

G

f(s) dµ(s).

On the other hand,

∆(t)∆(r)

∫

G

f(str) dµ(s) = ∆(r)

∫

G

f(sr) dµ(s)

=

∫

G

f(s) dµ(s).

Since we can certainly find a f with nonzero integral, it follows that ∆(tr) =
∆(t)∆(r), and ∆ is a homomorphism.11

To show that ∆ is continuous, we need a bit more technology. In particular, we
need to know that functions in Cc(G) are uniformly continuous.

Lemma 1.62. Suppose that f ∈ Cc(G) and that ǫ > 0. Then there is a neighbor-
hood V of e in G such that either s−1r ∈ V or sr−1 ∈ V implies

|f(s) − f(r)| < ǫ. (1.10)

Proof. The cases s−1r ∈ V and sr−1 ∈ V can be treated separately; we can take
the intersection of the two neighborhoods. Here I’ll show only that there is a V so
that sr−1 ∈ V implies (1.10).

Let W be a symmetric compact neighborhood of e and let K = supp f . Notice
that sr−1 ∈ V ⊂ W and |f(s) − f(r)| > 0 implies that both s and r belong to the
compact set WK.12 Thus if our assertion were false, there is an ǫ0 > 0 such that
for each neighborhood V ⊂W there are sV and rV in WK such that

|f(sV ) − f(rV )| ≥ ǫ0. (1.11)

Notice that { sV } and { rV } are nets, directed by decreasing V , such that sV r
−1
V →

e in G. Since WK is compact, we can pass to a subnet, relabel, and assume that
sV → s and rV → s. Now continuity of f and (1.11) lead to a contradiction.

11Many authors prefer to work directly with the measure rather than the associated linear
functional. Then one can define ∆ by noting that ν(E) := µ(Er) is a Haar measure; hence,
ν = ∆(r)µ for some scalar ∆(r).

12To see this, notice that we certainly have either s or r in K. If r ∈ K, then sr−1 ∈ W implies
s ∈WK. If s ∈ K, then r−1 ∈ s−1W ⊂ K−1W . Then r ∈WK.
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Proof of continuity in Lemma 1.61: Using Lemma 1.62 on the previous page, it is
clear that if ri → r in G, then ρ(ri)f → ρ(r)f uniformly. Furthermore, the supports
are all eventually contained in the same compact subset.13 From this, it easy to
check14 that ∫

G

ρ(ri)f dµ(s) →
∫

G

ρ(r)f dµ(s). (1.12)

But by the first part of Lemma 1.61 on page 18, this implies

∆(ri)

∫

G

f(s) dµ(s) → ∆(r)

∫

G

f(s) dµ(s). (1.13)

Thus if we choose f such that
∫
G
fµ 6= 0, then ∆(ri) → ∆(r). This shows that ∆

is continuous and finishes the proof.

Example 1.63. The modular function on the ax+ b group is given by ∆(a, b) = 1
a .

Remark 1.64. Notice that Haar measure on a group G is bi-invariant if and only if
∆ ≡ 1. Such groups are called unimodular.

Lemma 1.65. If G is compact, then G is unimodular.

Proof. Since G is compact and ∆ is continuous, ∆(G) is a bounded compact subset
of R+ = (0,∞). But if ∆ is not identically one, then there is a s ∈ G such that
∆(s) > 1. But then ∆(sn) → ∞. This is a contradiction and completes the
proof.

Remark 1.66. If µ is a Haar measure on G, then we noted in Remark 1.56 on page 16
that ν(E) := µ(E−1) is a right Haar measure. Then, working with characteristic
functions, it is easy to see that

∫

G

f(s) dν(s) =

∫

G

f(s−1) dµ(s).

Lemma 1.67. For all f ∈ Cc(G),

∫

G

f(s−1)∆(s−1) dµ(s) =

∫

G

f(s) dµ(s). (1.14)

It follows that any left-Haar measure and right-Haar measure are mutually abso-
lutely continuous. In particular, if ν is the right-Haar measure ν(E) := µ(E−1),
then

dν

dµ
(s) = ∆(s−1),

and dν(s) = ∆(s−1) dµ(s).

13One says that ρ(ri)f → ρ(r)f in the “inductive limit topology”. We’ll have more to say about
this unfortunate terminology later (see Remark 1.86 on page 29 and [139, Appendix D]).

14Since { ρ(ri)f } is potentially a net (and not necessarily a sequence), we can’t apply the
Dominated Convergence Theorem. Otherwise, pointwise convergence would suffice and we could
have postponed Lemma 1.62 until later.
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Remark 1.68. Since we are not assuming that G is σ-compact, there is no reason to
believe that Haar measure is σ-finite. Hence, the usual Radon-Nikodym Theorem
does not apply.15 But once we have proved that (1.14) holds, then since the left-
hand side of (1.14) is simply

∫

G

f(s)∆(s) dν(s),

it certainly follows that µ and ν have the same null sets, and that we can obtain ν
by integration against ∆(s−1) dµ(s), and we have employed the usual notation for
the Radon-Nikodym derivative.

Proof. Define J : Cc(G) → C by

J(f) :=

∫

G

f(s−1)∆(s−1) dµ(s).

Then J is clearly a positive linear functional, and

J
(
λ(r)f

)
= ∆(r)

∫

G

f
(
(sr)−1

)
∆(sr)−1 dµ(s)

=

∫

G

f(s−1)∆(s−1) dµ(s)

= J(f).

Therefore (1.14) holds up to a strictly positive scalar c. But we can find a nonzero
g ∈ Cc(G) with g(s) ≥ 0 for all s. Then

h(s) := g(s) + ∆(s−1)g(s−1)

defines a function h in Cc(G) such that h(s) = ∆(s−1)h(s−1). Plugging h into
(1.14) implies that c = 1 and we’ve proved that (1.14) holds.

The other assertions are clear.

Remark 1.69 (Quasi-invariant measures). Suppose that G is σ-compact. Two mea-
sures that are mutually absolutely continuous are said to be equivalent, and equiva-
lence is an equivalence relation on the set of Radon measures on G. An equivalence
class is called a measure class. Lemma 1.67 on the preceding page implies that
Haar measure and right-Haar measure are in the same measure class C. Since all
measures µ′ ∈ C have the same null sets, it follows that if N is a µ′-null set, then rE
and Er are µ′-null for all r ∈ G. A Radon measure on G is called quasi-invariant
if N null implies that rN is null for all r ∈ G. We will show in Lemma H.14 on
page 463 that any two quasi-invariant measures on G must be equivalent. Therefore
any quasi-invariant measure on G is in the same measure class as Haar measure.

15For a version of the Radon-Nikodym Theorem that does apply to general Radon measures,
see [71, Theorem 12.17].
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1.4 An Interlude: Abelian Harmonic Analysis

This section is meant to serve as motivation for many of the constructions and
techniques in the sequel. In this section, G will always be a locally compact abelian
group with a fixed Haar measure µ. In order to appeal to the classical theory of
commutative Banach algebras, we’ll work with L1(G) rather than Cc(G) in this
section.16

Remark 1.70. If G is second countable, then its Haar measure is certainly σ-finite,
and we can apply the familiar results of measure theory such as Fubini’s Theorem
without much concern. But if we allow G to be arbitrary, then questions about
Fubini’s Theorem and other results are bound to come up. However many of
these questions can be finessed provided the functions one wants to integrate are
supported on σ-finite subsets of the product G×G. (A discussion of these sorts of
issues may be found in [56, §2.3].)

A situation that will arise several times in this section is the following. Suppose
that f and g are measurable L1-functions. With a little hard work, it follows that
(s, r) 7→ f(r)g(s− r) is a measurable function with respect to the product measure
µ×µ.17 Then one wants to apply Fubini or Tonelli to see that F (s, r) = f(r)g(s−r)
is in L1(G ×G). For this it suffices to note that f and g have σ-finite supports A
and B, respectively, and that F is supported in the σ-finite set A× (A+B). Then
we can apply Fubini with a clear conscience. In particular,

f ∗ g(s) :=

∫

G

f(r)g(s − r) dµ(r) (1.15)

is in L1(G). The properties of Haar measure guarantee that

f∗(s) := f(−s) (1.16)

is in L1(G) if f is, and that ‖f∗‖1 = ‖f‖1, f ∗ g = g ∗ f and that (f ∗ g)∗ = g∗ ∗ f∗.
Now it is a relatively straightforward matter to check that L1(G,µ) is a commutative
Banach ∗-algebra with respect to the operations (1.15) and (1.16).

16A nice reference for both commutative Banach algebras and applications to harmonic anal-
ysis is [101]. For example, Proposition 1.76 on page 24 essentially came from [101, Chap. VII].
Unfortunately, [101] is out of print. A modern treatment of commutative Banach algebras can be
found in [155], and all the basics (and a good deal more) about abelian harmonic analysis is to
be found in [71] (and especially [71, Chap. V]).

17The issue is to see that (s, r) 7→ g(s − r) is measurable. Since (s, r) 7→ s − r is continuous,
there is no problem if g is continuous or even Borel. However, in general, the composition of
a measurable function with a continuous function need not be measurable. But since g is the
pointwise limit of simple functions in L1(G), we can assume g is a characteristic function. Thus
it suffices to see that

σ(E) := { (s, r) ∈ G×G : s− r ∈ E }
is µ × µ-measurable if E is µ-measurable. As above, this is automatic if E is a Borel set. If
E is a null set, then there is a Borel null set F with E ⊂ F . Now σ(F ) is measurable and
σ(F )s := { r ∈ G : (s, r) ∈ σ(F ) } = s − F is a null set. It follows from Tonelli that σ(F ) is a
µ × µ-null set. Since σ(E) ⊂ σ(F ), σ(E) is µ × µ-measurable (and a null set). But if E is any
µ×µ-measurable set, E = B∪N for a Borel set B and a µ-null set N . Since σ(E) = σ(B)∪σ(N),
it follows that σ(E) is measurable.
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Definition 1.71. A net { ui } of self-adjoint18 elements of norm at most one in
L1(G) is called an approximate identity for L1(G) if for all f ∈ L1(G), f ∗ui = ui∗f
converges to f in norm.

Lemma 1.72. L1(G) has an approximate identity in Cc(G).

Proof. If V is a neighborhood of e in G, then let uV be a nonnegative element
of Cc(G) with integral 1, suppuV ⊂ V and uV = u∗V .19 Now fix f ∈ Cc(G).
If ǫ > 0, then there is a compact neighborhood W of e such that s − r ∈ W
implies |f(s) − f(r)| < ǫ (Lemma 1.62 on page 19). Now if V ⊂ W we have
suppuV ∗ f ⊂ supp f +W and

|uV ∗ f(s) − f(s)| =

∫

G

uV (r)
(
f(s− r) − f(s)

)
dµ(r)

≤
∫

G

uV (r)
∣∣(f(s− r) − f(s)

)∣∣ dµ(r)

≤ ǫ

∫

G

uV (r) dµ(r)

= ǫ.

It follows that uV ∗ f → f uniformly and the support of uV ∗ f is eventually
contained in a fixed compact set. In particular, uV ∗ f converges to f in L1(G).
This suffices since Cc(G) is dense in L1(G) and each uV has norm one.

Definition 1.73. Let ∆(G) be the set of nonzero complex homomorphisms of
L1(G) to C equipped with the relative weak-∗ topology coming from ∆(G) ⊂
L1(G)∗.

Definition 1.74. We let Ĝ denote the set of continuous homomorphisms from G
to T. Under pointwise multiplication, Ĝ is a group called the character group of G
or the Pontryagin dual of G.

Lemma 1.75. If ω ∈ Ĝ, then hω ∈ ∆(G) where

hω(f) :=

∫

G

f(s)ω(s) dµ(s). (1.17)

Proof. Since ‖ω‖∞ = 1, |hω(f)| ≤ ‖f‖1 and hω is certainly continuous. Now using
Fubini,

hω(f ∗ g) =

∫

G

∫

G

f(r)g(s− r)ω(s) dµ(r) dµ(s)

=

∫

G

∫

G

f(r)g(s− r)ω(s) dµ(s) dµ(r)

=

∫

G

∫

G

f(r)g(s)ω(s+ r) dµ(s) dµ(r)

= hω(f)hω(g).

18An element a in a Banach ∗-algebra is called self-adjoint if x∗ = x.
19Let u1 be any nonnegative compactly supported function with integral 1 and support in a

symmetric neighborhood contained in V . Then uV := 1
2
(u1 + u∗1) will do.
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The rest is clear.20

Proposition 1.76. The map ω 7→ hω is a bijection of Ĝ onto ∆(G).

Proof. If hω = hω′ , then

∫

G

f(s)
(
ω(s) − ω′(s)

)
dµ(s) = 0 for all f ∈ L1(G).

Thus ω and ω′ must agree almost everywhere and therefore everywhere. This proves
that ω 7→ hω is one-to-one.

To motivate what follows, note that hω
(
λ(r)f

)
= ω(r)hω(f) for all f ∈ L1(G).

Now let h ∈ ∆(G). Since Haar measure is translation invariant, it is easy to check
that

λ(r)u ∗ f = u ∗ λ(r)f. (1.18)

Let { ui } ⊂ Cc(G) be an approximate identity for L1(G). Then (1.18) implies that

h
(
λ(r)ui ∗ f

)
= h

(
λ(r)ui

)
h(f) → h

(
λ(r)f

)
.

If h(f) 6= 0, then there is a ωh(r) ∈ C such that

h
(
λ(r)ui

)
→ h

(
λ(r)f

)

h(f)
:= ωh(r). (1.19)

Since the left-hand side of (1.19) is independent of our choice of f , ωh(r) =
h
(
λ(r)g

)
/h(g) provided only that h(g) 6= 0.

Notice that

|ωh(r)| =
∣∣∣
h
(
λ(r)f

)

h(f)

∣∣∣ ≤ ‖f‖1

|h(f)| <∞,

so ‖ωh‖∞ <∞.

Replacing g by λ(s)f in λ(r)f ∗ g = f ∗ λ(r)g gives

(
λ(r)f

)
∗

(
λ(s)f

)
= f ∗ λ(rs)f

which, after applying h to both sides and dividing by h(f)2, gives

h
(
λ(r)f

)

h(f)

h
(
λ(s)f

)

h(f)
=
h
(
λ(rs)f

)

h(f)

and this implies that

ωh(r)ωh(s) = ωh(rs).

20Notice that hω is a ∗-homomorphism: that is, h(f∗) = h(f). In view of Proposition 1.76, it
will follow that every h ∈ ∆(G) is a ∗-homomorphism.



1.4 An Interlude: Abelian Harmonic Analysis 25

This shows that ωh is a homomorphism of G into C r { 0 }. Since translation is
continuous in L1(G) and

|ωh(s) − ωh(r)| =
1

|h(f)| |h
(
λ(s)f − λ(r)f

)
|

≤ 1

|h(f)| ‖λ(s)f − λ(r)f‖1,

it follows that ωh is continuous. If |ωh(s)| > 1, then ωh(s
n) = ωh(s)

n → ∞. Since

‖ωh‖∞ <∞, we must have ωh(G) ⊂ T. Therefore ωh is a character in Ĝ.
All that remains to show is that hωh

= h. However, h ∈ ∆(G) is a bounded
linear functional on L1(G), so there is an α ∈ L∞(G) such that

h(f) =

∫

G

f(s)α(s) dµ(s).

Now we compute that

∫

G

f(s)ωh(s) dµ(s) = lim
i

∫

G

f(s)h
(
λ(s)ui

)
dµ(s)

= lim
i

∫

G

∫

G

f(s)ui(r − s)α(r) dµ(r) dµ(s)

= lim
i

∫

G

f ∗ ui(r)α(r) dµ(r)

= lim
i
h(f ∗ ui)

= h(f)

Lemma 1.77. The map (s, h) 7→ ωh(s) is continuous from G× ∆(G) to T.

Proof. Let (r, h) ∈ G × ∆(G). Choose f ∈ L1(G) such that h(f) 6= 0. Now
|h(f)| · |ωk(s) − ωh(r)| is bounded by

|ωk(s)
(
h(f) − k(f)

)
| + |ωk(s)k(f) − ωh(r)h(f)|

≤ |h(f) − k(f)| + |k
(
λ(s)f

)
− h

(
λ(r)f

)
|

≤ |h(f) − k(f)| + |k
(
λ(s)f

)
− k

(
λ(r)f

)
|

+ |k
(
λ(r)f

)
− h

(
λ(r)f

)
|

≤ |h(f) − k(f)| + ‖λ(s)f − λ(r)f‖1 + |k
(
λ(r)f

)
− h

(
λ(r)f

)
|.

The result follows.

In view of Proposition 1.76 on the facing page, we can identify Ĝ with ∆(G)

and give Ĝ the weak-∗ topology coming from ∆(G).

Lemma 1.78. The weak-∗ topology on Ĝ coincides with the topology of uniform
convergence on compact sets (a.k.a. the compact-open topology).
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Proof. If ωhn → ωh uniformly on compacta, then it is straightforward to see that
hn → h in ∆(G). (It suffices to check on f ∈ Cc(G).) On the other hand, if hn → h
and if there is a compact set C on which ωhn 6→ ωh uniformly, then we can pass to
a subnet so that there are sn ∈ C and an ǫ > 0 such that

|ωhn(sn) − ωh(sn)| ≥ ǫ for all n.

We can pass to a subnet and assume that sn → s in G. This leads to a contradiction
in view of Lemma 1.77 on the previous page.

Corollary 1.79. Suppose that G is a locally compact abelian group. Then the
character group Ĝ is a locally compact abelian group in the topology of uniform
convergence on compact sets.

Proof. It is clear that Ĝ is a topological group. Furthermore, the weak-∗ topology is
a locally compact topology on the maximal ideal space of any commutative Banach
algebra. Since Ĝ is homeomorphic to ∆(G), Ĝ is locally compact.

1.4.1 The Fourier Transform

The Gelfand transform on a commutative Banach algebra A maps a ∈ A to the
function â ∈ C0

(
∆(A)

)
defined by â(h) := h(a) (where ∆(A) is the set of complex

homomorphisms of A). In our situation, the Gelfand transform of f ∈ L1(G) is

given by the function f̂ ∈ C0(Ĝ) defined by

f̂(ω) :=

∫

G

f(s)ω(s) dµ(s). (1.20)

Of course, f̂ is also known as the Fourier transform of f , and there are libraries
full of material, both pure and applied, relating the properties of f̂ and f .

Example 1.80. If G = R, then it is an exercise to show that every character on
R is of the form ω(x) = e−ixy for some y ∈ R. Thus we can identify R̂ with R,
and a few moments thought shows that the topology is the usual one. With this
identification, (1.20) is written as

f̂(y) =

∫ ∞

−∞

f(x)e−ixy dx,

which is the classical Fourier transform on the real line. A good deal of the residue
calculus taught in undergraduate complex analysis courses is devoted to evaluating
these sorts of integrals. For example, if f(x) := 1/(x2 + 1), then

f̂(x) =

∫ ∞

−∞

cos(xy) + i sin(xy)

y2 + 1
dy = πe−|x|.

Example 1.81. If G = T, then it can be shown that the characters are of the form
ω(z) = zn for some n ∈ Z. Thus we can identify T̂ with Z by associating n with
the character z 7→ z−n. (The introduction of the minus sign is a convention which
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merely allows us to tie up with the classical theory in (1.21).) Since T is compact,
it is traditional to normalize Haar measure µ so that µ(T) = 1. Thus

∫

T

f(z) dµ(z) =
1

2π

∫ π

−π

f(eiθ) dθ.

Then computing (1.20) amounts to computing the classical Fourier coefficients of
f :

f̂(n) =
1

2π

∫ π

−π

f(eiθ)e−inθ dθ. (1.21)

1.4.2 Non Abelian Groups and Beyond

It is both proper and natural to try to generalize the results of abelian harmonic
analysis to nonabelian locally compact groups. In the abelian case, Ĝ is a locally
compact abelian group, and has its own dual group, and the content of the Pon-
tryagin Duality Theorem is that the map sending s ∈ G to the character on Ĝ
defined by ω 7→ ω(s) is a topological group isomorphism [56, Theorem 4.31]. How-
ever, in the general case, it quickly becomes apparent that there will not be enough
characters to yield very much information about G. In fact, there may only be the
trivial character 1 : G → T mapping all elements to 1; this happens exactly when
the closure of the commutator subgroup [G,G] is all of G. Therefore, we will have
to expand the notion of a character.

Definition 1.82. A unitary representation of a locally compact group G is a con-
tinuous homomorphism U : G → U(H) where U(H) is equipped with the strong
operator topology. (We are merely insisting that the maps s 7→ Ush be continuous
from G to H for all h ∈ H.) The dimension of U is dU := dimH. We say that
U is equivalent to V : G → B(H′) if there is a unitary W : H → H′ such that
Vs = WUsW

∗ for all s ∈ G.

Example 1.83. Let G be a locally compact group and H = L2(G). If r ∈ G, then
λ(r) and ρ(r) are unitary operators on L2(G) where

λ(r)f(s) := f(r−1s) and ρ(r)f(s) = ∆(r)
1
2 f(sr).

Since translation is continuous in L2(G), it follows that λ : G → U
(
L2(G)

)
and

ρ : G → U
(
L2(G)

)
are representations of G called, respectively, the left-regular

representation and the right-regular representation.

Definition 1.84. Let U : G → U(H) be a unitary representation. A subspace
V ⊂ H is invariant for U if UsV ⊂ V for all s ∈ G. If the only closed invariant
subspaces for U are the trivial ones — { 0 } and H — then U is called an irreducible
representation.

Remark 1.85. As we shall see in due course (cf., Section 3.1), if G is abelian, then
the irreducible representations of G are one-dimensional and correspond to the
characters of G in the obvious way. For compact (not necessarily abelian) groups G,
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the Peter-Weyl Theorem [56, Theorems 5.2 and 5.12] implies, among other things,
that every irreducible representation of G is finite dimensional. However, there
are locally compact groups with infinite dimensional irreducible representations.
However, even for nice groups — for example abelian groups — we’ll still want to
work with infinite-dimensional representations in the sequel.

Part of the point of Remark 1.85 on the preceding page is that in the nonabelian
case, the natural analogue for characters is going to be unitary representations and
irreducible representations in particular. Thus if we want to generalize the Fourier
transform to accommodate nonabelian groups, then we are going to have to replace
ω in (1.20) with U where U is a potentially infinite-dimensional representation.
However, now the integrand in (1.20) is taking values in B(H). There is work to
do to make sense of this.

1.5 Integration on Groups

In order to make sense of integrals where the integrand is a function taking values in
a C∗-algebra, Hilbert space or Hilbert module, we need a workable theory of what is
referred to in the literature as vector-valued integration. In general, the properties of
vector-valued integration closely parallel those for scalar-valued functions, but the
theory is more complicated, and there are a number of subtle differences and pitfalls
that make the theory a bit more formidable. Fortunately, the theory simplifies
significantly when it is possible to restrict to Haar measure on a locally compact
groupG, and to integrands which are continuous with compact support on G taking
values in a Banach space D. This was the approach taken in [139, §C.2] for C∗-
algebra valued functions and we’ll modify that treatment here to accommodate
Banach space values.21

The idea is to assign to a function f ∈ Cc(G,D) an element I(f) of D which is
meant to be the integral of f :

I(f) :=

∫

G

f(s) dµ(s). (1.22)

Naturally, we want I to be linear and be bounded in some sense. Note that if
f ∈ Cc(G,D), then s 7→ ‖f(s)‖ is in Cc(G) and

‖f‖1 :=

∫

G

‖f(s)‖ dµ(s) ≤ ‖f‖∞ · µ(supp f) <∞.

If z ∈ Cc(G) and a ∈ D, then the function s 7→ z(s)a is called an elementary tensor
and will be denoted by z ⊗ a. We also want our integral to have the following
properties:

∥∥∥
∫

G

f(s) dµ(s)
∥∥∥ ≤ ‖f‖1 and

∫

G

(z ⊗ a)(s) dµ(s) = a

∫

G

z(s) dµ(s). (1.23)

21For much of what appears here, we could replace G by a paracompact locally compact space,
and Haar measure by any Radon measure on X. Our approach is loosely based on [13, Chap. III,
§3].
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We call ‖ · ‖1 the L1-norm. We claim that once we have (1.23), we have uniquely
specified our integral. To see this, notice that if { fi } ⊂ Cc(G,D) is a net such that

fi → f uniformly on G, and such that (1.24)

there is a compact set K such that we eventually have supp fi ⊂ K, (1.25)

then fi → f in the L1-norm and
∫

G

fi(s) dµ(s) →
∫

G

f(s) dµ(s). (1.26)

Then our assertion about uniqueness follows once we have verified that given f ∈
Cc(G,D), there is a net { fi } of elementary tensors satisfying (1.24) and (1.25)
above.

Remark 1.86 (Inductive Limit Topology). It is common parlance in the literature
(and in this book) to say that a net { fi } satisfying (1.24) and (1.25) converges
to f in the inductive limit topology. However, there is a bona fide topology on
Cc(G,D) — called the inductive limit topology — such that nets satisfying (1.24)
and (1.25) converge in that topology. This topology is discussed in detail in [139,
Appendix D.2] for the case D = C. The possibility of confusion arises as it need not
be the case that every convergent net in the inductive limit topology satisfy both
(1.24) and (1.25) (cf. [139, Example D.9]). However, in this book we usually just
want to show that a subset, such as the span of elementary tensors in Cc(G,D), is
dense in the inductive limit topology, and then it clearly suffices to produce nets
with properties (1.24) and (1.25). The use of the term becomes controversial only if
we insist on making statements like “if fi → f in the inductive limit topology, then
(1.26) holds,” because we don’t know that (1.24) and (1.25) hold. Nevertheless,
if j : Cc(G,D) → M is a linear map into a locally convex space M , then j is
continuous with respect to the inductive limit topology on Cc(G,D) if and only if
j(fi) → j(f) for all nets satisfying (1.24) and (1.25). This is proved in the case
D = C in [139, Lemma D.10]. Rather than prove the general assertion here, it
will suffice for the purposes of this book to use the term “fj → f in the inductive
limit topology” to mean that (1.24) and (1.25) are satisfied, and to forget about
the technical definition of the inductive limit topology altogether.

Lemma 1.87. Suppose that D0 is a dense subset of a Banach space D. Then

Cc(G) ⊙D0 := span{ z ⊗ a : z ∈ Cc(G) and a ∈ D0 } (1.27)

is dense in Cc(G,D) in the inductive limit topology, and therefore for the topology
on Cc(G,D) induced by the L1-norm.

We’ll need the following assertion about the uniform continuity of functions in
Cc(G,D).

Lemma 1.88. Suppose that D is a Banach space, that f ∈ Cc(G,D) and that
ǫ > 0. Then there is a neighborhood V of e in G such that either sr−1 ∈ V or
s−1r ∈ V implies

‖f(s) − f(r)‖ < ǫ.
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Proof. The proof is exactly the same as in the scalar case (Lemma 1.62 on page 19).

Proof of Lemma 1.87. Fix f ∈ Cc(G,D) with K := supp f . Let W be a compact
neighborhood of e in G. If ǫ > 0, then, using Lemma 1.88 on the preceding page,
choose a symmetric neighborhood V ⊂W of e such that sr−1 ∈ V implies that

‖f(s) − f(r)‖ < ǫ

2
.

Then there are ri ∈ K such that K ⊂ ⋃n
i=1 V ri. Then Kc ∪ {V ri }ni=1 is an open

cover of G. Since all locally compact groups are paracompact (see Definition 1.40
on page 11 and following remarks), there is a partition of unity { zi }ni=0 such that
supp z0 ⊂ Kc and supp zi ⊂ V ri for i = 1, 2, . . . , n (Lemma 1.43 on page 12). Let
xi ∈ D0 be such that ‖xi − f(ri)‖ < ǫ/2, and define g :=

∑n
i=1 zi ⊗ xi. Then

g ∈ Cc(G) ⊙ D0 and supp g ⊂ V K ⊂ WK. (Note that WK is a compact set and
does not depend on ǫ.) Since

∑n
i=1 zi(s) = 1 if s ∈ K = supp f and

∑n
i=1 zi(s) ≤ 1

otherwise,

‖f(s) − g(s)‖ =
∥∥∥
n∑

i=1

zi(s)
(
f(s) − xi

)∥∥∥

≤
∥∥∥
n∑

i=1

zi(s)
(
f(s) − f(ri)

)∥∥∥ +
∥∥∥
n∑

i=1

zi(s)
(
f(ri) − xi

)∥∥∥

≤ ǫ

2
+
ǫ

2
= ǫ.

This suffices.

We’ll need the following result from Banach space theory. Recall that C ⊂ D is
called convex if x, y ∈ C and t ∈ (0, 1) imply that tx+(1− t)y ∈ C. If A ⊂ D, then
the convex hull of A is the smallest convex set c(A) containing A. Equivalently,
c(A) is the intersection of all convex sets containing A. The closure of c(A) is called
the closed convex hull of A. Notice that a1, . . . , an ∈ A and if λi ≥ 0 for all i, then∑
i λiai ∈ λc(A), where λ := λ1 + · · · + λn.

Lemma 1.89. If A is a compact convex set in a Banach space D, then its closed
convex hull is compact.

Proof. It suffices to see that c(A) is totally bounded. Let ǫ > 0. As usual, let Bǫ(d)
be the ǫ-ball centered at d ∈ D. Since A is compact, there are d1, . . . , dn ∈ A such
that

A ⊂
n⋃

i=1

B ǫ
2
(di) =

n⋃

i=1

di + V,

where V = B ǫ
2
(0). Let C := {∑

i λidi :
∑

i λi = 1 and each λi ≥ 0 }. Then C is
convex, and as it is the continuous image of a compact subset of Rn, it is a compact
subset of D. Therefore there are c1, . . . , cm ∈ C such that

C ⊂
m⋃

i=1

B ǫ
2
(ci) =

m⋃

i=1

ci + V.
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But C + V is convex and contains A. Therefore c(A) ⊂ C + V . It follows that

c(A) ⊂
m⋃

i=1

ci + 2V =

m⋃

i=1

Bǫ(ci).

Since ǫ was arbitrary, c(A) is totally bounded as required.

If f ∈ Cc(G,D) and ϕ ∈ D∗, then we can define

Lf (ϕ) :=

∫

G

ϕ
(
f(s)

)
dµ(s).

Since we clearly have ∣∣Lf (ϕ)
∣∣ ≤ ‖ϕ‖‖f‖1, (1.28)

Lf is a bounded linear functional in the double dual D∗∗ of norm at most ‖f‖1.
Let ι : D → D∗∗ be the natural isometric inclusion of D into its double dual:

ι(a)(ϕ) := ϕ(a).

It is straightforward to check that

Lz⊗a = ι(ca) = cι(a) where c =

∫

G

z(s) dµ(s).

Notice that if fi → f in the inductive limit topology on Cc(G,D), then Lfi(ϕ) →
Lf(ϕ) for all ϕ ∈ D∗. In other words, Lfi → Lf in the weak-∗ topology on in D∗∗.
Since f 7→ Lf is certainly linear, we can construct our integral by showing that
Lf ∈ ι(D) for all f ∈ Cc(G,D), and then defining I : Cc(G,D) → D by

I(f) := ι−1(Lf ).

Lemma 1.90. If f ∈ Cc(G,D), then Lf ∈ ι(D).

Proof. Let W be a compact neighborhood of supp f in G, and let K := f(G)∪{ 0 }.
Also let C be the closed convex hull of K in D. Since K is compact, C is compact
by Lemma 1.89 on the preceding page.

Fix ǫ > 0. By Lemma 1.88 on page 29, there is neighborhood V of e in G such
that ‖f(s) − f(r)‖ < ǫ provided s−1r ∈ V . We can shrink V if necessary so that
supp(f)V ⊂W . Let s1, . . . , sn ∈ supp f be such that

supp f ⊂
n⋃

i=1

siV.

By Lemma 1.43 on page 12, there are ϕi ∈ C+
c (G) such that suppϕi ⊂ siV and

such that
∑

i ϕi(s) is bounded by 1 for all s, and equal to 1 when s ∈ supp f . Let
g(s) =

∑
i f(si)ϕi(s). Then supp g ⊂ W and ‖g(s) − f(s)‖ < ǫ for all s ∈ G.

Furthermore,

Lg =

n∑

i=1

(∫

G

ϕi(s) dµ(s)
)
ι
(
f(si)

)
.
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Since
n∑

i=1

∫

G

ϕi(s) dµ(s) := d ≤ µ(W ),

it follows that Lg ∈ dι(C) which is in µ(W )ι(C) since 0 ∈ C.
Since ǫ was arbitrary, it follows that there are gi → f in the inductive limit

topology such that Lgi ∈ µ(W )ι(C). Since Lgi → Lf in the weak-∗ topology, it
follows that Lf is in the weak-∗ closure of µ(W )ι(C). But C is compact in the
norm topology, and therefore in the weak topology. Untangling definitions shows
that this immediately implies ι(C) is compact in the weak-∗ topology. But then ι(C)
is closed in the weak-∗ topology, and it follows that Lf ∈ µ(W )ι(C) ⊂ ι(D).

Lemma 1.91. Suppose that D is a Banach space and G is a locally compact group
with left Haar measure µ. Then there is a linear map

f 7→
∫

G

f(s) dµ(s)

from Cc(G,D) to D which is characterized by

ϕ
(∫

G

f(s) dµ(s)
)

=

∫

G

ϕ
(
f(s)

)
dµ(s) for all ϕ ∈ D∗. (1.29)

Both formulas in (1.23) hold, and if L : D → Y is a bounded linear operator and
f ∈ Cc(G,D), then

L
(∫

G

f(s) dµ(s)
)

=

∫

G

L
(
f(s)

)
dµ(s). (1.30)

Proof. In view of Lemma 1.90 on the preceding page, we can define
∫
G f(s) dµ(s) to

be ι−1(Lf ). The formulas in (1.23) follow immediately from (1.29). If L : D → Y is
bounded and linear, then L ◦ f ∈ Cc(G,Y) and Ψ ◦ L ∈ D∗ for Ψ ∈ Y∗. Therefore

Ψ
(
L

(∫

G

f(s) dµ(s)
))

=

∫

G

Ψ
(
L

(
f(s)

))
dµ(s) for all Ψ ∈ Y∗,

and (1.30) follows from (1.29).

We’ll need to recall the definition of the multiplier algebraM(A) of a C∗-algebra
A. Loosely put, M(A) is the largest unital C∗-algebra containing A as an essential
ideal. There are several ways to define M(A), but we will follow and refer to
[139, §2.3] for the definition and basic properties. Thus we define M(A) to be the
adjointable operators L(AA) on A viewed as a right Hilbert module over itself.
We view A as an ideal in M(A) by identifying A with the ideal K(A) of compact
operators in L(A) by sending a ∈ A to left multiplication by itself.

Lemma 1.92 ([139, Lemma C.3]). Suppose that A is a C∗-algebra and that G
is a locally compact group with Haar measure µ. Then the integral defined in
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Lemma 1.91 has the following properties in addition to (1.23) and (1.30). Sup-
pose that f ∈ Cc(G,A). If π : A → B(Hπ) is a representation and if h, k ∈ Hπ,
then (

π
(∫

G

f(s) dµ(s)
)
h

∣∣ k
)

=

∫

G

(
π
(
f(s)

)
h | k

)
dµ(s). (1.31)

Furthermore,

(∫

G

f(s) dµ(s)
)∗

=

∫

G

f(s)∗ dµ(s), (1.32)

and if a, b ∈M(A), then

a

∫

G

f(s) dµ(s)b =

∫

G

af(s)b dµ(s). (1.33)

Proof. Let ϕ ∈ A∗ be defined by

ϕ(a) :=
(
π(a)h | k

)
.

Then (1.31) follows from (1.29). The rest follows easily from (1.31). For example,
let π be a faithful representation of A with a, b ∈M(A). Then for all h, k ∈ Hπ,

(
π
(
a

∫

G

f(s) dµ(s)b
)
h

∣∣ k
)

=
(
π
(∫

G

f(s) dµ(s)
)
π̄(b)h

∣∣ π̄(a∗)k
)

=

∫

G

(
π
(
f(s)

)
π̄(b)h | π̄(a∗)k

)
dµ(s)

=

∫

G

(
π
(
af(s)b

)
h | k

)
dµ(s)

which, since s 7→ af(s)b belongs to Cc(G,A), is

=
(
π
(∫

G

af(s)b dµ(s)
)
h

∣∣ k
)
.

Since π is faithful and h and k are arbitrary, (1.33) follows.

Now Lemma 1.92 on the preceding page is a fine and impressive as far as it
goes, but recall our goal was to make sense out of integrals like

∫

G

f(s)Us dµ(s), (1.34)

where f ∈ Cc(G), or even Cc
(
G,B(H)

)
, and U : G → U(H) is a unitary repre-

sentation of G. Then the integrand is not necessarily a continuous function into
B(H) with the norm topology, and Lemma 1.92 on the facing page can’t be ap-
plied. However the integrand is continuous in the strong operator topology, and
we now want to see that that is sufficient to define a well behaved integral. To do
this in sufficient generality to be useful later, we need to talk a bit more about the
multiplier algebra.
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Definition 1.93. Let A be a C∗-algebra. If a ∈ A, then let ‖ · ‖a be the seminorm
on M(A) defined by ‖b‖a := ‖ba‖ + ‖ab‖. The strict topology on M(A) is the
topology generated by all the seminorms { ‖ · ‖a : a ∈ A }.

Example 1.94. A net { bi } in M(A) converges strictly to b if and only if abi → ab
and bia → ba for all a ∈ A. Since B(H) = M

(
K(H)

)
, B(H) has a strict topology,

and Ti → T strictly if and only if TiK → TK and KTi → KT for all compact
operators K.

We aim to show that the integrand in (1.34) is continuous in the strict topology
on B(H). At the moment all that seems clear is that the integrand is a continuous
compactly supported function into B(H) with the strong operator topology.

Definition 1.95. The ∗-strong operator topology on B(H) has subbasic open sets

N(T, h, ǫ) := {S ∈ B(H) : ‖Sh− Th‖ + ‖S∗h− T ∗h‖ < ǫ }

where T ∈ B(H), h ∈ H and ǫ > 0.

Remark 1.96. A net Ti → T ∗-strongly if and only if both Ti → T strongly and
T ∗
i → T ∗ strongly.

The connection to the strict topology is given by the following lemma.

Lemma 1.97 ([139, Lemma C.6]). On norm bounded subsets of B(H), the strict
and ∗-strong topologies coincide.

This lemma is a special case of the corresponding result for Hilbert modules.
If X is a Hilbert A-module, then recall that L(X) ∼= M

(
K(X)

)
and therefore has a

strict topology. It also has a ∗-strong topology defined as in Definition 1.95 in which
a net Ti → T if and only if Ti(x) → T (x) and T ∗

i (x) → T ∗(x) for all x ∈ X. Of
course, we can view a Hilbert space H as a Hilbert C-module and then we recover
the strict and ∗-strong topologies as above. Then Lemma 1.97 follows from

Proposition 1.98 ([139, Proposition C.7]). If X is a Hilbert A-module, then strict
convergence implies ∗-strong convergence, and the strict and ∗-strong topologies
coincide on norm bounded subsets of L(X).

At the moment our main interest in Proposition 1.98 is the following corollary.

Corollary 1.99 ([139, Corollary C.8]). Suppose that u : G → UL(X) is a homo-
morphism into the unitary group of L(X). Then u is strictly continuous if and only
if it is strongly continuous.

Proof. In view of Proposition 1.98, it suffices to see that s 7→ us(x) continuous for
all x ∈ X implies s 7→ u∗s(x) is continuous. But

‖u∗s(x) − u∗t (x)‖2
A =

〈
u∗s(x) − u∗t (x) , u

∗
s(x) − u∗t (x)

〉
A

= 2‖x‖2
A −

〈
us

(
u∗t (x)

)
, x

〉
A
−

〈
x , us

(
u∗t (x)

)〉
A
.

But s→ t, implies us
(
u∗t (x)

)
→ x by assumption.
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Remark 1.100. In [139, Example C.10], we exhibit a sequence S := {Tn } ⊂ B(H)
such that 0 belongs to the ∗-strong closure of S but not to the strict closure.
Therefore the strict and ∗-strong topologies are not the same. Notice too that the
principle of uniform boundedness implies that a strongly convergent sequence is
bounded. Therefore a ∗-strong convergent sequence is bounded and also strictly
convergent by Proposition 1.98 on the preceding page. Therefore there must be
a net in S converging to 0 ∗-strongly, but no sequence in S can converge to 0 ∗-
strongly. Thus the ∗-strong topology fails to be first countable even on a separable
Hilbert space.

We’ll write Ms(A) to denote M(A) with the strict topology. Notice that if
f ∈ Cc

(
G,Ms(A)

)
, then s 7→ f(s)a is in Cc(G,A) for each a ∈ A. In particular,

{ f(s)a : s ∈ G } is bounded and the uniform boundedness principle implies that
{ ‖f(s)‖ : s ∈ G } is bounded.

Lemma 1.101 ([139, Lemma C.11]). Let A be a C∗-algebra. There is a unique
linear map f 7→

∫
G f(s) dµ(s) from Cc

(
G,Ms(A)

)
to M(A) such that for any non-

degenerate representation π : A→ B(Hπ) and all h, k ∈ Hπ

(
π̄
(∫

G

f(s) dµ(s)
)
h

∣∣ k
)

=

∫

G

(
π̄
(
f(s)

)
h | k

)
dµ(s). (1.35)

We have ∥∥∥
∫

G

f(s) dµ(s)
∥∥∥ ≤ ‖f‖∞ · µ(supp f).

Equations (1.32) and (1.33) are valid is this context. If L : A→ B is a nondegen-
erate homomorphism into a C∗-algebra B, then

L̄
(∫

G

f(s) dµ(s)
)

=

∫

G

L̄
(
f(s)

)
dµ(s).

Proof. Uniqueness is clear from (1.35). Recall that M(A) = L(AA). For each
f ∈ Cc

(
G,Ms(A)

)
, define Lf : A→ A by

Lf(a) :=

∫

G

f(s)a dµ(s).

Then using the properties laid out in Lemma 1.92 on page 32,

〈
Lf(a) , b

〉
A

= Lf (a)
∗b =

∫

G

a∗f(s)∗b dµ(s) =
〈
a , Lf∗(b)

〉
A
.

Thus Lf ∈ L(AA) with adjoint Lf∗ . We define
∫

G

f(s) dµ(s) := Lf .

The analogue of (1.32) follows from L∗
f = Lf∗ . Furthermore (1.31) implies

(
π̄
(∫

G

f(s) dµ(s)
)
π(a)h

∣∣ k
)

=

∫

G

(
π
(
f(s)a

)
h | k

)
dµ(s)

=

∫

G

(
π̄
(
f(s)

)
π(a)h | k

)
dµ(s).
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Now (1.35) follows from the nondegeneracy of π. The analogue of (1.33) is straight-
forward to check and the analogue of (1.30) follows from

L̄
(∫

G

f(s) dµ(s)
)
L(a)b = L

(∫

G

f(s)b dµ(s)
)

=

∫

G

L̄
(
f(s)

)
dµ(s)L(a)b.

Shortly, we’ll want to interchange the order of integration in our vector-valued
integrals. Since our integrands will be continuous with compact support, we can
avoid appealing to theorems about general vector-valued integrals, and appeal in-
stead to the scalar-valued version of Fubini’s Theorem. First, some preliminary
lemmas. Here we are once again working with Banach space-valued functions.

Lemma 1.102. Suppose that X is a locally compact space and that F ∈ Cc(X ×
G,D). Then the function

x 7→
∫

G

F (x, s) dµ(s)

is an element of Cc(X,D).

Proof. It will clearly suffice to prove continuity in x. So suppose that xi → x and
that ǫ > 0. Let K and C be compact sets such that suppF ⊂ K × C. For each
x ∈ X , let ϕ(x) be the element of Cc(G,D) defined by ϕ(x)(s) := F (x, s). We claim
that ϕ(xi) → ϕ(x) uniformly on G. If this were not the case, then after passing to
a subnet and relabeling, there would be an ǫ0 > 0 and ri ∈ G such that

‖F (xi, ri) − F (x, ri)‖ ≥ ǫ0 for all i. (1.36)

But we certainly have { ri } ⊂ C, and since C is compact, we can pass to subnet,
relabel, and assume that ri → r. However this leads to a contradiction as (1.36)
would fail for large i. This establishes the claim.

Now we can assume that for large i we have

‖ϕ(xi) − ϕ(x)‖∞ <
ǫ

µ(C)
.

Since suppϕ(xi) ⊂ C for all i,
∥∥∥
∫

G

F (xi, s) dµ(s) −
∫

G

F (x, s) dµ(s)
∥∥∥ ≤

∫

C

‖ϕ(xi)(s) − ϕ(x)(s)‖ dµ(s)

≤ ǫ.

This suffices.

The following corollary will be very useful in the sequel.

Corollary 1.103. Let H be a closed subgroup of G. Suppose that F ∈ C(G×H,D)
is such that there is a compact set K ⊂ G such that F (s, t) = 0 if s /∈ K. Then the
function

ψ(s) 7→
∫

H

F (st, t) dµH(t)

is a well-defined element of C(G) with support in KH.
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Proof. Fix s0 ∈ G. Then t 7→ F (s0t, t) is in Cc(H), and ψ(s0) is well-defined. If
C is a compact neighborhood of s0, then F ′(s, t) := F (st, t) defines an element of
Cc(C ×H,D). Since

ψ(s) =

∫

H

F ′(s, t) dµH(t) for all s ∈ C,

the continuity of follows from Lemma 1.102 on the preceding page.

Corollary 1.104. Suppose that F ∈ Cc(G×G′,D). Then the functions

s 7→
∫

G′

F (s, r) dµG′(r) and r 7→
∫

G

F (s, r) dµG(s)

are in Cc(G,D) and Cc(G
′,D), respectively.

Proof. This follows immediately from Lemma 1.102 on the facing page.

Proposition 1.105. Suppose that F ∈ Cc
(
G×G,Ms(A)

)
. Then

s 7→
∫

G

F (s, r) dµ(r) and r 7→
∫

G

F (s, r) dµ(s)

are in Cc
(
G,Ms(A)

)
. Then the iterated integrals

∫

G

∫

G

F (s, r) dµ(s) dµ(r) and

∫

G

∫

G

F (s, r) dµ(r) dµ(s)

are defined by Lemma 1.101 on page 35, and have a common value.
A similar statement holds for F ∈ Cc(G ×G,D) with respect to the norm con-

tinuous integral defined in Lemma 1.91 on page 32.

Proof. To show that s 7→
∫
G F (s, r) dµ(r) is in Cc

(
G,Ms(A)

)
, it suf-

fices to see that s 7→ a
∫
G
F (s, r) dµ(r) and s 7→

∫
G
F (s, r) dµ(s)a are in

Cc(G,A) for all a ∈ A. Since a
∫
G
F (s, r) dµ(r) =

∫
G
aF (s, r) dµ(r) and∫

G F (s, r) dµ(r)a =
∫
G F (s, r)a dµ(r) by Lemma 1.101 on page 35 and both

(s, r) 7→ aF (s, r) and (s, r) 7→ F (s, r)a are in Cc(G × G,A), the first assertion
follows from Corollary 1.104.

Now it is clear from Lemma 1.101 on page 35 that both iterated integrals are
defined and take values in M(A). To see that they have the same value, let π be
a faithful representation of A in B(H). Then π̄ is faithful on M(A). Then (1.35)
and the usual scalar-valued Fubini Theorem imply that

(
π̄
(∫

G

∫

G

F (s, r) dµ(s) dµ(r)
)
h

∣∣ k
)

=
(
π̄
(∫

G

∫

G

F (s, r) dµ(r) dµ(s)
)
h

∣∣ k
)

for all h, k ∈ H. Now the result follows since π̄ is faithful.
If F ∈ Cc(G×G,D), then we proceed as above and obtain the equality

∫

G

∫

G

ϕ
(
F (s, r)

)
dµ(s) dµ(r) =

∫

G

∫

G

ϕ
(
F (s, r)

)
dµ(r) dµ(s)

for all ϕ ∈ D∗ using the usual scalar-valued form of Fubini’s Theorem. The rest
follows from (1.29).
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1.5.1 Completions

In the sequel, we will often work with Banach spaces, and in particular C∗-algebras,
which are defined to be the completion of a vector space V with respect to a given
norm or seminorm ‖·‖. If ‖·‖ is a bona fide norm, then we can realize the completion
as the closure of i(V ) in V ∗∗, where i : V → V ∗∗ is the natural inclusion of V in its
double dual. In this case, we can identify V with i(V ) and view V as a subspace in
its completion. If ‖ · ‖ is a seminorm, then N := { v ∈ V : ‖v‖ = 0 } is a subspace
of V , and ‖ · ‖ defines a norm on the vector space quotient V/N in the obvious way.
Then the completion of V is defined to be the closure of q(V ) in (V/N)∗∗ where
q : V → (V/N)∗∗ is the composition of the quotient map of V onto V/N with the
natural map of V/N into its double dual. Often we will suppress the map q to avoid
decorating already complicated formulas with distracting notations.

The most important sort of completion we look at in this book will be the
completion B of a function space Cc(P,D) with respect to a norm ‖ · ‖, where P is
a locally compact space. Much like the L1-norm, this norm will have the property
that it is continuous with respect to the inductive limit topology.22 Recall that this
means simply that if { fi } is a net in Cc(P,D) which converges uniformly to f and
if the supports of the fi are eventually contained in the same compact subset of P ,
then fi → f in norm (see Remark 1.86 on page 29). Unfortunately, evaluation at
a point s ∈ P will not make sense; that is, evaluation at s will not be continuous
with respect to ‖ · ‖. However, there will be circumstances where certain a priori
B-valued integrals will take values in q

(
Cc(P,D)

)
, and then it at least makes sense

to ask if we can pass evaluation at s through the integral. We show that this is
the case in many situations in Lemma 1.108 on the next page. First, we need a
preliminary observation.

Recall that a subset U in a locally compact space is called pre-compact if its
closure is compact.23

Lemma 1.106. Suppose that U is a pre-compact open subset in P . If f ∈ C0(U,D),
then

j(f)(s) :=

{
f(s) if s ∈ U , and

0 otherwise,

defines an element j(f) ∈ Cc(P,D). In particular, there is a natural linear map j :
C0(U,D) → Cc(P,D), called the inclusion map, which is continuous when Cc(P,D)
is equipped with the inductive limit topology. In particular, if B is the completion of
Cc(P,D) with a norm that is continuous with respect to the inductive limit topology,
then q ◦ j is continuous linear map from C0(U,D) to B.

Remark 1.107. We are only claiming that j is a linear map. If Cc(P,D) has a
∗-algebra structure, then j

(
C0(U,D)

)
will, in general, not be closed under multi-

plication.

22The example we have in mind, of course, is the crossed product A⋊α G which will be defined
to be the completion of Cc(G,A) with respect to just such a norm.

23The term relatively compact is also used. We have avoided it here since, in analogy with
relatively closed or relatively Hausdorff, it suggests “compact in some relative topology”.
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Proof. We only need to see that j(f) is continuous on G (see Remark 1.86 on
page 29). Suppose xi → x. If x ∈ U , xi is eventually in U and j(f)(xi) → j(f)(x).
If x /∈ U , then j(f)(x) = 0. Given ǫ > 0, then since f ∈ C0(U,D) it follows that
K := { x ∈ U : ‖f(x)‖ ≥ ǫ } is compact. Thus K is closed in G, Kc := GrK is a
neighborhood of x, and xi is eventually in Kc. Thus ‖j(f)(xi)‖ is eventually less
than ǫ. Since ǫ is arbitrary, j(f)(x) = 0.

Lemma 1.108. Let G be a locally compact group, P a locally compact space and
D a Banach space. Let ‖ · ‖ be a norm on Cc(P,D) such that convergence in the
inductive limit topology in Cc(P,D) implies convergence in ‖ · ‖. Define B to be
the completion of Cc(P,D) with respect to ‖ · ‖, and let q : Cc(P,D) → B be the
natural map. Suppose that Q ∈ Cc(G× P,D) and that g : G→ Cc(P,D) is defined
by g(s)(p) := Q(s, p). Then s 7→ q

(
g(s)

)
is an element in Cc(G,B) and we can

form the element

b :=

∫ B

G

q
(
g(s)

)
dµ(s).

Then b ∈ q
(
Cc(P,D)

)
, and b = q(b̃) where

b̃(p) :=

∫ D

G

g(s)(p) dµ(s).

Remark 1.109. Suppressing the q in the above, the conclusion of the Lemma 1.108
asserts that b ∈ Cc(P,D) and that

∫ B

G

g(s) dµ(s)(p) =

∫ D

G

g(s)(p) dµ(s).

In colloquial terms, we are “passing evaluation through the integral”.

Proof. If si → s in G, then it is not hard to check that g(si) → g(s) in the inductive
limit topology in Cc(P,D). By assumption, this means s 7→ q

(
g(s)

)
is in Cc(G,B).

On the other hand, Lemma 1.102 on page 36 shows that b̃ ∈ Cc(P,D).

Let suppQ ⊂ C×K with C ⊂ G and K ⊂ P compact. Let U be a pre-compact
neighborhood of K. Then we can view s 7→ g(s) as an element of Cc

(
G,C0(U,D)

)
.

Since evaluation at p ∈ U is a bounded homomorphism from C0(U,D) to D,

∫ C0(U,D)

G

g(s)|U dµ(s)(p) =

∫ D

G

g(s)(p) dµ(s). (1.37)

Note that the right-hand side of (1.37) is just the restriction of b̃ to U . But the
inclusion j : C0(U,D) into Cc(P,D) is continuous in the inductive limit topology
(Lemma 1.106 on the preceding page), and therefore q ◦ j is a continuous linear
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map of C0(U,D) into B. Thus

q(b̃) = q ◦ j(b̃|U )

= q ◦ j
(∫ C0(U,D)

G

g(s)|U dµ(s)
)

=

∫ B

G

q
(
g(s)

)
dµ(s) = b.

Notes and Remarks

The standard reference for the basic properties and structure of locally compact
groups is [71]. The sorts of point-set topology and basic functional analysis required
for work in operator algebras is beautifully laid out in [127]. (For questions of point-
set topology outside the respectable demands of the subject, I recommend [168].)
My authorities on Radon measures, Haar measure in particular and integration on
locally compact groups are [56, Chap. 2; 71, Chap. 3 & 4; 156, Theorem 2.14]. The
approach to vector-valued integration given here is based on [13, Chap. III, §3].



Chapter 2

Dynamical Systems and
Crossed Products

A C∗-dynamical system is a locally compact group G acting by automorphisms on
a C∗-algebra A. A crossed product is a C∗-algebra built out of a dynamical system.
In abelian harmonic analysis (cf., Section 1.4), an important principle is to recover

information about a function f from its Fourier coefficients f̂(ω), and f 7→ f̂(ω)
is a representation of the group algebra on a one-dimensional Hilbert space. We
are going to study dynamical systems and their crossed products via classes of rep-
resentations called covariant representations. We define dynamical systems, their
crossed products and covariant representations in the first two sections. Just as
characters are in one-to-one correspondence with complex homomorphisms (that
is, one-dimensional representations) of the L1-algebra of a locally compact abelian
group, covariant representations of a dynamical system are in one-to-one correspon-
dence with representations of the associated crossed product. This correspondence
is developed in Sections 2.3 and 2.4. This correspondence is crucial to understand-
ing crossed products and suggests that it is very profitable to view a crossed product
as the C∗-algebra generated by a universal covariant representation. We validate
this approach in Section 2.6.

2.1 Dynamical Systems

The study of dynamical systems is a subject unto itself, and good references abound.
A nice summary of the connections to physics and operator algebras can be found
in [136]. In this treatment, we’ll just concentrate on what we need to get started.

Definition 2.1. A group G acts on the left of a set X if there is a map

(s, x) 7→ s · x (2.1)

from G×X → X such that for all s, r ∈ G and x ∈ X

e · x = x and s · (r · x) = sr · x.

41
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If G is a topological group and X a topological space, then we say the action is
continuous if (2.1) is continuous from G×X to X .1 In this case, X is called a left
G-space and the pair (G,X) is called a transformation group. If both G and X are
locally compact, then (G,X) is called a locally compact transformation group, and
X is called a locally compact G-space. A right G-space is defined analogously.

Since we are most concerned with left G-spaces, we will assume here that group
actions are on the left unless indicated otherwise.2

Example 2.2 ([136, §1]). Consider an ordinary autonomous differential equation of
the form {

x′ = f(x)

x(0) = x0

(2.2)

for a function f : Rn → Rn. Assuming f satisfies some mild smoothness conditions,
there exists a unique solution x : R → Rn to (2.2) which depends continuously on
the initial condition x(0) = x0. If t ∈ R and z ∈ Rn, then we can define

t · z := x(t), (2.3)

where x is the unique solution with x0 = z. So we trivially have 0 · z = z. Now
s · (t · z) = y(s) where y′(s) = f

(
y(s)

)
and y(0) = t · z = x(t). Now it is

straightforward to see that y(s) = x(t+s). In other words, s ·(t ·z) = (s+t)·z. The
continuity of the map (t, z) 7→ t · z is an consequence of the continuous dependence
of the solution to (2.2) on its initial conditions, and we get a transformation group
(R,Rn).

Example 2.3. Let h ∈ Homeo(X). Then Z acts on X by n · x := hn(x) and (Z, X)
is a transformation group.

Example 2.4. Suppose that G is a locally compact group and H a closed subgroup.
Then H is locally compact and acts on G by left translation:

h · s := hs.

Then (H,G) is a locally compact transformation group.

Now let (G,X) be a locally compact transformation group. Then for each
s ∈ G, x 7→ s · x is in Homeo(X). (In particular, every Z-space arises from a single
homeomorphism as in Example 2.3.) Therefore we obtain a homomorphism

α : G→ AutC0(X) (2.4)

defined by

αs(f)(x) := f(s−1 · x). (2.5)

1Often we say that the action is jointly continuous to emphasize the continuity on the product
G×X.

2Preferring left over right actions is pure prejudice. If X is a left G-space, then we can view
X as a right G-space by defining x · s := s−1 · x. The same formula may be used to convert from
right to left actions.
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We certainly have α−1
s = αs−1 and

αsr(f)(x) = f(r−1s−1 · x) = αr(f)(s−1 · x)
= αs

(
αr(f)

)
(x).

(2.6)

Therefore αsr = αs ◦αr as required. (The computation in (2.6) explains the inverse
in (2.5).)

Lemma 2.5. Suppose that (G,X) is a locally compact transformation group and
that AutC0(X) is given the point-norm topology. Then the associated homomor-
phism (2.4) of G into AutC0(X) is continuous.

Proof. It suffices to see that ‖αs(f) − f‖∞ → 0 as s→ e. If this were to fail, then
there would be an ǫ > 0, si → e and xi ∈ X such that

|f(s−1
i · xi) − f(xi)| ≥ ǫ for all i. (2.7)

Since f vanishes at infinity, K := { x ∈ X : |f(x)| ≥ ǫ/2 } is compact. In order for
(2.7) to hold, we must have either xi ∈ K or s−1

i ·xi ∈ K. Since we must eventually
have the si in a compact neighborhood V of e, the xi eventually lie in the compact
set V ·K = { s · x : s ∈ V and x ∈ K }. Then we can assume that xi → x0, where
x0 ∈ V ·K. But then s−1

i · xi → x0 and we eventually contradict (2.7).

Definition 2.6. A C∗-dynamical system is a triple (A,G, α) consisting of a C∗-
algebra A, a locally compact group G and a continuous homomorphism α : G →
AutA. We say that (A,G, α) is separable if A is separable and G is second count-
able.

We’ll usually shorten C∗-dynamical system to just “dynamical system”. Notice
that the continuity condition on α in Definition 2.6 amounts to the statement that
s 7→ αs(a) is continuous for all a ∈ A. Lemma 2.5 simply states that a locally
compact transformation group (G,X) gives rise to a dynamical system with A
commutative. It turns out that all dynamical systems with A commutative arise
from locally compact transformation groups.

Proposition 2.7. Suppose that
(
C0(X), G, α

)
is a dynamical system (with X lo-

cally compact). Then there is a transformation group (G,X) such that

αs(f)(x) = f(s−1 · x). (2.8)

Proof. We saw in Lemma 1.33 on page 8 that there is a hs ∈ Homeo(X) such that

αs(f)(x) = f
(
hs(x)

)
, (2.9)

and that the map s 7→ hs is continuous from G to Homeo(X) with the topology
described in Definition 1.31 on page 8. Clearly he = idX and hsr = hr ◦ hs.
Therefore we get an action of G on X via

s · x := h−1
s (x) = hs−1(x).

The map (s, x) 7→ s · x is continuous in view of Remark 1.32 on page 8. Therefore
(G,X) is a transformation group such that (2.8) holds.
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Recall that the irreducible representations of C0(X) correspond exactly to the
point-evaluations evx where evx(f) := f(x). Furthermore, the map x 7→ [evx] is a
homeomorphism of X onto C0(X)∧. If α : G→ AutC0(X) is a dynamical system,
then (2.8) amounts to

evx ◦α−1
s = evs·x,

and the G-action on C0(X)∧ is given by

s · [evx] = [evx ◦α−1
s ].

Notice that if α : G→ AutA is any dynamical system and [π] ∈ Â, then [π ◦α−1
s ] ∈

Â, and depends only on the class of π.
Proposition 2.7 on the preceding page admits a significant generalization which

will be used repeatedly in the sequel. A complete proof is given in [139], and we
will not repeat that proof here.

Lemma 2.8 ([139, Lemma 7.1]). Suppose that (A,G, α) is a dynamical system.
Then there is a jointly continuous action of G on the spectrum Â of A given by
s · [π] := [π ◦ α−1

s ] called the action induced by α.

Since [π] 7→ kerπ is a continuous, open surjection of Â onto PrimA and ker(π ◦
α−1
s ) = αs(kerπ), there is jointly continuous action of G on PrimA given by

s · P = αs(P ) := {αs(a) : a ∈ P }. (2.10)

Remark 2.9 (Degenerate Examples). It will be helpful to keep in mind that groups
and C∗-algebras are by themselves degenerate examples of dynamical systems.
Since the only (algebra) automorphism of C is the identity, every locally compact
group G gives rise to a dynamical system (C, G, id). Similarly, every C∗-algebra A
is associated to a dynamical system with G trivial: (A, { e }, id).

2.2 Covariant Representations

From our point of view in these notes, C∗-dynamical systems are a natural algebraic
framework in which to view and to generalize classical dynamical systems. The
physical significance of these systems and their representations is described in [136].
Here we will limit the motivation to the idea that C∗-algebras and groups are
profitably studied via representations on Hilbert space. The next definition gives a
reasonable way to represent a dynamical system on a Hilbert space.

Definition 2.10. Let (A,G, α) be a dynamical system. Then a covariant repre-
sentation of (A,G, α) is a pair (π, U) consisting of a representation π : A→ B(H)
and a unitary representation U : G→ U(H) on the same Hilbert space such that

π
(
αs(a)

)
= Usπ(a)U∗

s . (2.11)

We say that (π, U) is a possibly degenerate covariant representation if π is a possibly
degenerate representation.3

3Recall that by convention, all representations of C∗-algebras are presumed to be nondegener-
ate.
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Example 2.11 (Degenerate examples). Obviously, covariant representations of de-
generate dynamical systems such as (A, { e }, id) correspond exactly to representa-
tions of A. Covariant representations of dynamical systems (C, G, id) correspond
to unitary representations of G.

Example 2.12. Let G act on itself by left translation, and let lt : G → AutC0(G)
be the associated dynamical system. Let M : C0(G) → B

(
L2(G)

)
be given by

pointwise multiplication:
M(f)h(s) := f(s)h(s),

and let λ : G → U
(
L2(G)

)
be the left-regular representation. Then (M,λ) is a

covariant representation of
(
C0(G), G, lt

)
.

Example 2.13. Let h ∈ Homeo(T) be “rotation by θ”: that is,

h(z) := e2πiθz,

and let
(
C(T),Z, α

)
be the associated dynamical system:

αn(f)(z) = f(e−2πinθz).

(Although it might seem natural to think of h as “rotation through the angle 2πθ”,
the crucial feature is that h is rotation through θ of the circle. This action, as
we shall see, has a very different character depending on whether θ is rational or
irrational.)

(a) Let M : C(T) → B
(
L2(T)

)
be the representation given by pointwise multi-

plication:
M(f)h(z) := f(z)h(z).

Let U : Z → U
(
L2(T)

)
be the unitary representation given by

Unh(z) := h(e−2πinθz).

Then it is not hard to check that (M,U) is a covariant representation of(
C(T),Z, α

)
.

(b) Now fix w ∈ T and let λ be the left-regular representation of Z on L2(Z).
Define πw : C(T) → B

(
L2(Z)

)
to be the representation

πw(f)ξ(n) = f(e2πinθw)ξ(n).

Then (πw, λ) is a covariant representation for each w ∈ T.

In general, it is not obvious that there are any covariant representations of
a given dynamical system. However, we know from the GNS theory (see [139,
Appendix A.1]) that C∗-algebras have lots of representations. Given this, we can
produce covariant representations of any system.

Example 2.14. Let ρ : A → B(Hρ) be any (possibly degenerate) representation of

A on Hρ. Then define IndGe ρ to be the pair (ρ̃, U) of representations on the Hilbert
space L2(G,Hρ) ∼= L2(G) ⊗Hρ,

4 where

ρ̃(a)h(r) := ρ
(
α−1
r (a)

)(
h(r)

)
and Ush(r) := h(s−1r).

4See Appendix I.4.
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Now compute:

Usρ̃(a)U
∗
s h(r) = ρ̃(a)U∗

s h(s
−1r)

= ρ
(
α−1
s−1r(a)

)(
U∗
s h(s

−1r)
)

= ρ
(
α−1
r

(
αs(a)

))(
h(r)

)

= ρ̃
(
αs(a)

)
h(r).

Thus, IndGe ρ := (ρ̃, U) is a (possibly degenerate) covariant representation.

Example 2.15. The representation in part (b) of Example 2.13 on the previous page
is IndGe evw.

Remark 2.16. The representations constructed in Example 2.14 on the preceding
page are called regular representations of (A,G, α). The notation IndGe is meant to
suggest that a regular representation is induced from the system (A, { e }, α|{ e }).
We will discuss a general theory of induced representations in Section 5.1 and make
this suggestion formal in Remark 5.7 on page 156.

Lemma 2.17. IndGe ρ is nondegenerate if ρ is nondegenerate.

Proof. Let (ρ̃, U) = IndGe ρ as above. Let { ei } be an approximate identity in A.
It suffices to see that ρ̃(ei)ξ → ξ for all ξ ∈ L2(G,H). Since ρ̃ is norm decreasing
and ρ is nondegenerate, we can assume that ξ(s) = (f ⊗ ρ(a)h)(s) := f(s)ρ(a)h for
f ∈ Cc(G), a ∈ A and h ∈ H. Since

ρ̃(ei)ξ(r) = f(r)ρ
(
α−1
r (ei)a

)
h,

it suffices to see that given ǫ > 0 we eventually have

‖α−1
r (ei)a− a‖ < ǫ for all r ∈ supp f .

If this is not true, then there is an ǫ0 > 0 and a subset of { ei } and ri ∈ supp f
such that after relabeling

‖α−1
ri

(ei)a− a‖ ≥ ǫ0. (2.12)

Since supp f is compact, we can assume that ri → r. But then

‖α−1
ri

(ei)a− a‖ = ‖α−1
ri

(
eiαri(a)

)
− α−1

ri

(
αri(a)

)
‖

= ‖eiαri(a) − αri(a)‖
≤ ‖ei

(
αri(a) − αr(a)

)
‖+ (2.13)

‖eiαr(a) − αr(a)‖ + ‖αr(a) − αri(a)‖.

But (2.13) goes to 0 since a subnet of { ei } is still an approximate identity. This
contradicts (2.12) and finishes the proof.

Definition 2.18. Suppose that (A,G, α) is a dynamical system and that (π, U)
and (ρ, V ) are covariant representations on H and V respectively. Their direct sum
(π, U) ⊕ (ρ, V ) is the covariant representation (π ⊕ ρ, U ⊕ V ) on H ⊕ V given by
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(π⊕ ρ)(a) := π(a)⊕ ρ(a) and (U ⊕V )s := Us⊕Vs. A subspace H′ ⊂ H is invariant
for (π, U) if π(a)(H′) ⊂ H′ and Us(H′) ⊂ H′ for all a ∈ A and s ∈ G. If H′ is
invariant, then the restrictions π′ of π to H′ and U ′ of U to H′ are representations
and the covariant representation (π′, U ′) on H′ is called a subrepresentation of
(π, U). We call (π, U) irreducible if the only closed invariant subspaces are the
trivial ones: { 0 } and H. Finally, we say that (π, U) and (ρ, V ) are equivalent if
there is a unitary W : H → V such that

ρ(a) = Wπ(a)W ∗ and Vs = WUsW
∗ for all a ∈ A and s ∈ G.

Remark 2.19. If V ⊂ H is invariant for (π, U), then it is not hard to check that V⊥ is
also invariant. Thus if (π′, U ′) and (π′′, U ′′) are the subrepresentations correspond-
ing to V and V⊥, respectively, then (π, U) = (π′, U ′) ⊕ (π′′, U ′′). In particular,
(π, U) is irreducible if and only if it is not equivalent to the direct sum of two
nontrivial representations.

2.3 The Crossed Product

When G is abelian, we used the ∗-algebra L1(G) in Section 1.4 to recover the char-
acters — that is, the irreducible representations of G. Here we want to construct
a ∗-algebra — a C∗-algebra called the crossed product of A by G — from which
we can recover exactly the covariant representations of a given dynamical system
(A,G, α). This will include a special case, the group C∗-algebra as described in
[139, Appendix C.3].

Example 2.20. Suppose 1H ∈ A ⊂ B(H) and that u ∈ U(H) is such that uAu∗ ⊂
A. For example, we could start with any automorphism of A, take a faithful
representation of A and proceed as in Example 2.14 on page 45. Then α(a) = uau∗

is an automorphism of A and (A,Z, α) is a dynamical system. (Here αn := αn.) In
this case, it would be natural to associate the C∗-subalgebra C∗(A, { u }) of B(H)
generated by A and u to (A,Z, α). I claim that

B :=
{ ∑

i∈Z

a(i)ui : a ∈ Cc(Z, A)
}

is a ∗-subalgebra of B(H) and that C∗(A, { u }) is the closure of B.5 For example,
keeping in mind that all the sums in sight are finite, we can consider the product

(∑

i

a(i)ui
)(∑

j

b(j)uj
)

=
∑

i,j

a(i)uib(j)uj

=
∑

i

∑

j

a(i)αi
(
b(j)

)
ui+j

5If 1 /∈ A, then B is the subalgebra generated by products au with a ∈ A.
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which, letting k = j + i, equals

=
∑

i

∑

k

a(i)αi
(
b(k − i)

)
uk

=
∑

k

a ∗ b(k)uk,

where we have defined a ∗ b ∈ Cc(Z, A) by

a ∗ b(k) :=
∑

i

a(i)αi
(
b(k − i)

)
. (2.14)

This shows that B is closed under multiplication. Since a similar computation shows
that the adjoint of

∑
i a(i)u

i is given by
∑

k a
∗(k)uk where

a∗(k) := αk
(
a(−k)∗

)
, (2.15)

B is closed under taking adjoints, and B is a ∗-algebra as claimed. Since 1H ∈ A,
it follows easily that C∗(A, { u }) is simply the closure of B.

The previous example, and some experience with the group C∗-algebra con-
struction, suggests we might be able to construct a crossed product by starting
with a ∗-algebra based on Cc(G,A) with the multiplication and involution compat-
ible with (2.14) and (2.15). If f, g ∈ Cc(G,A), then (s, r) 7→ f(r)αr

(
g(r−1s)

)
is in

Cc(G×G,A), and Corollary 1.104 on page 37 guarantees that

f ∗ g(s) :=

∫

G

f(r)αr
(
g(r−1s)

)
dµ(r) (2.16)

defines an element of Cc(G,A) called the convolution of f and g. Using the prop-
erties of Haar measure, our “Poor Man’s” vector-valued Fubini Theorem (Propo-
sition 1.105 on page 37) and Lemma 1.92 on page 32 it is not hard to check that
(2.16) is an associative operation: f ∗ (g ∗ h) = (f ∗ g) ∗ h. Similarly, a little more
computation shows that

f∗(s) := ∆(s−1)αs
(
f(s−1)∗

)
(2.17)

is an involution on Cc(G,A) making Cc(G,A) a ∗-algebra. For example:

f∗ ∗ g∗(s) =

∫

G

f∗(r)αr
(
g∗(r−1s)

)
dµ(r)

= ∆(s−1)

∫

G

αr
(
f(r−1)∗

)
αs

(
g(s−1r)∗

)
dµ(r)

= ∆(s−1)

∫

G

αsr
(
f(r−1s−1)∗

)
αs

(
g(r)∗

)
dµ(r)

= ∆(s−1)αs

(∫

G

g(r)αr
(
f(r−1s−1)

)
dµ(r)

)∗

= ∆(s−1)αs
(
g ∗ f(s−1)

)∗

= (g ∗ f)∗(s).
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Furthermore

‖f‖1 :=

∫

G

‖f(s)‖ dµ(s) (2.18)

is a norm on Cc(G,A), and the properties of Haar measure guarantee that ‖f∗‖1 =
‖f‖1 and ‖f ∗ g‖1 ≤ ‖f‖1‖g‖1.

Definition 2.21. A ∗-homomorphism π : Cc(G,A) → B(H) is called a ∗-represen-
tation of Cc(G,A) on H. We say π is nondegenerate if

{ π(f)h : f ∈ Cc(G,A) and h ∈ H}

spans a dense subset of H. If ‖π(f)‖ ≤ ‖f‖1, then π is called L1-norm decreasing.

Example 2.22. Since a locally compact group G is a degenerate dynamical system,
Cc(G) is a ∗-algebra with operations

f ∗ g(s) =

∫

G

f(r)g(r−1s) dµ(s) and f∗(s) = ∆(s−1)f(s−1).

Proposition 2.23. Suppose that (π, U) is a (possibly degenerate) covariant repre-
sentation of (A,G, α) on H. Then

π ⋊ U(f) :=

∫

G

π
(
f(s)

)
Us dµ(s) (2.19)

defines a L1-norm decreasing ∗-representation of Cc(G,A) on H called the inte-
grated form of (π, U). Furthermore, π⋊U is nondegenerate if π is nondegenerate.
We call π ⋊ U the integrated form of (π, U).

Proof. Notice that s 7→ Us is strictly continuous by Corollary 1.99 on
page 34, and s 7→ π

(
f(s)

)
is in Cc

(
G,B(H)

)
. Consequently, the integrand

in (2.19) is in Cc
(
G,Bs(H)

)
, and π ⋊ U(f) is defined by Lemma 1.101

on page 35. If h and k are unit vectors in H, then (1.35) implies that
|
(
π ⋊ U(f)h | k

)
| ≤

∫
G
|
(
π
(
f(s)

)
Ush | k

)
| dµ(s). The Cauchy-Schwarz inequality

implies that |
(
π
(
f(s)

)
Ush | k

)
| ≤ ‖f(s)‖. Thus |

(
π ⋊ U(f)h | k

)
| ≤ ‖f‖1. Since h

and k are arbitrary, ‖π ⋊ U(f)‖ ≤ ‖f‖1.
To see that π ⋊ U is a ∗-homomorphism, we compute using Lemma 1.101 on

page 35:

π ⋊ U(f)∗ =

∫

G

(
π(f(s))Us

)∗
dµ(s)

=

∫

G

Us−1π
(
f(s)∗

)
dµ(s)

=

∫

G

Usπ
(
f(s−1)∗

)
∆(s−1) dµ(s)

=

∫

G

π
(
αs

(
f(s−1)∗∆(s−1)

))
Us dµ(s)

= π ⋊ U(f∗).
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Similarly,

π ⋊ U(f ∗ g) =

∫

G

∫

G

π
(
f(r)αr

(
g(r−1s)

))
Us dµ(r) dµ(s)

=

∫

G

∫

G

π
(
f(r)

)
Urπ

(
g(r−1s)

)
Ur−1s dµ(r) dµ(s),

which, by Fubini (Proposition 1.105 on page 37) and left-invariance, is

=

∫

G

∫

G

π
(
f(r)

)
Urπ

(
g(s)

)
Us dµ(s) dµ(r)

= π ⋊ U(f) ◦ π ⋊ U(g).

Now assume that π is nondegenerate. Let h ∈ H and ǫ > 0. Then if { ei } is
an approximate identity for A, we have π(ei)h → h in H. Thus we can choose an
element u of norm one in A such that ‖π(u)h−h‖ < ǫ/2. Let V be a neighborhood
of e in G such that ‖Ush− h‖ < ǫ/2 if s ∈ V . Let ϕ ∈ Cc(G) be nonnegative with
suppϕ ⊂ V and integral one. Let f(s) = (ϕ ⊗ u)(s) := ϕ(s)u. Then f ∈ Cc(G,A)
and if k is an element of norm one in H,

∣∣(π ⋊ U(f)h | k
)
− (h | k)

∣∣ =
∣∣∣
∫

G

ϕ(s)
(
π(u)Ush− h | k

)
ds

∣∣∣

≤
∫

G

ϕ(s)
∣∣(π(u)(Ush− h) | k

)∣∣ ds+
∫

G

ϕ(s)
∣∣(π(u)h− h | k

)∣∣ ds

≤ ǫ

2
+
ǫ

2
= ǫ.

Since k is arbitrary, it follows that ‖π ⋊ U(f)h − h‖ ≤ ǫ and therefore π ⋊ U is
nondegenerate.

Example 2.24. Notice that the map in Example 2.20 on page 47 sending a ∈
Cc(Z, A) to

∑
i a(i)u

i is simply the integrated form of (id, u) where id is the identity
representation of A and u is viewed as a representation of Z in the obvious way:
uk := uk.

Example 2.25. In the case of a locally compact groupG and a unitary representation
U , the integrated form is:

id ⋊U(z) :=

∫

G

z(s)Us dµ(s) for all z ∈ Cc(G).

Traditionally, id ⋊U is shortened to just U . That is, the same letter is used both
for a unitary representation and its integrated form.

The following maps will be of considerable importance in Section 2.4 and in
Proposition 2.34 on page 54 in particular. For each r ∈ G let iG(r) : Cc(G,A) →
Cc(G,A) be defined by

iG(r)f(s) := αr
(
f(r−1s)

)
. (2.20)
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Note that if (π, U) is a covariant representation of (A,G, α), then

π ⋊ U
(
iG(r)f)

)
=

∫

G

π
(
iG(r)f(s)

)
Us dµ(s)

=

∫

G

π
(
αr

(
f(r−1s)

))
Us dµ(s)

=

∫

G

π
(
αr

(
f(s)

))
Urs dµ(s)

= Ur ◦ π ⋊ U(f).

(2.21)

Lemma 2.26. Let ρ be a faithful representation of A on H and let IndGe ρ = (ρ̃, U)
be the corresponding regular representation. Suppose that f ∈ Cc(G,A) and f 6=
0. Then ρ̃ ⋊ U(f) 6= 0. That is, the integrated form of a regular representation
corresponding to a faithful representation of A is faithful on Cc(G,A).

Proof. There is a r ∈ G such that f(r) 6= 0. Since (2.21) implies that ‖ρ̃⋊U(f)‖ =
‖ρ̃⋊ U

(
iG(r−1)f

)
‖, we can replace f by iG(r−1)f and assume that r = e. Since ρ

is faithful, there are vectors h and k in H such that
(
ρ
(
f(e)

)
h | k

)
6= 0.

We can find a neighborhood V of e such that s, r ∈ V implies

∣∣(ρ
(
α−1
r

(
f(s)

))
h | k

)
−

(
ρ
(
f(e)

)
h | k

)∣∣ < |
(
ρ
(
f(e)

)
h | k

)
|

3
.

Choose ϕ ∈ C+
c (G) with support contained in symmetric neighborhoodW of e such

that W 2 ⊂ V , and such that
∫

G

∫

G

ϕ(s−1r)ϕ(r) dµ(r) dµ(s) = 1.

Now define ξ and η in L2(G,H) by

ξ(s) := ϕ(s)h and η(s) := ϕ(s)k.

Then

|
(
ρ̃⋊ U(f)ξ | η

)
−

(
ρ
(
f(e)

)
h | k

)
|

=
∣∣∣
∫

G

∫

G

(
ρ
(
α−1
r

(
f(s)

))
ξ(s−1r) | η(r)

)
dµ(s) dµ(r)

−
(
ρ
(
f(e)

)
h | k

)∣∣∣

≤
∫

G

∫

G

ϕ(s−1r)ϕ(r)
∣∣∣
((
ρ
(
α−1
r

(
f(s)

))
h | k

)
−

(
ρ
(
f(e)

)
h | k

))∣∣∣ dµ(s) dµ(r)

<
|
(
ρ
(
f(e)

)
h | k

)
|

2
.

Now it follows that ρ̃⋊ U(f) 6= 0.
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We define the crossed product associated to (A,G, α) as a completion of
Cc(G,A) as described in Section 1.5.1.

Lemma 2.27. Suppose that (A,G, α) is a dynamical system and that for each
f ∈ Cc(G,A) we define

‖f‖ := sup{‖π ⋊ U(f)‖ : (π, U) is a

(possibly degenerate) covariant representation of (A,G, α)}. (2.22)

Then ‖ · ‖ is a norm on Cc(G,A) called the universal norm. The universal norm is
dominated by the ‖ · ‖1-norm, and the completion of Cc(G,A) with respect to ‖ · ‖
is a C∗-algebra called the crossed product of A by G and is denoted by A⋊α G.

Remark 2.28. Some might find the supremum in (2.22) suspicious because the col-
lection of covariant representations is not clearly a set. Various finesses for this
apparent defect are employed in the literature. For example, it would be possible
to consider only covariant representations on a fixed Hilbert space of suitably large
dimension and argue that all representations are equivalent to a (possibly degen-
erate) representation on this space. However, the collection of values in (2.22) is
a subclass of the set R of real numbers and the separation axioms of set theory
guarantee that a subclass of a set is a set and that we are taking the supremum of
a bounded set of real numbers [84, §1.1]. Thus here, and in the sequel, we will not
worry about taking such supremums.

Proof. Once we are satisfied that we have made sense of the supremum in (2.22),
Proposition 2.23 on page 49 and Lemma 2.26 on the previous page imply that
0 < ‖f‖ ≤ ‖f‖1 < ∞ (provided f 6= 0). Now it easy to see that ‖ · ‖ is a norm on
Cc(G,A) such that ‖f∗ ∗ f‖ = ‖f‖2. Therefore the completion is a C∗-algebra.

Remark 2.29. Since the universal norm is a norm on Cc(G,A), we can view Cc(G,A)
as a ∗-subalgebra ofA⋊αG. Therefore we will rarely distinguish between an element
of Cc(G,A) and its image in A⋊α G.

Remark 2.30. Let B ⊂ Cc(G,A) be a ∗-subalgebra which is dense in the inductive
limit topology. This means that given f ∈ Cc(G,A) there is a compact set K such
that for all ǫ > 0 there exists a b ∈ B such that supp b ⊂ K and ‖b− f‖∞ < ǫ. This
immediately implies that B is ‖ · ‖1-norm dense in Cc(G,A) and therefore dense in
A⋊α G as well.

Lemma 2.31. Let (π, U) be a (possibly degenerate) covariant representation of
(A,G, α) on H. Let

V := span{ π(a)h : a ∈ A and h ∈ H}

be the essential subspace of π, and let ess π be the corresponding subrepresentation.
Then V is also invariant for U , and if U ′ is the corresponding subrepresentation,
then (ess π, U ′) is a nondegenerate covariant representation on V. For all f ∈
Cc(G,A),

‖(essπ) ⋊ U ′(f)‖ = ‖π ⋊ U(f)‖.
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In particular,

‖f‖ = sup{ ‖π ⋊ U(f)‖ :

(π, U) is a nondegenerate covariant representation of (A,G, α). }

Proof. Since Usπ(a)h = π
(
αs(a)

)
Ush, it is clear that V is invariant for U , and that

(essπ, U ′) is a nondegenerate covariant representation. Note that π = essπ ⊕ 0.
Thus if U = U ′⊕U ′′, then π⋊U = (essπ)⋊U ′⊕0, and the rest is straightforward.

It should come as no surprise that crossed products in which the algebra A is
commutative are considerably more tractable than the general case. Since there
is a one-to-one correspondence between dynamical systems with A commutative
and transformations groups, such crossed products are called transformation
group C∗-algebras. Moreover, it is possible to describe the ∗-algebra structure on
Cc

(
G,C0(X)

)
in terms of functions on G × X . If we agree to identify a function

on G×X with the obvious function from G to functions on X , then it is not hard
to prove that we have inclusions

Cc(G×X) ⊂ Cc
(
G,Cc(X)

)
⊂ Cc

(
G,C0(X)

)
. (2.23)

If f ∈ Cc
(
G,C0(X)

)
, then since point evaluation is a homomorphism from C0(X)

to C, ∫

G

f(s) dµ(s)(x) =

∫

G

f(s)(x) dµ(s). (2.24)

Using (2.24) and the formulas for convolution and involution on Cc
(
G,C0(X)

)
, it

is not hard to see that Cc(G × X) is a ∗-subalgebra. It follows easily (using the
first inclusion in (2.23) and Lemma 1.87 on page 29) that Cc(G × X) is dense in
Cc

(
G,C0(X)

)
and therefore in C0(X) ⋊α G. The formulas for convolution and

involution on Cc(G×X) are

f ∗ g(s, x) =

∫

G

f(r, x)g(r−1s, r−1 · x) dµ(r), and (2.25)

f∗(s, x) = ∆(s−1)f(s−1, s−1 · x). (2.26)

(In particular, the formula for convolution is a scalar valued integral.)

Remark 2.32. We mentioned the inclusion of Cc(G×X) into Cc
(
G,Cc(X)

)
only to

make applying Lemma 1.87 on page 29 a bit easier. It would be tempting to guess
that this inclusion is always an equality. But this is not the case. Let G = T and
X = R. Let ϕ : R → R be defined by

ϕ(x) :=





0 if |x| ≥ 1,

1 + x if −1 ≤ x ≤ 0, and

1 − x if 0 ≤ x ≤ 1.



54 Dynamical Systems and Crossed Products

Then it is not hard to check that f(x + iy)(r) := |y|ϕ(|y|r) is in Cc
(
T, Cc(R)

)
.

Since

supp f(x+ iy) =

{
{ 0 } if y = 0, and

[−1/|y|, 1/|y|] otherwise,

the support of f as a function on T×R is unbounded and therefore not compact.

Example 2.33. In the degenerate case where our dynamical system reduces to
(A, { e }, id), then the crossed product gives us back A. In the case (C, G, id),
then covariant representations correspond exactly to unitary representations of G,
and the crossed product is the group C∗-algebra C∗(G) as defined in [139, C.3]. (We
took a slightly different approach in [139, C.3], but [139, Corollary C.18] shows the
approaches arrive at the same completion of Cc(G).)

2.4 Representations of the Crossed Product

Except in special cases, the crossed product A ⋊α G does not contain a copy of
either A or G. However, the multiplier algebra M(A⋊αG) does. Recall that if A is
a C∗-algebra, then M(A) is L(AA) — that is, the collection of adjointable operators
from A to itself [139, §2.3]. When convenient, we will view A as a subalgebra of
M(A) — a ∈ A is identified with the operator b 7→ ab. The unitary group of M(A)
is denoted by UM(A).

If we view Cc(G,A) as a ∗-subalgebra of M(A ⋊α G), then a T ∈ M(A ⋊α G)
may, or may not, map Cc(G,A) into itself. In practice however, a multiplier T
is usually defined by first defining it as a map from Cc(G,A) to itself, and then
showing it is bounded with respect to the universal norm so that it extends to a
map also called T from A ⋊α G to itself. It defines a multiplier provided we can
find an adjoint T ∗ which is characterized by

T (a)∗b =
〈
T (a) , b

〉
A⋊αG

=
〈
a , T ∗(b)

〉
A⋊αG

= a∗T ∗(b)

for all a, b ∈ A. The next proposition is case in point.

Proposition 2.34. Suppose that α : G → AutA is a dynamical system. Then
there is a nondegenerate faithful homomorphism

iA : A→M(A⋊α G)

and an injective strictly continuous unitary valued homomorphism

iG : G→ UM(A⋊α G)

such that for f ∈ Cc(G,A), r, s ∈ G and a ∈ A we have

iG(r)f(s) = αr
(
f(r−1s)

)
and iA(a)f(s) = af(s).

Moreover (iA, iG) is covariant in that

iA
(
αr(a)

)
= iG(r)iA(a)iG(r)∗.
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If (π, U) is nondegenerate, then

(π ⋊ U)¯
(
iA(a)

)
= π(a) and (π ⋊ U)¯

(
iG(s)

)
= Us.

Proof. We already considered iG(r) in Section 2.3 and it follows from (2.21) that
for all r ∈ G

‖iG(r)f‖ = ‖f‖.
Thus we can extend iG(r) to a map of A⋊α G to itself, and

(
iG(r)f

)∗ ∗ g(t) =

∫

G

αsr
(
f(r−1s−1)∗

)
∆(s−1)αs

(
g(s−1t)

)
dµ(s)

which, since ∆(s−1) dµ(s) is a right Haar measure on G, is

=

∫

G

αs
(
f(s−1)∗

)
∆(s−1)αsr−1

(
g(rs−1t)

)
dµ(s)

=

∫

G

f∗(s)αs
(
iG(r−1)g(s−1t)

)
dµ(s)

= f∗ ∗ iG(r−1)g(t).

Thus each iG(r) is adjointable with adjoint iG(r)∗ = iG(r−1). Since we certainly
have iG(rs) = iG(r)◦iG(s) and iG(r)−1 = iG(r−1), iG is a unitary-valued homomor-
phism into UM(A⋊α G). To show that iG is strictly continuous, fix f ∈ Cc(G,A),
a compact neighborhood W of e in G, and let K := supp f . Notice that as long as
r ∈ W , then

supp iG(r)f ⊂WK.

If ǫ > 0, then the uniform continuity of f implies that we can choose V ⊂W such
that r ∈ V implies

‖f(r−1s) − f(s)‖ < ǫ

2µ(WK)
for all s ∈ G.

Since f has compact support, we can shrink V if need be so that r ∈ V also implies

‖αr
(
f(s)

)
− f(s)‖ < ǫ

2µ(WK)
for all s ∈ G.

Since

‖iG(r)f(s) − f(s)‖ ≤ ‖αr
(
f(r−1s) − f(s)

)
‖ + ‖αr

(
f(s)

)
− f(s)‖,

it follows that ‖iG(r)f − f‖ ≤ ‖iG(r)f − f‖1 < ǫ. Therefore r 7→ iG(r) is strongly
continuous, and iG is strictly continuous by Corollary 1.99 on page 34.

The argument for iA is similar. If (π, U) is a covariant representation of
(A,G, α), then for f ∈ Cc(G,A),

π ⋊ U
(
iA(a)f

)
= π(a) ◦ π ⋊ U(f), (2.27)
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and it follows that ‖iA(a)f‖ ≤ ‖a‖‖f‖. Therefore iA(a) extends to map from
A⋊α G to itself. An easy computation shows that

(
iA(a)f

)∗ ∗ g = f∗ ∗ iA(a∗)g.

Therefore iA(a) is adjointable with adjoint iA(a∗), and iA is a homomorphism of A
into M(A⋊α G). The covariance condition can be checked by applying both sides
to f ∈ Cc(G,A).

If (π, U) is nondegenerate, then (2.27) implies that (π ⋊ U) ¯
(
iA(a)

)
= π(a),

and the corresponding assertion for iG(s) follows from (2.21).
To see that iA and iG are injective, let ρ : A→ B(H) be a faithful representation

of A, and set (ρ̃, U) = IndGe ρ. Then ρ̃ is faithful and certainly Us 6= id if s 6= e.
Since ρ̃(a) = (ρ̃ ⋊ U) ¯ ◦ iA(a), it follows that iA(a) is faithful. Similarly Us =
(ρ̃⋊ U)¯ ◦ iG(s) shows iG(s) 6= id if s 6= e.

To see that iA is nondegenerate, note that elementary tensors of the form ϕ⊗ab
span a dense subalgebra of A ⋊α G by Lemma 1.87 on page 29, and are also in
iA(A) ·A⋊α G.

Lemma 2.35. There is a homomorphism ı̃G : C∗(G) →M(A⋊α G) such that

ı̃G(z) =

∫

G

z(s)iG(s) dµ(s) for all z ∈ Cc(G).

Just as for unitary representations (c.f., Example 2.25 on page 50), we write iG(z)
in place of ı̃G(z).

Proof. If z ∈ Cc(G), then ı̃G(z) is a well-defined element of M(A ⋊α G) by
Lemma 1.101 on page 35. Just as in Proposition 2.23 on page 49, ı̃G is a
homomorphism on Cc(G). For example,

ı̃(z ∗ w) =

∫

G

z ∗ w(s)iG(s) dµ(s)

=

∫

G

∫

G

z(r)w(r−1s) dµ(r)iG(s) dµ(s)

which, by our Fubini result Proposition 1.105 and using Lemma 1.101 to move iG(s)
through the integral, is

=

∫

G

∫

G

z(r)w(r−1s)iG(s) dµ(s) dµ(r)

=

∫

G

∫

G

z(r)w(s)iG(rs) dµ(r) dµ(s)

= ı̃(z)̃ı(w).

All that remains to show is that ı̃G is bounded with respect to the universal norm
on C∗(G). But if π is a nondegenerate faithful representation of A ⋊α G, then π̄
is faithful on M(A ⋊α G). Let Us := π̄

(
iG(s)

)
. Then s 7→ Us is a unitary-valued
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homomorphism into U(Hπ). To see that U is a unitary representation of G, we
need to see that s 7→ Ush is continuous for all h ∈ Hπ. Since π is nondegenerate,
it suffices to consider h = π(f)k for f ∈ Cc(G,A). Then Usπ(f)k = π

(
iG(s)f

)
k.

Since iG(s)f is continuous in s, it follows that U is strongly continuous and therefore
a representation. Therefore Lemma 1.101 on page 35 implies that

π̄
(
ı̃G(z)

)
= π̄

(∫

G

z(s)iG(s) dµ(s)
)

=

∫

G

z(s)Us dµ(s)

= U(z).

Thus
‖ı̃G(z)‖ = ‖π̄

(
iG(z)

)
‖ = ‖U(z)‖ ≤ ‖z‖.

Corollary 2.36. Suppose that α : G → AutA is a dynamical system. Let a ∈ A,
z ∈ Cc(G) and g, h ∈ Cc(G,A). Then iA(a)iG(z),

∫
G iA

(
g(r)

)
iG(r)(h) dµ(r) and∫

G
iA

(
g(r)

)
iG(r) dµ(r) are in Cc(G,A) ⊂ A⋊α G ⊂M(A⋊α G). In fact,

iA(a)iG(z) = z ⊗ a, (2.28)
∫

G

iA
(
g(s)

)
iG(s)(h) dµ(s) = g ∗ h, and (2.29)

∫

G

iA
(
g(s)

)
iG(s) dµ(s) = g. (2.30)

Proof. Notice that if T ∈ M(A ⋊α G) and (π ⋊ U)¯(T ) = 0 for all nondegenerate
covariant pairs, then T = 0. (For example, Tf = 0 for all f ∈ A⋊αG by Lemma 2.31
on page 52.) But if (π, U) is nondegenerate,

(π ⋊ U)¯
(∫

G

iA
(
g(s)

)
iG(s) dµ(s)

)
=

∫

G

π
(
g(s)

)
Us dµ(s) = π ⋊ U(g).

This proves (2.30), and (2.28) is a special case. Finally,

g ∗ h =

∫

G

iA
(
g(s)

)
iG(s) dµ(s)h =

∫

G

iA
(
g(s)

)
iG(s)(h) dµ(s)

by Lemma 1.101 on page 35.

Definition 2.37. Suppose that α : G → AutA is a dynamical system and that X

is a Hilbert B-module. Then a covariant homomorphism of (A,G, α) into L(X) is a
pair (π, u) consisting of a homomorphism π : A→ L(X) and a strongly continuous
unitary-valued homomorphism u : G→ UL(X) such that

π
(
αs(a)

)
= usπ(a)u∗s. (2.31)

We say that (π, u) is nondegenerate if π is nondegenerate.
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Remark 2.38. If X is a Hilbert space H, then a (nondegenerate) covariant homomor-
phism into L(H) = B(H) is just a (nondegenerate) covariant representation. Corol-
lary 1.99 on page 34 implies that the strong continuity of u in Definition 2.37 on
the previous page is equivalent to strict continuity as a map into L(X) = M(K(X)).
In fact, a covariant homomorphism can equally well be thought of as maps into
M(B) for a C∗-algebra B. Since M(B) = L(BB) and L(X) = M(K(X)) there is no
real difference.

Proposition 2.39. Suppose that α : G → AutA is a dynamical system and that
X is a Hilbert B-module. If (π, u) is a covariant homomorphism of (A,G, α) into
L(X), then Lemma 1.101 on page 35 implies that the integrated form

π ⋊ u(f) :=

∫

G

π
(
f(s)

)
us dµ(s)

is a well-defined operator in L(X), and π⋊u extends to a homomorphism of A⋊αG
into L(X) which is nondegenerate whenever π is nondegenerate. In this case, (π ⋊

u)¯
(
iA(a)

)
= π(a) and (π ⋊ u)¯

(
iG(s)

)
= us.

Conversely, if L : A⋊αG→ L(X) is a nondegenerate homomorphism, then there
is a nondegenerate covariant homomorphism (π, u) of (A,G, α) into L(X) such that
L = π ⋊ u. In fact, if L̄ is the canonical extension of L to M(A⋊α G), then

us := L̄
(
iG(s)

)
and π(a) := L̄

(
iA(a)

)
. (2.32)

Proof. The map s 7→ us is strictly continuous into L(X) = M(K(X)) by Corol-
lary 1.99 on page 34, and so s 7→ π

(
f(s)

)
us is a strictly continuous map for each

f ∈ Cc(G,A). Thus π ⋊ u(f) is an operator in L(X) by Lemma 1.101 on page 35.
Let ρ : K(X) → B(Hρ) be a faithful nondegenerate representation of K(X),

and let ρ̄ be the canonical (and faithful) extension to L(X). Let Π(a) := ρ̄
(
π(a)

)

and Us := ρ̄(us). We claim that s 7→ Us is strongly continuous from G into U(Hρ).
Since ρ is nondegenerate, it suffices to show that s 7→ Us

(
ρ(T )h

)
is continuous when

h ∈ Hρ and T ∈ K(X)). But s 7→ usT is continuous since u is strictly continuous,
and Us

(
ρ(T )h

)
= ρ(usT )h is continuous in s. It now follows easily that (Π, U) is a

covariant representation and Lemma 1.101 on page 35 implies

‖ρ̄
(
π ⋊ u(f)

)
‖ =

∥∥∥ρ̄
(∫

G

π
(
f(s)

)
us dµ(s)

)∥∥∥

=
∥∥∥
∫

G

Π
(
f(s)

)
Us dµ(s)

∥∥∥

= ‖Π ⋊ U(f)‖
≤ ‖f‖.

It follows that π ⋊ u = ρ̄−1 ◦ (Π ⋊ U) is a homomorphism of Cc(G,A) into L(X)
which is bounded with respect to the universal norm. Therefore π ⋊ u extends
to a homomorphism of A ⋊α G into L(X) as claimed. The proof that π ⋊ u is
nondegenerate when π is proceeds exactly as in Proposition 2.23 on page 49, and
the statements about (π ⋊ u)¯ follow as in Proposition 2.34 on page 54.
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To prove the converse, suppose that L : A ⋊α G → L(X) is a nondegenerate
homomorphism, and let π and u be defined as in (2.32). Since iG is strictly continu-
ous, it is straightforward to check that u is strongly continuous. Since iA and L are
nondegenerate it follows that if { ei } is an approximate identity in A, then iA(ei)
converges to strictly to 1 in M(A ⋊α G). Therefore π(ei) = L̄

(
iA(ei)

)
converges

strictly to 1X in L(X), and π is nondegenerate. Since the covariance condition is
straightforward to check, it follows that (π, u) is a nondegenerate covariant homo-
morphism, and the first part of this proof shows the integrated form π ⋊ u is a
nondegenerate homomorphism into L(X). Since both π ⋊ u and L are nondegen-
erate, we can apply Lemma 1.101 to conclude that for each a ∈ A and z ∈ Cc(G)
that

π ⋊ u
(
iA(a)iG(z)

)
= π(a) ◦ (π ⋊ u)¯

(
iG(z)

)

= L̄
(
iA(a)

) ∫

G

z(s)us dµ(s)

= L̄
(
iA(a)

) ∫

G

z(s)L̄
(
iG(s)

)
dµ(s)

= L̄
(
iA(a)

)
L̄

(
iG(z)

)

= L
(
iA(a)iG(z)

)
.

Now Lemma 1.87 on page 29 and Corollary 2.36 on page 57 imply that the span
of elements of the form iA(a)iG(z) are dense in A⋊α G, and it follows that L and
π ⋊ u are equal.

Proposition 2.40. If α : G→ AutA is a dynamical system, then the map sending
a covariant pair (π, U) to its integrated form π⋊U is a one-to-one correspondence
between nondegenerate covariant representations of (A,G, α) and nondegenerate
representations of A⋊αG. This correspondence preserves direct sums, irreducibility
and equivalence.

Proof. Proposition 2.39 on the facing page shows that the map (π, U) 7→ π ⋊ U is
a surjection. It’s one-to-one in view of Equations (2.21) and (2.27).

The statement about equivalence is straightforward. Let (π, U), (ρ, V ) and W
be as in Definition 2.18 on page 46. Then

(
W (π ⋊ U)(f)h | k

)
=

(
π ⋊ U(f)h |W ∗k

)

=

∫

G

(
π
(
f(s)

)
Ush |W ∗k

)
dµ(s)

=

∫

G

(
Wπ

(
f(s)

)
Ush | k

)
dµ(s)

=

∫

G

(
ρ
(
f(s)

)
VsWh | k

)
dµ(s)

=
(
ρ⋊ V (f)Wh | k

)
.
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And it follows that π ⋊ U and ρ ⋊ V are equivalent. Conversely, if W intertwines
π ⋊ U and ρ⋊ V , then

WUsπ ⋊ U(f)h = Wπ ⋊ U
(
iG(s)f)

)
h

= ρ⋊ V
(
iG(s)f

)
Wh

= Vsρ⋊ V (f)Wh

= VsWπ ⋊ U(f)h.

Since π ⋊ U is nondegenerate, it follows that WUs = VsW for all s ∈ G. A similar
argument shows that Wπ(a) = ρ(a)W for all a ∈ A.

The other assertions will follow once we show that a closed subspace V is in-
variant for a nondegenerate (π, U) if and only if V is invariant for π ⋊ U . Suppose
first that V is invariant for (π, U). Let h ∈ V and k ∈ V⊥. Then

(
π ⋊ U(f)h | k

)
=

∫

G

(
π
(
f(s)

)
Ush | k

)
,

and since π
(
f(s)

)
Ush ∈ V for all s ∈ G,

(
π ⋊ U(f)h | k

)
= 0.

It follows that V is invariant for π ⋊ U .
Now assume V is invariant for π⋊U . Since π⋊U is nondegenerate, π⋊U(ei) →

1H strongly for any approximate identity { ei } for A ⋊α G. If h ∈ V and k ∈ V⊥,
then π ⋊ U

(
iG(s)ei

)
∈ V and

(Ush | k) = lim
(
Us

(
π ⋊ U(ei)h

)
| k

)

= lim
(
π ⋊ U

(
iG(s)ei

)
h | k

)

= 0.

It follows that V is invariant for Us and a similar argument works for π(a).

Remark 2.41. We can now identify the spectrum of C∗(G) with the set Ĝ of ir-

reducible unitary representations of G. We give Ĝ the topology coming from the
spectrum of C∗(G) and refer to Ĝ as the spectrum of G. We should check to see that
this usage is consistent with that for abelian groups. Since C∗(G) is commutative
if G is abelian, its irreducible representations are one-dimensional complex homo-
morphisms [139, Example A.16], and the characters of G correspond exactly the
irreducible representations of G. Since a pure state on C∗(G) must be of the form
f 7→

(
ω(f)h | h

)
= ω(f) for the integrated form of a character ω and a unimodular

scalar h, the pure states also correspond exactly to the characters. [139, Theo-

rem A.38] implies that the weak-∗ topology on Ĝ, viewed as the set of pure states,

is the same as the topology obtained by viewing Ĝ as the spectrum of C∗(G). The
proof of Lemma 1.78 on page 25 implies that this topology is the compact-open
topology.
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Remark 2.42. If u : G→ UL(X) is a strongly continuous homomorphism, then we’ll
use the same letter u for the integrated form of u viewed either as a homomorphism
of Cc(G) into L(X) or C∗(G) into L(X). If L = (π, U) is a covariant representation,
we’ll often write L(f) in place of π ⋊ U(f).

Definition 2.43. A ∗-homomorphism π : Cc(G,A) → B(H) is continuous in the
inductive limit topology if whenever we’re given h, k ∈ H and a net fi → f in the
inductive limit topology on Cc(G,A), then we also have

(
π(fi)h | k

)
→

(
π(f)h | k

)
.

Example 2.44. If π is L1-norm decreasing, then π is continuous in the inductive
limit topology.

The following clever argument is due to Iain Raeburn.

Lemma 2.45. Suppose that π : Cc(G,A) → B(H) is a ∗-homomorphism which is
continuous in the inductive limit topology. Then π is bounded with respect to the
universal norm on Cc(G,A) ⊂ A⋊αG. That is, ‖π(f)‖ ≤ ‖f‖ for all f ∈ Cc(G,A).

Proof. By reducing to the essential subspace of π, we may assume that π is nonde-
generate. The equation

(f ⊗ h | g ⊗ k) :=
(
π(g∗ ∗ f)h | k

)

defines a sesquilinear form on the algebraic tensor product Cc(G,A)⊙H. This form
is positive since

(∑

i

fi ⊗ hi
∣∣ ∑

i

fi ⊗ hi

)
=

∑

ij

(
π(f∗

j ∗ fi)hi | hj
)

=
∑

ij

(
π(fi)hi | π(fj)hj

)

=
(∑

i

π(fi)hi
∣∣ ∑

i

π(fi)hi

)

≥ 0.

Thus we can complete Cc(G,A) ⊙ H to get a Hilbert space V . The map (f, h) 7→
π(f)h is bilinear and therefore extends to a map U : Cc(G,A) ⊙H → H which has
dense range since π is nondegenerate. Moreover

(
U(f ⊗ h) | U(g ⊗ k

)
) =

(
π(f)h | π(g

)
k)

=
(
π(g∗ ∗ f)h | k

)

= (f ⊗ h | g ⊗ k).

It follows that U extends to a unitary operator U : V → H. Now for each b ∈M(A),
we define an operator on Cc(G,A) ⊙H by

M(b)(f ⊗ h) = ı̄A(b)f ⊗ h.

Since an easy calculation shows that
(
M(b)(f ⊗ h) | g ⊗ k

)
=

(
f ⊗ h |M(b∗)(g ⊗ k)

)
,
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we can let a0 := (‖a‖21 − a∗a)
1
2 and compute that

‖a‖2(f ⊗ h | f ⊗ h) −
(
M(a)(f ⊗ h) | M(a)(f ⊗ h)

)
=

(
M(a0)(f ⊗ h) |M(a0)(f ⊗ h)

)
≥ 0.

It follows that ‖M(a)‖ ≤ ‖a‖ and that M extends to a representation of A on V .
Similarly, we define a map from G into operators on Cc(G,A) ⊙H by

Vs(f ⊗ h) = iG(s)(f) ⊗ h.

Easy calculations show that Vsr = Vs ◦ Vr. Since we can also check that iG(g)∗ ∗
iG(f) = g∗ ∗ f , it follows that

(
Vs(f ⊗ h) | Vs(g ⊗ k

)
) = (f ⊗ h | g ⊗ k).

Therefore it follows that V is a unitary-valued homomorphism from G into U(V).
To see that V is strongly continuous, notice that

‖Vs(f ⊗ h) − f ⊗ h‖2 = 2
(
π(f∗ ∗ f)h | h

)
− 2 Re

(
π
(
f∗ ∗ iG(s)(f)

)
h | h

)
. (2.33)

Since iG(s)(f) → f in the inductive limit topology as s → e and since π is contin-
uous in the inductive limit topology, it follows that (2.33) goes to zero if s → e in
G. Thus V is a unitary representation of G, and it is easy to see that (M,V ) is
covariant. We will prove that π and M ⋊ V are equivalent representations.

Now let f, g ∈ Cc(G,A). Then (s, r) 7→ f(s)iG(s)(g)(r) has support in
(supp f) × (supp f)(supp g). Therefore if U is a pre-compact open neighborhood
of the compact set (supp f)(supp g), then we can view q(s) := f(s)iG(s)(g) as
defining a function in Cc

(
G,C0(U,A)

)
. Then we can form the C0(U,A)-valued

integral ∫ C0(U,A)

G

f(s)iG(s)(g) dµ(s). (2.34)

Since evaluation at r ∈ U is a continuous homomorphism from C0(U,A) to A, we
have

∫ C0(U,A)

G

f(s)iG(s)(g) dµ(s)(r) =

∫ A

G

f(s)iG(s)(g)(r) dµ(s) = f ∗ g(r).

Thus (2.34) is the restriction of f ∗ g to U . If h, k ∈ H and j is the inclusion of
C0(U,A) into Cc(G,A), then the continuity of π and j (Lemma 1.106 on page 38)
allows us to define a continuous linear functional

L : C0(U,A) → C

by
L(f) :=

(
π
(
j(f)

)
h | k

)
.

Now on the one hand,

L
(∫ C0(U,A)

G

f(s)iG(s)(g) dµ(s)
)

=
(
π(f ∗ g)h | k

)
=

(
π(f)U(g ⊗ h) | k

)
. (2.35)
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On the other hand, since L is a continuous linear functional, the left-hand side of
(2.35) equals

∫

G

L
(
f(s)iG(s)(g)

)
dµ(s) =

∫

G

(
π
(
f(s)iG(s)(g)

)
h | k

)
dµ(s)

=

∫

G

(
U

(
f(s)iG(s)(g) ⊗ h

)
| k

)
dµ(s)

=

∫

G

(
f(s)iG(s)(g) ⊗ h | U−1k

)
dµ(s)

=

∫

G

(
M

(
f(s)

)
Vs(g ⊗ h) | U−1k

)
dµ(s)

=
(
M ⋊ V (f)(g ⊗ h) | U−1k

)

=
(
U ◦M ⋊ V (f)(g ⊗ h) | k

)
.

This proves that π(f) ◦U = U ◦M ⋊ V (f), and that ‖π(f)‖ = ‖M ⋊ V (f)‖ ≤ ‖f‖
as desired.

It follows that every ∗-homomorphism L : Cc(G,A) → B(H) which is L1-norm
bounded or just continuous in the inductive limit topology is bounded with respect
to the universal norm and extends to a (possibly degenerate) representation of
A⋊α G. Thus every such representation is the integrated form of a covariant pair.

Corollary 2.46. Suppose that (A,G, α) is a dynamical system and that
f ∈ Cc(G,A). Then

‖f‖ = sup{ ‖L(f)‖ : L is a L1-norm decreasing representation. }
= sup{ ‖L(f)‖ : L is continuous in the inductive limit topology. }

Corollary 2.47. Suppose that (A,G, α) and (B,H, β) are dynamical systems and
that Φ : Cc(G,A) → Cc(H,B) is a ∗-homomorphism which is continuous in the
inductive limit topology. Then Φ is norm-decreasing with respect to the universal
norms and extends to an homomorphism of A⋊α G into B ⋊β H.

Proof. Suppose that L is a representation of B⋊βH . Then L◦Φ is a representation
of Cc(G,A) which is continuous in the inductive limit topology. Thus Lemma 2.45
on page 61 implies that L ◦Φ is bounded for the universal norm, and thus for each
f ∈ Cc(G,A), ‖L(Φ(f)‖ ≤ ‖f‖. Since L is arbitrary, it follows that ‖Φ(f)‖ ≤
‖f‖.

Corollary 2.48. Suppose that (A,G, α) and (B,G, β) are dynamical systems and
that ϕ : A → B is an equivariant homomorphism. Then there is a homomor-
phism ϕ ⋊ id : A ⋊α G → B ⋊β G mapping Cc(G,A) into Cc(G,B) such that
ϕ⋊ id(f)(s) = ϕ

(
f(s)

)
.

Proof. Define Φ : Cc(G,A) → Cc(G,B) by Φ(f)(s) = ϕ
(
f(s)

)
. Then Φ is norm

decreasing for the L1-norm and therefore continuous in the inductive limit topology.
Now we can apply Corollary 2.47 on the previous page.
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2.5 Comments on Examples

Having worked hard just to define a crossed product it would be natural to want,
and to provide, a few illustrative examples other than the degenerate examples in
Example 2.33 on page 54. It is a bit frustrating to admit that we still need more
technology to do this in a systematic way. (We’ll deal with the group C∗-algebras
of abelian and compact groups in Section 3.1 and Section 3.2, respectively.)

However, we can work out some simple and provocative examples when we
assume that (A,G, α) is a dynamical system with G finite. To begin with, suppose
that G = Z2 := Z/2Z. This means we are given α ∈ AutA with α2 = id. Then
Cc(Z2, A) = C(Z2, A) and elements of C(Z2, A) are simply functions from Z2 =
{ 0, 1 } to A. Let

D :=
{(

a b
α(b) α(a)

)
∈M2(A) : a, b ∈ A

}
.

It is easy to check that D is a C∗-subalgebra of M2(A) and that

Φ(f) :=

(
f(0) f(1)

α
(
f(1)

)
α
(
f(0)

)
)

defines an injective ∗-homomorphism of C(Z2, A) (with the ∗-algebra structure
coming from (A,Z2, α)) into D. In fact, Φ is clearly surjective. Since we can
faithfully represent D on Hilbert space, it follows that the universal norm of f ∈
C(Z2, A) satisfies

‖f‖ ≥ ‖Φ(f)‖.
On the other hand, if L is any representation of A⋊αZ2, then L◦Φ−1 is a ∗-homo-
morphism of D into B(HL). Since ∗-homomorphisms of C∗-algebras are norm
reducing,

‖L(f)‖ = ‖L
(
Φ−1

(
Φ(f)

))
‖ ≤ ‖Φ(f)‖.

Therefore,

‖f‖ = ‖Φ(f)‖.
In particular, C(Z2, A) is already complete in its universal norm, and Φ is an
isomorphism of A ⋊α Z2 onto D. Although this situation is rather atypical —
normally A ⋊α G is going to be a genuine completion of Cc(G,A) — it will be
useful to record the general principle we used above so that we can use it in some
other examples of finite group actions.

Lemma 2.49. Suppose that (A,G, α) is a dynamical system with G finite and that
L : C(G,A) → D is a ∗-isomorphism of C(G,A) onto a C∗-algebra D. Then
A⋊α G ∼= D.

It is an interesting exercise to use Lemma 2.49 to study A⋊αG for various finite
groups G — for example, compare G = Z4 with G = Z2 × Z2. Here we specialize
to transformation groups.
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Lemma 2.50. Suppose that G is a finite group with |G| = n. Then G acts on itself
by left translation and

C(G) ⋊lt G ∼= Mn,

where Mn denotes the C∗-algebra of n× n-matrices (with complex entries).

Proof. Of course, we giveG the discrete topology and use counting measure for Haar
measure on G. Let L = M ⋊ λ be the natural representation as in Example 2.12
on page 45. Let G = { si }ni=1 with s1 := e. Then L2(G) is a n-dimensional Hilbert
space with orthonormal basis { es }s∈G where es is the function δs which is 1 at s
and zero elsewhere. We view operators on L2(G) as n×n matrices calculated with
respect to { es }. If f ∈ C(G ×G) and h ∈ L2(G), then

L(f)h(s) :=
∑

r∈G

f(r, s)h(r−1s) =
∑

r∈G

f(sr−1, s)h(r).

It follows that L(f) is given by the matrix Mf with (s, r)th entryMf
s,r = f(sr−1, s).

If M = (ms,r)s,r∈G is any n× n matrix, then

f(s, r) := mr,s−1r

satisfies
Mf
s,r = f(sr−1, s) = ms,r.

Thus L is a surjective ∗-isomorphism of C(G×G) onto Mn. The result now follows
from Lemma 2.49 on the facing page.

Lemma 2.50 can be extended to arbitrary groups.

Example 2.51. Suppose that G is a locally compact group acting on itself by left
translation. Then C0(G) ⋊lt G is isomorphic to the compact operators on L2(G).

Verifying Example 2.51 is a good exercise if G is discrete. In general, some work
is required and there are a number of ways to proceed. In this book, we’ll eventually
prove this in Theorem 4.24 on page 133 using the Imprimitivity Theorems developed
in Section 4.3.

Now we suppose that A = C(X) for a compact Hausdorff space X .6 To get
a Z2-action we need a homeomorphism σ ∈ Homeo(X) such that σ2 = id. For
convenience, we’ll assume that the Z2-action is free so that σ(x) 6= x for all x ∈ X .
We’ll let

(
C(X),Z2, α

)
be the associated dynamical system (so that α1(f)(x) =

f
(
σ(x)

)
). For example, we could let X be the n-sphere Sn = {x ∈ Rn+1 : ‖x‖ =

1 }, and σ the antipodal map σ(x) := −x.
However, for the moment, we let σ be any period two homeomorphism of a

compact space X (without fixed points). We’ll view operators on L2(Z2) as 2 × 2-
matrices with respect to the orthonormal basis { e0, e1 } where ei is the function
δi as above. Let Lx = π ⋊ λ = IndGe evx be the regular representation on L2(Z2)
coming from evaluation at x. Thus λ is the left-regular representation and

π(ϕ)h(s) = evx
(
α−1
s (ϕ)

)
h(s).

6It isn’t really necessary to take X compact, but it makes the examples a little easier to digest.
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Therefore π(ϕ) is given by the matrix

(
ϕ(x) 0

0 ϕ
(
σ(x)

)
)

If f ∈ C(Z2 ×X), then

π ⋊ λ(f) =
∑

s=0,1

π
(
f(s, ·)

)
λ(s)

=

(
f(0, x) 0

0 f
(
0, σ(x)

)
)

+

(
f(1, x) 0

0 f
(
1, σ(x)

)
) (

0 1
1 0

)

=

(
f(0, x) f(1, x)

f
(
1, σ(x)

)
f
(
0, σ(x)

)
)
.

In this way, we can view Lx as a ∗-homomorphism of C(Z2×X) into M2. Since
σ(x) 6= x, Lx is surjective. Let

W :=

(
0 1
1 0

)
,

and let

A :=
{
f ∈ C(X,M2) : f

(
σ(x)

)
= Wf(x)W ∗

}
.

Then A is a C∗-subalgebra of C(X,M2). Since each Lx is onto M2, it is not hard to
see that the irreducible representations of A correspond to the point evaluations πx.
Since A is a C(Z2\X)-algebra, we have πx equivalent to πy if and only if y = σ(x).
Thus the spectrum of A is naturally identified with Z2\X .7 Since all the irreducible
representations of A are 2-dimensional, A is called a 2-homogeneous C∗-algebra.

Now define Φ : C(Z2 ×X) → C(X,M2) by

Φ(f)(x) = Lx(f) =

(
f(0, x) f(1, x)

f
(
1, σ(x)

)
f
(
0, σ(x)

)
.

)

Since each Lx is a ∗-homomorphism, so is Φ. Furthermore, Φ is injective and

Φ(f)
(
σ(x)

)
=

(
f
(
0, σ(x)

)
f
(
1, σ(x)

)

f(1, x) f(0, x)

)
= WΦ(f)(x)W ∗.

Thus Φ maps into A. On the other hand, if a ∈ A, say

a(x) =

(
a11(x) a12(x)
a21(x) a22(x)

)
,

and if we define f ∈ C(Z2 × X) by f(i, x) := a1,1+i(x), then we have Φ(f) = a.
After applying Lemma 2.49 on page 64, we have proved the following.

7It is not hard to see that Z2\X is compact and Hausdorff. This also follows from Corollary 3.43
on page 100.
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Proposition 2.52. Suppose that X is a compact free Z2-space determined by a
period two homeomorphism σ. Then C(Z2 ×X) is complete in its universal norm
and

Φ(f)(x) :=

(
f(0, x) f(1, x)

f
(
1, σ(x)

)
f
(
0, σ(x)

)
)

defines an isomorphism of C(X) ⋊α Z2 = C(Z2 × X) with the 2-homogeneous
C∗-algebra with spectrum Z2\X

A := { f ∈ C(X,M2) : f
(
σ(x)

)
= Wf(x)W ∗ },

where W =
(

0 1
1 0

)
.

We will have more to say about examples provided by Proposition 2.52 later
(cf. Proposition 4.15 on page 127).

As sort of a preview of coming attractions, I also want to mention a few non-
trivial examples that we’ll take up in due course. An obvious question to ask is
what happens if the G-action on A is trivial. It turns out that this isn’t too different
than allowing the G-action to be implemented by a homomorphism into the unitary
group of the multiplier algebra of A.

Example 2.53 (Trivial Dynamical Systems). Suppose that (A,G, α) is a dynamical
system and that there is a strictly continuous homomorphism u : G → UM(A)
such that that αs(a) = usau

∗
s for all s ∈ G and a ∈ A. Then it is a straightforward

corollary to Lemma 2.73 on page 76 that A ⋊α G is isomorphic to A ⊗max C
∗(G)

(see Lemma 2.68 on page 74 and Remark 2.71 on page 75).

Another natural example is to let a closed subgroup H of a locally compact
group G act by left translation on the coset space G/H . The imprimitivity theorem
(Theorem 4.22 on page 132) implies that C0(G/H) ⋊lt G is Morita equivalent to
C∗(H). With considerably more work (Theorem 4.30 on page 138), we can sharpen
this to an isomorphism result.

Example 2.54. C0(G/H) ⋊lt G is isomorphic to the tensor product of C∗(H) with
the compact operators on L2(G/H, µ) where µ is any quasi-invariant measure on
G/H .

Example 2.54 is more generally applicable than one might think at first. We’ll
show later that in many cases — namely when the action of G is “nice” in a sense
to made precise later — C0(X) ⋊G is fibred over the orbits in X with fibres of the
form C0(G/Hω) ⋊lt G where Hω depends on the orbit ω (see Section 8.1).

Example 2.55. Let Z act on T by rotation through θ as in Example 2.13 on page 45.
The resulting crossed product Aθ := C0(T) ⋊τ Z is called a rational or irrational
rotation algebra depending on whether θ is rational or irrational.

The structure of the rotation algebras, both irrational and rational, is surpris-
ingly intricate and was a hot research topic in the early 1980’s. These algebras
continue to be of interest to this day. For example, just seeing that Aθ and Aθ′ are
not isomorphic for different irrational θ and θ′ in [0, 1

2 ] involves more than we’re
prepared to undertake in this book.8

8A proof is given in Davidson’s text [21, §VI.5].
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Proposition 2.56. If θ is irrational then the irrational rotation algebra Aθ is
simple and is generated by two unitaries u and v such that uv = ρvu where ρ =
e2πiθ. Furthermore, if H is a Hilbert space and if U and V are unitaries in B(H)
such that UV = ρV U , then there is a representation L : Aθ → B(H) such that
L(u) = U , L(v) = V and L is an isomorphism of Aθ onto the C∗-algebra C∗(U, V )
generated by U and V .

Remark 2.57. One often summarizes the final assertion in Proposition 2.56 by
saying that Aθ is the “universal C∗-algebra generated by two unitaries U and V
satisfying UV = ρV U”.

Remark 2.58. In the proof, we will need to know that { ρnz }n∈Z is dense in T for
all z ∈ T. This will be proved in Lemma 3.29 on page 96.

Proof. Recall that Aθ = C(T) ⋊τ Z is the completion of the ∗-algebra Cc(Z × T)
where the convolution product is given by the finite sum

f ∗ g(n, z) :=

∞∑

m=−∞

f(m, z)g(n−m, ρ−mz),

and the involution is given by

f∗(n, z) = f(−n, ρ−nz).

If ϕ ∈ C(T) and h ∈ Cc(Z), then ϕ ⊗ h is the element of Cc(Z × T) given by
ϕ ⊗ h(n, z) = ϕ(z)h(n). As usual, let δn be the function on Z which is equal to 1
at n and zero elsewhere. In particular, Aθ has an identity in Cc(Z × T) given by
1⊗ δ0. Furthermore, u = 1 ⊗ δ1 is a unitary in Cc(Z×T), as is v = ιT ⊗ δ0 where
ιT(z) := z for all z ∈ T. If ϕ ∈ C(T), then let iC(T)(ϕ) := ϕ⊗ δ0. Then iC(T) is a
homomorphism of C(T ) into Cc(Z × T) ⊂ Aθ (and is therefore bounded). Notice
that iC(T)(ϕ)∗un = ϕ⊗ δn for all n ∈ Z, and that u ∗ iC(T)(ϕ)∗u∗ = iC(T)

(
τ1(ϕ)

)
.

It follows from Lemma 1.87 on page 29 that

{ iC(T)(ϕ) ∗ un : ϕ ∈ C(T) and n ∈ Z }

spans a dense subalgebra of Cc(Z × T).

The Stone-Weierstrass Theorem implies that ιT generates C(T) as a C∗-algebra.
In particular,

{ vn : n ∈ Z }

spans a dense subalgebra of iC(T)

(
C(T)

)
. It follows that u and v generate Aθ, and

it is easy to verify that uv = ρvu.

Now suppose that U, V ∈ B(H) are as in the statement of the proposition. Since
U and V are unitaries, their spectrums σ(U) and σ(V ) are subsets of T. I claim
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that σ(V ) = T.9 Note that

λ ∈ σ(V ) ⇐⇒ V − λI is not invertible

⇐⇒ Un(V − λI) is not invertible

⇐⇒ (ρnV − λI)Un is not invertible

⇐⇒ V − ρ−nλI is not invertible

⇐⇒ ρ−nλ ∈ σ(V ).

Since σ(V ) must be nonempty, σ(V ) contains a dense subset of T by Remark 2.58
on the preceding page. Since σ(V ) is closed, the claim follows.

Thus the Abstract Spectral Theorem [110, Theorem 2.1.13] implies that there is
an isomorphism π : C(T) → C∗(V ) ⊂ C∗(U, V ) taking ιT to V . Let W : Z → U(H)
be given by Wn := Un. Since UV = ρV U , it follows that

Wnπ(ιT)W ∗
n = π

(
τn(ιT)

)
.

Since ιT generates C(T), (π,W ) is a covariant representation of
(
C(T),Z, τ

)
. Fur-

thermore,

π ⋊W (u) =
∞∑

m=−∞

π
(
u(m, ·)

)
Wm = π(1C(T))W1 = U, and

π ⋊W (v) =
∞∑

m=−∞

π
(
v(m, ·)

)
Wm = π(ιT) = V.

Since u and v generate Aθ and since U and V generate C∗(U, V ), it follows that
π⋊W (Aθ) = C∗(U, V ) and L := π⋊W is an homomorphism of Aθ onto C∗(U, V )
taking u to U and v to V .

Now it will suffice to see that Aθ is simple. However, proving that is going to
require more work.

For each ω ∈ T, let τ̂ω : Cc(Z × T) → Cc(Z × T) be defined by τ̂ω(f)(n, z) =
ωnf(n, z). It is not hard to check that τ̂ω is a ∗-isomorphism which is continuous in
the inductive limit topology. Therefore τ̂ω extends to an automorphism of Aθ (with
inverse τ̂ω̄). Since ω 7→ τ̂ω(f) is continuous from T to Cc(Z × T) in the inductive
limit topology for each f ∈ Cc(Z × T), it is not hard to see that ω 7→ τ̂ω(a) is
continuous from T to Aθ for all a ∈ Aθ.

10 Therefore we can define Φ : Aθ → Aθ by

Φ(a) =

∫

T

τ̂ω(a) dω.

It is easy to see that Φ is linear and ‖Φ‖ ≤ 1. Since for each ω ∈ T, τ̂ω(v) = v and
τ̂ω(u) = ωu, we have for each k,m ∈ Z,

Φ(vk ∗ um) =

∫

T

τ̂ω(vk ∗ um) dω = vk ∗
(∫

T

ωm dω
)
um.

9Of course, we also have σ(U) = T.
10The automorphism group τ̂ : T → AutAθ is an example of the dual-action which will re-

appear in Section 7.1.
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Therefore,

Φ(vk ∗ um) =

{
vk if m = 0, and

0 otherwise.
(2.36)

Now let En : Aθ → Aθ be defined by

En(a) :=
1

2n+ 1

n∑

j=−n

vj ∗ a ∗ v−j .

Since v is a unitary, En is linear with ‖En‖ ≤ 1. Furthermore,

En(vk ∗ um) =
n∑

j=−n

vj ∗ vk ∗ um ∗ v−j = vk ∗ um
n∑

j=−n

ρjm. (2.37)

Thus if m = 0, (2.37) is equal to vk. Otherwise, notice that the usual sort of
manipulations with geometric series gives

n∑

j=−n

ρjm =
ρm(n+1) − ρ−mn

ρm − 1

=
ρ

m
2 (2n+1) − ρ−

m
2 (2n+1)

ρ
m
2 − ρ−

m
2

=
eiπθm(2n+1) − e−iπθm(2n+1)

eiπmθ − e−iπnmθ

=
sin

(
(2n+ 1)πmθ

)

sin(πmθ)
.

Thus if m 6= 0,

lim
n→∞

En(v
k ∗ um) = vk ∗ um lim

n→∞

n∑

j=−n

ρjm = 0.

It follows that

Φ(a) = lim
n→∞

En(a) (2.38)

for all a in the dense subalgebra A0 := span{ uk ∗ vm : k,m ∈ Z }.
We want to see that (2.38) holds for all a ∈ Aθ. Fix ǫ > 0 and a ∈ Aθ. Then

there is a b ∈ A0 such that ‖a− b‖ < ǫ/3, and a N ∈ Z+ such that n ≥ N implies
‖Φ(b)−En(b)‖ < ǫ/3. Since Φ and En each have norm 1, it follows that if n ≥ N ,

‖Φ(a) − En(a)‖ ≤ ‖Φ(a− b)‖ + ‖Φ(b) − En(b)‖ + ‖En(b − a)‖
≤ ǫ

3
+
ǫ

3
+
ǫ

3
= ǫ.

Therefore (2.38) holds for all a ∈ Aθ.
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Now suppose that I is a nonzero ideal in Aθ. Let a be a nonzero positive element
in I. Let ρ be a state on Aθ such that ρ(a) > 0. Then ω 7→ ρ

(
τ̂ω(a)

)
is a nonzero

continuous nonnegative function on T. Thus

ρ
(
Φ(a)

)
=

∫

T

ρ
(
τ̂ω(a)

)
dω > 0,

and Φ(a) > 0.

It follows from (2.36) that Φ(a) ∈ iC(T)

(
C(T)

)
and from (2.38) that Φ(a) ∈ I.

Thus there is a nonzero nonnegative function h ∈ C(T) such that iC(T)(h) ∈ I.
Let O be a neighborhood of z0 ∈ T such that h(z) > 0 for all z ∈ O. Since
{ ρkz0 : k ∈ Z } is dense in T (Remark 2.58 on page 68), there is a n such that⋃n
k=−n ρ

kV covers T. Then

g :=
n∑

k=−n

τk(h)

is positive and nonzero on T. Hence g is invertible in C(T) and iC(T)(g) is invertible
in Aθ (with inverse iC(T)(g

−1)). However,

iC(T)(g) =

n∑

k=−n

iC(T)

(
τk(h)

)
=

n∑

k=−n

uk ∗ iC(T)(h) ∗ u−k

clearly belongs to I. Thus I contains an invertible element and must be all of Aθ.
Thus Aθ is simple.

Example 2.59. To obtain a more concrete realization of Aθ for irrational θ we can
let H = L2(T). Define U and V as follows:

U(f)(z) = zf(z) and V (f)(z) = f(ρ̄z).

Then its not hard to see that U and V are unitaries on H. Furthermore, V U(f)(z) =
U(f)(ρ̄z) = ρ̄zf(ρ̄z) and UV (f)(z) = zV (f)(z) = zf(ρ̄z). Thus, UV = ρV U and
C∗(U, V ) ∼= Aθ.

Remark 2.60 (The Whole Story). Since C∗(U, V ) = C∗(V, U), it is not so hard to
see that Aθ is isomorphic to Aθ′ whenever either θ− θ′ or θ+ θ′ is an integer; that
is, whenever θ′ = θ mod 1. In fact, Aθ ∼= Aθ′ if and only if θ′ = θ mod 1. This
was proved for θ irrational by Rieffel in [147]. The same result for rational rotation
C∗-algebras was proved later by Høegh-Krohn and Skjelbred [74] (see also [149]).
Rieffel also showed that the rational rotation algebras are all Morita equivalent to
C0(T

2) [149],11 and that two irrational rotation C∗-algebras Aθ and Aθ′ are Morita
equivalent if and only if θ and θ′ are in the same GL2(Z) orbit [147].12

11See also footnote 11 on page 255.
12If α is an irrational number and

`

a b
c d

´

∈ GL2(Z), then
`

a b
c d

´

(α) = aα+b
cα+d

.
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2.6 Universal Property

The notion of a universal object can be a powerful one. Good examples are the
direct limit (see [139, Appendix D.1]), the maximal tensor product (see [139, The-
orem B.27]) and graph C∗-algebras (see [6]); it is often easiest to exhibit such
objects by verifying a particular representation has the required universal property,
rather than working directly with the definition. Starting with [133] it has become
apparent that the crossed product constructed in Section 2.3 can often profitably
be thought of as a universal object for covariant representations of the dynamical
system.

Theorem 2.61 (Raeburn). Let (A,G, α) be a dynamical system. Suppose that B
is a C∗-algebra such that

(a) there is a covariant homomorphism (jA, jG) of (A,G, α) into M(B),

(b) given a nondegenerate covariant representation (π, U) of (A,G, α), there is
a (nondegenerate) representation L = L(π,U) of B such that L̄ ◦ jA = π and
L̄ ◦ jG = U , and

(c) B = span{ jA(a)jG(z) : a ∈ A and z ∈ Cc(G) }.
Then there is an isomorphism

j : B → A⋊α G

such that
̄ ◦ jA = iA and ̄ ◦ jG = iG, (2.39)

where (iA, iG) is the canonical covariant homomorphism of (A,G, α) into M(A⋊α

G) defined in Proposition 2.34 on page 54.

Remark 2.62. Notice that the crossed product A⋊αG is an example of a C∗-algebra
B satisfying (a), (b) and (c) above where (jA, jG) = (iA, iG) and L(π,U) := π ⋊ U .
Property (a) follows from Propositions 2.34 on page 54, and Property (b) from
Proposition 2.39 on page 58. Property (c) follows from Lemma 1.87 on page 29
together with Equation (2.28) of Corollary 2.36 on page 57.

Lemma 2.63. Suppose that (B, jA, jG) satisfies (a), (b) and (c) as in Theo-
rem 2.61. Then jA : A → M(B) is nondegenerate, and if { ei } is an approximate
identity in A, jA(ei) → 1 strictly in M(B).

Proof. It is easy to see that A2 is dense in A.13 Therefore, { jA(ab)jG(z) :
a, b ∈ A and z ∈ Cc(G) } is dense in B by property (c). Thus jA is nondegenerate.
The last assertion follows easily.

Proof of Theorem 2.61. Suppose that (B, jA, jG) satisfies (a), (b) and (c) as above.
Let ρ : A⋊α G→ B(Hρ) be a faithful representation of A⋊α G. Let

π := ρ̄ ◦ iA and u := ρ̄ ◦ iG
13In fact, A2 = A by the Cohen Factorization Theorem [139, Proposition 2.33].
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Then (π, u) is a nondegenerate covariant representation of (A,G, α) (Propo-
sition 2.39 on page 58). Property (b) implies that there is a nondegenerate
representation L : B → B(Hρ) such that L̄ ◦ jA = π and L̄ ◦ jG = u. Note that if
a ∈ A and z ∈ Cc(G) then

L
(
jA(a)jG(z)

)
= π(a)

∫

G

z(s)us dµ(s)

= ρ̄
(
iA(a)

) ∫

G

z(s)ρ̄
(
iG(s)

)
dµ(s)

= ρ̄
(
iA(a)

)
ρ̄
(
iG(z)

)

= ρ
(
iA(a)iG(z)

)

It follows that j := ρ−1◦L is a homomorphism fromB to A⋊αGmapping generators
to generators; thus j is surjective and clearly satisfies (2.39).

To finish the proof, we provide an inverse for j. We could do this by reversing the
roles of B and A⋊αG above, and noticing we used nothing about (A⋊αG, iA, iG)
except that it satisfies (a), (b) and (c). Alternatively, we can invoke Proposition 2.40
on page 59 to conclude that there is a nondegenerate homomorphism jA ⋊ jG :
A⋊α G→M(B) = L(BB) such that

jA ⋊ jG
(
iA(a)iG(z)

)
= jA(a)jG(z).

Then it follows that jA ⋊ jG(A ⋊α G) ⊂ B. To see that jA ⋊ jG is the required
inverse, just note that jA⋊ jG ◦ j and j ◦ jA⋊ jG are the identity on generators.

Definition 2.64. Two dynamical systems (A,G, α) and (D,G, δ) are equivariantly
isomorphic if there is an isomorphism ϕ : A → D such that ϕ

(
αs(a)

)
= δs

(
ϕ(a)

)

for all s ∈ G and a ∈ A. We call ϕ an equivariant isomorphism.

Lemma 2.65. Suppose that ϕ is an equivariant isomorphism of (A,G, α) onto
(D,G, δ). Then the map ϕ⋊ id : Cc(G,A) → Cc(G,D) defined by

ϕ⋊ id(f)(s) := ϕ
(
f(s)

)

extends to an isomorphism of A⋊α G onto D ⋊δ G.

The result follows immediately from Corollary 2.48 on page 63. However, it
might also be instructive to see a proof using Theorem 2.61 on the facing page.

Proof. We’ll produce an isomorphism j : A ⋊α G → D ⋊δ G using Theorem 2.61
(with A ⋊α G playing the role of B). Let (iA, iG) and (kD, kG) be the canonical
covariant homomorphisms for (A,G, α) and (D,G, δ), respectively. Then define
(jD, jG) from (D,G, δ) intoM(A⋊αG) by letting jD(d) := iA

(
ϕ−1(d)

)
and jG = iG.

It is easy to see that (jD, jG) is covariant. If (π, U) is a covariant representation
of (D,G, δ), then (π ◦ ϕ,U) is a covariant representation of (A,G, α) and we can
define L = L(π,U) to be (π ◦ ϕ) ⋊ U . Clearly

((π ◦ ϕ) ⋊ U)¯ ◦ jD(d) = π(d) and ((π ◦ ϕ) ⋊ U)¯ ◦ jG = Us.
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Thus conditions (a) and (b) of Theorem 2.61 on page 72 are satisfied. Since
jD(d)jG(z) = iA

(
ϕ−1(d)

)
iG(z), it is clear that condition (c) is also satisfied. There-

fore there is an isomorphism j : A⋊α G→ D ⋊δ G such that

j
(
iA(a)iG(z)

)
= j

(
jD

(
ϕ(a)

)
jG(z)

)
= kD

(
ϕ(a)

)
kG(z).

It follows that j = ϕ⋊ id.

Definition 2.66. Two dynamical systems (A,G, α) and (A,G, β) are called ex-
terior equivalent if there is a strictly continuous unitary-valued function u : G →
UM(A) such that

(a) αs(a) = usβs(a)u
∗
s for all s ∈ G and a ∈ A, and

(b) ust = usβ̄s(ut) for all s, t ∈ G.

The map u is called a unitary 1-cocycle.

Remark 2.67. It should be noted that Definition 2.66 is symmetric in α and β:
vs := u∗s is a unitary 1-cocycle implementing an equivalence between β and α.

Lemma 2.68. Suppose that (A,G, α) and (A,G, β) are exterior equivalent via a
1-cocycle u as in Definition 2.66. Then the map sending f ∈ Cc(G,A) to ϕ(f),
where

ϕ(f)(s) := f(s)us

extends to an isomorphism between A⋊α G and A⋊β G.

Remark 2.69. As with Lemma 2.65 on the preceding page, this result could be
proved using either Theorem 2.61 or Corollary 2.47. Instead, we give a proof using
only the properties of covariant homomorphisms.

Proof. Let (iA, iG) be the canonical covariant homomorphism of (A,G, α) into
M(A⋊αG), and let (kA, kG) be the canonical covariant homomorphism of (A,G, β)
into M(A⋊β G). Let

jA(a) := kA(a) and jG(s) := k̄A(us)kG(s).

Since

jG(st) = k̄A(ust)kG(st)

= k̄A(us)k̄A
(
β̄s(ut)

)
kG(s)kG(t)

= k̄A(us)kG(s)k̄A(ut)kG(t)

= jG(s)jG(t),

jG is a strictly continuous unitary-valued homomorphism. Furthermore

jG(s)jA(a)jG(s)∗ = k̄A(us)kG(s)kA(a)kG(s)∗k̄A(u∗s)

= k̄A(us)kA
(
βs(a)

)
k̄A(u∗s)

= kA
(
αs(a)

)
.
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and (jA, jG) is covariant. Therefore jA ⋊ jG is a nondegenerate homomorphism of
A⋊α G into M(A⋊β G). Furthermore if f ∈ Cc(G,A), then

jA ⋊ jG(f) =

∫

G

jA
(
f(s)

)
jG(s) dµ(s)

=

∫

G

kA
(
f(s)us

)
kG(s) dµ(s)

= kA ⋊ kG
(
ϕ(f)

)
.

This proves that ϕ extends to a homomorphism of A⋊αG into A⋊β G. Reversing
the roles of α and β shows that ϕ−1(f)(s) := f(s)u∗s is an inverse for ϕ, and ϕ is
an isomorphism as claimed.

Definition 2.70. A dynamical system α : G→ AutA is unitarily implemented or
just unitary if there is a strictly continuous homomorphism u : G → UM(A) such
that αs(a) = usau

∗
s for all a ∈ A and s ∈ G.

Remark 2.71. A dynamical system α : G → AutA is unitary if and only if it is
exterior equivalent to the trivial system ι : G → AutA where ιs := idA for all
s ∈ G.

Before continuing further, we need some remarks on tensor products and the
tensor product of two dynamical systems.

Remark 2.72 (Tensor Products of C∗-algebras). The theory of the tensor product
of C∗-algebras has some subtleties which impact the study of crossed products.
All that we need, and more, can be found in [139, Appendix B]. For convenience,
we mention some properties we’ll need here. Usually, the algebraic tensor product
A⊙B of two C∗-algebras is not a C∗-algebra. Instead, one looks for a norm ‖ · ‖α
(called a C∗-norm) on A ⊙ B so that the completion A ⊗α B is a C∗-algebra. It
is a fact of life that there can be more than one C∗-norm on A ⊙ B. The spatial
norm ‖ · ‖σ has the property that given two representation ρA : A → B(HA) and
ρB : B → B(HB) there is a representation ρA ⊗ ρB : A⊗σ B → B(HA ⊗HB) such
that ρA ⊗ ρB(a⊗ b) = ρA(a) ⊗ ρB(b). If ρA and ρB are faithful, then

∥∥∥
∑

ai ⊗ bi

∥∥∥
σ

=
∥∥∥
∑

ρA(ai) ⊗ ρB(bi)
∥∥∥.

On the other hand, the maximal norm ‖ · ‖max has the property that if πA : A →
B(H) and πB : B → B(H) are representations with commuting ranges — that is,
πA(a)πB(b) = πB(b)πA(a) for all a ∈ A and b ∈ B — then there is a representation
πA ⊗max πB : A ⊗max B → B(H) such that πA ⊗max πB(a ⊗ b) = πA(a)πB(b). In
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fact,14

∥∥∥
∑

ai ⊗ bi

∥∥∥
max

= sup
{∥∥∥

∑
πA(ai)πB(bi)

∥∥∥ :

πA and πB have commuting ranges
}
.

It is nontrivial to show that if ‖ · ‖α is any C∗-norm on A⊙B, then ‖ · ‖σ ≤ ‖ · ‖α ≤
‖ · ‖max. For this reason, the spatial norm is often called the minimal norm. For
a very large class of C∗-algebras A the spatial norm coincides with maximal norm
on A ⊙ B for every C∗-algebra B and there is a unique C∗-norm on A ⊙ B. By
definition, A is called nuclear when A ⊙ B has a unique C∗-norm for all B. The
class of nuclear C∗-algebras includes all GCR C∗-algebras.

As illustrated by our next result and Lemma 2.75 on page 78, it is the maximal
tensor product which seems to play the key role in the study of crossed products.15

In fact, the next two results motivate the assertion that a crossed product can be
though of as a twisted maximal tensor product of A and C∗(G).

Lemma 2.73. If ι : G→ AutA is trivial, then

A⋊ι G ∼= A⊗max C
∗(G).

Proof. We’ll use Theorem 2.61 on page 72 to produce an isomorphism

j : A⊗max C
∗(G) → A⋊ι G.

Let jA : A→M(A⊗maxC
∗(G)) and jG : C∗(G) →M(A⊗maxC

∗(G)) be the natural
commuting homomorphisms defined, for example, in [139, Theorem B.27]. Since
jG is certainly nondegenerate, it is the integrated form of the strictly continuous
unitary-valued homomorphism jG : G → UM(A ⊗max C

∗(G)), where jG(s) :=
̄G

(
iG(s)

)
. Note that

jG(s)jA(a)(b⊗ z) = jG(s)jG(z)jA(ab)

= jG
(
iG(s)z

)
jA(a)jA(b)

= jA(a)jG(s)(b ⊗ z).

Thus jG(s)jA(a)jG(s)∗ = jA(a) and (jA, jG) is a covariant homomorphism of
(A,G, ι) into M(A⊗max C

∗(G)).
If (π, U) is a nondegenerate covariant representation of (A,G, ι), then

Usπ(a)U∗
s = π(a) for all s ∈ G and a ∈ A. But if z ∈ Cc(G), we also have

π(a)U(z) =

∫

G

z(s)π(a)Us dµ(s) = U(z)π(a).

14As with the definition of the universal norm in Lemma 2.27 on page 52, we have to be a bit
careful to see that we are taking the supremum over a set. There are ways to define the maximal
norm which avoid this subtly (cf. [139, Proposition B.25]), but the supremum definition gives a
better flavor of the properties of the maximal norm, and can be justified with a bit of set theory:
see Remark 2.28 on page 52.

15When we get around to defining reduced crossed products in Section 7.2, it will turn out that
the appropriate norm for reduced crossed products is the spatial norm.
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Therefore π and U are commuting representations of A and C∗(G), respectively,
and we can define a representation of A⊗max C

∗(G) by

L = L(π,U) = π ⊗max U

as in [139, Theorem B.27(b)]. We also have L̄ ◦ jA(a) = π(a) and L̄ ◦ jG(z) = U(z)
for a ∈ A and z ∈ Cc(G). Then

L̄
(
jG(s)

)
L(a⊗ z) = L

(
jG(s)jG(z)jA(a)

)

= L
(
jG

(
iG(s)z

)
jA(a)

)

= U
(
iG(s)z

)
π(a)

= UsU(z)π(a)

= UsL(a⊗ z).

Thus L̄ ◦ jG(s) = Us, and we’ve established conditions (a) and (b) of Theorem 2.61
on page 72. But the elementary tensors a⊗ z = jA(a)jG(z) are certainly dense in
A⊗max C

∗(G), so we’re done.

Remark 2.74 (Tensor product systems). If A and B are C∗-algebras with α ∈
AutA and β ∈ AutB, then [139, Lemma B.31] implies that there is a α ⊗max

β ∈ Aut(A ⊗max B) such that α ⊗max β(a ⊗ b) = α(a) ⊗ β(b). Similarly, [139,
Proposition B.13] implies there is a α⊗β ∈ Aut(A⊗σB). If (A,G, α) and (B,G, β)
are dynamical systems, then we clearly obtain homomorphisms

α⊗max β : G→ Aut(A⊗max B) and α⊗ β : G→ Aut(A⊗σ B).

To see that these are also dynamical systems, we still have to verify that the actions
are strongly continuous. However, since automorphisms are isometric and since
A⊙B is dense in any completion, this follows from estimates such as

∥∥(α⊗ β)s(t) − (α ⊗ β)r(t)
∥∥
σ

≤
∥∥∥(α⊗ β)s

(
t−

∑
ai ⊗ bi

)∥∥∥
σ

+
∥∥∥
∑

αs(ai) ⊗ βs(bi) − αr(ai) ⊗ βr(bi)
∥∥∥
σ

+
∥∥∥(α⊗ β)r

(∑
ai ⊗ bi − t

)∥∥∥
σ

≤ 2
∥∥∥t−

∑
ai ⊗ bi

∥∥∥
σ

+
∑∥∥αs(ai) ⊗ βs(bi) − αr(ai) ⊗ βr(bi)

∥∥
σ
.

Furthermore, if ρA and ρB are faithful representations of A and B, respectively,
then the same is true of ρA ◦ α and ρB ◦ β. As in Remark 2.72 on page 75, if
κ : A⊗max B → A⊗σ B is the natural map,

kerκ = ker
(
(ρA ⊗ 1) ⊗max (1 ⊗ ρB)

)

= ker
(
(ρA ⊗ 1) ⊗max (1 ⊗ ρB) ◦ (α⊗max β)

)
.

Consequently, kerκ is α⊗max β-invariant and α⊗ β is the induced action, (α⊗max

β)kerκ, on A ⊗σ B ∼= A ⊗max B/ kerκ (see Section 3.4). Except when confusion is
likely, it is common practice to simply write α⊗ β in place of α⊗max β.
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At this point, we only want to consider the product of the trivial action with
an arbitrary dynamical system. Although an apparently straightforward example,
it has a number of interesting applications such as Corollary 7.18 on page 203.

Lemma 2.75. Suppose that (C,G, γ) is a dynamical system and that D is a C∗-
algebra. Then there is an isomorphism

(C ⊗max D) ⋊γ⊗id G ∼= C ⋊γ G⊗max D

which carries (c⊗maxd)⊗f 7→ (c⊗f)⊗maxd, and which intertwines the representa-
tion (πC ⋊V )⊗max πD of C⋊γG⊗maxD with the representation (πC ⊗max πD)⋊V
of (C ⊗max D) ⋊γ⊗id G.

Proof. We want to apply Theorem 2.61 on page 72 to the system (C⊗maxD,G, γ⊗
id) and the C∗-algebra C ⋊γ G ⊗max D. For any C∗-algebras A and B, we’ll use
the letter ‘k’ for the natural nondegenerate maps kA : A → M(A ⊗max B) and
kB : B → M(A ⊗max B) as in [139, Theorem B27]. First we need a covariant
homomorphism (jC⊗maxD, jG) of (C ⊗max D,G, γ ⊗ id) into M

(
(C ⋊γ G)⊗max B

)
.

Let (iC , iG) be the canonical covariant homomorphism of (A,G, γ) into M(C⋊γG),
and define jC to be the composition

C
iC //M(C ⋊γ G)

k̄C⋊γ G//M(C ⋊γ G⊗max B).

Let jD := kD : D → M
(
(C ⋊γ G) ⊗max D

)
. Then jC and jD have commuting

ranges and we can let jC⊗maxD := jC ⊗max jD. We let jG be the composition

G
iG //M(C ⋊γ G)

k̄C⋊γ G//M
(
(C ⋊γ G) ⊗max D

)
.

Since (iC , iG) is covariant, it is not hard to check that (jC⊗maxD, jG) is covariant
and we’ve established (a) of Theorem 2.61 on page 72.

Now suppose that (π, U) is a nondegenerate covariant representation of (C⊗max

D,G, γ ⊗ id). Then π = πC ⊗max πD (where πC and πD are characterized by
π(c⊗maxd) = πC(c)πD(d)). Then it is not hard to verify that (πC , U) is a covariant
representation of (C,G, γ):

UsπC(c)π(c′ ⊗max d) = Usπ(cc′ ⊗max d)

= π
(
γs(cc

′) ⊗max d
)
Us

= πC
(
γs(c)

)
π
(
γs(c

′) ⊗max d
)
Us

πC
(
γs(c)

)
Usπ(c′ ⊗max d).
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We also want to check that πC ⋊ U and πD have commuting ranges:

πC ⋊ U(c⊗ z)πD(d)π(c′ ⊗max d
′) = πC(c)U(z)π(c′ ⊗max dd

′)

= πC(c)

∫

G

z(s)Usπ(c′ ⊗max dd
′) dµ(s)

= πC(c)

∫

G

z(s)π
(
γs(c

′) ⊗max dd
′
)
Us dµ(s)

= πC(c)πD(d)

∫

G

z(s)π
(
γs(c

′) ⊗max d
′
)
Us dµ(s)

= πD(d)πC(c)

∫

G

z(s)Usπ(c′ ⊗max d
′) dµ(s)

= πD(d)πC ⋊ U(c⊗ z)π(c′ ⊗max d
′).

Therefore we can form L = L(π,U) := πC ⋊ U ⊗max πD and then verify that L ◦
jC⊗maxD = π and L ◦ jG = U . This verifies part (b).

For part (c), consider

jC⊗maxD(c⊗max d)jG(z) = jC(c)jD(d)jG(z)

= jC(c)jG(z)jD(d)

= iC(c)iG(z) ⊗max d

= c⊗ z ⊗max d.

It follows from Theorem 2.61 on page 72 that j := jC⊗maxD ⋊ jG is the re-
quired isomorphism, and that j ◦ L((πC⊗maxπD)⋊V ) = (πC ⊗max πD) ⋊ V . Since
L((πC⊗maxπD)⋊V ) = (πC ⋊ V ) ⊗max πD, the assertion about intertwining represen-
tations follows.

Notes and Remarks

The notion of a crossed product — at least as a purely algebraic object — dates
to the beginning of the twentieth century. For example, the basic construction ap-
pears in [22] and [166] and a nice survey of this early work can be found in [14].
(These references were pointed out by an anonymous reviewer.) The idea of associ-
ating an operator algebra to a group of automorphisms of another operator algebra
probably originates with the pioneering work of Murray and von Neumann [111].
A (reduced) C∗-crossed product construction appears in [163], and the connections
to physics and covariant representations begins in earnest in [30]. A systematic
study of transformation group C∗-algebras can be found in [49] and full formed
crossed products appear in [100, 162, 173]. The current notation of A ⋊α G and
the terminology “C∗-dynamical system” was popularized in the work of Olesen and
Pedersen [114–116]. Although viewing the crossed product as a universal object
for covariant representations is fundamental even to the early work on C∗-crossed
products, the concept was formalized by Raeburn in [133].





Chapter 3

Special Cases and Basic
Constructions

It is a bit frustrating not to work out some nontrivial examples of crossed products
now that we have the definition in hand. However, rather than pausing to grind out
some ad hoc examples here, we’ll wait until Chapter 4 when we will have proved
the Imprimitivity Theorem. Before taking on the formidable technology required
for imprimitivity theorems, we’ll concentrate on some basic properties of crossed
products. Since group C∗-algebras can be viewed as degenerate crossed products
and since crossed products can be thought of as analogues of group C∗-algebras in
which scalar valued functions are replaced by C∗-algebra-valued functions, group
C∗-algebras serve as excellent sources of motivation. In this chapter, we look at
the two classes where we can say something significant in general: namely we
examine the C∗-algebras of abelian and compact groups, respectively. After that,
in Section 3.3, we see that when G is a semidirect product, the crossed product
A ⋊α G can be decomposed as an iterated crossed product. (Generalizing this
result to the case where G contains a normal subgroup is discussed in Section 7.4
— although this requires a brief introduction to twisted crossed products.) In
Section 3.4 we note that G-invariant ideals in A correspond to ideals in A⋊α G is
a natural way. In Section 3.5, we start the study of orbit spaces, the properties of
which will be increasingly more important as we get deeper into the book. In the
final section, we look at proper group actions and induced C∗-algebras — both of
which are going to be important in Chapter 4.

3.1 Another Interlude:

The C∗-Algebra of an Abelian group

In this section, we satisfy our desire for an example by considering the group C∗-
algebra of an abelian group and examining what this example says about C∗-

81
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algebras and representation theory.1

Let G be a locally compact abelian group. If f ∈ Cc(G), then Theorem A.14
of [139] implies that there is an irreducible representation π of C∗(G) such that
‖f‖ = ‖π(f)‖. Recall that π is necessarily the integrated form of an irreducible
unitary representation of G (which we denote with the same letter). Since C∗(G)
is abelian, it follows from [139, Example A.16] that every irreducible representation

is one-dimensional and therefore corresponds to a character ω ∈ Ĝ. Thus the
universal norm of f ∈ Cc(G) is given by

‖f‖ = ‖f̂‖∞

where f̂ is the Fourier transform

f̂(ω) :=

∫

G

f(s)ω(s) dµ(s) (ω ∈ Ĝ)

of f (see (1.20) in Section 1.4.1). Even without invoking the Gelfand Theory, it is

easy to see that f̂ is continuous on Ĝ (using the dominated convergence theorem

for example). Since we can identify Ĝ with the spectrum of C∗(G) (Remark 2.41 on

page 60), we can conclude that f̂ vanishes at infinity on Ĝ since [π] 7→ ‖π(f)‖ always

vanishes at infinity on the spectrum by [139, Lemma A.30]. Thus, f̂ ∈ C0(Ĝ), and

A := { f̂ : f ∈ Cc(G) } is a subalgebra of C0(Ĝ) which is closed under complex

conjugation since f̂∗(ω) = ω(f∗) = ω(f) = f̂(ω), and which separates points since
the irreducible representations of C∗(G) must separate points. Thus the Stone-

Weierstrass Theorem implies that A is dense in C0(Ĝ) in the sup-norm. This gives
us the following proposition.

Proposition 3.1. If G is a locally compact abelian group, then the Fourier trans-
form extends to an isomorphism of C∗(G) with C0(Ĝ).

If you’re only interested in Harmonic analysis or the unitary representations of
G, it might be reasonable to ask “why bother with Proposition 3.1?” For example,
suppose your goal is to describe all the unitary representations of G. Then it turns
out that Proposition 3.1 does allow us to describe the representations ofG, provided
we can invoke some standard results about representations of C∗-algebras. In fact,
much of the early work on abstract C∗-algebras was motivated by the fact that
C∗-algebras have a nice representation theory which should shed some light on the
representation theory of groups via the group C∗-algebra construction. The classic
books [28,29] are beautiful illustrations of this point of view. Another very readable
treatment, focusing on the representation theory of Type I algebras, is Arveson’s
book [2] where he works out the following.

Example 3.2 ([2, pp. 54–56]). Let A be a separable commutative C∗-algebra. Then
we may assume that A = C0(X) for a second countable locally compact Hausdorff
space X . Then every representation of C0(X) on a separable Hilbert space is

1A useful and extensive survey of the “state of the art” (as of 1976) of classes of locally compact
groups and properties of their C∗-algebras is given in [123].
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equivalent to one constructed as follows. Let {X∞, X1, X2, . . . } be a partition of
X into Borel sets. For each n = ∞, 1, 2, . . . , let µn be a finite Borel measure on
Xn and let Hn be a Hilbert space of dimension n. (If n = ∞, then any separable
infinite-dimensional Hilbert space will do.) Let

H :=

n=∞⊕

n=1

L2(Xn, µn) ⊗Hn.

Now define π : C0(X) → B(H) by π :=
⊕n=∞

n=1 πµn ⊗ 1Hn , where πµn : C0(X) →
B

(
L2(Xn)

)
is given by pointwise multiplication:

πµn(f)h(x) := f(x)h(x).

Combining Example 3.2 with Proposition 3.1 on the preceding page, we see that
if G is a second countable locally compact abelian group, then every representation
of C∗(G) is given on f ∈ Cc(G) by

π(f) =

n=∞⊕

n=1

πµn(f̂) ⊗ 1Hn

for a partition {Xn } of Ĝ and measures µn as above. Furthermore, it is not hard
to see that π is the integrated form of

U =

n=∞⊕

n=1

Un ⊗ 1Hn , (3.1)

where Un : G→ U
(
L2(Xn)

)
is given by

Uns h(ω) := ω(s)h(ω).

Notice that (3.1) is a description, up to equivalence, of all unitary representations of
G on a separable Hilbert space. This answers our original question and illustrates
the power of the group C∗-algebra construction.

Our characterization of the representations of a locally compact abelian group
has a curious corollary. Recall that if H is a closed subgroup of a locally compact
abelian groupG, then H is also a locally compact abelian group. It is a consequence
of the Pontryagin Duality Theorem that the restriction map from Ĝ to Ĥ induces
an isomorphism of locally compact abelian groups:

Ĝ/H⊥ ∼= Ĥ,

where H⊥ := {ω ∈ Ĝ : ω(h) = 1 for all h ∈ H } [56, Theorem 4.39]. If we assume
that G is second countable, then there is a Borel cross-section

c : Ĥ → Ĝ
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such that c(σ)(h) = σ(h) for all σ ∈ Ĥ and h ∈ H ([2, Theorem 3.4.1] will do).
Now if V is a unitary representation of H of the form

V =

∞⊕

n=1

V n ⊗ 1Hn ,

then we can define unitary representations Un : G→ U
(
L2(Xn)

)
by

Uns h(σ) = c(σ)(s)h(σ).

Then Un extends V n and U :=
⊕n=∞

n=1 Un ⊗ 1Hn extends V . We have proved the
following.

Proposition 3.3. Suppose that H is a closed subgroup of a second countable locally
compact abelian group G. Then every unitary representation of H can be extended
to a unitary representation of G.

3.2 Third Interlude:

The C∗-Algebra of a Compact group

Now suppose that G is compact, but not necessarily abelian. The Peter-Weyl The-
orem [56, §5.2] tells us that if [π] ∈ Ĝ, then π is a finite dimensional representation
and that π is equivalent to a subrepresentation of the left-regular representation
λ : G → U

(
L2(G)

)
. For the sake of definiteness, if c ∈ Ĝ, let πc be a specific

subrepresentation of λ such that [πc] = c. Note that if d 6= c in Ĝ, then πc and πd
act on orthogonal subspaces by [56, Proposition 5.3]. Since dc := dimHπc < ∞,
we’ll identify B(Hπc) = K(Hπc) with the C∗-algebra of dc×dc-matrices Mdc . Note
that πc

(
C∗(G)

)
= K(Hπc)

∼= Mdc since an irreducible representation that contains
one nonzero compact operator in its range must contain all compact operators
[110, Theorem 2.4.9].

Proposition 3.4. Suppose that G is a compact group. Then

C∗(G) ∼=
⊕

c∈ bG

Mdc .

The isomorphism sends f to
(
πc(f)

)
c∈ bG

.

To prove the proposition, we’ll need a couple of straightforward lemmas.

Lemma 3.5. If G is a compact group and f ∈ C∗(G), then λ(f) is a compact
operator on L2(G).
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Proof. Suppose first that f ∈ Cc(G) ⊂ C∗(G) and h, k ∈ Cc(G) ⊂ L2(G). Then

(
λ(f)h | k

)
=

∫

G

(
f(s)λ(s)h | k

)
dµ(s)

=

∫

G

∫

G

f(s)h(s−1r)k(r) dµ(r) dµ(s)

=

∫

G

f ∗ h(r)k(r) dµ(r).

Thus λ(f)h = f ∗ h in L2(G). But using the unimodularity of G,

f ∗ h(r) =

∫

G

f(s)h(s−1r) dµ(s)

=

∫

G

f(rs−1)h(s) dµ(s).

Thus λ(f) is a Hilbert-Schmidt operator on L2(G) with kernel K(s, r) = f(s−1r),
and therefore compact. Since Cc(G) is dense in C∗(G), it follows that λ(f) is
compact for all f ∈ C∗(G).

Lemma 3.6. Let f ∈ C∗(G) and ǫ > 0. Then the collection F of c ∈ Ĝ such

that ‖πc(f)‖ > ǫ is finite. In particular, the spectrum Ĝ of C∗(G) is a discrete
topological space.

Proof. Let Hc ⊂ L2(G) be the subspace corresponding to the subrepresentation πc.
Then the {Hc } are pairwise orthogonal. Furthermore, we can choose a unit vector
hc ∈ Hc such that ‖λ(f)hc‖ = ‖πc(f)hc‖ > ǫ. But λ(f)hc ∈ Hc. Thus if F were
infinite, {λ(f)hc }c∈F would have no convergent subnet. This would contradict the
compactness of λ(f).

However, F is an open subset of Ĝ by [139, Lemma A.30]. Since Mn has,

up to equivalence, a unique irreducible representation, we can identify Ĝ with
PrimC∗(G). Since kerπ is clearly a maximal ideal if [π] ∈ Ĝ, { c } is closed for

all c ∈ Ĝ. However, given c = [π] ∈ Ĝ, there is a f ∈ C∗(G) such that ‖π(f)‖ > 1.

The first part of this proof implies there is a finite neighborhood of c in Ĝ. Since
points are closed, { c } is open. Since c was arbitrary, Ĝ is discrete as claimed.

Lemma 3.7. Suppose that G is a compact group, c ∈ Ĝ, and T ∈Mdc. Then there
is a f ∈ C∗(G) such that

ρ(f) =

{
T if ρ = πc, and

0 if [ρ] 6= c.

Proof. Since Ĝ is discrete, { c } is open and is not in the closure of { c′ ∈ Ĝ : c′ 6= c }.
Therefore

J :=
⋂

c′ 6=c

kerπc′ 6⊂ kerπc.
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In particular J 6= { 0 } and πc(J) is a nonzero ideal in Md[πc]
. Since matrix algebras

are simple, πc(J) = Md[πc]
, and there is a f ∈ J such that πc(f) = T . Since f ∈ J ,

we’re done.

Proof of Proposition 3.4 on page 84. Define Φ from C∗(G) to the product∏
c∈ bGMdc by Φ(f) =

(
πc(f)

)
c∈ bG

. Since the irreducible representations of any
C∗-algebra separate points, Φ is an isomorphism onto its range. Lemma 3.6 on the
previous page implies that the range of Φ lies in the direct sum. Lemma 3.7 on
the preceding page implies that the range of Φ is dense in the direct sum. Since Φ
necessarily has closed range, we’re done.

Since any representation of the compacts is equivalent to a multiple of the
identity representation and since we’ve shown that C∗(G) is a direct sum of matrix
algebras if G is compact, we get following result essentially for free.

Corollary 3.8. Every representation of a compact group is the direct sum of (nec-
essarily finite dimensional) irreducible representations.

3.3 Semidirect Products

Suppose that H and N are locally compact groups and that ϕ : H → AutN is
a homomorphism such that (h, n) 7→ ϕ(h)(n) is continuous from H × N to N .
(In other words, H acts continuously on N via automorphisms.) The semidirect
product N ⋊ϕ H is the group with underlying set N ×H and group operations

(n, h)(m, k) :=
(
nϕ(h)(m), hk

)
and (n, h)−1 :=

(
ϕ(h−1)(n−1), h−1

)
.

If N ×H has the product topology, then N ⋊ϕ H is a locally compact group.

Example 3.9. Let H := (R+, ·), N := (R,+) and define ϕ : R+ → AutR by
ϕ(a)(x) := ax. Then R ⋊ϕ R+ is isomorphic to the ax + b-group of Example 1.27
on page 7.

Example 3.10. Let G be a locally compact group with a closed normal subgroup
N and a closed subgroup H such that N ∩H = { e } and G = NH . Then we can
define ϕ : H → AutN by ϕ(h)(n) = hnh−1, and (n, h) 7→ nh is an isomorphism
of locally compact groups between N ⋊ϕ H and G. Conversely, if G = N ⋊ϕ H ,
then N ′ := { (n, eH) ∈ G : n ∈ N } is a closed normal subgroup of G and H ′ :=
{ (eN , h) ∈ G : h ∈ H } is a closed subgroup of G such that G = N ′H ′ and
N ′ ∩H ′ = { e }.

In this section, we’ll assume that G = NH as in Example 3.10 so that ϕ(h)(n) =
hnh−1. Let µN be a Haar measure on N and µH a Haar measure on H . Consid-
erations similar to those used to prove that the modular function is a continuous
homomorphism (Lemma 1.61 on page 18) show that there is a continuous homo-
morphism

σ : H → R+
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such that

σ(h)

∫

N

f(hnh−1) dµN (n) =

∫

N

f(n) dµN (n). (3.2)

Then a Haar measure on G is given by

I(f) :=

∫

H

∫

N

f(nh)σ(h)−1 dµN (n) dµH(h) =

∫

H

∫

N

f(hn) dµN (n) dµH(h).

Proposition 3.11. Suppose that G is the semidirect product N⋊ϕH of two locally
compact groups as above, and that (A,G, α) is a dynamical system. Then there is
a dynamical system

β : H → Aut(A⋊α|N N)

such that for all g ∈ Cc(N,A)

βh(g)(n) = σ(h)−1αh
(
g(h−1nh)

)
.

Furthermore, if ι is the natural map from Cc
(
H,Cc(N,A)

)
⊂ Cc(H,A⋊α|N N) into

Cc(N ×H,A) ⊂ Cc(G,A), then ι extends to an isomorphism of (A⋊α|N N) ⋊β H
with A⋊α G.

Proof. For convenience, we’ll assume G = NH as in Example 3.10 on the facing
page. Let (jA, jN ) be the canonical covariant homomorphisms for A ⋊α|N N . To

define an action of H on A ⋊α|N N , fix h ∈ H and define πh : A → M(A⋊α|N N)

and Uh : N → UM(A⋊α|N N) by

πh(a) := jA
(
αh(a)

)
and Uhn := jN (hnh−1).

Since jA is nondegenerate and jN is strictly continuous, it follows that (πh, Uh) is
a nondegenerate covariant homomorphism of (A,N, α|N ) into M(A⋊α|N N). Thus

βh := πh ⋊Uh is a nondegenerate homomorphism of A⋊α|N N into M(A⋊α|N N).
If f ∈ Cc(N,A), then

βh(f) :=

∫

N

πh
(
f(n)

)
Uhn dµN (n)

=

∫

N

jA
(
αh

(
f(n)

))
jN

(
hnh−1

)
dµN (n)

=

∫

N

jA
(
σ(h−1)αh

(
f(h−1nh)

))
jN (n) dµN (n)

= jA ⋊ jN (hf),

where hf(n) := σ(h−1)αh
(
f(h−1nh)

)
. In particular, βh(f) = hf ∈ Cc(N,A) ⊂

A⋊α|N N . Therefore βh is a homomorphism of A⋊α|N N into itself. Since routine
computations show that βe = id and βhk = βh ◦ βk, it follows that each βh is a
automorphism with inverse βh−1 , and

β : H → Aut(A⋊α|N N) (3.3)

is a homomorphism.
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Lemma 3.12. If H, N , G and β are as above, then (3.3) is a dynamical system.

Proof. At this point, we only have to see that β is strongly continuous. For this, it
suffices to show that given f ∈ Cc(N,A) and δ > 0, then there is a neighborhood
V of e in H such that h ∈ V implies that ‖βh(f) − f‖1 < δ. Let K := supp f and
let W be a compact neighborhood of e in H . Then if h ∈W , suppβh(f) ⊂WKW .
Thus it suffices to show that given ǫ > 0 there is a neighborhood V of e in H such
that h ∈ V implies ‖βh(f) − f‖∞ ≤ ǫ. To this end, choose V ′ such that h ∈ V ′

implies |σ(h−1) − 1| < ǫ/(3‖f‖∞). Since f is uniformly continuous, the triangle
inequality implies there is a V ′′ ⊂ V ′ such that h ∈ V ′′ implies

‖f(h−1nh) − f(n)‖ < ǫ

3
for all n ∈ N .

A compactness argument implies there is a V ⊂ V ′′ such that h ∈ V implies

‖αh
(
f(n)

)
− f(n)‖ < ǫ

3
for all n ∈ N .

Therefore h ∈ V implies

‖σ(h)−1αh
(
f(h−1nh)

)
− f(n)‖ ≤ |σ(h)−1 − 1|‖αh

(
f(h−1nh)

)
‖+

‖αh
(
f(h−1nh) − f(n)

)
‖ + ‖αh

(
f(n)

)
− f(n)‖

≤ |σ(h)−1 − 1|‖f‖∞ + ‖f(h−1nh) − f(n)‖ +
ǫ

3
< ǫ.

Lemma 3.13. Let X be a Hilbert B-module and G = NH a semidirect product as
above. If U : N → UL(X) and V : H → UL(X) are strictly continuous unitary-
valued homomorphisms such that

VhUnV
∗
h = Uhnh−1, (3.4)

then Wnh := UnVh defines a strictly continuous unitary-valued homomorphism W :
G→ UL(X).

Conversely, if W : G → UL(X) is a strictly continuous unitary-valued homo-
morphism, then Un := Wn and Vh := Wh define strictly continuous unitary-valued
homomorphisms satisfying (3.4).

Proof. Straightforward.

Lemma 3.14. Suppose that (π, U) is a nondegenerate covariant homomorphism of
(A,G, α) in L(X), and that T ∈M(A). Then

Usπ̄(T )U∗
s = π̄

(
ᾱs(T )

)
, (3.5)

and if (iA, iG) is the canonical covariant homomorphism of (A,G, α) into M(A⋊α

G), then
(π ⋊ U)¯

(
ı̄A(T )

)
= π̄(T ). (3.6)
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Proof. Let x ∈ X and a ∈ A. Then

Usπ̄(T )
(
π(a)(x)

)
= Usπ(Ta)(x)

= π
(
αs(Ta)

)
Us(x)

= π̄
(
ᾱs(T )

)
π
(
αs(a)

)
Us(x)

= π̄
(
ᾱs(T )

)
Us

(
π(a)(x)

)

Since π is nondegenerate, { π(a)(x) : a ∈ A and x ∈ X } spans a dense subspace of
X, and (3.5) follows.

Similarly,

(π ⋊ U)¯
(
ı̄A(T )

)
π ⋊ U

(
iA(a)f

)
= π ⋊ U

(
ı̄A(T )iA(a)f

)

= π ⋊ U
(
iA(Ta)f

)

= π(Ta)π ⋊ U(f)

= π̄(T )π(a)π ⋊ U(f)

= π̄(T )π ⋊ U
(
iA(a)f

)
.

Now (3.6) follows since both iA and π ⋊ U are nondegenerate.

Now we want to apply Theorem 2.61 on page 72 with B = (A⋊α|N N)⋊βH with
the object of showing that B is isomorphic to A⋊αG. Let kA⋊α|N

N : A⋊α|N N →
M((A⋊α|NN)⋊βH) and kH : H →M((A⋊α|NN)⋊βH) be the canonical covariant
homomorphism for (A⋊α|N N,H, β). Define maps

lA : A→M((A⋊α|N N) ⋊β H) and lG : G→M((A⋊α|N N) ⋊β H)

as follows. Let lA(a) := (kA⋊α|N
N ) ¯

(
jA(a)

)
and lG(nh) = WnVh, where Wn =

(kA⋊α|N
N ) ¯

(
jN (n)

)
and Vh = kH . Of course V is strictly continuous since kH

is. The strict continuity of W follows from the strict continuity of jN and the
nondegeneracy of kA⋊α|N

N : note that

(kA⋊α|N
N )¯

(
jN (n)

)
kA⋊α|N

N (f)kH(z) = kA⋊α|N
N

(
jN (n)f

)
kH(z).

is continuous in n and the span of elements of the form kA⋊α|N
N (f)kH(z) is dense

in (A⋊α|N N) ⋊β H .
Now using Lemma 3.14 on the facing page we have

VhWnVh−1 = kH(h)(kA⋊α|N
N )¯

(
jN (n)

)
kH(h)∗

= (kA⋊α|N
N )¯

(
β̄h

(
jN (n)

))

which, since βh = πh ⋊ Uh, equals

= (kA⋊α|N
N )¯

(
jN (hnh−1)

)

= Whnh−1 .
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Therefore lG is a strictly continuous unitary-valued homomorphism (Lemma 3.13
on page 88). To check that (lA, lG) is covariant, consider

lG(nh)lA(a)lG(nh)∗ = WnVhlA(a)V ∗
h U

∗
n

= WnkH(h)(kA⋊α|N
N )¯

(
jA(a)

)
kH(h)∗W ∗

n

which, by Lemma 3.14, is

= Wn(kA⋊α|N
N )¯

(
β̄h

(
jA(a)

))
W ∗
n

which, since βh = πh ⋊ Uh, is

= Wn(kA⋊α|N
N )¯

(
jA

(
αh(a)

))
W ∗
n

= (kA⋊α|N
N )¯

(
jN (n)jA

(
αh(a)

)
jN (n)∗

)

= (kA⋊α|N
N )¯

(
jA

(
αnh(a)

))

= lA
(
αnh(a)

)
.

All this establishes condition (a) of Theorem 2.61 on page 72.
Now suppose that (π, T ) is a nondegenerate covariant representation of

(A,G, α). Define W and V as in Lemma 3.13 on page 88: Tnh = WnVh. Then
(π,W ) is a covariant representation of (A,N, α|N ). Moreover the computation

Vhπ ⋊W (f)V ∗
h = Vh

∫

N

π
(
f(n)

)
Wn dµN (n)V ∗

h

=

∫

N

Thπ
(
f(n)

)
Tnh−1 dµN (n)

=

∫

N

π
(
βh(f)(n)

)
Wn dµN (n)

= π ⋊W
(
βh(f)

)

shows that (π ⋊W,V ) is covariant. Thus we define L = L(π,T ) to be (π⋊W ) ⋊ V .
Using Lemma 3.14 on page 88, we have

L̄
(
lA(a)

)
= ((π ⋊W ) ⋊ V )¯

(
(kA⋊α|N

N )¯
(
jA(a)

))

= (π ⋊W )¯
(
jA(a)

)

= π(a).

Similarly,

L̄
(
lG(nh)

)
= ((π ⋊W ) ⋊ V )¯

(
(kA⋊α|N

N )¯
(
jN (n)

))
((π ⋊W ) ⋊ V )¯

(
kH(h)

)

= (π ⋊W )¯
(
jN (n)

)
Vh

= WnVh

= Tnh.
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Now we’ve established condition (b) of Theorem 2.61.
To verify condition (c), let z ∈ Cc(G) be defined by

z(nh) = σ(h)x(n)y(h)

for functions x ∈ Cc(N) and y ∈ Cc(H). Then

lG(z) =

∫

H

∫

N

x(n)y(h)lG(nh) dµN (n) dµH(h) = W (x)V (y).

Therefore

lA(a)lG(z) = lA(a)W (x)V (y) = kA⋊α|N
N

(
jA(a)jN (x)

)
kH(y).

Now condition (c) of Theorem 2.61 follows as the span of elements of the form
jA(a)jN (x) is dense in A⋊α|N N .

Now Theorem 2.61 on page 72 implies that there is an isomorphism

j : (A⋊α|N N) ⋊β H → A⋊α G

such that j ◦ lG = iG and j ◦ lA = iA, where (iA, iG) are the canonical maps
associated to (A,G, α).

Now suppose F ∈ Cc
(
H,Cc(N,A)

)
(viewed as a subspace of Cc(H,A⋊α|N N))

is of the form F (h)(n) = y(h)x(n)a. Then F = kA⋊α|N
N ⋊ kH(F ) =

kA⋊α|N
N

(
jA(a)jN (x)

)
kH(y), and j(F ) = iA(a)iG(x ⊗ y), where x ⊗ y denotes

the function on G given by nh 7→ x(n)y(h). In other words, j(F ) = ι(F ). This
completes the proof of Proposition 3.11 on page 87.

Example 3.15 (The ax+b-group). Let G = R⋊ϕR+ be (isomorphic to) the ax+b-
group; thus ϕ(a)(r) := ar. Then σ : R+ → R is defined by

σ(a)

∫ ∞

−∞

f(ax) dx =

∫ ∞

−∞

f(x) dx,

and σ(a) = a. Then Proposition 3.11 on page 87 implies that C∗(G) ∼= C ⋊ι G is
isomorphic to C∗(R) ⋊β R+ where βa(f)(r) = 1

af( ra ). The Fourier transform is an

isomorphism F : C∗(R) → C0(R) such that F
(
βa(f)

)
(y) = f̂(ay). Thus we get an

equivariant isomorphism of
(
C∗(R),R+, β

)
and

(
C0(R),R+, τ

)
, where R+ acts on

R via a ·r := r
a . Thus C∗(G) is isomorphic to the transformation group C∗-algebra

C0(R) ⋊τ R
+

.

Example 3.16 (Semidirect Products of Abelian Groups). Assume that N and K are
abelian locally compact groups and that G = N ⋊α H . As usual, we assume that
G = NH with N normal in G and N ∩H = { e } as in Example 3.10 on page 86.
Since C∗(G) = C⋊ιG, Proposition 3.11 on page 87 implies there is an isomorphism
Φ : C∗(G) → C∗(N) ⋊β H where

βh(f)(n) = σ(h)−1f(h−1nh) for f ∈ Cc(N),
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and σ(h) is determined by (3.2). The Fourier transform

f̂(ω) :=

∫

N

f(n)ω(n) dµN (n)

is an isomorphism of C∗(N) onto C0(N̂) (Proposition 3.1 on page 82), and

(βh(f))
∧
(ω) =

∫

N

σ(h)−1f(h−1nh)ω(n) dµN (n)

=

∫

N

f(n)ω(hnh−1) dµN (n)

= f̂(h−1 · ω),

where, by definition, h · ω(n) = ω(h−1nh). Therefore, as in the previous example,
we get an isomorphism of C∗(N) ⋊β H with the transformation group C∗-algebra

C0(N̂) ⋊τ H , where

τhf̂(ω) := f̂(h−1 · ω).

Therefore C∗(N ⋊ϕ H) ∼= C0(N̂) ⋊τ H .

3.4 Invariant Ideals

If (A,G, α) is a dynamical system, then IG(A) will denote the α-invariant (closed
two-sided) ideals in A. If I ∈ IG(A), then each αs restricts to an automorphism of I
and we obtain a dynamical system (I,G, α) as well as a quotient system (A/I,G, αI)
defined in the obvious way:

αIs(a+ I) := αs(a) + I.

The inclusion map ι : I → A and the quotient map q : A → A/I are equivariant
homomorphisms and therefore define homomorphisms ι ⋊ id : I ⋊α G → A ⋊α G
and q ⋊ id : A⋊α G→ A/I ⋊αI G (Corollary 2.48 on page 63).

Note that Cc(G, I) sits in Cc(G,A) as a ∗-closed two-sided ideal. Therefore the
closure is an ideal which is usually denoted by Ex I. Of course, Ex I is exactly the
image of ι ⋊ id. The next lemma will allow us to identify Ex I and I ⋊α G from
now on.

Lemma 3.17. If (A,G, α) is a dynamical system and if I is a G-invariant ideal
in A, then ι⋊ id is an isomorphism of I ⋊α G onto Ex I.

Proof. At this point, it suffices to see that ι ⋊ id is isometric on Cc(G, I). Let
‖ · ‖ be the universal norm on Cc(G,A) and ‖ · ‖I the universal norm on Cc(G, I).
Let π ⋊ V be a faithful representation of A ⋊α G. Then (π, V ) restricts to a
(possibly degenerate) covariant representation of (I,G, α) denoted (πI , V ). Then
for all f ∈ Cc(G, I),

‖f‖ = ‖π ⋊ V (f)‖ = ‖πI ⋊ V (f)‖ ≤ ‖f‖I .
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On the other hand, if η ⋊ V is a faithful representation of I ⋊α G, then since η in
nondegenerate, η has a canonical extension η̄ to A characterized by η̄(a)η(b)h :=
η(ab)h for all a ∈ A, b ∈ I and h ∈ Hη. A quick computation verifies that (η̄, V ) is
a covariant representation of (A,G, α). Thus

‖f‖I = ‖η ⋊ V (f)‖ = ‖η̄ ⋊ V (f)‖ ≤ ‖f‖.

Thus ‖f‖ = ‖f‖I for all f ∈ Cc(G, I).

Lemma 3.18. Suppose that X is locally compact, that I is an ideal in A and that
q : A→ A/I is the quotient map. If g ∈ C0(X,A/I), then there is a f ∈ C0(X,A)
such that g = q ◦ f . If g has compact support, then we can find f with compact
support. In particular, we have a short exact sequence

0 // C0(X, I)
i // C0(X,A)

q◦· // C0(X,A/I) // 0

where i is the inclusion map and q ◦ · sends f to q ◦ f .

Proof. Suppose that g ∈ Cc(X,A/I) with supp g = K. Let W be a pre-compact
open neighborhood of K. Fix ǫ > 0. Let {Vi }ni=1 be a cover of K by pre-compact
open sets Vi ⊂W so that there is a ri ∈ Vi ∩K such that

‖g(r) − g(ri)‖ < ǫ for all r ∈ Vi.

Since W is compact, there is a partition of unity {ϕi }ni=0 in C(W ) such that
suppϕ0 ⊂ W r K and suppϕi ⊂ Vi for 1 ≤ i ≤ n. Let ai ∈ A be such that
q(ai) = g(ri), and let f =

∑n
i=1 ϕi ⊗ ai. Then f ∈ Cc(X,A) and

‖q ◦ f − g‖∞ < ǫ.

It follows that f 7→ q ◦ f has dense range in C0(X,A/I) and must therefore be
surjective since C∗-homomorphisms have closed range. Replacing X by W , the
assertion about compact supports follows as well. The rest is straightforward.

Proposition 3.19. Suppose that (A,G, α) is a dynamical system and that I is an
α-invariant ideal in A. Then ι ⋊ id is an isomorphism identifying I ⋊α G with
Ex I = ker q ⋊ id, and we have a short exact sequence

0 // I ⋊α G
ι⋊id // A⋊α G

q⋊id // A/I ⋊αI G // 0

of C∗-algebras.

Proof. Note that ι ⋊ id is an isomorphism by Lemma 3.17 on the facing page.
Lemma 3.18 implies that q ⋊ id maps Cc(G,A) onto Cc(G,A/I) so that q ⋊ id is
surjective. Thus we only have to show that ker(q ⋊ id) = Ex I. Since Cc(G, I) is
dense in Ex I, we certainly have

Ex I ⊂ ker(q ⋊ id). (3.7)
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Now suppose that π ⋊ V is any representation of A ⋊α G. If I ⊂ kerπ, then
Cc(G, I) ⊂ ker(π⋊V ) and Ex I ⊂ ker(π⋊V ). But π = π′◦q for some representation
π′ of A/I and (π′, V ) is a covariant representation of (A/I,G, αI) such that

(π′ ⋊ V ) ◦ (q ⋊ id) = π ⋊ V.

Therefore, ker(q ⋊ id) ⊂ ker(π ⋊ V ) as well.
On the other hand, if I 6⊂ kerπ, then there is a a ∈ I such that π(a) 6= 0. If

{ ui } ⊂ Cc(G) is an approximate identity for C∗(G), then for all i, a⊗ui ∈ Cc(G, I)
and so belongs to both Ex I and ker(q ⋊ id). But

π ⋊ V (a⊗ ui) = π(a)V (ui)

which converges strongly to π(a). Thus neither Ex I nor ker(q⋊ id) is contained in
ker(π ⋊ V ) in this case. It follows that we have equality in (3.7) as required.

It is a useful exercise to consider the special case of Proposition 3.19 on the
preceding page in which A is commutative. In particular, let

(
C0(X), G, lt

)
be a

dynamical system. Then the G-invariant ideals I of A correspond to G-invariant
open sets U ⊂ X : I = C0(U), were C0(U) is viewed as an ideal in C0(X) in the
obvious way. Let F := XrU . Then F is aG-invariant closed set and we can identify
C0(F ) with the quotient C0(X)/C0(U). Notice that is identification intertwines
the quotient action ltI with the automorphism group on C0(F ) induced by left-
translation. Therefore we have derived the following corollary to Proposition 3.19
on the previous page.

Corollary 3.20. Suppose that (G,X) is a transformation group, and that U is an
open G-invariant subset of X. Then we have a short exact sequence

0 // C0(U) ⋊lt G
ι⋊id // C0(X) ⋊lt G

q⋊id // C0(X r U) ⋊lt G // 0

of C∗-algebras.

3.5 The Orbit Space

Every dynamical system (A,G, α) gives rise to a G-action on PrimA (Lemma 2.8
on page 44). In the case of transformation groups, where A = C0(X), the G-action
on X is the salient feature. In this section, we record some basic observations about
G-spaces and their orbit spaces.

Definition 3.21. Suppose that X is a (left) G-space and that x ∈ X . The orbit
through x is the set G·x := { s·x ∈ X : s ∈ G and x ∈ X }. The stability group at x
is Gx := { s ∈ G : s ·x = x }. The G-action is called free if Gx = { e } for all x ∈ X .
The set of orbits is denoted by G\X . The natural map p : X → G\X is called
the orbit map, and G\X is called the orbit space when equipped with the quotient
topology (which is the largest topology making the orbit map p continuous).
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Remark 3.22. If X is a Hausdorff G-space, then it is straightforward to check that
each stability group Gx is a closed subgroup of G. But if (A,G, α) is a dynamical
system, then PrimA is a G-space (Lemma 2.8 on page 44), and the stability groups
GP play an important role in the theory. Since PrimA is always a T0-topological
space, so that distinct points have distinct closures, the next lemma implies that
each GP is a closed subgroup of G

Lemma 3.23. Suppose that (G,X) is a topological transformation group and that
X is a T0-topological space. Then each stability group Gx is closed.

Proof. Let { si } be a net in Gx converging to s in G. We want to see that s ∈ Gx.
But x = si · x→ s · x. Thus, s · x ∈ { x }. On the other hand, s · x = ss−1

i · x→ x.

Thus x ∈ { s · x }. Since X is T0, this forces s · x = x. That is, x ∈ Gx.

Remark 3.24. If X is a right G-space, then the orbit space is denoted by X/G and
the orbits by x ·G.

It follows easily from the definition that a subset U ⊂ G\X is open if and only
if p−1(U) is open in X . However, we can say a bit more.

Lemma 3.25. If X is a G-space, then the orbit map is continuous and open.

Proof. The continuity of p : X → G\X holds by definition. If W is open in X ,
then

p−1
(
p(W )

)
= G ·W := { s · x : s ∈ G and x ∈W } =

⋃

s∈G

s ·W,

which is a union of open sets. Therefore p(W ) is open.

Any topological space Y can arise as an orbit space. For example, let X = Y ×G
and let G act by left translation on the second factor. Then G\X is naturally
identified with Y . Of course, in this example, any pathological behavior in G\X
is already exhibited in X . However, even if we insist that X be a nice topological
space, examples show that the orbit space can vary from nice to pathological.

Example 3.26 (cf. Example 2.13 on page 45). Let X = T and G = Z with Z acting
by “irrational rotation”:

n · z := e2πinθz,

where θ is an irrational number in (0, 1). As we will show in Lemma 3.29 on the
next page, each orbit is dense in T. Consequently, G\X is an uncountable set with
the trivial topology: τ = { ∅, G\X }. Furthermore, even though for each z ∈ T,
n 7→ n · z is a bijection of Z onto the orbit through z, each orbit is topologically
quite different from Z. In fact, the orbits are not even locally compact subsets of
T.

We still have to prove the claim in the above example. For this, we’ll want the
following lemma.

Lemma 3.27. If H is a proper closed subgroup of the circle T, then H is finite.
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Remark 3.28. It is possible to give a very short proof of this result using the
duality theory for locally compact abelian groups. It is a direct consequence of the
Pontryagin duality that the character group Ĥ of H is isomorphic to the quotient
T̂ /H⊥ where H⊥ := { γ ∈ T̂ : γ(H) = { 1 } } [56, Theorem 4.39]. Since T̂ ∼= Z,

Ĥ is isomorphic to a quotient of Z by a nontrivial subgroup. Thus Ĥ is finite.
The Pontryagin Duality Theorem [56, Theorem 4.31] implies that the dual of Ĥ is
isomorphic to H , and therefore H itself must be finite. However, we will give an
elementary proof using only the topology of T.

Proof. We’ll assume that H is not finite and derive a contradiction. Let U be an
open set such that U ∩H = ∅. Since H is infinite and compact, there is a sequence
of distinct elements { hn } converging to h ∈ H . Multiplying by h−1 we can assume
we have hn → 1 with hn 6= 1 for all n. Let hn = e2πiθn with θn ∈ (0, 1). Since we
also have h−1

n → 1, we can replace hn by h−1
n whenever θn >

1
2 and assume that

θn → 0. Choose z = e2πiθ ∈ U with θ ∈ (0, 1). Since U is open, there is ǫ > 0 such
that e2πiψ ∈ U provided ψ ∈ (θ, θ + ǫ). But if θn < ǫ, then there is a m ∈ Z such
that mθn ∈ (θ, θ + ǫ). Therefore hmn ∈ U , which contradicts our choice of U .

Lemma 3.29. Suppose that Z acts on T by an irrational rotation (as in Exam-
ple 3.26 on the preceding page). Then for every z ∈ T, the orbit Z · z is dense in
T.

Proof. The orbit of 1 is an infinite subgroup H := Z · 1. Since the closure of a
subgroup is a subgroup, Lemma 3.27 on the previous page implies that H is dense.
But if z ∈ T, then ω 7→ ωz is a homeomorphism of T taking Z · 1 to Z · z. Thus
every orbit is dense as claimed.

Example 3.30. Let X = C, and let G = T act by multiplication: z ·ω := zω. Then
the origin is a fixed point and the remaining orbits are circles {ω ∈ C : |ω| = r }
for some r > 0. The orbit space is easily identified with the non-negative real axis
with its natural (Hausdorff) topology. In particular, each orbit is closed and all the
nondegenerate orbits are homeomorphic to G = T.

Example 3.31. Let X = C and let G = R act via r · ω := e2πirω. Then the orbits
and orbit space are exactly as in Example 3.30. However, now the action is no
longer free at points on the nondegenerate orbits. Note that each nondegenerate
orbit is homeomorphic to the quotient of R by the stability group Z.

Example 3.32. Let X = R2 and let G be the positive reals under multiplication.
Let G act on X by r · (x, y) := (rx, r−1y). The orbits consist of the origin, the
remaining four bits of the coordinate axes and the hyperbolas { (x, y) : xy = b }
with b ∈ R r { 0 }. (Note that each b corresponds to two orbits.) Then the orbit
space can be identified with the union of the two lines y = ±x (denoted by A) and
the four points a1 = (1, 0), a2 = (0, 1), a3 = (−1, 0) and a4 = (0,−1). Let Qi
be the right angle formed from A having ai in its interior. Given A and the Qi’s
the relative topology from R2. Using the openness of the orbit map, it is easy to
describe the topology on G\X = A∪{ a1, a2, a3, a4 }. Note that every neighborhood
of (0, 0) contains all the ai. (In particular, points in G\X need not be closed.) Then
a basis for the open sets in G\X consists of the following.
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(a) {U ⊂ A : (0, 0) /∈ U and U is open in A },
(b) {W ⊂ G\X : W ∩A is open in A, and (0, 0), a1, . . . , a4 ∈ W },
(c) {V ⊂ Qi ∪ { ai } : ai ∈ V , (0, 0) /∈ V and

{ (0, 0) } ∪ (V ∩Qi) is a neighborhood of (0, 0) in Qi }.
Note that each orbit is locally compact and homeomorphic to R+ (or a
point). All orbits except those corresponding to the ai are closed and that
G\X r { a1, a2, a3, a4 } is actually Hausdorff.

Example 3.33. Let G be the real line equipped with the discrete topology and let X
be the real line with its usual topology. Let G act on X by translation: x·y := x+y.
Then there is only one orbit — one says G acts transitively. However the natural
bijections of G onto X are not homeomorphisms.

Example 3.34. Suppose that H is a subgroup of a topological group G. Then G is
a right H-space if we let H act on the right of G by multiplication: s ·h := sh. The
H-orbits s ·H are exactly the left cosets sH , and the orbit space is the set G/H of
left cosets equipped with the largest topology making the quotient map continuous.

Even in view of examples like 3.26 and 3.32, we still want to investigate or-
bit spaces as they will play a significant role in the structure theory of crossed
products and especially of transformation group C∗-algebras. As we shall see later
(Theorem 6.2 on page 173), under mild hypotheses on G and X , there is a sharp
dichotomy in orbit space structure. Orbit spaces are either reasonably well behaved
with Example 3.32 on the facing page about as bad as it gets, or they exhibit rather
extreme pathological behavior similar to Example 3.26 on page 95.

Lemma 3.35. Let X be a G-space. If X is second countable, then so is G\X.
If X is a (not necessarily Hausdorff) locally compact space, then G\X is a (not
necessarily Hausdorff) locally compact space.2

Remark 3.36. In this work, when we speak of a locally compact space, it is tacitly
understood that the space is Hausdorff. It just seems too cumbersome to constantly
be adding Hausdorff to the statement of every other result. As a penalty, we now
have to add an annoying “not necessarily Hausdorff” when we want to look at
spaces, such as orbit spaces, which may naturally have non Hausdorff topologies.
Of course, there are difficulties to keep in mind when working with potentially
non Hausdorff spaces. We must appeal to Definition 1.16 on page 5 rather than
Lemma 1.17 on page 5 when we want to show a possibly non-Hausdorff space is
locally compact. We also have to keep in mind that compact subsets need not be
closed, and that convergent nets need not have unique limits.

Proof. Let p : X → G\X be the orbit map. Suppose that {Un } is a countable basis
of open sets for the topology on X . Let Vn := p(Un). Let V be an open set in G\X
with q ∈ V . Choose x ∈ p−1(q). Since p is continuous p−1(V ) is a neighborhood of
x, and there exists a Un such that x ∈ Un ⊂ p−1(V ). Thus q ∈ Vn ⊂ V , and {Vn }
is a countable basis for the topology on G\X .

2Notice that G\X can fail to be Hausdorff, even if X is locally compact Hausdorff to begin
with.
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Now suppose that X is locally compact. Since G\X may not be Hausdorff, we
have to verify that Definition 1.16 on page 5 holds. However, the above argument
shows that the forward image of any basis in X is a basis in G\X . Since X
has a basis of compact sets, and since the continuous image of a compact set is
compact, it follows that G\X has a basis of compact sets. Therefore G\X is locally
compact.

Lemma 3.37. Suppose that X is a not necessarily Hausdorff locally compact G-
space, and let p : X → G\X be the quotient map. If T ⊂ G\X is compact,
then there is a compact set D ⊂ X such that p(D) ⊃ T . If G\X is Hausdorff,
then T ⊂ G\X is compact if and only if there is a compact set D ⊂ X such that
p(D) = T .

Proof. Suppose that T is compact in G\X , and that G · x ∈ T . If V is a compact
neighborhood of x in X , then since p is open and continuous, p(V ) is a compact
neighborhood of G · x. Therefore there are finitely many compact sets {Vi } with
p
(⋃

Vi
)
⊃ T . Since

⋃
Vi is compact, this proves the first assertion. If G\X is

Hausdorff, then T is closed and

D := p−1(T ) ∩
⋃
Vi

is a closed subset of a compact set and therefore compact. Clearly, p(D) = T as
required. The other implication is an easy consequence of the continuity of p.

As should be evident from the above examples and the proof of Lemma 3.35
on the previous page, the openness of the orbit map is a useful tool. Recall that if
p : X → Y is open, then convergent nets in Y have subnets witch lift to convergent
nets in X — see Proposition 1.15 on page 4. As a consequence we have the following
useful observation.

Lemma 3.38. Suppose that X is a G-space and that p : X → G\X is the orbit
map. If { xi }i∈I is a net in X such that p(xi) → p(x) in G\X, then there is a
subnet { xNj }j∈J and elements sNj ∈ G such that sNj · xNj → x.

Remark 3.39. It is often the case, as in Remark 1.47 on page 13, that when we apply
this result, we are only interested in the subnet. Then, provided we’re careful to
keep in mind that we’ve passed to a subnet, we can relabel everything and assume
that there are si ∈ G such that si ·xi → x. The added readability resulting from the
dropping the double subscripts more than makes up for any confusion that might
result.

Proof. Proposition 1.15 on page 4 implies that there is a subnet { p(xNj ) }j∈J and
zNj ∈ X such that zNj → x and p(zNj) = p(xNj ) for all j. But then there must be
a sNj ∈ G such that zNj = sNj · xNj for all j.
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3.6 Proper Actions and Induced Algebras

Although group actions and their orbit spaces can be very complicated, there is
nevertheless a class of actions which are both extremely well-behaved and important
to the development of the subject. If X and Y are locally compact Hausdorff
spaces, then a continuous map f : X → Y induces a map f∗ : Cb(Y ) → Cb(X) via
f∗(ϕ)(y) := ϕ

(
f(y)

)
. But it need not be the case that

f∗
(
C0(Y )

)
⊂ C0(X). (3.8)

In order that (3.8) hold, we need f−1(K) to be compact in X whenever K is
compact in Y . Such maps f are called proper maps. Proper maps are the natural
morphisms in the category of locally compact spaces when the latter are identified
with abelian C∗-algebras. Naturally, proper maps play an important role.

Definition 3.40. A locally compact G-space P is called proper if the map (s, x) 7→
(s · x, x) is a proper map from G× P to P × P .

If P is a proper G-space, then we say that G acts properly on P . Of course, there
is an analogous definition for right G-spaces. Proper actions, and their connection
with principal G-bundles in particular, were discussed at the end of §4.2 of [139].

Example 3.41. Let H be a closed subgroup of a locally compact group G. Then H
acts properly on the left of G. To prove this, we need to see that the map

(s, t) 7→ (st, s) (3.9)

is proper from H ×G to G×G. But, viewed as a map from G×G→ G×G, (3.9)
has a continuous inverse (s, r) 7→ (r, r−1s). Thus (3.9) defines a proper map from
G×G→ G×G. Therefore the restriction to H ×G is also proper.

It is useful to keep in mind that the action of any compact group is always
proper. More generally, we have the following criteria in terms of nets.

Lemma 3.42. Let P be a locally compact G-space. Then G acts properly on P if
and only if whenever we are given convergent nets xi → x and si · xi → y, the net
{ si } has a convergent subnet.

Proof. Let Φ : G × P → P × P be given by Φ(s, x) = (s · x, x). Suppose that P
is a proper G-space and that { xi } and { si · xi } are as in the lemma. Let K be
a compact neighborhood of x and y. Then we eventually have xi and si · xi in K.
Thus we eventually have (si, xi) ∈ Φ−1(K ×K). Since Φ−1(K ×K) is compact by
assumption, { si } must eventually lie in a compact subset of G, and the assertion
follows

For the converse, suppose that C is compact in P × P . Let { (si, xi) } be a
net in Φ−1(C). It suffices to see that { (si, xi) } has a convergent subnet. But
(si · xi, xi) ∈ C. Since C is compact, we can pass to a subnet, relabel, and assume
that xi → x and si ·xi → y. By assumption, we can pass to another subnet, relabel,
and assume that si → s in G. But then (si, xi) → (s, x) in G× P .
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Corollary 3.43. If P is a proper locally compact G-space, then G\P is a locally
compact Hausdorff space.

Proof. Since G\P is always locally compact (Lemma 3.35 on page 97), we just
need to see that G\P is Hausdorff. Suppose that {wi } is a net G\P converging
to G · x and G · y. Passing to a subnet and relabeling, Proposition 1.15 on page 4
implies that there are xi ∈ P such that wi = G · xi and such that xi → x. Since
G · xi → G · y, Lemma 3.38 on page 98 implies that we can pass to subnet, relabel,
and assume that there are si ∈ G such that si · xi → y. By Lemma 3.42 on the
preceding page, we can pass to a subnet, relabel, and assume that si → s in G.
But then si · xi → s · x. Since P is Hausdorff, s · x = y and G · x = G · y. Thus,
G\P is Hausdorff as claimed.

Remark 3.44. Examples such as Example 3.31 on page 96 show that we can have
G\P Hausdorff even if the action in not proper. It is also possible, but not so easy,
to find examples of free actions with Hausdorff orbit spaces which are nevertheless
not proper actions (cf., [65, p. 95] and [151, Example 1.18]).

Corollary 3.45. Suppose that P is a proper G-space. Then for each x ∈ P ,
sGx 7→ s · x is a homeomorphism of G/Gx onto G · x.

Remark 3.46. When G and P are second countable, it turns out that the maps
sGx 7→ G · x are homeomorphisms if and only if the orbit space G\X is a T0-
topological space (Theorem 6.2 on page 173).

Proof. Since s 7→ s · x is continuous and since the quotient map of G to G/Gx is
open, it suffices to see that N · x is open in G · x whenever N is open in G. If N · x
is not open in G ·x, then there is a net { si } ⊂ G and n ∈ N such that si ·x→ n ·x
with si ·x /∈ N ·x for all i. Using Lemma 3.42 on the previous page, we can pass to
a subnet, relabel, and assume that si → s in G. Since P is Hausdorff, s · x = n · x
and s ∈ n · Gx ⊂ N · Gx. Since N · Gx is open in G, we must eventually have
si ∈ N · Gx, and si · x is eventually in N · x. This contradicts our assumptions.
Therefore N · x is open.

Suppose that P is a G-space and that (A,G, α) is a dynamical system. If
f : P → A is a continuous function such that

f(s · x) = αs
(
f(x)

)
for all x ∈ P and s ∈ G, (3.10)

then x 7→ ‖f(x)‖ is constant on G-orbits and gives a well-defined function on G\P .
By definition, the induced algebra is

IndPG(A,α) := { f ∈ Cb(P,A) : f satisfies (3.10) and

G · x 7→ ‖f(x)‖ is in C0(G\P ). }

Since IndPG(A,α) is a closed ∗-subalgebra of Cb(P,A), it is a C∗-algebra with re-
spect to the supremum norm. Induced algebras have been studied extensively (see
[139, §6.15]), and they will play a fundamental role in the imprimitivity theorems
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for crossed products in Section 4.1. When the context is clear, we will shorten
IndPG(A,α) to IndPG α or even Indα. If P is a right G-space, then we replace (3.10)
with

f(x · s) = α−1
s

(
f(x)

)
. (3.10′)

Then x 7→ ‖f(x)‖ is continuous on P/G and we make the obvious modifications to
the definition of IndPG(A,α).

One rather important example, and an example in which a right action is more
convenient than the usually preferred left action, is the following.

Example 3.47. Let H be a closed subgroup of a locally compact group G and let
(D,H, β) be a dynamical system. Then G is a right H-space with orbit space the
set of left cosets G/H (Example 3.34 on page 97). Then

IndGH(D, β) = { f ∈ Cb(G,D) : f(sh) = β−1
h

(
f(s)

)

for s ∈ G and h ∈ H , and sH 7→ ‖f(s)‖ is in C0(G/H). }

It should be observed that IndGH β can be nontrivial only if β can’t be lifted to an
action of G. More precisely, if β = α|H for some dynamical system (A,G, α), then
ϕ : Cb(G,D) → Cb(G,D) given by ϕ(f)(s) := αs

(
f(s)

)
defines an isomorphism

of IndGH(D, β) onto C0(G/H,D) (viewed as functions on G which are constant on
orbits).

The algebra IndGH β above is rather special to the imprimitivity theory and will
reoccur several times below. One of its attractions is that it admits a nice G-action.

Lemma 3.48. Suppose that H is a closed subgroup of a locally compact group and
that (D,H, β) is a dynamical system. Let IndGH β be as in Example 3.47 above.
Then there is a dynamical system

(
IndGH β,G, lt

)
where

ltr(f)(s) := f(r−1s). (3.11)

Proof. It is straightforward to check that (3.11) defines a homomorphism α : G→
Aut(Ind β). The only issue is to verify that s 7→ αs(f) is continuous for each
f ∈ Ind β. As this will follow from Lemma 3.54 on page 106, we’ll settle for a
forward reference and not repeat the argument here.

In general, our definition of IndPG(A,α) does not guarantee that it contains any
functions other than the zero function. For example, if G\P is not Hausdorff, then
C0(G\P ) could consist of only the zero function. However, if the action of G on
P is proper, as in the case of Example 3.47, then we can show that IndPG(A,α)
may be thought of as the section algebra of an (upper semicontinuous) C∗-bundle
over G\P with fibres all isomorphic to A. More precisely, we show that IndPG(A,α)
is a C0(G\P )-algebra. The basic properties of such algebras and their associated
C∗-bundles are detailed in Appendix C and Theorem C.26 on page 367 in particular.

Proposition 3.49. If P is a free and proper G-space and if (A,G, α) a dynamical
system, then IndPG α is a C0(G\P )-algebra such that

ϕ · f(x) = ϕ(G · x)f(x) for all ϕ ∈ C0(G\P ), f ∈ Indα and x ∈ P , (3.12)
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and such that the map f 7→ f(x) induces an isomorphism of the fibre over G · x
onto A.

It is not hard to see that (3.12) gives a nondegenerate homomorphism of
C0(G\P ) into the center of the multiplier algebra of Indα, so the only real issue is
to see that Φ(f) := f(x) defines a surjective homomorphism of Indα onto A with
kernel

IG·x = span{ϕ · f : ϕ(G · x) = 0 and f ∈ Indα. } (3.13)

In order to prove this, we need a few preliminary results. We state and prove
these in considerable more generality than needed for the proof of Proposition 3.49
on the previous page; the extra generality will be useful in the proof of the Sym-
metric Imprimitivity Theorem (Theorem 4.1 on page 110).

Let Indc α be the subalgebra of Indα consisting of those f for which G · x 7→
‖f(x)‖ is in Cc(G\P ). Since Indα is a C0(G\P )-module, it is easy to see that
Indc α is dense in Indα. Although in the following, we could work directly with
Cc

(
Y, Indc α

)
, it will be more convenient to work with a smaller dense subalgebra

of compactly supported functions in analogy with Cc(G ×X) ⊂ Cc
(
G,C0(X)

)
in

the case of transformation group C∗-algebras (see page 53).

Lemma 3.50. Suppose that Y is a locally compact space, that P is a locally com-
pact G-space and that (A,G, α) is a dynamical system. Let Ccc

(
Y, Indc α

)
be the

collection of functions f in C(Y × P,A) such that

(a) f(y, s · x) = αs
(
f(y, x)

)
for y ∈ Y , x ∈ P and s ∈ G, and

(b) there are compact sets C ⊂ Y and T ⊂ G\P such that f(y, x) = 0 if (y,G·x) /∈
C × T .

Then y 7→ f(y, ·) is in Cc(Y, Indα) and we can identify Ccc(Y, Indc α
)

with a sub-

space of Cc
(
Y, Indα

)
which is dense in the inductive limit topology.

Proof. Suppose that f ∈ Ccc
(
Y, Indc α

)
with C and T as above. We show that

y 7→ f(y, ·) is continuous from Y into Indα. If not, then there is a sequence yi → y
in Y and an ǫ > 0 such that ‖f(yi, ·) − f(y, ·)‖ ≥ ǫ for all i. Then there must be
xi ∈ P such that

‖f(yi, xi) − f(y, xi)‖ ≥ ǫ for all i. (3.14)

Clearly, we must have {G · xi } ⊂ T , and {G · xi } must have a convergent subnet.
Using Lemma 3.38 on page 98, we can pass to a subnet, relabel, and assume that
there are si ∈ G such that xi · si → x for some x ∈ P . But then (3.14) implies

‖f(yi, si · xi) − f(y, si · xi)‖ =
∥∥αsi

(
f(yi, xi) − f(y, xi)

)∥∥ ≥ ǫ.

Since the left-hand side must go to zero, we have a contradiction.

Lemma 1.87 on page 29 implies that elementary tensors z ⊗ f , with z ∈ Cc(Y )
and f ∈ Indc α span a dense subspace of Cc

(
Y, Indα

)
. Since each z ⊗ f is clearly

in Ccc
(
Y, Indc α

)
, the final assertion follows.
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Remark 3.51. Note that Ccc
(
Y, Indc α

)
has an inductive limit topology as a sub-

space of Cc
(
Y, Indα

)
. If { fi } is a net in Ccc

(
Y, Indc α

)
converging uniformly to

f on Y × P , and if there are compact sets K ⊂ Y and T ⊂ G\P such that
supp fi ⊂ K × p−1(T ) for all i, then fi → f in the inductive limit topology in
Ccc

(
Y, Indc α

)
⊂ Cc

(
Y, Indα

)
.

Lemma 3.52. Suppose that Y is a locally compact space, that P is a free and
proper locally compact G-space and that (A,G, α) is a dynamical system. If F ∈
Cc(Y × P,A), then

ψ(y, x) :=

∫

G

αs
(
F (y, s−1 · x)

)
dµ(s)

defines an element ψ ∈ Ccc
(
Y, Indc α

)
⊂ Cc

(
Y, Indα

)
.

Proof. Let suppF ⊂ K × C with K ⊂ Y and C ⊂ P compact. Then

αs
(
F (y, s−1 · x)

)
6= 0 implies that y ∈ K and s−1 · x ∈ C.

Since the action is free and proper, s 7→ s · x is a homeomorphism of G onto G · x
by Corollary 3.45 on page 100. Therefore { s ∈ G : s−1 · x ∈ C } is compact, and ψ
is defined for all (y, x). Furthermore,

ψ(y, r · x) =

∫

G

αs
(
F (y, s−1r · x)

)
dµ(s)

= αr

(∫

G

αs
(
F (y, s−1 · x)

)
dµ(s)

)

= αr
(
ψ(y, x)

)
.

Since suppψ ⊂ K ×G ·C, it will, in view of Lemma 3.50 on the facing page, suffice
to see that ψ is continuous. So suppose that (yi, xi) → (y, x). We can enlarge C a
bit if necessary, and assume that xi ∈ C for all i. Since the action is proper,

{ (s, x) ∈ G× P : (x, s−1 · x) ∈ C × C }

is compact. Therefore, there is a compact set C′ such that

{ s ∈ G : s−1 · xi ∈ C for some i } ⊂ C′.

We claim that given ǫ > 0 there is an i0 such that i ≥ i0 implies that

‖F (yi, s
−1 · xi) − F (y, s−1 · x)‖ < ǫ for all s ∈ G. (3.15)

If the claim were not true, then after passing to a subnet and relabeling, there
would be si ∈ C′ such that

‖F (yi, s
−1
i · xi) − F (y, s−1

i · x)‖ ≥ ǫ.
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But after passing to a subnet and relabeling, we can assume that si → s, and this
leads to a contradiction as F was assumed to be continuous. But if (3.15) holds,
then

‖ψ(yi, xi) − ψ(y, x)‖ ≤
∫

G

‖F (yi, s
−1 · xi) − F (y, s−1 · x)‖ dµ(s)

≤ ǫµ(C′).

Since µ(C′) <∞ and ǫ was arbitrary, it follows that ψ is continuous.

Proof of Proposition 3.49 on page 101. We still have to show that kerΦ = IG·x and
Φ

(
Indα

)
= A. If f ∈ kerΦ, then f(x) = 0 and therefore f(s · x) = 0 for all s ∈ G.

Then given ǫ > 0,
T := {G · y : ‖f(y)‖ ≥ ǫ }

is a compact set in G\P , and since G\P is Hausdorff, there is a ϕ ∈ C0(G\P ) such
that ϕ(G · x) = 0, ϕ(G · y) = 1 if G · y ∈ T and 0 ≤ ϕ(G · y) ≤ 1 for all y ∈ P . But
then ϕ · f ∈ IG·x and ‖f − ϕ · f‖ < ǫ. It follows that kerΦ ⊂ IG·x. Since the other
containment is obvious, we have kerΦ = IG·x.

Now if a ∈ A and ǫ > 0, there is a neighborhood V of e in G such that
‖αs(a) − a‖ < ǫ if s ∈ V . Since s 7→ s · x is a homeomorphism of G onto G · x,
V ·x is an open set in G ·x (Corollary 3.45 on page 100). Thus there is an open set
U ⊂ P such that U ∩G · x = V · x. Let z ∈ C+

c (P ) be such that supp z ⊂ U and
∫

G

z(s−1 · x) dµ(s) = 1.

Then

f(x) =

∫

G

z(s−1 · x)αs(a) dµ(s)

is in Indα by Lemma 3.52 on the previous page, and

‖f(x) − a‖ =
∥∥∥
∫

G

z(s−1 · x)
(
αs(a) − a

)
dµ(s)

∥∥∥ < ǫ.

It follows that Φ has dense range. Since Φ is a homomorphism, it must have closed
range, so Φ

(
Indα

)
= A as required.

Since it has an important role to play in the imprimitivity theory, we’ll look a
bit more closely at the algebra IndGH β of Example 3.47 on page 101. In [139, Propo-
sition 6.16], we showed that M(s, π)(f) := π

(
f(s)

)
is an irreducible representation

of Indβ for all s ∈ G and π ∈ D̂, and that the map (s, π) 7→ kerM(s, π) induces
a homeomorphism of Prim(Ind β) with the orbit space (G × PrimD)/H where
(s, P ) · t = (st, t−1 · P ). Furthermore, it is not hard to check that the induced
G-action on Prim(Indβ) is given on the class [s, P ] of (s, P ) by r · [s, P ] = [rs, P ].
Therefore [s, P ] 7→ sH is a continuousG-equivariant map of Prim(Indβ) onto G/H .
Notice that if (A,G, α) is any dynamical system, then any continuous map of PrimA
onto G/H makes A into a C0(G/H)-algebra (Proposition C.5 on page 355). How-
ever, if this map is also G-equivariant, then it follows from the next result that we
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recover the situation of Example 3.47 on page 101 and Lemma 3.48 on page 101.
The statement and proof are taken from [36,37].

Proposition 3.53. Suppose that (A,G, α) is a dynamical system, that H is a closed
subgroup of G and that σ : PrimA→ G/H is a G-equivariant continuous map. Let

I :=
⋂

{P ∈ PrimA : σ(P ) = eH },

and let D := A/I. Then I is H-invariant and (D,H,αI) is a dynamical system.
Furthermore there is a G-equivariant and C0(G/H)-linear isomorphism Φ : A →
IndGH(D,αI) given by

Φ(a)(s) := q
(
α−1
s (a)

)
,

where q : A→ A/I is the quotient map.

Proof. Since α is strongly continuous, we certainly have Φ(a) ∈ Cb(G,D). Also

Φ(a)(sh) = q
(
α−1
h

(
α−1
s (a)

))

= αIh−1

(
q
(
α−1
s (a)

))

= αIh−1

(
Φ(a)(s)

)
.

Therefore to see that Φ(a) ∈ IndGH(D,αI), we just have to check that sH 7→
‖Φ(a)(s)‖ vanishes at infinity on G/H . However, Proposition C.5 on page 355
implies that A is a C0(G/H)-algebra. Let σ̄ : Â → G/H be the lift of σ to Â:
σ̄
(
[π]

)
= σ(ker π). Then σ̄ is continuous and G-equivariant. Furthermore,

‖Φ(a)(s)‖ =
∥∥q

(
α−1
s (a)

)∥∥

= sup
π∈Â

kerπ⊃I

∥∥π
(
α−1
s (a)

)∥∥

= sup
σ̄(π)=eH

∥∥π
(
α−1
s (a)

)∥∥

= sup
σ̄(π)=eH

‖s · π(a)‖

= sup
σ̄(π)=sH

‖π(a)‖

= ‖a(sH)‖.

But sH 7→ ‖a(sH)‖ vanishes at infinity on G/H by Proposition C.10 on page 357.
Thus we have shown that Φ(a) ∈ IndGH(D,αI).3

If Φ(a) = 0, then the previous computation shows that a(sH) = 0 for all s ∈ G.
Therefore a = 0 by Proposition C.10 on page 357. W still need to show that Φ is
surjective and C0(G/H)-linear. Since {Φ(a)(s) : a ∈ A } = A/I = D, and in view
of Proposition 3.49 on page 101, Proposition C.24 on page 363 and Theorem C.26

3Since the above computation shows that sH 7→ ‖Φ(a)(s)‖ = ‖a(sH)‖ is continuous, it follows
from part (b) of Proposition C.10 on page 357 that σ must be an open map.



106 Special Cases and Basic Constructions

on page 367, it will suffice to see that Φ is C0(G/H)-linear. But if π ∈ Â is such
that kerπ ⊃ I and if ϕ ∈ C0(G/H), then σ̄(π) = eH and

π
(
α−1
s (ϕ · a)

)
= s · π(ϕ · a)
= ϕ

(
σ̄(s · π)

)
s · π(a)

= ϕ(sH)π
(
α−1
s (a)

)
.

It follows that

q
(
α−1
s (ϕ · a)

)
= ϕ(sH)q

(
α−1
s (a)

)
,

or equivalently,

Φ(ϕ · a)(s) = ϕ(sH)Φ(a)(s) = (ϕ · Φ)(a)(s).

Thus the range of Φ is a C0(G/H)-module and it follows that Φ is surjective.
Since it is immediate that Φ

(
αr(a)

)
(s) = Φ(a)(r−1s), Φ is equivariant and we’re

done.

The next result will be of use in Section 4.1. It will also complete the proof of
Lemma 3.48 on page 101.

Lemma 3.54. Suppose that we have free and proper actions of locally compact
groups K and H on the left and right, respectively, of a locally compact space P
such that

t · (p · s) = (t · p) · s for all t ∈ K, p ∈ P and s ∈ H. (3.16)

Let α and β be commuting strongly continuous actions of K and H, respectively,
on a C∗-algebra A. Then there are strongly continuous actions

σ : K → Aut
(
IndPH(A, β)

)
and τ : H → Aut

(
IndPK(A,α)

)

given by

σt(f)(p) := αt
(
f(t−1 · p)

)
and τs(f)(p) := βs

(
f(p · s)

)
. (3.17)

Remark 3.55. The actions σ and τ above are often called diagonal actions because,
for example, σ is the restriction to Indβ of the canonical extension of lt⊗α on
C0(P ) ⊗A to Cb(P,A) ⊂M

(
C0(P ) ⊗A

)
.

Proof. By symmetry, it suffices to prove that σ is strongly continuous. Suppose that
ti → t in K. Since Indc β is dense in Indβ, it suffices to show that σti(f) → σt(f)
for f ∈ Indβ with supp f ⊂ D ·H for D compact in P (Lemma 3.37 on page 98).
If N is a compact neighborhood of t, then there is an i0 such that i ≥ i0 implies
ti ∈ N . Then the functions p 7→ ‖σti(f)(p)‖ are constant on H-orbits and vanish
outside N ·D ·H for large i. Therefore if i ≥ i0, then

‖σti(f) − σt(f)‖ = sup
p∈N ·D

‖σti(f)(p) − σt(f)(p)‖.
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Since N ·D is compact in P and f(t−1 ·N ·D) is compact in A, there is an i1 ≥ i0
such that i ≥ i1 implies that

‖f(t−1
i · p) − f(t−1 · p)‖ < ǫ/2 for all p ∈ N ·D, and

‖αti(a) − αt(a)‖ < ǫ/2 for all a ∈ f(t−1 ·N ·D).

Then i ≥ i1 implies ‖σti(f) − σt(f)‖ < ǫ as required.

The next two technical results will be of use in the next section.

Lemma 3.56. Let K be a locally compact group, P a locally compact G-space and
(A,G, α) a dynamical system. If f ∈ Ccc

(
K, Indc α

)
and ǫ > 0, then there is a

neighborhood V of e in K such that kt−1 ∈ V implies

‖f(k, x) − f(t, x)‖ < ǫ for all x ∈ P .

Proof. Suppose no such V exists. Let N be a symmetric compact neighborhood
of e in K. By assumption, for each neighborhood V ⊂ N , there are xV ∈ P ,
kV , tV ∈ K such that kV t

−1
V ∈ V and

‖f(kV , xV ) − f(tV , xV )‖ ≥ ǫ. (3.18)

But there are compact sets C ⊂ K and T ⊂ G\P such that supp f ⊂ C × p−1(T ).
Clearly, at least one of kV and tV must be in C. Since kV t

−1
V ∈ V ⊂ N , both tV

and kV are in the compact set NC. Thus we can pass to a subnet, relabel, and
assume that there is a t ∈ K such that tV → t and kV → t. Since { p(xV ) } ⊂ T and
since we can replace xV by s−1 · xV in (3.18), we can use Lemma 3.38 on page 98
to pass to a subnet, relabel, and assume that xV → x in P . Now the continuity of
f and (3.18) lead to a contradiction.

Lemma 3.57. Suppose that P is a free and proper G-space, and that f ∈ C+
c (P ).

Then given ǫ > 0 there is a g ∈ C+
c (P ) such that supp g ⊂ supp f and

∣∣∣f(x) − g(x)

∫

G

g(s−1 · x) dµ(s)
∣∣∣ < ǫ.

Proof. Define

F (G · x) :=

∫

G

f(s−1 · x) dµ(s).

A simple variation on the proof of Lemma 3.52 on page 103, shows that F ∈
Cc(G\P ). Let

C = { x ∈ P : f(x) ≥ ǫ }.

Since F (G · x) > 0 if x ∈ C and since p(C) is compact in G\P , m := inf{F (G · x) :
x ∈ C } > 0. Let

U = {G · x ∈ G\P : F (G · x) > m/2 }.
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Then U is a neighborhood of p(C) and there is aQ ∈ Cc(G\P ) such thatQ(G·x) = 1
if x ∈ C, Q(G · x) = 0 if G · x /∈ U and Q(G · x) ≤ 1 otherwise. Then H(G · x) =

Q(G · x)F (G · x)− 1
2 is in Cc(G\P ). Then if g(x) := f(x)Q(G · x)F (G · x)− 1

2 ,

g(x)

∫

G

∆(s)−
1
2 g(s−1 · x) dµ(s) =

{
f(x) if G · x ∈ G · C, and

f(x)Q(G · x)2 otherwise.

But if G · x /∈ G · C, then |f(x)| < ǫ and

|f(x) − f(x)Q(G · x)2| ≤ |f(x)||1 −Q(G · x)2|
≤ |f(x)| < ǫ.

Thus g suffices.

Notes and Remarks

Propositions 3.1 and 3.4 are relatively straightforward observations and have been
well-known for a long time. Proposition 3.3 has also been around for a long time.
The proof given here is based on a comment in [17]. A compilation of the properties
of an extraordinary varied collection of group C∗-algebras can be found in [123].
Proposition 3.11 is a relatively straightforward consequence of the axioms and is
certainly very well known in the case of group C∗-algebras. Proposition 3.19 and
Corollary 3.20 are due to Green [65, 67]. The importance of proper actions in the
theory was first emphasized by Green in [65]. Induced algebras derive their name
from their similarity to the space for Mackey’s induced representation. As examples
of C∗-algebras, they have been around since at least [117, 137,138].



Chapter 4

Imprimitivity Theorems

Originally, imprimitivity theorems, such as Mackey’s Imprimitivity Theorem, were
meant to tell us which representations of a locally compact group G are induced
from a closed subgroup H . Rieffel’s theory of Morita equivalence allows us to recast
Mackey’s theorem as the statement that C∗(H) and the transformation group C∗-
algebra C0(G/H) ⋊lt G are Morita equivalent via an imprimitivity bimodule X.
As an added bonus, this new approach allows us to define induced representations
using the calculus of imprimitivity bimodules and Morita theory. In this chapter,
we want to see that Rieffel’s approach extends to dynamical systems in a deep and
highly nontrivial way. The key step is proving a Morita equivalence result called the
Symmetric Imprimitivity Theorem which is due to Raeburn. We then investigate
its consequences. In particular, this will allow us to give some nontrivial examples
of crossed products. In Chapter 5 we will use this machinery to develop a theory
of induced representations for crossed products that will play a crucial role in our
program to understand the ideal structure of crossed products in Chapters 8 and 9.

The Symmetric Imprimitivity Theorem was proved by Raeburn as a common
generalization of most of the significant Morita equivalence results for crossed prod-
ucts in the literature. We state and then take on the proof of the Symmetric Im-
primitivity Theorem in the first section. In Sections 4.2 and 4.3 we look at some
special cases of the Symmetric Imprimitivity Theorem, and these so-called special
cases constitute the centerpiece of this chapter.

In Sections 4.4 and 4.5, we tackle some interesting and nontrivial examples.
In particular, we show that C0(G) ⋊lt G is isomorphic to the compact operators
on L2(G) — which should be viewed as a modern version of the von Neumann
Uniqueness Theorem — and we show that C0(G/H)⋊ltG is isomorphic to C∗(H)⊗
K

(
L2(G/H, βH)

)
, where βH is any quasi-invariant measure on G/H . Proving this

last assertion involves some technical gymnastics using a suitable measurable cross
section for the quotient map of G onto G/H .

In Chapter 5, we will use the material in this chapter to define and study induced
representations of crossed products.

109
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4.1 The Symmetric Imprimitivity Theorem

There are a number of Morita equivalences that play a fundamental role in the
study of the representation theory of crossed products. These equivalences go by
the name of imprimitivity theorems as the original motivation and statements can
be traced back through Rieffel’s work [145] and from there to Mackey’s systems of
imprimitivity [102]. Most of these are subsumed by Raeburn’s Symmetric Imprimi-
tivity Theorem [132] which we reproduce here. The set-up requires two commuting
free and proper actions of locally compact groups K and H on a locally compact
space P . To reduce confusion, it is convenient to have one group, K in this case, act
on the left and the other, H , on the right. Then the fact that the actions commute
simply amounts to the condition

t · (p · h) = (t · p) · s for all t ∈ K, p ∈ P and s ∈ H . (4.1)

In addition we suppose that there are commuting strongly continuous actions α
and β of K and H , respectively, on a C∗-algebra A. Then Lemma 3.54 on page 106
implies there are dynamical systems

(
IndPH(A, β),K, σ

) (
IndPK(A,α), H, τ

)

as defined in (3.17). The Symmetric Imprimitivity Theorem states that the crossed
products Indβ⋊σK and Indα⋊τ H are Morita equivalent. As is usually the case,
it is convenient to work with dense ∗-subalgebras. We’ll invoke Lemma 3.50 on
page 102 and define

E0 = Ccc
(
K, Indc β

)
⊂ Indβ ⋊σ K and B0 = Ccc

(
H, Indc α

)
⊂ Indα⋊τ H.

Therefore E0 consists of A-valued functions on K × P , and B0 of A-valued func-
tions on H × P . Both B0 and E0 are are viewed as dense ∗-subalgebras of the
corresponding crossed products as indicated above.

Theorem 4.1 (Raeburn’s Symmetric Imprimitivity Theorem). Suppose that we
have commuting free and proper actions of locally compact groups K and H on the
left and right, respectively, of a locally compact space P , and commuting strongly
continuous actions α and β of K and H, respectively, on a C∗-algebra A. As
described above, let E0 and B0 be viewed as dense ∗-subalgebras of Indβ ⋊σ K and
Indα⋊τ H, respectively, and Z0 = Cc(P,A). If c ∈ E0, b ∈ B0 and f, g ∈ Z0, then
define

c · f(p) =

∫

K

c(t, p)αt
(
f(t−1 · p)

)
∆K(t)

1
2 dµK(t) (4.2)

f · b(p) =

∫

H

βs
(
f(p · s)b(s−1, p · s)

)
∆H(s)−

1
2 dµH(s) (4.3)

E0

〈f , g〉(t, p) = ∆K(t)−
1
2

∫

H

βs
(
f(p · s)αt

(
g(t−1 · p · s)∗

))
dµH(s) (4.4)

〈f , g〉
B0

(s, p) = ∆H(s)−
1
2

∫

K

αt
(
f(t−1 · p)∗βs

(
g(t−1 · p · s)

))
dµK(t). (4.5)



4.1 The Symmetric Imprimitivity Theorem 111

Then Z0 is a E0 –B0-pre-imprimitivity bimodule. The completion Z = Z
K
H is a

Indβ⋊σK – Indα⋊τH-imprimitivity bimodule, and Indβ⋊σK is Morita equivalent
to Indα⋊τ H.

Before we begin the proof of Theorem 4.1, we need some technical preliminaries.
The most formidable of these will involve finding approximate identities of a specific
form. Fortunately, we can save ourselves a bit of work by exploiting symmetry.

Remark 4.2. At first glance, it might not seem that the statement of Theorem 4.1
on the preceding page is completely symmetric in K and H . But it is important to
keep in mind that the right action of H is purely a convention to keep the formulas
easier to digest. We could easily have H act on the left via

s : p := p · s−1 for s ∈ H and p ∈ P .

Similarly, we can let K act on the right via

p : t := t−1 · p for t ∈ K and p ∈ P .

Then we can swap the roles of K and H in (4.2)–(4.5), and obtain formulas for a
left Indα⋊τ H-action and a right Indβ ⋊σ K-action as follows:

b : f(p) =

∫

H

b(s, p)βs
(
f(s−1 : p)

)
∆H(s)

1
2 dµH(s) (4.6)

f : c(p) =

∫

K

αt
(
f(p : t)c(t−1, p : t)

)
∆K(t)−

1
2 dµK(t) (4.7)

B0

〈f , g〉(s, p) = ∆H(s)−
1
2

∫

K

αt
(
f(p : t)βs

(
g(s−1 : p : t)∗

))
dµK(t) (4.8)

〈f , g〉
E0

(t, p) = ∆K(t)−
1
2

∫

H

βs
(
f(s−1 : p)∗αt

(
g(s−1 : p : t)

))
dµH(s). (4.9)

Therefore if Z0 is a E0 –B0-pre-imprimitivity bimodule with respect to (4.2)–(4.5),
then it is a B0 –E0-pre-imprimitivity bimodule with respect to (4.6)–(4.9). How-
ever, the symmetry runs even deeper.

Recall that if c ∈ E0 ⊂ Indβ ⋊σ K, then

c∗(t, p) := αt
(
c(t−1, t−1 · p)∗

)
∆K(t−1).

If Φ : Z0 → Z0 is defined by Φ(f)(p) = f(p)∗, then we can compute as follows:

Φ(c · f)(p) =

∫

K

αt
(
f(t−1 · p)∗

)
c(t, p)∗∆K(t)

1
2 dµK(t)

=

∫

K

αt
(
f(t−1 · p)∗α−1

t

(
c(t, p)∗

)
∆K(t)

)
∆K(t)−

1
2 dµK(t)

=

∫

K

αt
(
f(t−1 · p)∗c∗(t−1, t−1 · p)

)
∆K(t)−

1
2 dµK(t)

=

∫

K

αt
(
f(p : t)∗c∗(t−1, p : t)

)
∆K(t)−

1
2 dµK(t)

= Φ(f) : c∗(p).

Similar sorts of computations result in the following symmetry lemma.
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Lemma 4.3. Define Φ : Z0 → Z0 by Φ(f)(p) = f(p)∗. Then for all c ∈ E0, b ∈ B0

and f, g ∈ Z0:

Φ(c · f) = Φ(f) : c∗ Φ(f · b) = b∗ : Φ(f)

E0

〈
Φ(f) , Φ(g)

〉
= 〈f , g〉

E0

〈
Φ(f) , Φ(g)

〉
B0

=
B0

〈f , g〉.

Remark 4.2 on the preceding page and Lemma 4.3 will allow us some shortcuts
in the following. For example, if we show that for all f ∈ Z0, 〈f , f〉

B0

≥ 0 in

Indα⋊τH , then just by exchanging the roles of K and H , we know that 〈f , f〉
E0

≥
0 in Indβ ⋊σK. In particular, given f ∈ Z0,

〈
Φ(f) , Φ(f)

〉
E0

≥ 0, then Lemma 4.3

then implies
E0

〈f , f〉 ≥ 0. We’ll often use this sort of reasoning in our proof of the

Symmetric Imprimitivity Theorem.

Lemma 4.4. If c ∈ E0, f, g ∈ Z0 and b ∈ B0, then c · f and f · b are in Z0,
〈f , g〉

B0

∈ B0 and
E0

〈f , g〉 ∈ E0. If fi → f and gi → g in the inductive limit

topology on Z0, then
E0

〈fi , gi〉 →
E0

〈f , g〉 in the inductive limit topology on E0

while 〈fi , gi〉
B0

→ 〈f , g〉
B0

in the inductive limit topology on B0.

Proof. Since (t, p) 7→ c(t, p)αt
(
f(t−1 · p)

)
is in Cc(K × P,A), we have c · f ∈ Z0 by

Lemma 1.102 on page 36. A similar observation shows that f · b ∈ Z0.
To see that

E0

〈f , g〉 ∈ E0, let Df := supp f and let

F (t, p) := f(p)αt
(
g(t−1 · p)∗

)
.

Since the K-action is proper,

{ t ∈ K : Df ∩ t ·Dg 6= ∅ } = { t ∈ K : (p, t−1 · p) ∈ Df ×Dg for some p }

is contained in a compact set CK ⊂ K, and suppF ⊂ CK ×Df . Thus Lemma 3.52
on page 103 implies that

E0

〈f , g〉 ∈ E0.

Notice that

E0

〈f , g〉(t, p) = 0 if (t, p) /∈ CK ×Df ·H ,

and that
‖

E0

〈f , g〉‖∞ = sup
(t,p)∈CK×Df

‖
E0

〈f , g〉(t, p)‖ (4.10)

Since the H-action is proper, then there is a compact set CH ⊂ H such that

{ s ∈ H : Df ∩Df · s−1 6= ∅ } ⊂ CH .

It follows from (4.10) that

‖
E0

〈f , g〉‖∞ ≤
(

sup
t∈CK

∆K(t)−
1
2

)
‖f‖∞‖g‖∞µH(CH). (4.11)

Since

E0

〈fi , gi〉 −
E0

〈f , g〉 =
E0

〈fi − f , gi〉 −
E0

〈f , gi − g〉,
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and since the compact set CK in (4.11) depends only on Df and Dg, it is now easy
to see that

E0

〈fi , gi〉 →
E0

〈f , g〉 in the inductive limit topology.

The corresponding statements for 〈· , ·〉
B0

can be proved similarly, or we can

invoke symmetry. For example, if fi → f and gi → g in the inductive limit topology,
then Φ(fi) → Φ(f) and Φ(gi) → Φ(g). By switching the roles of K and H , we know
that

B0

〈
Φ(fi) , Φ(gi)

〉
→

B0

〈
Φ(f) , Φ(g)

〉
, and the result follows from Lemma 4.3

on the preceding page.

The key technical tool for the proof of the Symmetric Imprimitivity Theorem is
the following proposition which says that we can construct approximate identities
of a very special form. The use of these sorts of constructions is now very common
in the literature. The original idea goes back at least to [66, Lemma 2].

Proposition 4.5. There is a net { em }m∈M in E0 such that

(a) for all c ∈ E0, em ∗ c→ c in the inductive limit topology on E0,

(b) for all f ∈ Z0, em · f → f in the inductive limit topology on Z0 and

(c) for each m ∈M there are fmi ∈ Z0 such that

em =

nm∑

i=1
E0

〈fmi , fmi 〉.

The proof of the above proposition is a bit involved. In order not to obscure the
basic ideas of the Symmetric Imprimitivity Theorem, the proof of this proposition
has been exiled to Section 4.1.1 on page 117.

Proof of the Symmetric Imprimitivity Theorem. As observed in Lemma 4.4 on the
facing page, (4.2)–(4.5) take values in the appropriate spaces. We need to show that
Z0 is a E0 –B0-pre-imprimitivity bimodule. (The rest follows from [139, Proposi-
tion 3.12].) First, we check that Z0 is a E0 –B0-bimodule. This amounts to checking
that for f ∈ Z0, b, b

′ ∈ B0 and c, c′ ∈ E0,

f · (b ∗ b′) = (f · b) · b′, (4.12)

(c′ ∗ c) · f = c′ · (c · f) and (4.13)

(c · f) · b = c · (f · b). (4.14)

Fortunately, these are all fairly routine computations. For example, to verify (4.14)
we recall that α and β commute with each other by assumption, and with integrals
by Lemma 1.92 on page 32. Then we compute that

(c · f) · b(p) =

∫

H

βs
(
c · f(p · s)b(s, p · s)

)
∆H(s)−

1
2 dµH(s)

=

∫

H

∫

K

βs
(
c(t, p · s)αt

(
f(t−1 · p · s)

)
b(s, p · s)

)

∆K(t)
1
2 ∆H(s)−

1
2 dµK(t) dµH(s)
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which, utilizing Fubini’s Theorem (Proposition 1.105 on page 37) and that c(t, ·) ∈
Indβ and b(s, ·) ∈ Indα,

=

∫

K

∫

H

c(t, p)αt
(
βs

(
f(t−1 · p · s)b(s, t−1 · p · s)

))

∆K(t)
1
2 ∆H(s)−

1
2 dµH(s) dµK(t)

=

∫

K

c(t, p)αt

(∫

H

βs
(
f(t−1 · p · s)

b(s, t−1 · p · s)
)
∆H(s)−

1
2 dµH(s)

)
∆K(t)

1
2 dµK(t)

=

∫

K

c(t, p)αt
(
f · b(t−1 · p)

)
∆K(t)

1
2 dµK(t)

= c · (f · b)(p).

Equations (4.12) and (4.13) can be verified via equally exciting computations.
Now we proceed to verify that Z0 satisfies the axioms of a pre-imprimitivity

bimodule as laid out in [139, Definition 3.9]. Specifically, we have to verify the
following:

(IB1) The bimodule Z0 is both a left pre-inner product E0-module and a right
pre-inner product B0-module.

(IB2) The range
E0

〈Z0 , Z0〉 and 〈Z0 , Z0〉
B0

of the inner products span dense ideals.

(IB3) The E0- and B0-actions are bounded with respect to the norms induced by
〈· , ·〉

B0

and
E0

〈· , ·〉, respectively.

(IB4) For all f, g, h ∈ Z0,
E0

〈f , g〉 · h = f · 〈g , h〉
B0

.

Verifying (IB4) amounts to a computation:

E0

〈f , g〉 · h(p) =

∫

K
E0

〈f , g〉(t, p)αt
(
h(t−1 · p)

)
∆K(t)

1
2 dµK(t)

=

∫

K

∫

H

βs
(
f(p · s)αt

(
g(t−1 · p · s)∗

))
αt

(
h(t−1 · p)

)
dµH(s) dµK(t).

Since the actions of K and H are free and proper, the above integrand is a con-
tinuous compactly supported function on K × H . Therefore Fubini’s Theorem
(Proposition 1.105) applies and the above

=

∫

H

βs

(
f(p · s)

∫

K

αt
(
g(t−1 · p · s)∗β−1

s

(
h(t−1 · p)

))
dµK(t)

)
dµH(s)

=

∫

H

βs
(
f(p · s)〈g , h〉

B0

(s−1, p · s)
)
∆H(s)−

1
2 dµH(s)

= f · 〈g , h〉
B0

(p).

Thus (IB4) holds.
To verify (IB1), we have to check properties (a)–(d) of [139, Definition 2.1]. For

the E0 action, this means we must show
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(a)
E0

〈· , ·〉 is linear in its first variable,

(b)
E0

〈c · f , g〉 = c ∗
E0

〈f , g〉,
(c)

E0

〈f , g〉∗ =
E0

〈g , f〉, and

(d)
E0

〈f , f〉 ≥ 0 as an element of Indβ ⋊σ K.

Property (a) is easy to check. Properties (b) and (c) follow from straightforward
computations. For example,

E0

〈f , g〉∗(t, p) = ∆K(t−1)αt
(

E0

〈f , g〉(t−1, t−1 · p)
)∗

= ∆K(t)−
1
2αt

(∫

H

βs
(
f(t−1 · p · s)α−1

t

(
g(p · s)∗

))
dµH(s)

)∗

= ∆K(t)−
1
2

∫

H

βs
(
g(p · s)αt

(
f(t−1 · p · s)∗

))
dµH(s)

=
E0

〈g , f〉(t, p).

However, Property (d) is nontrivial, and we have prepared our approximate
identity { em }m∈M in Proposition 4.5 on page 113 with this in mind. If f ∈ E0,
then em · f → f in the inductive limit topology in Z0. Lemma 4.4 on page 112
implies that 〈em · f , f〉

B0

→ 〈f , f〉
B0

in the inductive limit topology in B0 and

therefore in the C∗-norm topology as well. Thus, in the C∗-norm, we have

〈f , f〉
B0

= lim
m

〈em · f , f〉
B0

= lim
m

nm∑

i=1

〈
E0

〈fmi , fmi 〉 · f , f
〉
B0

= lim
m

nm∑

i=1

〈
fmi · 〈fmi , f〉

B0

, f
〉
B0

= lim
m

nm∑

i=1

〈fmi , f〉∗
B0

∗ 〈fmi , f〉
B0

.

Since elements of the form b∗ ∗ b are positive, and since 〈f , f〉
B0

is the norm limit

of positive elements, it follows that 〈f , f〉
B0

≥ 0. The corresponding statements

for the E0-valued inner product follow by symmetry as we remarked following the
proof of Lemma 4.3 on page 112. Thus (IB1) is satisfied.

Our approximate identity also gives an easy proof of (IB2). If c ∈ E0 and if
{ em }m∈M ⊂ E0 is as above, then em ∗ c→ c in the inductive limit topology. Since
convergence in the inductive limit topology implies convergence in the C∗-norm, it
suffices to see that em ∗ c belongs to the span of

E0

〈Z0 , Z0〉. But

em ∗ c =

nm∑

i=1
E0

〈fmi , fmi 〉 ∗ c =

nm∑

i=1
E0

〈fmi , c∗ · fmi 〉.



116 Imprimitivity Theorems

Thus
E0

〈Z0 , Z0〉 is dense in E0. Exchanging the roles of K and H implies that

B0

〈Z0 , Z0〉 is dense in B0. Since Φ(Z0) = Z0, it follows that 〈Z0 , Z0〉
B0

is dense in

B0 by Lemma 4.3 on page 112.
To verify (IB3), we have to show that

〈c · f , c · f〉
B0

≤ ‖c‖2〈f , f〉
B0

, and (4.15)

E0

〈f · b , f · b〉 ≤ ‖b‖2

E0

〈f , f〉. (4.16)

Let Z1 be the completion of Z0 as a Hilbert Indα⋊τ H-module as in [139, Defini-
tion 2.16]. (Most of the time, we’ll suppress the map q : Z0 → Z1.) For each t ∈ K,
define vt : Z0 → Z0 by

vt(f)(p) := ∆K(t)
1
2αt

(
f(t−1 · p)

)
. (4.17)

Let E = {ϕ ∈ Cb(P,M(A)) : ϕ(p · s) = β̄−1
s (ϕ(p)) }. Then E is a closed ∗-

subalgebra of Cb(P,M(A)) and is a C∗-algebra containing Indβ with identity given
by the function 1E(p) = 1A for all p ∈ P . If ϕ ∈ E, then we can define M(ϕ) :
Z0 → Z0 by

M(ϕ)(f)(p) = ϕ(p)f(p). (4.18)

Then a straightforward computation shows that

〈M(ϕ)(f) , g〉
B0

= 〈f , M(ϕ∗)(g)〉
B0

. (4.19)

If ϕ ∈ Indβ, then ‖ϕ‖21E − ϕ∗ϕ is positive in E, and therefore is of the form ψ∗ψ
for some ψ ∈ E. The positivity of the inner product together with (4.19) implies
that

‖ϕ‖2〈f , f〉
B0

−
〈
M(ϕ)(f) , M(ϕ)(f)

〉
B0

=
〈
M(‖ϕ‖21E − ϕ∗ϕ)(f) , f

〉
B0

=
〈
M(ψ)(f) , M(ψ)(f)

〉
B0

≥ 0.

Thus M(ϕ) is bounded and extends to an operator on Z1 with adjoint M(ϕ∗). It
is now easy to see that M : Indβ → L(Z1) is a homomorphism.

Another computation shows that for all k ∈ K
〈
vk(f) , vk(g)

〉
B0

= 〈f , g〉
B0

.

Thus vr is isometric and extends to an operator on Z1. Then it is straightforward
to check that v : K → UL(Z1) is a unitary valued homomorphism. Computations
such as in Proposition 2.34 on page 54 show that k 7→ vk(f) is continuous from K
into Z0 in the inductive limit topology. Thus

‖vk(f) − f‖2
B0

= ‖
〈
vk(f) − f , vk(f) − f

〉
B0

‖
= ‖2〈f , f〉

B0

−
〈
vk(f) , f

〉
B0

−
〈
f , vk(f)

〉
B0

‖
(4.20)

tends to zero as k → e in K. Therefore v is strongly continuous — and therefore
strictly continuous. Proposition 4.5 on page 113, applied in the case K = { e },
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implies that given f ∈ Z0 there is a net {ϕi } ⊂ Indc β such that ϕi · f → f in
the inductive limit topology. Since ϕi · f = M(ϕi)(f) (when K = { e }), it follows
that M(Indβ)(Z0) is dense in Z0 in the inductive limit topology. Therefore M is a
nondegenerate homomorphism. Since

vk
(
M(ϕ)(f)

)
(p) = ∆K(k)

1
2αk

(
M(ϕ)(f)(k−1 · p)

)

= ∆K(k)
1
2αk

(
ϕ(k−1 · p)f(k−1 · p)

)

= σk(ϕ)(p)vk(f)(p)

= M
(
σk(ϕ)

)(
vk(f)

)
(p),

(M, v) is a nondegenerate covariant homomorphism of (Indβ,K, σ) into L(Z1). If
〈· , ·〉

B
is the inner product on Z1, then the integrated form M ⋊ v maps E0 into

L(Z1), and [139, Corollary 2.22] implies that

〈
M ⋊ v(c)(f) , M ⋊ v(c)(f)

〉
B
≤ ‖M ⋊ v(c)‖2〈f , f〉

B

≤ ‖c‖2〈f , f〉
B
.

Thus to prove (4.15), we just need to see that M ⋊ v(c)(f) = c · f . (More precisely,
we have to see that M ⋊ v(c)

(
q(f)

)
= q(c · f).) However,

M ⋊ v(c)(f) =

∫

K

M
(
c(t, ·)

)
vt(f) dµK(t).

Thus if we set Q(t, p) := ∆K(t)
1
2 c(t, p)αt

(
f(t−1 · p)

)
, then Q ∈ Cc(K × P,A) and

g(t) := Q(t, ·) = M
(
c(t, ·)

)
vt(f). Suppressing the map q : Z0 → Z1, Lemma 1.108

on page 39 implies that M ⋊ v(c)(f) ∈ Z0 and that

M ⋊ v(c)(f)(p) =

∫

K

c(t, p)αt
(
f(t−1 · p)

)
∆K(t)

1
2 dµK(t) = c · f(p).

This establishes (4.15). To get (4.16), we use symmetry; that is, we reverse the
roles of K and H and apply Lemma 4.3 on page 112:

E0

〈f · b , f · b〉 =
〈
Φ(f · b) , Φ(f · b)

〉
E0

=
〈
b∗ : Φ(f) , b∗ : Φ(f)

〉
E0

≤ ‖b‖2
〈
Φ(f) , Φ(f)

〉
E0

= ‖b‖2

E0

〈f , f〉.

This completes the proof.

4.1.1 Proof of Proposition 4.5

Although the real work in proving Proposition 4.5 is to construct em which are sums
of inner products, it is still necessary for { em } to form an approximate identity for
both the action on Z0 and on E0. For this, the next result is useful.
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Proposition 4.6. Let { bl }l∈L be an approximate identity for IndPH(A, β). Suppose
that for each 4-tuple (T, U, l, ǫ) consisting of a compact set T in P/H, a pre-compact
open neighborhood U of e in K, an l ∈ L and an ǫ > 0, there is an

e = e(T,U,l,ǫ) ∈ E0

such that

(a) e(t, p) = 0 if t /∈ U ,

(b)

∫

K

‖e(t, p)‖ dµK(t) ≤ 4 if p ·H ∈ T and

(c)
∥∥∥
∫

K

e(t, p) dµK(t) − bl(p)
∥∥∥ < ǫ if p ·H ∈ T .

Then the net { e(T,U,l,ǫ) }, directed by increasing T and l, and decreasing U and ǫ,
satisfies (a) and (b) of Proposition 4.5 on page 113.

Before proceeding with the proof of the proposition, we need a couple of pre-
liminary observations.

Lemma 4.7. Suppose that z ∈ Z0 = Cc(P,A), that { aj }j∈J is an approximate
identity for A, that CH is a compact subset of H and that ǫ > 0. Then there is a
j0 ∈ J such that j ≥ j0 implies that for all s ∈ CH we have

∥∥βs(aj)z(p) − z(p)
∥∥ < ǫ for all p ∈ P .

Proof. If the lemma were false, then we could pass to a subnet, relabel, and find
sj ∈ CH and pj ∈ supp z such that

‖βsj (aj)z(pj) − z(pj)‖ ≥ ǫ for all j. (4.21)

Since CH and supp z are compact, we can pass to another subnet, relabel, and
assume that sj → s ∈ H and pj → p in P . Since each βsj is isometric, the
left-hand side of (4.21) is equal to

‖ajβ−1
sj

(
z(pj)

)
− β−1

sj

(
z(pj)

)
‖.

This is bounded by

‖aj
(
β−1
sj

(
z(pj)

)
− β−1

s

(
z(p)

))
‖

+ ‖ajβ−1
s

(
z(p)

)
− β−1

s

(
z(p)

)
‖ + ‖β−1

s

(
z(p)

)
− β−1

sj

(
z(pj)

)
‖

The middle term tends to zero since the aj form an approximate identity. Notice
that

‖β−1
sj

(
z(pj)

)
− β−1

s

(
z(p)

)
‖ ≤ ‖β−1

sj

(
z(pj) − z(p)

)
‖ + ‖β−1

sj

(
z(p)

)
− βs

(
z(p)

)
‖.

Since z is continuous, since β is strongly continuous and each βs is isometric, and
since ‖aj‖ ≤ 1, it follows that the first and third terms tend to zero as well. This
eventually contradicts (4.21).
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Lemma 4.8. Suppose that { bl } is an approximate identity for IndPH β. For z ∈ Z0

and c ∈ E0, define bl · z(p) = bl(p)z(p) and bl · c(t, p) = bl(p)c(t, p).

(a) For each z ∈ Z0, bl · z → z in the inductive limit topology on Z0.

(b) If c ∈ E0, then bl · c→ c in the inductive limit topology on E0.

Proof. Because supp bl ·c ⊂ supp c, to prove part (b), it will suffice to see that given
ǫ > 0 there is a l0 ∈ L such that l ≥ l0 implies

‖bl · c(t, ·) − c(t, ·)‖ < ǫ for all t ∈ K. (4.22)

If (4.22) fails, then we can pass to a subnet and relabel so that the left-hand side
of (4.22) is always greater than or equal to ǫ. Then there is a net { tl } ⊂ supp(t 7→
c(t, ·)) such that

‖bl · c(tl, ·) − c(tl, ·)‖ ≥ ǫ. (4.23)

Passing to a subnet and relabeling, we may assume that tl → t in K. But the
left-hand side of (4.23) is bounded by

‖bl ·
(
c(tl, ·) − c(t, ·)

)
‖ + ‖bl · c(t, ·) − c(t, ·)‖ + ‖c(t, ·) − c(tl, ·)‖.

However, since ‖bl‖ ≤ 1 and since t 7→ c(t, ·) is a compactly supported continuous
function of K into IndPH β by Lemma 3.50 on page 102, we eventually contradict
(4.23). This completes the proof of part (b).

To prove part (a), it suffices to show that given ǫ > 0 there is a l0 such that
l ≥ l0 implies that

‖bl(p)z(p) − z(p)‖ < ǫ for all p ∈ P .

Since the H action on P is free and proper, it follows as in the proof of Lemma 3.57
on page 107, that there is a w ∈ C+

c (P ) such that

∫

H

w(p · s) dµH(s) = 1 for all p ∈ supp z.

Furthermore, there is a compact set CH such that

{ s ∈ H : p ∈ supp z and p · s ∈ suppw } ⊂ CH .

Lemma 4.7 on the facing page implies that there is an a ∈ A such that for all
s ∈ CH we have

‖βs(a)z(p) − z(p)‖ < δ,

where δ = min(ǫ/3, ǫ/(3‖z‖∞ + 1)). Define b ∈ IndPH β by

b(p) =

∫

H

w(p · s)βs(a) dµH(s).

Then

‖b(p)z(p)− z(p)‖ =
∥∥∥
∫

H

w(p · s)
(
βs(a)z(p) − z(p)

)
dµH(s)

∥∥∥ ≤ δ.
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Now if l0 is such that ‖blb− b‖ < δ for l ≥ l0, then l ≥ l0 implies that

‖bl(p)z(p) − z(p)‖ ≤ ‖bl(p)
(
z(p) − b(p)z(p)

)
‖ + ‖

(
bl(p)b(p) − b(p)

)
z(p)‖

+ ‖b(p)z(p) − z(p)‖
≤ δ‖z‖∞ + 2δ.

Our choice of δ implies this is less than ǫ. This completes the proof of part (a).

Proof of Proposition 4.6 on page 118. We start with the left-action of E0 on Z0.
Let z ∈ Z0.

Let U0 be a pre-compact neighborhood of e in K. Notice that U0 · supp z is
pre-compact in P . Let T1 be a compact set containing the image of U0 · supp z in
P/H .

Claim. There is a neighborhood U1 of e in K such that U1 ⊂ U0 and such that
t ∈ U1 implies that

‖αt
(
z(t−1 · p)

)
− z(p)‖ < ǫ for all p ∈ P . (4.24)

Proof of Claim. If the claim were false, then we could produce a net { ti } ⊂ K
with ti → e and { pi } ⊂ P such that

‖αti
(
z(t−1

i · pi)
)
− z(pi)‖ ≥ ǫ. (4.25)

But we must have pi ∈ U0 · supp z. Since the latter is pre-compact, we can pass to a
subnet, relabel, and assume that pi → p, However, this would eventually contradict
(4.25). This establishes the claim.

By Lemma 4.8 on the preceding page, we can choose l1 such that l ≥ l1 implies
that

‖bl(p)z(p) − z(p)‖ < ǫ for all p ∈ P . (4.26)

Now suppose that (T, U, l, ǫ) ≥ (T1, U1, l1, ǫ), and let e = e(T,U,l,ǫ). Then e · z(p) −
z(p) = 0 if p /∈ U · supp z. Since U ⊂ U1 ⊂ U0, we must have p · H ∈ T1 ⊂ T
whenever e · z(p) − z(p) 6= 0. Thus, if e · z(p) − z(p) 6= 0, then we have

‖e · z(p) − z(p)‖ ≤
∥∥∥
∫

K

e(t, p)
(
αt

(
z(t−1 · p)

)
− z(p)

)
dµK(t)

∥∥∥ (4.27)

+
∥∥∥
(∫

K

e(t, p) dµK(t) − bl(p)
)
z(p)

∥∥∥ (4.28)

+ ‖bl(p)z(p) − z(p)‖ (4.29)

≤ 4ǫ+ ‖z‖∞ǫ+ ǫ, (4.30)

where we used (b) and (4.24) to bound the right-hand side of (4.27), (c) to bound
(4.28) and (4.26) to bound (4.29). Since supp(e · z) ⊂ U1 · supp z, this completes
the proof for the action on Z0.

The proof for the left-action on E0 proceeds similarly. Let c ∈ E0. Then there
are compact sets C0 ⊂ K and T0 ⊂ P/H such that

c(v, p) = 0 if v /∈ C0 or p ·H /∈ T0.
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Let U0 be a pre-compact neighborhood of e in K. Then U0 · T0 is pre-compact in
P/H and we let T1 := U0 · T0. Similarly, let C1 be the compact set U0C0 in K.
Since the orbit map of P onto P/H is open, there is a compact set D1 ⊂ P such
that T1 is the image of D1 — and of D1H as well (Lemma 3.37 on page 98).

Claim. There is a neighborhood U1 ⊂ U0 such that t ∈ U1 implies that

‖αt
(
c(t−1v, t−1 · p)

)
− c(v, p)‖ < ǫ for all (v, p) ∈ K × P .

Proof of Claim. If the claim were false, then we can find { ti } converging to e ∈ K,
{ pi } ⊂ D1 and { vi } ⊂ C1 such that

‖αti
(
c(t−1

i vi, t
−1
i · pi)

)
− c(vi, pi)‖ ≥ ǫ. (4.31)

Since D1 and C1 are compact, we can pass to a subnet, and relabel, so that vi → v
and pi → p. This eventually contradicts (4.31). The claim follows.

By Lemma 4.8 on page 119, there is a l1 such that l ≥ l1 implies that

‖bl(p)c(v, p) − c(v, p)‖ < ǫ for all (v, p) ∈ K × P .

Now if (T, U, l, ǫ) ≥ (T1, U1, l1, ǫ) and if e = e(T,U,l,ǫ), then e ∗ c(v, p) − c(v, p) 6= 0
implies that p ·H ∈ T1 ⊂ T . Therefore, if e ∗ c(v, p) − c(v, p) 6= 0, then we have

‖e ∗ c(v, p) − c(v, p)‖ ≤
∥∥∥
∫

K

e(t, p)
(
αt

(
c(t−1v, t−1 · p)

)
− c(v, p)

)
dµK(t)

∥∥∥

+
∥∥∥
(∫

K

e(t, p) dµK(t) − bl(p)
)
c(v, p)

∥∥∥

+ ‖bl(p)c(v, p) − c(v, p)‖
≤ 4ǫ+ ‖c‖∞ǫ+ ǫ.

Since supp(e ∗ c) ⊂ C1 ×D1H , this suffices.

To clean up some calculations below, which would otherwise be marred by
an annoying modular function, it will be convenient to have a slight variation on
Proposition 4.6 on page 118. This approach was suggested by [148, p. 307].

Corollary 4.9. Let { êm }m∈M be a net as constructed in Proposition 4.6 on
page 118. For each m = (T, U, l, ǫ), define

em(t, p) := ∆K(t)−
1
2 ê(t, p).

Then { em }m∈M satisfies (a) and (b) of Proposition 4.5 on page 113.

Proof. Let ěm(t, p) := êm(t, p) − em(t, p) =
(
1 − ∆K(t)−

1
2

)
êm(t, p). Let U0 be a

neighborhood of e in K such that |1−∆K(t)−
1
2 | < ǫ for all t ∈ U0. Then if U ⊂ U0

and if m = (T, U, l, ǫ), then using (b) of Proposition 4.6 on page 118, we have

‖ěm ∗ c‖∞ < 4ǫ‖c‖∞ and ‖ěm · z‖∞ ≤ 4ǫ‖z‖∞
for all c ∈ E0 and z ∈ Z0. Now the result follows easily from Proposition 4.6 on
page 118.
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Lemma 4.10. If K acts freely and properly on a locally compact space P and if N
is a neighborhood of e in K, then each p in P has a neighborhood U such that

{ t ∈ K : t · U ∩ U 6= ∅ } ⊂ N.

Proof. Let W be the interior of N . If the lemma is false, then there is a p ∈ P such
that for each neighborhood U of p there is a tU ∈ K rW and a pU ∈ U such that
tU · pU ∈ U . Then pU → p and tU · pU → p. Lemma 3.42 on page 99 implies that
we can pass to a subnet, relabel, and assume that tU → t ∈ K rW . In particular,
t 6= e and, since P is Hausdorff, p = t · p. This contradicts the freeness of the
action.

With these preliminaries in hand, we can turn to the construction of the ap-
proximate identity we need. The basic ideas for these constructions goes back to
[148].

Proof of Proposition 4.5 on page 113. Let { bl }l∈L be an approximate identity for
IndPH(A, β). Fix a compact set T ⊂ P/H , a pre-compact open neighborhood U of e
in K, l ∈ L and ǫ > 0. In view of Corollary 4.9 on the preceding page, it will suffice
to produce a function e = e(T,U,l,ǫ) ∈ E0 which is a sum of inner products, and such

that ẽ(t, p) := ∆K(t)
1
2 e(t, p) satisfies conditions (a), (b) and (c) of Proposition 4.6

on page 118.
Let δ < min(ǫ/3, 1/2). Since the orbit map of P onto P/H is open, there is a

compact set D ⊂ P such that D · H is the pre-image of T in P . Fix a compact
neighborhood C of D. Let ϕ ∈ C+

c (P ) be such that ϕ(p) = 1 for all p ∈ C. Then

z(p) := ϕ(p)bl(p)
1
2 defines an element of Z0 such that z(p) = bl(p)

1
2 for all p ∈ C.1

Claim. There is a neighborhood W of e in K such that W ⊂ U and such that
t ∈W implies that

‖z(p)αt
(
z(t−1 · p)

)
− bl(p)‖ < δ for all p ∈ C. (4.32)

Proof of Claim. If the claim were false, then there would a net { ti } converging to
e in K and { pi } ⊂ C such that

‖z(pi)αti
(
z(t−1

i · pi)
)
− bl(pi)‖ ≥ δ. (4.33)

Since C is compact, we can pass to a subnet, relabel, and assume that pi → p ∈ C.
But then z(pi)αti

(
z(t−1

i · pi)
)

converges to z(p)2, which equals bl(p) since p ∈ C.
This eventually contradicts (4.33), and completes the proof of the claim.

By Lemma 4.10, each point in D has an open neighborhood V ⊂ C such that

{ t ∈ K : t · V ∩ V 6= ∅ } ⊂W.

1To see that z is continuous, it suffices to see that a 7→ a
1
2 is continuous on A+. But this

follows from the functional calculus as t 7→
√
t can be uniformly approximated by polynomials on

bounded subsets of R+.



4.1 The Symmetric Imprimitivity Theorem 123

Let {Vi }ni=1 be a cover of D by such sets. By Lemma 1.43 on page 12, there are
hi ∈ C+

c (P ) such that supphi ⊂ Vi and such that

∑

i

hi(p) = 1 if p ∈ D, and
∑

i

hi(p) ≤ 1 otherwise.

Define

H(p) :=
n∑

i=1

∫

H

hi(p · s) dµH(s),

and notice that H(p) > 0 if p ∈ D ·H . Let

m := inf
p∈D·H

H(p) = inf
p∈D

H(p).

Since D is compact, m > 0, and

G(p) := max(H(p),m/2)

is a continuous nowhere vanishing function on P . Let

ki(p) := hi(p)G(p)−1.

Then ki ∈ C+
c (P ), supp ki ⊂ Vi and

n∑

i=1

∫

H

ki(p · s) dµH(s)

{
= 1 if p ∈ D ·H , and

≤ 1 otherwise.

Since the H-action is proper, there is compact set CH ⊂ H such that

{ s ∈ H : C · s ∩ C 6= ∅ } ⊂ CH .

By Lemma 3.57 on page 107, there are gi ∈ C+
c (P ) such that supp gi ⊂ Vi and such

that for all p ∈ P ,

∣∣∣ki(p) − gi(p)

∫

K

gi(t
−1 · p) dµK(t)

∣∣∣ < δ

nµH(CH)
.

Since
⋃n
i=1 Vi ⊂ C, we have for all p ∈ C,

∣∣∣
∫

H

∫

K

gi(p · s)gi(t−1 · p · s) dµK(t) dµH(s) −
∫

H

ki(p · s) dµH(s)
∣∣∣ < δ

n
. (4.34)

By left-invariance, (4.34) must hold for all p ∈ C · H . But if p /∈ C · H , then the
left-hand side of (4.34) is zero. Hence (4.34) holds for all p. Thus if we define

F (t, p) :=

n∑

i=1

gi(p)gi(t
−1 · p), (4.35)

then our choice of the Vi guarantees that

F (t, p) = 0 if t /∈W or p /∈ C. (4.36)
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Our choice of the gi implies that

∣∣∣
∫

H

∫

K

F (t, p · s) dµK(t) dµH(s) −
n∑

i=1

∫

H

ki(p · s) dµH(s)
∣∣∣ < δ.

As a consequence, we have

∣∣∣
∫

K

∫

H

F (t, p · s) dµH(s) dµK(t) − 1
∣∣∣ < δ if p ∈ D ·H , (4.37)

and since δ < 1
2 ,

0 ≤
∫

K

∫

H

F (t, p · s) dµH(s) dµK(t) ≤ 1 + δ ≤ 2 for all p. (4.38)

Define
fi(p) := gi(p)z(p).

Then compute

e(t, p) :=

n∑

i=1
E0

〈fi , fi〉(t, p)

=

n∑

i=1

∆K(t)−
1
2

∫

H

βs
(
fi(p · s)αt

(
fi(t

−1 · p · s)∗
))
dµH(s)

= ∆K(t)−
1
2

n∑

i=1

∫

H

gi(p · s)gi(t−1 · p · s)

βs
(
z(p · s)αt

(
z(t−1 · p · s)

))
dµH(s)

= ∆K(t)−
1
2

∫

H

F (t, p · s)βs
(
θ(t, p · s)

)
dµH(s),

where F is defined in (4.35) and we have let

θ(t, p) := z(p)αt
(
z(t−1 · p)

)

to make some of the formulas below a bit easier to write. Notice that

θ(e, p) = bl(p) if p ∈ C, (4.39)

and our choice of W implies that

‖θ(t, p) − θ(e, p)‖ = ‖θ(t, p) − bl(p)‖ < δ if t ∈W and p ∈ C.

Since ‖bl(p)‖ ≤ 1 for all p,

‖θ(t, p)‖ ≤ 1 + δ ≤ 2 if t ∈ W and p ∈ C. (4.40)

To finish the proof, we need only check that ẽ satisfies properties (a), (b) and (c)

of Proposition 4.6 on page 118, where ẽ(t, p) := ∆K(t)
1
2 e(t, p). But (4.36) implies

that ẽ(t, p) = 0 if t /∈ W , and since W ⊂ U , property (a) is satisfied.
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If p ∈ D ·H , then
∫

K

‖ẽ(t, p)‖ dµH(s) ≤
∫

K

∫

H

F (t, p · s)‖βs
(
θ(t, p · s)

)
‖ dµH(s) dµK(t)

which, since F (t, p · s) = 0 off W × C, is

≤ 2

∫

K

∫

H

F (t, p · s) dµH(s) dµK(t)

≤ 4,

where we used (4.38) for the final inequality. Thus property (b) is satisfied.
Similarly, if p ∈ D ·H , then

∥∥∥
∫

K

ẽ(t, p) dµK(t) − bl(p)
∥∥∥

=
∥∥∥
∫

K

∫

H

F (t, p · s)βs
(
θ(t, p · s)

)
dµH(s) dµK(t) − bl(p)

∥∥∥

which, since for any s ∈ H , we have bl(p) = βs
(
bl(p · s)

)
, is

≤
∥∥∥
∫

K

∫

H

F (t, p · s)βs
(
θ(t, p · s) − bl(p · s)

)
dµH(s) dµK(t)

∥∥∥

+
∣∣∣
∫

K

∫

H

F (t, p · s) dµH(s) dµK(t) − 1
∣∣∣‖bl(p)‖.

Since βs is isometric and ‖θ(t, p · s)− bl(p · s)‖ < δ if F (t, p · s) 6= 0, the first of the
integrals in the last expression is bounded by

δ

∫

K

∫

H

F (t, p · s) dµH(s) dµK(t) ≤ 2δ.

Since ‖bl(p)‖ ≤ 1 and p ∈ D ·H , (4.37) implies that the second integral is bounded
by δ. Since we’ve chosen δ so that 3δ < ǫ, we’ve shown that property (c) holds.
This completes the proof.

4.2 Some Special Cases

There are a number of special cases of the Symmetric Imprimitivity Theorem that
deserve special mention. All of these pre-date Theorem 4.1 [132]. The easiest to
describe is the case where A is the one-dimensional algebra C of complex num-
bers. This version is due to Green and is proved in [148, Situation 10]. It follows
immediately from Theorem 4.1 on page 110 together with the observation that
IndPH(C, id) and IndPK(C, id) are easily identified with C0(P/H) and C0(K\P ), re-
spectively. The K-action on C0(P/H) will be denoted by lt and the H-action on
C0(K\P ) by rt.2

2When working with the actions on induced algebras, and in particular when working with sit-
uations derived from the Symmetric Imprimitivity Theorem, we often have to sort out a confusing
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Corollary 4.11 (Green’s Symmetric Imprimitivity Theorem). Suppose that H and
K are locally compact groups acting freely and properly on the right and left, re-
spectively, of a locally compact space P . If the actions commute3, then

C0(P/H) ⋊lt K and C0(K\P ) ⋊rt H

are Morita equivalent via an imprimitivity bimodule Z which is the completion of
Z0 = Cc(P ) equipped with actions and inner products given by

c · f(p) =

∫

K

c(t, p ·H)f(t−1 · p)∆K(t)
1
2 dµK(t) (4.41)

f · b(p) =

∫

H

f(p · s)b(s−1,K · p · s)∆H(s)−
1
2 dµH(s) (4.42)

E0

〈f , g〉(t, p ·H) = ∆K(t)−
1
2

∫

H

f(p · s)g(t−1 · p · s) dµH(s) (4.43)

〈f , g〉
B0

(s,K · p) = ∆H(s)−
1
2

∫

K

f(t−1 · p)g(t−1 · p · s) dµK(t) (4.44)

for all c ∈ Cc(K × P/H), b ∈ Cc(H ×K\P ) and f, g ∈ Cc(P ).

Remark 4.12. By taking H = { e } in Corollary 4.11, we see that if K acts freely
and properly on P then C0(P )⋊ltK is Morita equivalent to the abelian C∗-algebra
C0(K\P ). In particular, C0(P ) ⋊lt K has continuous trace [139, Proposition 5.15]
with trivial Dixmier-Douady class [139, Proposition 5.32]. In [65], Green showed
that if K and P are second countable and if K acts freely on P , then C0(P ) ⋊lt K
has continuous trace if and only if K acts properly. The non-free case is a bit more
complicated and is treated in [170]. In particular, it is possible for a transformation
group C∗-algebra to have continuous trace with a nontrivial Dixmier-Douady class
[137, Example 4.6].

Example 4.13. There are a number of impressive applications of Green’s Symmetric
Imprimitivity Theorem. A nice source for many of these is Rieffel’s expository arti-
cle in [148]. There isn’t space to recount all of his examples here, but one example
deserves special mention. Namely, suppose that K and H are closed subgroups of
a locally compact group G. Then we can let K act by left multiplication on G and
let H act by right multiplication. Then we get immediately from Corollary 4.11
that C0(K\G) ⋊rt H is Morita equivalent to C0(G/H) ⋊lt K.

Example 4.14 (Rotation algebras revisited). Example 4.13 has an interesting ap-
plication to rotation algebras. Let G = R and K = Z. If α ∈ R, then let H = αZ.
Since t 7→ e2πit induces the usual identification of Z\R with T, it is not hard to
see that C0(Z\R) ⋊rt αZ is isomorphic to the rotation algebra Aα corresponding
to rotation by e2πiα. Similarly, since t 7→ e2πi

t
α also induces an identification of

array of actions on spaces and actions on C∗-algebras. Thus we have adopted the convention that
the dynamical systems associated to left group actions will be denoted by lt (for “left-translation”)
and right actions by rt (for “right translation”). I hope that the meaning will be clear from context,
and that the total confusion will be minimized.

3That is, equation (4.1) holds.
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R/αZ with T, C0(R/αZ) ⋊lt Z is isomorphic to C0(R/Z) ⋊lt
1
αZ ∼= Aα−1 . Thus

Aα is always Morita equivalent to Aα−1 . This Morita equivalence was a bit of a
mystery when it was first discovered by Rieffel in [146,147], and plays a significant
role in determining the Morita equivalence classes of the irrational rotation algebras
described in Remark 2.60 on page 71.

LetX be a compact free Z2-space. Then the action of Z2 is certainly proper, and
Corollary 4.11 on the preceding page and Example 4.13 on the facing page implies
that C(X) ⋊α Z2 is Morita equivalent to C(Z2\X). Moreover, Proposition 2.52 on
page 67 shows that C(X) ⋊α Z2 is a 2-homogeneous C∗-algebra, and it would be
natural to guess that C(X) ⋊α Z2 is isomorphic to C(Z2\X,M2). However, this
need not be the case. For example, let X be the n-sphere

Sn := { (x0, . . . , xn) ∈ Rn=1 : x2
0 + x2

1 + · · · + x2
n = 1 },

and let σ : Sn → Sn be the antipodal map σ(x) = −x. The orbit space RPn :=
Z2\Sn is known as real projective n-space.

Proposition 4.15 ([25, p. 25]). Let α : Z2 → AutC(Sn) be the dynamical sys-
tem induced by the antipodal map on Sn (for n ≥ 2). Then C(Sn) ⋊ Z2 is a
2-homogeneous C∗-algebra which is Morita equivalent to C(RPn) but which is not
isomorphic to C(RPn,M2).

Proof. By Proposition 2.52 on page 67, C(S2) ⋊α Z2 is isomorphic to

A = { f ∈ C(S2,M2) : f(−x) = Wf(x)W ∗ },

where W =
(

0 1
1 0

)
. Suppose to the contrary that there is an isomorphism Φ :

A→ C(RPn,M2). Since both these algebras have spectrum identified with RPn,
and since Φ must induce a homeomorphism of the spectra, we can adjust Φ so
that the induced map on RPn is the identity. In view of the Dauns-Hofmann
Theorem [139, Theorem A.34], this implies that Φ is a C(RPn)-linear map with
respect to the natural actions of C(RPn) on both algebras. Thus if f, g ∈ A and
if f(x) = g(x), then it follows that Φ(f)(Z2 · x) = Φ(g)(Z2 · x). Therefore we can
define α : Sn → AutM2 by

α(x)
(
f(x)

)
:= Φ(f)(Z2 · x).

Claim. x 7→ α(x) is continuous from Sn to AutM2, where AutM2 has the point-
norm topology.

Proof of Claim. We need to see that x 7→ α(x)(T ) is continuous for each T ∈ M2.
Fix y ∈ Sn and f ∈ A such that f(y) = T . Then

‖α(x)(T ) − α(y)(T )‖ = ‖α(x)(T ) − α(x)
(
f(x)

)
‖

+ ‖α(x)
(
f(x)

)
− α(y)

(
f(y)

)
‖

≤ ‖T − f(x)‖ + ‖Φ(f)(Z2 · x) − Φ(f)(Z2 · y)‖,

which tends to 0 as x → y. This proves the claim.
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Since x and −x are in the same Z2-orbit,

α(x)
(
f(x)

)
= α(−x)

(
f(−x)

)
= α(−x)

(
Wf(x)W ∗

)
.

Thus α(x) = α(−x) ◦ AdW .
As in [139, Chap. 1], we can identify AutM2 with the projective unitary group

PU2 which is the quotient of the unitary group U2 of unitary matrices by the scalar
unitaries TI2. Let { ei }ni=0 be the standard orthonormal basis for Rn+1. Since
n ≥ 2, we can define a map4

ψ : S1 → PU2 by ψ(eiθ) = α(cos(θ)e0 + sin(θ)e1).

Then
H(eiθ, t) := α(t cos(θ)e0 + t sin(θ)e1 + (

√
1 − t2)e2)

is a homotopy of ψ to a constant path. If

SU2 := {U ∈ U2 : detU = 1 }

is the special unitary group, then the natural map Ad : SU2 → PU2 is a 2-sheeted
covering map. Since ψ is null homotopic, the homotopy lifting theorem implies that
there is a lift of ψ to a map

V : S1 → SU2

such that ψ(z) = Ad V (z). Furthermore,

ψ(−eiθ) = α(− cos(θ)e0 − sin(θ)e1)

= α(cos(θ)e0 + sin(θ)e1) ◦ AdW

= ψ(eiθ) ◦ AdW.

Therefore

AdV (−z) = ψ(−z)
= ψ(z) ◦ AdW

= Ad V (z)W.

Thus there is a continuous function λ : S1 → S1 such that

V (−z) = λ(z)V (z)W. (4.45)

Since detW = −1, taking determinants of both sides of (4.45) implies that λ(z)2 =
−1 for all z. Thus z 7→ λ(z) is constant — say, λ(z) = λ for all z. But then,

V (1) = λV (−1)W = λ
(
λV (1)W

)
W = λ2V (1),

which is a contradiction. This completes the proof.

4If n = 2, then we are simply restricting α to the equator. In general, we simply restricting α
to a great circle passing through e0 and −e0.
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Remark 4.16 ([65, Corollary 15]). It is interesting to note that the lack of trivial-
ity in Proposition 4.15 on page 127 is less likely to occur in examples where the
fibres are infinite dimensional. That is, if G is an infinite second countable locally
compact group acting freely and properly on a second countable locally compact
space X , then there are fairly general conditions which force C0(X) ⋊lt G to be
isomorphic to C0

(
G\X,K

(
L2(G)

))
. We don’t have the technology at hand to give

precise examples. Instead, we’ll give a sketch. Since G acts freely and properly,
C0(X) ⋊lt G is Morita equivalent to C0(G\X). Therefore C0(X) ⋊lt G is isomor-
phic to the generalized compact operators K(X) on a suitable Hilbert C0(X)-module
[139, Proposition 3.8]. In fact, X consists of the sections of a fibre bundle B over
G\X with fibre K

(
L2(G)

)
(and structure group PU

(
L2(G)

)
). If G is infinite, then

L2(G) is infinite-dimensional, and the unitary group of L2(G) is contractible in the
strong operator topology [139, Lemma 4.72]. It follows that if B is even locally triv-
ial, then it must be trivial [139, Corollary 4.79]. It turns out that there are many
cases where topological considerations imply that B must be locally trivial. For ex-
ample, if G\X has finite covering dimension, then B is automatically locally trivial,
and hence trivial, whenever L2(G) is infinite-dimensional [28, Proposition 10.8.7]
(see also [65, Corollary 15]).

We turn now to another important corollary of the Symmetric Imprimitivity
Theorem.

Corollary 4.17. Suppose that H is a closed subgroup of a locally compact group G,
and that (D,H, β) is dynamical system. Let lt : G→ Aut

(
IndGH(D, β)

)
be defined by

ltr(f)(t) = f(r−1t) as in Lemma 3.48 on page 101. View E0 := Ccc(G, Indc β) and
B0 := Cc(H,D) as dense subalgebras of IndGH(D, β)⋊ltG and D⋊βH, respectively.
Let Z0 = Cc(G,D). If c ∈ E0, f, g ∈ Z0 and b ∈ B0, then define

c · f(r) =

∫

G

c(t, r)f(t−1r)∆G(t)
1
2 dµG(t) (4.46)

f · b(r) =

∫

H

β−1
s

(
f(rs−1)b(s)

)
∆H(s)−

1
2 dµH(s) (4.47)

E0

〈f , g〉(t, r) = ∆G(t)−
1
2

∫

H

βs
(
f(rs)g(t−1rs)∗

)
dµH(s) (4.48)

〈f , g〉
B0

(s) = ∆H(s)−
1
2

∫

G

f(t−1)∗βs
(
g(t−1s)

)
dµG(t). (4.49)

Then Z0 is a E0 –B0-pre-imprimitivity bimodule. The completion Z is a
IndGH(D, β)⋊ltG –D⋊βH-imprimitivity bimodule, and IndGH(D, β)⋊ltG is Morita
equivalent to D ⋊β H.

Proof. To see that this situation is covered by the Symmetric Imprimitivity Theo-
rem, let α : G → AutD be the trivial system; that is, let αt = idD for all t. Then
IndGG(D,α) consists of constant functions on G and is easily identified with D via
f 7→ f(e). This identification intertwines τ : H → Aut

(
IndGG(D,α)

)
— defined by

τs(f)(t) := βs
(
f(ts)

)
— with β. Therefore we can identify IndGG(D,α) ⋊τ H with

D ⋊β H . The rest follows almost immediately from Theorem 4.1 on page 110 and
the left-invariance of Haar measure.
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Combining the above corollary with Proposition 3.53 on page 105 we get another
imprimitivity result due to Green.

Corollary 4.18 ([66, Theorem 17]). Suppose that H is a closed subgroup of a
locally compact group G and that (A,G, α) is a dynamical system. Assume that
there is a continuous G-equivariant map ϕ : PrimA→ G/H. Let

I :=
⋂

{P ∈ PrimA : ϕ(P ) = eH }.

If D := A/I and if αI : H → AutD is the quotient system, then A⋊α G is Morita
equivalent to D ⋊αI H.

To illustrate some of the power of the above corollary, it is instructive to consider
what it says for transformation group C∗-algebras.5

Corollary 4.19. Let P be a locally compact G-space and H a closed subgroup of G.
Suppose that σ : P → G/H is a G-equivariant continuous map. Let Y := σ−1(eH).
Then Y is a H-space, and C0(P ) ⋊lt G is Morita equivalent to C0(Y ) ⋊lt H.

Example 4.20. Suppose that H is a closed subgroup of G, and that Y is a H-space.
Let P := G×H Y be the orbit space for G× Y with respect to the right H-action
given by (s, p) · h := (sh, h−1 · p). Then P is a left G-space, the action of r on the
class of (s, p) is given by the class of (rs, p), and (s, p) 7→ sH induces a G-equivariant
map of P onto G/H . It follows from Corollary 4.19 that C0(G×H Y )⋊ltG is Morita
equivalent to C0(Y ) ⋊lt H .

Example 4.21. In the previous example, we can let Y = T, and let Z act by an
irrational rotation θ. In this case, (r, e2πiα) 7→ (e2πir, e2πi(α−θr)) is a homeomor-
phism of R ×Z T onto T2 which intertwines the left R action on R ×Z T with a
flow on T2 along a line of irrational slope. Therefore the irrational rotation algebra
Aθ = C(T) ⋊ Z is Morita equivalent to C(T2) ⋊ R. Notice that Aθ is a simple
unital NGCR algebra, while C(T2) ⋊ R is a simple non-unital NGCR algebra.

4.3 Green’s Imprimitivity Theorem

Although the Symmetric Imprimitivity Theorem is an important tool in its own
right, in this book we are most interested in the special case where H is a subgroup
of K, β : H → AutA is trivial and P = K with t · k = tk and k · h = kh
for t, k ∈ K and h ∈ H . Then we can identify IndKH(A, β) with C0(K/H,A) by
viewing elements of C0(K/H,A) as functions on K which are constant on orbits.
Then σ : K → AutC0(K/H,A) is given by

σt(ϕ)(kH) = αt
(
ϕ(t−1kH)

)
for t, k ∈ K and ϕ ∈ C0(K/H,A). (4.50)

On the other hand, f 7→ f(e) is an isomorphism of IndKK(A,α) onto A which
intertwines τ with α|H :

τh(f)(e) = βh
(
f(h)

)
= f(h) = αh

(
f(e)

)
.

5Corollary 4.19 can also be derived directly from Green’s Symmetric Imprimitivity Theorem
[148, Situation 7]. Examples 4.20 and 4.21 also come from [148].
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Therefore the Symmetric Imprimitivity Theorem implies that Z0 = Cc(K,A) com-
pletes to a C0(K/H,A) ⋊σ K –A ⋊α|H H-imprimitivity bimodule. The dense ∗-
subalgebras E0 and B0 are given by

Cc(K ×K/H,A) and Cc(H,A),

respectively. The module actions and inner products on Z0 are given by

F · f(s) :=

∫

G

F (r, sH)αr
(
f(r−1s)

)
∆G(r)

1
2 dµG(r) (4.51)

f · b(s) :=

∫

H

f(sh)αsh
(
b(h−1)

)
∆H(h)−

1
2 dµH(h) (4.52)

〈f , g〉
B0

(h) := ∆H(h)−
1
2

∫

G

αs
(
f(s−1)∗g(s−1h)

)
dµG(s) (4.53)

E0

〈f , g〉(s, rH) := ∆G(s)−
1
2

∫

H

f(rh)αs
(
g(s−1rh)∗

)
dµH(h). (4.54)

However, the modular functions decorating (4.51)–(4.54) do not quite agree with
those in treatments coming from Rieffel’s original formulas (in the case A = C) (cf.,
[145] or [139, Theorem C.23]). This is a minor irritation, and it not so surprising as
there are lots of bimodules giving a Morita equivalence between C0(K/H,A) ⋊σK
and A ⋊α|H H . In fact, there will even be several pre-imprimitivity bimodule
structures on Cc(K,A). To explain the different formulas in the literature, we want
to show how to derive additional structures on Cc(K,A), and in particular, we want
to derive the formulas we prefer to work with in Section 5.1. We start with some
general observations.

Let X0 be a E0 –B0-pre-imprimitivity bimodule. Let u be any vector space
isomorphism of the vector space X0 onto itself. Then we can equip X0 with an new
E0 –B0-pre-imprimitivity bimodule structure as follows. For f, g ∈ X0, F ∈ E0 and
b ∈ B0, let

F : f := u−1
(
F · u(f)

)

f : b := u−1
(
u(f) · b

)

〈〈f , g〉〉
B0

:=
〈
u(f) , u(g)

〉
B0

E0

〈〈f , g〉〉 :=
E0

〈
u(f) , u(g)

〉
.

It is routine to see that X0 is an E0 –B0-bimodule with these new operations. For
example,

(F ∗G) : f = u−1
(
F ∗G · u(f)

)

= u−1
(
F ·

(
G · u(f)

))

= u−1
(
F · u

(
u−1

(
G · u(f)

)))

= F : u−1
(
G · u(f)

)

= F : (G : f).
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Proving that 〈〈· , ·〉〉
B0

and
E0

〈〈· , ·〉〉 are pre-inner products is also straightforward.

For example,

〈〈x , y : b〉〉
B0

=
〈
u(x) , u(y : b)

〉
B0

=
〈
u(x) , u(y) · b

〉
B0

= 〈〈x , y〉〉
B0

b.

We claim that X0 is an E0 –B0-pre-imprimitivity bimodule. As above, this follows
from easy computations. For example, to see that the E0-action is bounded:

〈〈a : x , a : x〉〉
B0

=
〈
u(a : x) , u(a : x)

〉
B0

=
〈
a · u(x) , a · u(x)

〉
B0

≤ ‖a‖2〈〈x , x〉〉
B0

.

Using such calculations, the claim follows.
To obtain the particular version we want — called Green’s Imprimitivity The-

orem — we define u : Z0 → Z0 by u(f)(k) := ∆K(k)−
1
2 f(k). Then we obtain

formulas compatible with those in [38, 145, 170], rather than (4.51)–(4.54) which
are compatible with the formulas in [39, 79, 132, 148]. To emphasize that we’ve al-
tered the formulas in Theorem 4.1 on page 110, we replace Z0 by X0. To make the
formulas easier to use in Section 5.1, we also replace the group K by G. Then the
next result is a corollary of the Symmetric Imprimitivity Theorem and the above
discussion.

Theorem 4.22 (Green’s Imprimitivity Theorem). Suppose that (A,G, α) is a dy-
namical system, that H is a closed subgroup of G and that σ = lt⊗α is the diago-
nal action of G on C0(G/H,A) defined in (4.50). For notational convenience, let

γH(s) := ∆G(s)
1
2 ∆H(s)−

1
2 . View E0 := Cc(G × G/H,A) and B0 := Cc(H,A) as

∗-subalgebras of C0(G/H,A)⋊σG and A⋊α|H H, respectively. Let X0 := Cc(G,A).
If c ∈ E0, f, g ∈ X0 and b ∈ B0, then define

c · f(s) :=

∫

G

c(r, sH)αr
(
f(r−1s)

)
dµG(r) (4.55)

f · b(s) :=

∫

H

f(sh)αsh
(
b(h−1)

)
γH(h) dµH(h) (4.56)

〈f , g〉
B0

(h) := γH(h)

∫

G

α−1
s

(
f(s)∗g(sh)

)
dµG(s) (4.57)

E0

〈f , g〉(s, rH) :=

∫

H

f(rh)αs
(
g(s−1rh)∗

)
∆(s−1rh) dµH(h). (4.58)

Then X0 is an E0 –B0-pre-imprimitivity bimodule. The completion X := X
G
H is

a C0(G/H,A) ⋊σ G –A ⋊α|H H-imprimitivity bimodule, and C0(G/H,A) ⋊σ G is
Morita equivalent to A⋊α|H H.
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Furthermore, in the proof of Theorem 4.1 on page 110, we introduced a covariant
homomorphism (M, v) of

(
C0(G/H,A), G, σ

)
into L(ZGH). The formulas for M and

v on Z0 are given by (4.18) and (4.17), respectively. However, if we’re working
with X0, and therefore with the formulas (4.55)–(4.58), the formula for v loses the
modular function. In particular, we have the following Corollary of the proof of
Theorems 4.1 on page 110 and 4.22 on the facing page. Note that as usual, we are
suppressing the map q : X0 → X.

Corollary 4.23. Let X = X
G
H be Green’s C0(G/H,A) ⋊σ G –A ⋊α|H H-imprim-

itivity bimodule defined in Theorem 4.22 on the preceding page, and let X0 =
Cc(G,A) ⊂ X

G
H . Then there is a nondegenerate covariant homomorphism (M, v)

of
(
C0(G/H,A), G, lt⊗α

)
into L(X) such that for each c ∈ Cc(G × G/H,A) ⊂

C0(G/H,A) ⋊σ G and f ∈ X0 we have

vs(f)(r) = αs
(
f(s−1r)

)
M(ϕ)f(r) = ϕ(rH)f(r)

M ⋊ v(c)(f) = c · f.

Furthermore, if kA : A → M
(
C0(G/H,A)

)
is the natural map sending a to the

corresponding constant function and if N := M ◦̄kA, then (N, v) is a nondegenerate
covariant homomorphism of (A,G, α) into L(X) such that if g ∈ Cc(G,A) ⊂ A⋊αG
and f ∈ X0, then

N(a)f(r) = af(r)

N ⋊ v(g)(f) = g ∗ f.

Proof. The assertions about M ⋊ v were detailed in the proof of Theorem 4.1 on
page 110. It is straightforward to check that (N, v) is covariant, and the proofs
that N ⋊ v(g)(f) = g ∗ f and that N is nondegenerate are nearly identical to those
for M ⋊ v and M .

4.4 The Stone-von Neumann Theorem

With Theorem 4.22 on the preceding page in hand, we can give a fairly short proof
of a classical result which, in the language of dynamical systems, describes the
crossed product C0(G) ⋊lt G where G acts on itself by left-translation. We’ll give
a more classical formulation as well. (This material is taken from [139, §C.6].)

Theorem 4.24 (Stone-von Neumann). Suppose that G is a locally compact group.
Then

C0(G) ⋊lt G ∼= K
(
L2(G)

)
.

In particular, if (M,λ) is the natural covariant representation of
(
C0(G), G, lt

)

on L2(G) given in Example 2.12 on page 45, then M ⋊ λ is a faithful irreducible
representation of C0(G) ⋊lt G onto K

(
L2(G)

)
.

Proof. The Imprimitivity Theorem implies that C0(G)⋊ltG is Morita equivalent to
C. This implies C0(G)⋊ltG is simple, and that M⋊λ is faithful. Since K

(
L2(G)

)
is
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an irreducible subalgebra of B(H), it will suffice to see that M⋊λ maps C0(G)⋊ltG
onto K

(
L2(G)

)
.

If K ∈ Cc(G×G), then

fK(r, s) := ∆(r−1s)K(s, r−1s) (4.59)

defines an element in Cc(G×G), and if h, k ∈ Cc(G) ⊂ L2(G), then

(
M ⋊ λ(fK)h | k

)
=

∫

G

(
M

(
fK(r, ·)

)
λ(r)h | k

)
L2(G)

dµ(r)

=

∫

G

∫

G

fK(r, s)h(r−1s)k(s) dµ(s) dµ(r)

=

∫

G

∫

G

∆(r−1s)K(s, r−1s)h(r−1s)k(s) dµ(r) dµ(s)

=

∫

G

∫

G

∆(r−1)K(s, r−1)h(r−1)k(s) dµ(r) dµ(s)

=

∫

G

∫

G

K(s, r)h(r) dµ(r)k(s) dµ(s).

Thus

M ⋊ λ(fK)h(s) =

∫

G

K(s, r)h(r) dµ(r),

and M ⋊ λ(fK) is a Hilbert-Schmidt operator with kernel K ∈ Cc(G × G) ⊂
L2(G × G) [33, Chap. XI §6]. In particular, M ⋊ λ(fK) is a compact operator.
If g, h ∈ Cc(G) ⊂ L2(G) and K(r, s) = g(r)h(s), then M ⋊ λ(fK) is the rank-
one operator θg,h. Since Cc(G) is dense in L2(G), it follows that K

(
L2(G)

)
⊂

M ⋊ λ
(
C0(G) ⋊lt G

)
.

If f ∈ Cc(G×G), then we can set

K(r, s) := ∆(s−1)f(rs−1, r).

Then fK = f , and it follows that M⋊λ
(
Cc(G×G)

)
⊂ K

(
L2(G)

)
. Since Cc(G×G)

is dense in C0(G) ⋊lt G, we’re done.

Example 4.25. Let [−∞,∞] be the extended reals which are obtained from R =
(∞,∞) by adjoining points at +∞ and −∞. We let R act on [−∞,∞] by fixing the
endpoints and by translation in the interior. Then U := (−∞,∞) is a R-invariant
open subset, and the complement F consists of two fixed-points. Theorem 4.24 on
the previous page implies that C0(U)⋊ltR is isomorphic to the compacts K

(
L2(R)

)
.

Of course, C(F ) ⋊lt R ∼= C∗(R) ⊕ C∗(R) which is isomorphic to C0(R) ⊕ C0(R)
by Proposition 3.1 on page 82. Therefore Corollary 3.20 on page 94 implies that
we have an exact sequence

0 // K
(
L2(R)

)
// C0([−∞,∞]) ⋊lt R // C0(R) ⊕ C0(R) // 0.

That is, C0([−∞,∞]) ⋊lt R is an extension of the compacts by a commutative
C∗-algebra. In general, the collection of (equivalence classes) of extensions of the
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compacts by a commutative C∗-algebraC0(X) is an abelian group called Ext(X). A
nice starter reference for Ext(X) is [21, Chap. IX]. Considerably more detail can be
found in [8, Chap. VII]. In [65, §1 & §2], Green studies a variety of transformation
group C∗-algebras which, as in this example, turn out to be extensions of the
compact by commutative C∗-algebras and calculates their Ext classes.

To give a classical reformulation of Theorem 4.24 on page 133, we assume that
G is abelian. Let Ĝ be the dual of G, and recall that the Pontryagin Duality
Theorem [56, Theorem 4.31] allows us to identify G with the dual of Ĝ. If µ̂ is a

Haar measure on Ĝ, then the Fourier transform

F : Cc(Ĝ) → C0(G)

defined by

F (ϕ)(s) =

∫

bG

ϕ(γ)γ(s) dµ̂(γ)

extends to an isomorphism of C∗(Ĝ) onto C0(G). Let Cbs(G) = Ms

(
C0(G)

)
be

Cb(G) equipped with the strict topology. Then if ϕ ∈ Cc(Ĝ), γ 7→ ϕ(γ)γ is in
Cc

(
G,Cbs(G)

)
and we can form the Cb(G)-valued integral

∫

bG

ϕ(γ)γ dµ̂(γ). (4.60)

Since evaluation at s ∈ G is a continuous functional on Cb(G), (4.60) is equal to
F (ϕ). If π is a representation of C0(G), then we can define a unitary representation

Sπ of Ĝ on Hπ by

Sπγ := π̄(γ),

and then

π
(
F (ϕ)

)
=

∫

bG

ϕ(γ)Sπγ dµ̂(γ). (4.61)

It follows that there is a one-to-one correspondence between representations π of
C0(G) and unitary representations Sπ of Ĝ. Since it is straightforward to see that
F̄

(
i

bG(γ)
)

= γ, this correspondence is the usual one between representations of

C∗(Ĝ) and unitary representations of Ĝ combined with the isomorphism F .

Definition 4.26. A pair (R,S) consisting of unitary representationsR : G→ U(H)

and S : Ĝ→ U(H) is called a Heisenberg representation if

SγRs = γ(s)RsSγ for all s ∈ G and γ ∈ Ĝ.

Example 4.27. Let H = L2(G). Define V : Ĝ → U
(
L2(G)

)
by Vγh(r) = γ(r)h(r).

Then if λ : G → U
(
L2(G)

)
is the left-regular representation, then (λ, V ) is a

Heisenberg representation of G called the Schrödinger representation.
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Let ϕ ∈ Cc(Ĝ) and s ∈ G. Then we can define s · ϕ(γ) ∈ Cc(G) by s · ϕ(γ) :=
γ(s)ϕ(γ). Then

ltr
(
F (ϕ)

)
(s) = F (ϕ)(r−1s)

=

∫

bG

ϕ(γ)γ(r−1s) dµ̂(γ)

=

∫

bG

(r · ϕ)(γ)γ(s) dµ̂(γ);

thus

ltr
(
F (ϕ)

)
= F (r · ϕ). (4.62)

Lemma 4.28. Suppose R and S are unitary representations of G and Ĝ, respec-
tively, on H. Let π be the representation of C0(G) corresponding to S via (4.61).
Then (R, π) is a nondegenerate covariant representation of

(
C0(G), G, lt

)
if and

only if (R,S) is a Heisenberg representation of G.

Proof. Suppose (R,S) is a Heisenberg representation of G. Then

Rsπ
(
F (ϕ)

)
= Rs

∫

bG

ϕ(γ)Sγ dµ̂(γ)

=

∫

bG

ϕ(γ)γ(s)Sγ dµ̂(γ)Rs

=

∫

bG

s · ϕ(γ)Sγ dµ̂(γ)Rs

which, using (4.62), is

= π
(
lts

(
F (ϕ)

))
Rs.

Thus, (π,R) is covariant.

Now suppose (π,R) is a nondegenerate covariant representation. Observe that

F
(
i

bG(γ)(s · ϕ)
)
(r) =

∫

bG

(s · ϕ)(γ̄σ)σ(r) dµ̂(σ)

=

∫

bG

γ(s)σ(s)ϕ(γ̄σ)σ(r) dµ̂(σ)

= γ(s)

∫

bG

ϕ(γ̄σ)σ(s−1r) dµ̂(σ)

= γ(s)F
(
i

bG(γ)ϕ
)
(s−1r)

= γ(s) lts
(
F

(
i

bG(γ)ϕ
))

(r).
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Therefore

SγRsπ
(
F (ϕ)

)
= Sγπ

(
lts

(
F (ϕ)

))
Rs

= Sγπ
(
F (s · ϕ)

)
Rs

= π
(
F

(
i

bG(γ)(s · ϕ)
))
Rs

= γ(s)π
(
lts

(
F (i

bG(γ)ϕ)
))
Rs

= γ(s)Rsπ
(
F

(
i

bG(γ)ϕ
))

= γ(s)RsSγπ
(
F (ϕ)

)
.

Since π is nondegenerate, SγRs = γ(s)RsSγ and (R,S) is a Heisenberg representa-
tion.

Theorem 4.29 (von Neumann Uniqueness Theorem). Suppose that G is a locally
compact abelian group. Then every Heisenberg representation of G is equivalent to
a direct sum of copies of the Schrödinger representation of G on L2(G).

Proof. Let (R,S) be a Heisenberg representation of G on H. Let (π,R) be the
corresponding nondegenerate covariant representation. Then any invariant sub-
space for π ⋊ R is invariant for both π and R, and therefore for (R,S) (Propo-
sition 2.40 on page 59). However, π ⋊ R is a nondegenerate representation of
C0(G) ⋊lt G ∼= K

(
L2(G)

)
, and is equivalent to a direct sum of copies of M ⋊ λ.

Since M clearly corresponds to V , this completes the proof.

4.5 Transitive Transformation Groups

Let H be a closed subgroup of a locally compact group G. Green’s Imprimitivity
Theorem on page 132 implies that X0 := Cc(G) is a B0 – E0-pre-imprimitivity bi-
module where E0 := Cc(G × G/H) is viewed a subalgebra of C0(G/H) ⋊lt G and
B0 = Cc(H) is viewed as a ∗-subalgebra of C∗(H). In particular, we can complete
X0 to a C0(G/H) ⋊lt G – C∗(H)-imprimitivity bimodule X, and C0(G/H) ⋊lt G
is Morita equivalent to C∗(H). If, say, G is second countable, then the Brown-
Green-Rieffel Theorem [139, Theorem 5.55] applies, and C0(G/H) ⋊lt G is stably
isomorphic to C∗(H). Our object here is to give a considerable sharpening of this
result due to Green [67]. Green’s argument is a bit surprising as it relies on factoring
G as a product of G/H and H which is usually impossible to do topologically.
Therefore, we can do this only at the expense of introducing measurable functions in
place of the continuous functions with which we are considerably more comfortable.
This will force us to deal with some issues about measurability below.

As our result involves the compact operators on L2(G/H), and our first bit of
measure theory will concern the existence of appropriate measures on G/H . Note
that G/H is always a locally compact Hausdorff space in the quotient topology. If
H isn’t normal, then G/H is not a group and need not possess a measure which
is invariant for the left action of G on G/H . If σ is a Borel measure on G/H ,
then for each r ∈ G, we get a new measure r · σ on G/H defined by r · σ(E) :=
σ(r−1 · E). If r · σ is mutually absolutely continuous with σ for all r ∈ G, then
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σ is called quasi-invariant . In general, G/H always has a quasi-invariant measure
(for example, see [139, Lemma C.2] or [56, Theorem 2.56 and Proposition 2.54]).6

As in [56,139], we will work with quasi-invariant measures associated to continuous
functions ρ : G→ (0,∞) such that

ρ(sh) = γH(h)−2ρ(s) =
∆H(h)

∆G(h)
ρ(s) for all s ∈ G and h ∈ H .

Such functions are constructed in Appendix H.2. Given any such ρ, there is a
quasi-invariant Borel measure µG/H on G/H such that for all f ∈ Cc(G) we have

∫

G

f(s)ρ(s) dµG(s) =

∫

G/H

∫

H

f(sh) dµH(h) dµG/H(sH). (4.63)

Theorem 4.30 (Green). Suppose that H is a closed subgroup of a locally compact
group G. Then the imprimitivity algebra C0(G/H)⋊ltG is isomorphic to C∗(H)⊗
K

(
L2(G/H, µG/H)

)
where µG/H is a quasi-invariant measure satisfying (4.63).

The proof is considerably simpler if G is second countable. A key ingredient in
the proof is a suitable cross section s for the natural map q : G → G/H . Even
in elementary examples — such as G = R and H = Z — the best we can hope
for is a Borel map c : G/H → G. But if G is not second countable, even a Borel
map will be difficult to deal with. As a result, we’ll need a short detour if we
want the theorem for general groups. Anyone smart enough to settle for a proof
of Theorem 4.30 in the case G is second countable can skim this material and skip
ahead to Section 4.5.2 on page 143.

Remark 4.31. If (G,X) is a second countable locally compact transformation group
and if G acts transitively onX — that is, if given x, y ∈ X there is a s ∈ G such that
y = s · x, then it will follow from the Mackey-Glimm Dichotomy (Theorem 6.2 on
page 173) that X is equivariantly homeomorphic to G/H for some closed subgroup
H and Theorem 4.30 applies. If G is not second countable, then the situation can be
more complicated. For example if G is a connected second countable abelian group
such as R, and if we let Gd be the group G equipped with the discrete topology,
then it can be shown that C0(G) ⋊lt Gd is a simple NGCR algebra.7

4.5.1 Baire Sets

If G is second countable, then it is well known (e.g., [104, Lemma 1.1] or [2, Theo-
rem 3.4.1]) that there are Borel cross sections c : G/H → G such that p

(
c(rH)

)
=

rH for all r ∈ G and which are locally bounded in that c(K) is pre-compact when-
ever K is compact in G/H .8 However, for a number of reasons, there seem to be

6In fact, any two are mutually absolutely continuous [56, Theorem 2.59] (see also Lemma H.14
on page 463).

7This is an unpublished observation due to Dorte Olesen, Gert Pedersen and the author.
8Theorem 3.4.1 in [2] provides a Borel cross section, but does not deal with locally bounded

sections. But if G is second countable, then it is the countable union of compact sets Kn such
that Kn is contained in the interior of Kn+1. Then the restriction of the quotient map to Kn has
a Borel cross section, and we get a regular section by piecing these sections together.
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problems with Borel sections on general locally compact groups. Part of the reason
is that in non-second countable groups, there are more Borel sets than we really
want to pay attention to. The solution is to restrict attention to only those Borel
sets needed to ensure that continuous compactly supported functions are measur-
able. Recall that a subset of a topological space is called a Gδ set if it is the
intersection of countably many open sets.

Definition 4.32. Let X be a locally compact space. The Borel sets B(X) in X
are the elements of the σ-algebra generated by the open subsets of X . The Baire
sets Bδ(X) in X are the elements of the σ-algebra generated by the compact Gδ
subsets of X . Suppose that Y is locally compact, and that f : X → Y is a function.
We say that f is locally bounded if f(C) is pre-compact for each compact set C in
X . We say that f is Baire measurable (Borel measurable) if f−1(E) is Baire (Borel)
in X for every Baire (Borel) set E ⊂ Y .

Remark 4.33. If f : X → Y is a function and if X and Y are locally compact, then
f is Borel9 if and only if f−1(V ) is Borel for every open set V in Y . Similarly, f
is Baire if and only if f−1(C) is Baire for each compact Gδ subset of Y . Since not
every open subset of Y need be Baire, a Baire measurable function f : X → Y
need not be Borel. As far as I can see, there is no reason why a continuous function
f : X → Y need be Baire. (However, see Lemma 4.41 on the next page.)

The following observations are routine.

Lemma 4.34. Suppose X is locally compact Hausdorff.

(a) Every Baire set is Borel. If X is second countable, every Borel set is Baire.

(b) The Baire sets form the smallest σ-algebra for which each f ∈ Cc(X) is
measurable.

(c) A Baire measurable function f : X → C is Borel.

(d) If q : Y → X is Baire measurable, and f : X → C is Baire measurable, then
f ◦ q is Baire measurable.

We’ll use the following result of Kehlet without proof.

Theorem 4.35 ([88]). If H is a closed subgroup of a locally compact group G, then
there is a locally bounded Baire cross-section c : G/H → G for the natural map
q : G → G/H. That is, c is Baire measurable map such that p

(
c(rH)

)
= rH for

all r ∈ G, and c(K) is pre-compact if K is compact in G/H.

Some care must be taken in citing results about Baire sets as not all sources
agree on the definition. Kehlet uses Halmos [70] as an authority on measure theory,
and Halmos defines the Baire sets to be the σ-ring generated by the compact Gδ’s.
That we can use σ-algebras instead is guaranteed by the following.

Definition 4.36. If X is a locally compact space, then we’ll write Mδ(X) for the
σ-ring generated by the compact Gδ’s.

9It is common practice to shorten “Borel measurable” and “Baire measurable” to simply
“Borel” and “Baire”, respectively.
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Lemma 4.37 ([154, Chap. 13 §1]). If X is a locally compact Hausdorff space, then
a Baire set E ⊂ X is in Mδ(X) if and only if E is contained in a σ-compact set.
(Such sets are called σ-bounded.) If E is a Baire set, then either E ∈ Mδ(X) or
Ec := X r E ∈ Mδ(X). If both E and Ec are σ-bounded, then X is σ-compact.

Corollary 4.38. Suppose X and Y are locally compact Hausdorff spaces and that
f : X → Y is a function such that f−1(B) ∈ Mδ(X) for all B ∈ Mδ(Y ). Then f
is a Baire function.

That is, a “Baire function” with respect to σ-rings as defined in Halmos or
Kehlet is a Baire measurable function as in Definition 4.32 on the preceding page.

Definition 4.39. A function f : X → Y is locally Baire if f−1(V ) ∩W is a Baire
set for each V ∈ Bδ(Y ) and each σ-bounded Baire set W ∈ Mδ(X).

Lemma 4.40. A function f : X → Y is locally Baire if and only if f−1(C) ∩K is
Baire for each compact Gδ set C ⊂ Y and compact Gδ set K ⊂ X.

Proof. The assertion follows easily from the observations that for eachW ∈ Mδ(X),
the set

{V ⊂ Y : f−1(V ) ∩W ∈ Bδ(X) }
is a σ-algebra in Y , and that for all V ⊂ Y the set

{W ⊂ X : f−1(V ) ∩W ∈ Bδ(X) }

is a σ-ring.

Lemma 4.41. Suppose that f : X → Y is continuous. Then f is Borel and locally
Baire.

Proof. The first assertion is easy. For the second, let C =
⋂
On be a compact Gδ

in Y and K =
⋂
Um a compact Gδ in X . Then

f−1(C) =
⋂
f−1(On)

is a closed Gδ in X . Thus

f−1(C) ∩K =
⋂

n,m

f−1(On) ∩ Um

is a compact Gδ in X . Thus f is locally Baire by Lemma 4.40.

Remark 4.42. If C is a compact Gδ subset of X , then it is not hard to verify that

Bδ(C) = {B ∩ C : B ∈ Bδ(X) }.

On the other hand, if f : X → Y is a function, then f−1(V ) ∩ C = (f |C)−1(V ).
Hence f is locally Baire if and only if f |C is Baire for all compact Gδ sets C ⊂ X .
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Lemma 4.43. Suppose that X is locally compact Hausdorff, and that f : X → C
is a complex-valued function which vanishes off a compact Gδ-set C ⊂ X. If f |C
is Baire, then f is Baire. In particular, any locally Baire function f : X → C that
vanishes off a compact set is Baire.

Proof. Suppose that f |C is Baire. It suffices to verify that f−1(V ) ∈ Bδ(X) for V
open in C. But by assumption, f−1(V )∩C ∈ Bδ(C) ⊂ Bδ(X). But if 0 /∈ V , then
f−1(V ) = f−1(V ) ∩ C. If 0 ∈ V , then f−1(V ) = f−1(V ) ∩ C ∪X r C. In either
case, f−1(V ) ∈ Bδ(X), and f is a Baire function.

The last assertion follows from the above and the observation that Urysohn’s
Lemma implies that every compact subset of X is contained in a compact Gδ
subset.

Now we must think just a bit about product spaces. If A and B are σ-algebras
inX and Y respectively, then we’ll write A ×B for the σ-algebra inX×Y generated
by the rectangles A×B with A ∈ A and B ∈ B.

Lemma 4.44. Let X be a locally compact Hausdorff space. Then

Bδ(X ×X) ⊂ Bδ(X) × Bδ(X), and (4.64)

B(X) × B(X) ⊂ B(X ×X). (4.65)

If X is compact, then equality holds in (4.64). If X second countable, then equality
holds in (4.65).

Proof. Suppose that K is a compact Gδ subset of X × X . Then there is a f ∈
Cc(X × X) such that K = f−1(1) [31, Chap. VII Corollary 4.2]. The Stone-
Weierstrass Theorem implies there is sequence { fi } ⊂ Cc(X ×X) converging to f
uniformly such that each fi has the form fi(x, y) =

∑ni

k=1 ϕ
i
k(x)ψ

i
k(y) for functions

ϕik, ψ
i
k ∈ Cc(X). In particular, each such fi is measurable with respect to the

product σ-algebra Bδ(X)×Bδ(X). Thus f is too, and K ∈ Bδ(X)×Bδ(X). This
suffices to prove (4.64).

To prove (4.65) we need to see that A × B ∈ B(X × X) if A,B ∈ B(X).
However,

{C ⊂ X : C ×X ∈ B(X ×X) }
is a σ-algebra in X containing all open sets. Thus A × X is Borel as is X × B.
Thus A×B is Borel as required.

If X is compact and C is a compact Gδ in X , then C ×X is a compact Gδ in
X × X . Arguing as above, A × X ∈ Bδ(X) × Bδ(X) for all A ∈ Bδ(X). Thus
A×B ∈ Bδ(X ×X) for all A,B ∈ Bδ(X). Thus Bδ(X) × Bδ(X) ⊂ Bδ(X ×X).

If X is second countable and O ⊂ X ×X is open, then O is a countable union
of open rectangles. Therefore O ∈ B(X) × B(X). This suffices.

Remark 4.45. The equality B(X) × B(X) = B(X × X) can fail even if X is a
compact group [7, §2].

Lemma 4.46. Suppose that X, Y and Z are locally compact Hausdorff spaces, and
that f : X → Y is continuous. If g : Y → Z is Borel, then p := g ◦ f is Borel. If
g : Y → Z is Baire, then p := g ◦ f is locally Baire.
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Proof. The assertion about Borel functions is standard. Let C ⊂ Z and K ⊂ X be
compact Gδ’s. Then

p−1(C) ∩K = f−1
(
g−1(C)

)
∩K.

The result now follows since g−1(C) is Baire and f is locally Baire (Lemma 4.41
on page 140).

Proposition 4.47. Suppose that G is a locally compact group, that g, h : G → G
are functions and that f(r) := g(r)h(r). If g and h are locally bounded, locally
Baire functions, then f is locally Baire. If G is second countable and g and h are
Borel, then f is Borel.

Proof. Suppose that g and h are locally bounded, locally Baire functions. Let K
be a compact Gδ subset of G. By Remark 4.42 on page 140, it suffices to show
that f |K is Baire. Since g and h are locally bounded, there is a compact Gδ set K ′

containing g(K) and h(K).10 But f |K is the composition

K
i // K ′ ×K ′

m|K′×K′
// G,

where i(r) :=
(
g(r), h(r)

)
and m is multiplication. Since g|K and h|K are Baire, i

is measurable from
(
K,Bδ(K)

)
to

(
K ′ ×K ′,Bδ(K

′) × Bδ(K
′)
)
. By Lemma 4.44

on the preceding page, Bδ(K
′) × Bδ(K

′) = Bδ(K
′ × K ′). On the other hand,

m : G × G → G is locally Baire (Lemma 4.41 on page 140), so m|K′×K′ is Baire.
Thus f |K is Baire.

If G is second countable and both g and h are Borel, then B(G×G) = B(G)×
B(G). Now the proof proceeds as above.

Definition 4.48. Suppose c : G/H → G is a cross section for the natural map

q : G → G/H . Then we define d := dc : G → H by d(r) := c
(
q(r)

)−1
r. Thus for

all r ∈ G,
r = c(rH)d(r).

Corollary 4.49. If c : G/H → G is a locally bounded Baire cross section, then
dc is a locally bounded, locally Baire function. If G is second countable, and c is a
locally bounded Borel section, then dc is a locally bounded Borel function.

Proof. If K is compact in G, then d(K) ⊂ c
(
q(K)

)−1
K ⊂ c

(
q(K)

)−1
K. Thus d

is locally bounded if c is. Since r 7→ r−1 is a homeomorphism, c′(rH) := c(rH)−1

defines a Baire (Borel) function if c is Baire (Borel). Suppose c is locally bounded
and Baire. Lemma 4.46 on the preceding page implies g(r) = c′(q(r)) is locally
Baire. Since g is locally bounded, the first assertion follows from Proposition 4.47
with h(r) = r.

If G is second countable and c Borel, then f is Borel and the result follows again
from Proposition 4.47.

10By Urysohn’s Lemma, every compact set is contained in a compact Gδ set.
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4.5.2 The Proof

Our starting point is the Green C0(G/H)⋊ltG – C∗(H)-pre-imprimitivity bimodule
X0 := Cc(G) obtained via Theorem 4.22 on page 132 with A = C. In order to make
use of our locally bounded Baire cross section c : G/H → G, we’ll need to enlarge
X0 a bit.

Let Bbδc(G) be the collection of bounded Baire functions on G which vanish off
a compact set.11 We want to turn X00 := Bbδc(G) into a pre-inner product C∗(H)-
module which contains X0 := Cc(G) as a dense sub-module. If f ∈ X00 has support
contained in a compact set K and b ∈ Cc(G) has support C, then

ϕ(s, h) := f(sh)b(h−1)γ(h).

defines a bounded function on G × H with support contained in KC−1 × C−1.
(Recall that γ(h) := ∆G(h)

1
2 ∆H(h)−

1
2 .) Let K ′ and C′ be compact Gδ’s such

that KC−1 ⊂ K ′ and C−1 ⊂ C′. However, (s, h) 7→ f(sh), is locally Baire by
Lemma 4.46 on page 141. Since b and γ are continuous, it follows that ϕ|K′×C′ is
Baire. We can mimic (4.56) and define

f · b(s) :=

∫

H

f(sh)b(h−1)γ(h) dµH(h) (4.66)

=

∫

H

ϕ(s, h) dµH(h)

=

∫

C′

ϕ(s, h) dµH(h).

Then f · b has support in K ′ and is bounded by ‖ϕ‖∞ · µH(C). Therefore to see
that f · b ∈ X00, we need only see that f · b is Baire. By Lemma 4.43 on page 141,
it suffices to see that the restriction of f · b to K ′ is a Baire function. But ϕ|K′×C′

is measurable with respect to Bδ(K
′ × C′), and Bδ(K

′ × C′) = Bδ(K
′) × Bδ(C

′)
by Lemma 4.44 on page 141. Since (K ′ × C′,Bδ(K

′) × Bδ(C
′), µG × µH) is a

finite measure space, we can apply Fubini’s Theorem (as in [156, Theorem 8.8]) to
conclude that f · b is a Baire function on K ′. Now it is easy to see that X00 is a
right B0-module. If f ∈ X0, then f · b coincides with (4.56) and X0 is a sub-module
of X00.

Next we define a sesquilinear form on X00 using (4.57) from Theorem 4.22 on
page 132:

〈f , g〉
B0

(h) := γ(h)

∫

G

f(s)g(sh) dµG(s). (4.67)

It is easy to see that (4.67) defines a function on H with support in
(supp f)−1(supp g). It may come as a bit of a surprise that (4.67) is continuous in

11If G is second countable, the Baire and Borel sets coincide and we could work with Borel
functions throughout.
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h. To see this, let gh(s) := g(sh) and compute

∣∣〈f , g〉
B0

(h) − 〈f , g〉
B0

(t)
∣∣ ≤

∣∣γ(h) − γ(t)
∣∣
∣∣∣
∫

G

f(s)g(sh) dµG(s)
∣∣∣+

|γ(t)|
∣∣∣
∫

G

f(s)
(
g(sh) − g(st)

)
dµG(s)

∣∣∣

≤
∣∣γ(h) − γ(t)

∣∣‖f‖1‖g‖∞ + |γ(t)|‖f‖∞‖gh − gt‖1.

Since right translation is continuous in L1(G), the claim about continuity follows.
To show that X00 is a pre-inner product B0-module with the extended definitions

of the module action (4.66) and inner product (4.67), we proceed as follows. To
show that

〈f , g · b〉
B0

= 〈f , g〉
B0

∗ b,

we compute using Fubini after restricting to compact subsets as above. To show
positivity, notice that

〈f , g〉
B0

(h) = γ(h)(gh | f)L2(G), (4.68)

where gh(s) = g(sh) with supp〈f , g〉
B0

⊂ supp(f)−1 supp(g) ∩ H . Furthermore,

using the Cauchy-Schwarz inequality we have
∣∣〈f , f〉

B0

(h) − 〈g , g〉
B0

(h)
∣∣ =

∣∣〈f , f − g〉
B0

(h) + 〈f − g , g〉
B0

(h)
∣∣ (4.69)

≤ γ(h)‖(f − g)h‖2‖f‖2 + ‖gh‖2‖f − g‖2

= γ(h)∆G(h)−
1
2 ‖f − g‖2(‖f‖2 + ‖g‖2).

Now if f ∈ X00 with supp f ⊂ K, then there are gi ∈ X0 with supp gi ⊂ K such
that gi → f in L2(G). Since γ(h)∆G(h)−

1
2 is bounded on K−1K ∩ H , it follows

that 〈gi , gi〉
B0

→ 〈f , f〉
B0

in the inductive limit topology and therefore in the

C∗-norm. Since each 〈gi , gi〉
B0

≥ 0, it follows that 〈f , f〉
B0

≥ 0.

We’ll write ‖f‖B for the seminorm ‖〈f , f〉
B0

‖ 1
2 . The following lemma will prove

useful.

Lemma 4.50. Let f ∈ X00. Suppose that K is a compact set in G and that { gi }
is a sequence in X00 such that gi vanishes off K for all i and such that gi → f in
L2(G). Then ‖gi − f‖B → 0.

Proof. We can assume that f vanishes off K. If M := max |∆H(h)−
1
2 | for h ∈

K−1K ∩H , then we have

‖gi − f‖2
B = ‖〈gi − f , gi − f〉

B0

‖

≤
∫

H

∣∣〈gi − f , gi − f〉
B0

(h)
∣∣ dµH(h)

≤
∫

K−1K∩H

‖(gi − f)h‖2‖gi − f‖2γ(h) dµH(h)
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which, since ‖gh‖2 = ∆G(h)−
1
2 ‖g‖2, is

= ‖gi − f‖2
2

∫

K−1K∩H

∆H(h)−
1
2 dµH(h)

≤ ‖gi − f‖2
2 ·M · µH(K−1K ∩H).

Thus if { gi } is as stated, ‖gi − f‖B → 0.

As an immediate corollary, we obtain the following.

Corollary 4.51. The submodule X0 is ‖ · ‖B-seminorm dense in X00. In partic-
ular, the completion X of X00 is the same as the completion of X0. Thus K(X) is
isomorphic to C0(G/H) ⋊lt G.

We can also prove the following corollary which will be needed in the last step
of the proof.

Corollary 4.52. Let Y be the subspace of X00 spanned by the characteristic func-
tions of compact Gδ subsets of G. Then Y is dense in X00 in the ‖ · ‖B-seminorm.

Proof. If f ∈ X00, then there is a sequence { fi } of Baire simple functions converging
uniformly to f such that |fi(s)| ≤ |f(s)| for all s [57, Theorem 2.10(b)]. Thus the
subspace Y

′ spanned by characteristic functions of Baire sets which are contained
in a compact set is dense in X00 by Lemma 4.50 on the facing page. Thus it will
suffice to see that we can approximate 1F where F is a Baire set contained in a
compact set K. Since G is locally compact, we can assume that F is contained
in the interior V of K. If ǫ > 0, then by regularity of Haar measure, there is a
compact set C and an open set O such that

C ⊂ F ⊂ O ⊂ V,

and such that µG(O r C) < ǫ2. Using Urysohn’s Lemma, there is a compact Gδ
set E such that C ⊂ E ⊂ O. Then

‖1F − 1E‖2 < ǫ.

Therefore there are gi ∈ Y such that gi vanishes off K and such that gi → 1F in
L2(G). This suffices by Lemma 4.50 on the preceding page.

Now we’ll switch gears and build a new Hilbert C∗(H)-module Z. Let Bbδc(H)
be the bounded Baire functions onH which vanish off a compact set. If b′ ∈ Bbδc(H)
and b ∈ B0, then the convolution

b′ ∗ b(h) :=

∫

H

b′(t)b(t−1h) dµH(t)

is continuous in h and compactly supported. Thus b′ ∗ b is certainly in Bbδc(H).
Now it is not hard to see that Bbδc(H) is a pre-Hilbert C∗(H)-module containing
Cc(H) as a dense submodule. (This is a special case of Corollary 4.51 with both G
and H equal to H .) In particular, the completion of Bbδc(H) is C∗(H).
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Let Z0 be the algebraic tensor product

Z0 := Bbδc(H) ⊙ Bbδc(G/H).

We can define a Cc(H)-action on Z0 by

(b′ ⊗ n) · b := b′ ∗ b⊗ n. (4.70)

We define a sesquilinear form on Z0 by

〈〈a⊗ n , b′ ⊗m〉〉
B0

(h) := (m | n)L2(G/H)a
∗ ∗ b′(h) (4.71)

=

∫

G/H

m(sH)n(sH) dµG/H(sH)

∫

H

c(t)b′(th) dµH(t).

Note that (4.71) is just the product of the usual inner product on the Hilbert space
L2(G/H) and the inner product on the pre-Hilbert C∗(H)-module Bbδc(H). Now
the next lemma follows easily.

Lemma 4.53. With the module action (4.70) and inner product (4.71), Z0 is a
pre-inner product B0-module. The completion Z is (isomorphic to) the external
tensor product C∗(H) ⊗ L2(G/H).

Corollary 4.54. K(Z) ∼= K
(
L2(G/H)

)
⊗ C∗(H).

Proof. By [139, Corollary 3.38], K(Z) ∼= K
(
L2(G/H)

)
⊗ K

(
C∗(H)

)
, and

K
(
C∗(H)

)
= C∗(H) by [139, Example 2.26].

Lemma 4.55. Suppose that X and Z are Hilbert B-modules and that θ : X → Z

is a Hilbert module isomorphism. Then T 7→ θT θ−1 is an isomorphism Φ of K(X)
onto K(Z) such that

Φ
(
K(X)

〈
x , y

〉)
=

K(Z)

〈
θ(x) , θ(y)

〉
. (4.72)

Proof. Let Φ(T ) := θT θ−1. Clearly Φ maps L(X) into L(Z). If x, y ∈ X and z ∈ Z,
then

θ
K(X)

〈x , y〉θ−1(z) = θ
(
x ·

〈
y , θ−1(z)

〉
B

)

= θ
(
x ·

〈
θ(y) , z

〉
B

)

= θ(x)
〈
θ(y) , z

〉
B

=
K(Z)

〈
θ(x) , θ(y)

〉
(z).

This establishes (4.72). It also follows that Φ
(
K(X)

)
⊂ K(Z) and has dense range.

Thus Φ
(
K(X)

)
= K(Z). This suffices as Φ is clearly injective.

Now it suffices by Corollary 4.54 and Lemma 4.55 to show that X and Z are
isomorphic Hilbert C∗(H)-modules. Recall that q : G→ G/H is the quotient map
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and that d is defined in Definition 4.48 on page 142. If a⊗ n ∈ Z0, then we define
α(a⊗ n) : G→ C by

α(a⊗ n)(s) := ρ(s)
1
2 a

(
d(s)

)
n
(
q(s)

)
,

where ρ is as in (4.63). We want to see that α(a ⊗ n) ∈ X00. Let supp a ⊂ K and
suppn ⊂ C. Then if α(a ⊗ n)(r) 6= 0, then rH ∈ C and d(r) = c(rH)−1r ∈ K.
Thus r ∈ c(C)·K. Thus there is a compact Gδ set K0 such that suppα(a⊗n) ⊂ K0.
To see that α(a⊗ n) is Baire, it suffices to show that

f(s) := a
(
d(s)

)
n
(
q(s)

)

defines a Baire function on K0 (Lemma 4.43 on page 141). Note that f is a com-
position

K0
i // C × C

m // C,

where m is multiplication and i(s) :=
(
a
(
d(s)

)
, n

(
q(s)

))
. Then if V is open in C,

f−1(V ) = i−1
(
m−1(V )

)
.

Since C is second countable, m−1(V ) is a countable union of open rectangles. Thus
it suffices to see that

i−1(V × U) = K0 ∩ i−1(V × U) = K0 ∩ d−1
(
a−1(U)

)
∩ (n ◦ q)−1(V )

is Baire. Since d is locally Baire and a−1(U) is Baire, K0 ∩ d−1
(
a−1(U)

)
is a σ-

bounded Baire set. Since Lemma 4.46 on page 141 implies n ◦ q is locally Baire,
i−1(V × U) is Baire.

Now we’ve proved that we have a map

α : Z0 → X00.

To complete the proof of Theorem 4.30 on page 138 we just need to see that α pre-
serves the C∗(H)-valued inner products and has dense range. Then it follows that α
extends to a unitary — which is automatically C∗(H)-linear by [139, Lemma 2.18].

To see that α preserves inner products, we calculate

〈
α(a⊗ n) , α(b ⊗m)

〉
B0

(h) = γ(h)

∫

G

α(a⊗ n)(s)α(b⊗m)(sh) dµG(s)

and, noting that γ(h)ρ(s)
1
2 ρ(sh)

1
2 = ρ(s), this

=

∫

G

a
(
d(s)

)
n(sH)b

(
d(sh)

)
m(sH)ρ(s) dµG(s)
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and using (4.63) and d(st) = d(s)t for s ∈ G and t ∈ H ,

=

∫

G/H

∫

H

a
(
d(s)t

)
n(sH)b

(
d(s)th

)
m(sH) dµH(t) dµG/H (sH)

=

∫

G/H

n(sH)m(sH) dµG/H(sH)

∫

H

a(t)b(th) dµH(t)

= (m | n)L2(G/H)

∫

H

a(t−1)∆H(t−1)b(t−1h) dµH(t)

= (m | n)L2(G/H)a
∗ ∗ b(h)

= 〈〈a⊗ n , b⊗m〉〉
B0

(h).

Now all that remains to be shown is that α(Z0) is dense in X00. We’ll show that
we can approximate those h ∈ X00 of the form 1E for a compact Gδ subset E of G.
This will suffice in view of Corollary 4.52 on page 145.

Let C be a compact neighborhood of E. Given ǫ > 0, we’ll find h ∈ α(Z0) such
that supph ⊂ C and ‖1E − h‖2

2 < ǫ. This will suffice by Lemma 4.50 on page 144.
Let O be an open set such that E ⊂ O ⊂ C and µ(O−E) < ǫ. Using normality

(of C), there is an open set P such that E ⊂ P ⊂ P ⊂ O.

Lemma 4.56. There is a neighborhood V of e in H such that c(sH)V d(s) ⊂ P for
all s ∈ E

Proof. It suffices to produce a neighborhood in G with the same property. Suppose
no such neighborhood exists. Let {Vi } be the family of neighborhoods of e ordered
by inclusion. For all i there exits an si ∈ E such that c(siH)Vid(si) 6⊂ P . By
compactness we may extract a subnet, relabel, and assume that c(siH) → a and
d(si) → b. But c(siH)d(si) ∈ E for all i. Thus, ab ∈ E, and by continuity there
exist neighborhoods U , Q, V of a, e, and b respectively such that UQV ⊂ P . But
the c(siH) and the d(si) are eventually in U and V , respectively. Thus there is a i0
such that i ≥ i0 implies that c(siH)Qd(si) ⊂ P . Now take i so large that Vi ⊆ Q.
This provides a contradiction.

We’ll complete the proof by producing an h such that α(h) is a characteristic
function 1F such that E ⊂ F ⊂ O.

Choose V as above, and let W be a Baire neighborhood of e in H such that
W = W−1, W 3 ⊆ V , and W is compact. Since E is compact, d(E) has compact
closure. Thus, there are elements si ∈ G such that Ws1, . . . ,Wsm cover d(E). Let
B1, . . . , Bm be disjoint Baire sets covering d(E) with the property that Bi ⊂Wsi.
Since W is compact, it follows that Bi is compact.

Let Ti = { s ∈ G : sBi ⊂ P }, and Ui = { s ∈ G : sBi ⊂ O }. Notice that Ti ⊂
Ui, each Ti is compact and that each Ui is open with compact closure. In particular,
there is a Baire set Vi such that Ti ⊆ Vi ⊆ Ui.

12 Let Fi = c−1(Vi) = q(Vi);
notice that Fi is a Baire set with compact closure. Furthermore, sH ∈ Fi implies

12Simply choose f ∈ C+
c (G) which is strictly positive on Ti and which vanishes off Ui. Let

Vi = { f 6= 0 }.
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that c(sH)Bi ⊂ O. Also c(sH)Bi ⊂ P implies that c(sH) ∈ Ti, and hence that

sH ∈ Fi. Set ak(t) = ρ(t)−
1
21Bk

(t), and let nk
(
q(s)

)
= ρ

(
c
(
q(s)

))− 1
21Fk

(
q(s)

)
.

Note that each ak ⊗ nk ∈ Z0, and that since ρ
(
d(s)

)
ρ
(
c
(
q(s)

))
= ρ(s), we have

α(ak ⊗ nk)(s) = 1Bk

(
d(s)

)1Fk

(
q(s)

)
. Moreover,

ai
(
d(s)

)
=

{
1 if s ∈ c(sH)Bi ⇐⇒ d(s) ∈ Bi

0 otherwise.

In particular, α(ak⊗nk) is a characteristic function. Now we observe the following:

(a) If there is a s ∈ G such that α(ai ⊗ ni)(s) = 1 = α(aj ⊗ nj)(s), then d(s) ∈
Bi ∩Bj . Therefore i = j.

(b) If s ∈ E, then d(s) ∈ Bi for some i. Say Bi ⊆Wsi, so that d(s) = w0si with
w0 ∈ W . Thus, c(sH)Bi ⊂ c(sH)Wsi ⊂ c(sH)W 2si = c(sH)W 2w−1

0 w0si ⊂
c(sH)W 3d(s) ⊂ c(sH)V d(s) ⊆ P . Therefore, sH ∈ Fi, which implies that
α(ai ⊗ ni)(s) = 1.

(c) If α(ai⊗ni)(s) = 1, then d(s) ∈ Bi and c(sH)Bi ⊂ O. Thus, c(sH)d(s) ∈ O.

The point is that α(
∑n

1 ai ⊗ ni) is the characteristic function of a Baire set F
with the property that E ⊂ F ⊂ O. Hence, ‖1E−α(

∑n
1 ai⊗ni)‖2

2 = µ(F −E) ≤ ǫ.
This completes the proof.

Notes and Remarks

Originally, imprimitivity theorems were developed by Mackey and others to de-
termine when a given group representation was induced from a subgroup [102].
Thinking of a representation which is not induced as “primitive”, it was natural to
describe these results (telling us certain representations were not primitive) as “im-
primitivity” theorems. In the modern theory, these theorems are now formulated
as Morita equivalences. Although we consider the question of determining when a
representation is induced from a subsystem in the next chapter (where we look at
induced representations), in this chapter the focus is that imprimitivity theorems
describe important Morita equivalences exposing the structure and representation
theory of crossed products.

The Symmetric Imprimitivity Theorem is due to Raeburn [132]. Corollary 4.11
is due to Green, but it appeared in [148]. Corollary 4.18 is also due to Green [66],
as is Theorem 4.22. Our proof of the the Stone-von Neumann Theorem and its
variants in Sections 4.4 and 4.5 use the imprimitivity theorems in this chapter.
Historically, these results pre-date the machinery developed in this chapter and
have proofs which do not depend on the imprimitivity theorems given here. A nice
history of the subject is given in [153]. Theorem 4.30 is due to Green and is a
special case of the results in [67].





Chapter 5

Induced Representations and
Induced Ideals

The Morita equivalences that parade under the name of imprimitivity theorems
in the previous chapter are fundamental to the theory for (at least) two reasons.
The first we explored in the previous chapter: they provide deep insight into the
structure of crossed products. The second reason, which we explore in this chapter,
is that they form the basis for a theory of inducing representations from A⋊α|H H
up to A⋊αG which lies at the heart of the Mackey machine and our analysis of the
ideal structure of crossed products. The machinery also allows us to induce ideals,
and we look carefully at this process in Section 5.3. In Section 5.4, we show that
the inducing process is compatible with the decomposition of A⋊α G with respect
to an invariant ideal I in A as described in Section 3.4.

5.1 Induced Representations of
Crossed Products

Suppose that (A,G, α) is a dynamical system and that H is a closed subgroup of
G. We want to induce representations L = π⋊u of A⋊α|H H on HL up to A⋊αG.
We’ll follow Rieffel’s formalism as outlined in §2.4 of [139]. Therefore we require a
right Hilbert A⋊α|HH-module X and a homomorphism ϕA⋊αG of A⋊αG into L(X).

The induced representation X–IndA⋊αG
A⋊H (L) acts on the Hilbert space X ⊗A⋊H HL

which is the completion of the algebraic tensor product X⊙HL with respect to the
pre-inner product

(x⊗ h | y ⊗ k) :=
(
L

(
〈y , x〉

A⋊H

)
h | k

)
.

Then X–IndA⋊αG
A⋊H (L) is given on X ⊙HL by the formula

X–IndA⋊αG
A⋊H (L)(a)(x ⊗ h) = ϕA⋊αG(a)(x) ⊗ h.

151
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Note that X⊗A⋊HHL is the internal tensor product of the right Hilbert A⋊α|H H-
module X with the Hilbert space HL (viewed as a right Hilbert C-module) together
with the homomorphism L of A⋊α|H H into L(HL) ∼= B(HL).1

For dynamical systems (A,G, α), the natural choice for X is Green’s
C0(G/H,A) ⋊lt⊗α G –A ⋊α|H H-imprimitivity bimodule X

G
H . Recall that X

G
H was

constructed in Section 4.3, and that it is the completion of X0 = Cc(G,A). The
homomorphism ϕA⋊αG is given by N ⋊ v in Corollary 4.23 on page 133.

Definition 5.1. Suppose that (A,G, α) is a dynamical system and that L is a
representation of A⋊α|H H . Then IndGH L will denote the representation of A⋊αG
induced from L via Green’s imprimitivity bimodule X = X

G
H and the homomorphism

N ⋊ v : A⋊α G→ L(X).

Remark 5.2. Since the action N ⋊ v of A ⋊α G on X
G
H is nondegenerate (Corol-

lary 4.23 on page 133), it follows easily (see [139, Proposition 2.66]) that IndGH L is
nondegenerate.

Remark 5.3. If f, g ∈ Cc(G,A), then N ⋊ v(g)(f) = g ∗ f (Corollary 4.23 on
page 133). Therefore, on X0 ⊙HL,

IndGH L(g)(f ⊗ h) = g ∗ f ⊗ h.

Furthermore, it is not hard to check that the canonical extension of IndGH L to
M(A⋊α G) is given by the canonical extension of N ⋊ v:

(IndGH L) (̄m)(f ⊗ h) = (N ⋊ v) (̄m)(f) ⊗ h.

Since (N ⋊ v)¯
(
iA(a)

)
= N(a) and (N ⋊ v)¯

(
iG(s)

)
= vs, it follows that IndGH L =

(N ⊗ 1) ⋊ (v ⊗ 1), where

(N ⊗ 1)(a)(f ⊗ h) := N(a)(f) ⊗ h and

(v ⊗ 1)s(f ⊗ h) = vs(f) ⊗ h.

Even though the description of induced representations via module actions as
described above is very convenient algebraically, it still helpful to have a concrete
description of IndGH L and the space on which it acts which is independent of the
bimodule X. This will also bring us into contact with the original treatments of
Mackey and Takesaki as generalized to arbitrary groups by Blattner. (Details and
references can be found in Chapter XI of [55].2)

1A little more formally, X ⊗A⋊H HL is isomorphic to X ⊗L
eHL, where eHL is the dual Hilbert

space with C acting on the right. Thus, if ♭ : HL → bHL is the identity map, then ♭(h)λ = ♭(λ̄h),
L(f)♭(h) = ♭

`

L(f∗)h
´

and
`

♭(h) | ♭(k)
´

= (h | k).
2Blattner and Fell work with functions which transform slightly differently than ours:

ξ(rt) = ∆H(t)
1
2 ∆G(t)−

1
2 u−1

t

`

f(r)
´

.

The map sending the function (s 7→ f(s)) to (s 7→ ρ(s)
1
2 f(s)) induces a unitary isomorphism of

our L2
u(G, µG/H ,HL) onto the Blattner/Fell space which implements an equivalence between the

induced representations.)
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We suppose that L = π ⋊ u is a representation of A⋊α|H H on HL. Define

V1 := { ξ ∈ Cb(G,HL) : ξ(rt) = u−1
t

(
ξ(r)

)
for all r ∈ G and t ∈ H }.

Notice that if ξ ∈ V1, then ‖ξ(rt)‖ = ‖ξ(r)‖ for t ∈ H , and hence rH 7→ ‖ξ(r)‖ is
a well-defined function on G/H . We set

Vc := { ξ ∈ V1 : rH 7→ ‖ξ(r)‖ belongs to Cc(G/H) }.

As shown in Appendix H.2 or [139, Lemma C.2], there always exists a continuous
function ρ : G → (0,∞) such that ρ(rt) =

(
∆H(t)/∆G(t)

)
ρ(r) for all r ∈ G and

t ∈ H . Then there is a quasi-invariant measure µG/H on G/H satisfying (4.63) on
page 138 ([139, Lemma C.2]). Given µG/H , it follows that

(ξ | η) :=

∫

G/H

(
ξ(r) | η(r)

)
dµG/H(rH) (5.1)

is a well-defined positive-definite sesquilinear form on Vc. The completion V :=
L2
u(G,µG/H ,HL) is a Hilbert space.3

The proof of the next result closely follows that of [139, Theorem C.33].

Proposition 5.4. Suppose that (A,G, α) is a dynamical system, that H is a closed
subgroup of a locally compact group G, and that L = π ⋊ u is a representation
of A ⋊α|H H on HL. Let ρ : G → (0,∞) be a continuous function such that

ρ(rt) =
(
∆H(t)/∆G(t)

)
ρ(r) = γH(t)−2ρ(r) for all r ∈ G and t ∈ H. Let µG/H

be the quasi-invariant measure on G/H constructed from ρ satisfying (4.63), and
let V = L2

u(G,µG/H ,HL) be the Hilbert space constructed above. Then IndGH L is
unitarily equivalent to the representation Π ⋊ U on V where

Π(a)ξ(r) = π
(
α−1
r (a)

)
ξ(r), and (5.2)

Usξ(r) =
(ρ(s−1r)

ρ(r)

) 1
2

ξ(s−1r) (5.3)

for s, r ∈ G, a ∈ A, and ξ ∈ Vc.

Proof. We want to define a unitary W from X⊗A⋊HHL onto V . For an elementary
tensor f ⊗ h ∈ X0 ⊙HL, we define W (f ⊗ h)(r) to be the element of H given by

W (f ⊗ h)(r) =

∫

H

ρ(rt)−
1
2 π

(
α−1
r

(
f(rt)

))
uth dµH(t),

for each r ∈ G. That W (f ⊗ h) ∈ Vc follows from Corollary 1.103 on page 36, left-
invariance of µH and the covariance of (π, u). To see that W is isometric, and to see

3The notation V := L2
u(G, µG/H ,HL) is fairly standard because V can be realized as a space

of (equivalence classes) of functions on G. Precisely, each vector in V is a µG-almost everywhere
equivalence class of functions ξ : G → HL such that ξ(rt) = u−1

t

`

ξ(r)
´

everywhere and such that
rH 7→ ‖ξ(r)‖ belongs to L2(G/H, µG/H). The details are worked out in a more general setting in
Section 9.3.
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where the formula for W comes from, recall that the inner product in X ⊗A⋊H HL

is given on elementary tensors by

(f ⊗ h | g ⊗ k) =
(
L

(
〈g , f〉

A⋊H

)
h | k

)

=

∫

H

(
π
(
〈g , f〉

A⋊H
(t)

)
uth | k

)
dµH(t)

=

∫

H

∫

G

γH(t)
(
π
(
α−1
r

(
g(r)∗f(rt)

))
uth | k

)
dµG(r) dµH (t)

which, after decomposing µG as in (4.63) and abbreviating our notation for mea-
sures in an obvious way, is

=

∫

H

∫

G/H

∫

H

γH(t)ρ(rv)−1
(
π
(
α−1
rv

(
g(rv)∗f(rvt)

))
uth | k

)
dv dṙ dt

=

∫

G/H

∫

H

∫

H

γH(t)ρ(rv)−1
(
π
(
α−1
rv

(
f(rvt)

))
uth | π

(
α−1
rv

(
g(rv)

))
k
)
dv dt dṙ

which, using left-invariance and covariance, is

=

∫

G/H

∫

H

∫

H

γH(v−1t)ρ(rv)−1
(
π
(
α−1
r

(
f(rt)

))
uth | π

(
α−1
r

(
g(rv)

))
uvk

)
dv dt dṙ

which, since ρ(rt) = γH(t)−2ρ(r) implies ρ(rv)−1γH(v−1t) = ρ(rt)−
1
2 ρ(rv)−

1
2 , is

=

∫

G/H

(
W (f ⊗ h)(r) |W (g ⊗ k)(r)

)
dµG/H(rH).

Therefore it follows that W extends to an isometry from X ⊗A⋊H HL into V .
To show that W is surjective, and therefore a unitary, it will suffice to show that
given ξ ∈ Vc and ǫ > 0 there is a η ∈ imW such that ‖ξ − η‖ < ǫ. Notice that
imW is closed under multiplication by elements of Cc(G/H). Let D be a compact
subset of G such that supp ξ ⊂ DH , and let C be a compact neighborhood of D.
We claim it will suffice to produce for each r ∈ D an element ξr ∈ imW such that

‖ξr(r) − ξ(r)‖ < ǫ

µG/H
(
q(C)

) 1
2

, (5.4)

where q : G → G/H is the quotient map. Then if (5.4) holds, there is a neighbor-
hood Nr of r in G such that Nr ⊂ C and

‖ξr(s) − ξ(s)‖ < ǫ

µG/H
(
q(C)

) 1
2

for all s ∈ Nr; (5.5)

since the norms of functions in Vc are constant on H-cosets, (5.5) holds for all
s ∈ NrH . By compactness there are r1, . . . , rn in D such that D ⊂ ⋃n

i=1Nri , and
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a partition of unity argument gives functions ψi ∈ C+
c (G/H) such that suppψi ⊆

q(Nri), 0 ≤ ψi ≤ 1,
∑
i ψi(ṡ) = 1 for s ∈ DH and

∑
i ψi(ṡ) ≤ 1 for all s. Then∑

i ψiξri belongs to imW , and

∥∥∥
n∑

i=1

ψi(ṡ)ξri(s) − ξ(s)
∥∥∥ < ǫ

µG/H
(
q(C)

) 1
2

for all s ∈ G. (5.6)

Since (5.6) vanishes off CH , we have ‖∑
i ψiξri − ξ‖ < ǫ. This proves the claim.

For convenience, let δ := ǫ · µG/H
(
q(C)

)− 1
2 . Fix r ∈ D. Since π is nondegener-

ate, { π(ei) } converges strongly to 1HL whenever { ei } is an approximate identity
for A. In particular, there is a positive element a of norm at most 1 such that
‖π

(
α−1
r (a)

)
ξ(r) − ξ(r)‖ < δ/2. Furthermore, since t 7→ uth is continuous for each

h ∈ HL, there is a neighborhood N of e in G such that

‖utξ(r) − ξ(r)‖ < δ

2
provided t ∈ N ∩H .

Let z ∈ C+
c (G) be such that supp z ⊂ rN and such that

∫

H

ρ(rt)−
1
2 z(rt) dµH(t) = 1.

Define f ∈ X0 by f(r) := z(r)a. Then if k ∈ HL with ‖k‖ ≤ 1,

|
(
W (f⊗ξ(r))(r) | k

)
−

(
ξ(r) | k

)
|

< |
(
W (f ⊗ ξ(r))(r) | k

)
−

(
π
(
α−1
r (a)

)
ξ(r) | k

)
| + δ

2

=
∣∣∣
∫

H

ρ(rt)−
1
2 z(rt)

(
π
(
α−1
r (a)

)(
utξ(r) − ξ(r)

)
| k

)
dµH(t)

∣∣∣ +
δ

2

≤ δ

2
+
δ

2
= δ :=

ǫ

µG/H
(
q(C)

) 1
2

.

Since k is arbitrary, we’ve shown that (5.4) holds with ξr := W (f ⊗ ξ(r)). This
completes the proof that W is a unitary.

As described in Remark 5.3 on page 152, IndGH L is the integrated form of
(N ⊗ 1, v ⊗ 1), where

N ⊗ 1(a)(f ⊗ h) := N(a)f ⊗ h and (v ⊗ 1)r(f ⊗ h) := vr(f) ⊗ h.

Therefore
(
W

(
N ⊗ 1(a)(f ⊗ h

)
(r) | k

)
=

(
W

(
N(a)f ⊗ h

)
(r) | k

)

=

∫

H

ρ(rt)−
1
2

(
π
(
α−1
r

(
af(rt)

))
uth | k

)
dµH(t)

=

∫

H

ρ(rt)−
1
2

(
π
(
α−1
r

(
f(rt)

))
uth | π

(
α−1
r (a∗)

)
k
)
dµH(t)

=
(
π
(
α−1
r (a)

)
W (f ⊗ h)(r) | k

)

=
(
Π(a)

(
W (f ⊗ h)

)
(r) | k

)
.
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Thus N ⊗ 1 is equivalent to Π as claimed.
Similarly, we compute that
(
W (1 ⊗ v)s(f ⊗ h)(r) | k

)
=

(
W

(
vs(f) ⊗ h

)
(r) | k

)

=

∫

H

ρ(rt)−
1
2

(
π
(
α−1
r

(
vs(f)(rt)

))
uth | k

)
dµH(t)

=

∫

H

ρ(rt)−
1
2

(
π
(
α−1
s−1r

(
f(s−1rt)

))
uth | k

)
dµH(t)

=
ρ(s−1r)

1
2

ρ(r)
1
2

∫

H

ρ(s−1rt)−
1
2

(
π
(
α−1
s−1r

(
f(s−1rt)

))
uth | k

)
dµH(t)

=
ρ(s−1r)

1
2

ρ(r)
1
2

(
W (f ⊗ h)(s−1r) | k

)

=
(
UsW (f ⊗ h)(r) | k

)
.

Thus (1 ⊗ v) is equivalent to U , and this completes the proof.

It is important to notice that L2
u(G,µG/H ,HL) is independent of A and α and

depends only on G, H and the unitary representation u. The same is true for the
representation U defined by (5.3).

Definition 5.5. Suppose that G is a locally compact group with closed subgroup
H . Then a unitary representation u : H → U(H) can be viewed as representation
of C ⋊id H in the usual way. Since (C, G, id) is a dynamical system, we can form
the induced representation IndGH(id ⋊u). This representation is denoted IndGH u,
and is called the representation of G induced from u on H .

Notice that IndGH u is equivalent to the representation U of Proposition 5.4 on
page 153. Thus we have the following interesting corollary.

Corollary 5.6. Let (A,G, α) be a dynamical system, and suppose that L = π ⋊ u
is a nondegenerate representation of A⋊α|H H. Then the unitary part of IndGH L is

(equivalent to) IndGH u.

Remark 5.7. If H = { e }, then Proposition 5.4 on page 153 shows that IndGe π ⋊

id equivalent to the regular representation IndGe π of (A,G, α) associated to π as
defined in Remark 2.16 on page 46. This explains the notation used for regular
representations.

One of the properties of induction is that it respects the subgroup structure of
the ambient group. This is exemplified by the following two results. The first states
that induction respects the natural G-action on its subgroups. The second result
— called induction in stages — says we can proceed via an intermediate subgroup.

For each s ∈ G, let s · H := sHs−1. If we have fixed Haar measures µH and
µs·H on H and s · H , respectively, then the uniqueness of Haar measure implies
there is a positive number ω(s,H) such that

∫

H

g(shs−1) dµH(h) = ω(s,H)

∫

s·H

g(h) dµs·H(h)
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for all g ∈ Cc(G).4 We will use this observation and notation in the next lemma.

Lemma 5.8. Suppose that (A,G, α) is a dynamical system, that H is a closed
subgroup of G, and that L = (π, u) is a covariant representation of (A,H, α|H)
on H. Let s · H := sHs−1, s · π := π ◦ α−1

s and s · u(h) := u(s−1hs). Then
s · L := (s · π, s · u) is a covariant representation of (A, s ·H,α|s·H). Furthermore,

IndGH L is equivalent to IndGs·H s · L.

Proof. It’s not hard to see that (s ·π, s ·u) is covariant. Recall that IndGH L acts on
the completion of Cc(G,A) ⊗H with respect to the inner product

(
f ⊗ h | g ⊗ k

)
=

(
L

(
〈g , f〉

A⋊H

)
h | k

)
.

On the other hand, IndGs·H s ·L acts on the completion of Cc(G,A)⊗H with respect
to the inner product given by the same formula, but with L replaced by s ·L. (The
formulas for the A ⋊α|H H-valued inner products are given in Theorem 4.22 on
page 132.) If we define V : Cc(G,A) → Cc(G,A) by

V f(r) := ω(s,H)
1
2 ∆G(s)

1
2 f(rs)

and recall that γH(h) = ∆G(h)
1
2 ∆H(h)−

1
2 , then we compute that

L
(
〈g , f〉

A⋊H

)
=

∫

H

π
(
〈g , f〉

A⋊H
(h)

)
u(h) dµH(h)

=

∫

H

γH(h)

∫

G

π
(
α−1
r

(
g(r)∗f(rh)

))
u(h) dµG(r) dµH(h)

=

∫

H

∫

G

γH(h)∆G(s)π
(
α−1
rs

(
g(rs)∗f(rsh)

))
u(h) dµG(r) dµH (h)

=

∫

s·H

∫

G

γs·H(h)∆G(s)ω(s,H)

s · π
(
α−1
r

(
g(rs)∗f(rhs)

))
s · u(h) dµG(r) dµH(h)

= s · L
(〈
V (g) , V (f)

〉
A⋊s·H

)
.

Since V is clearly onto, f ⊗ h 7→ V (f) ⊗ h extends to a unitary from the space of
IndGH L to the space of IndGs·H s ·L. Since V (f ∗ g) = f ∗V (g), this unitary provides
the desired equivalence.

Theorem 5.9 (Induction in Stages). Suppose that (A,G, α) is a dynamical system
and that K and H are closed subgroups of G with H ⊂ K. If L is a representation
of A⋊α|H H, then the representations

IndGH L and IndGK IndKH L

are equivalent.

4We have more to say about ω(s,H) in Lemma H.10 on page 461.
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For the proof we’ll have to look at the imprimitivity bimodules X
G
H , X

K
H and X

G
K

from Theorem 4.22 on page 132. The space of IndGH L is X
G
H ⊗A⋊H HL, and the

space of IndGK IndKH L is

X
G
K ⊗A⋊K (XKH ⊗A⋊H HL). (5.7)

Since we can view (5.7) as an iterated internal tensor product, Lemma I.4 on
page 481 implies that (5.7) is isomorphic to

(XGK ⊗A⋊K X
K
H) ⊗A⋊H HL

where the map of A⋊α|K K into L(XKH) is given by N ⋊ v defined in Corollary 4.23
on page 133 (with K in place of G). Thus the technical part of the proof of
Theorem 5.9 on the previous page is provided by the following lemma.

Lemma 5.10. Let H, K, G and α be as in Theorem 5.9. Then there is an isomor-
phism Φ of Hilbert A ⋊α|H H-modules X

G
K ⊗A⋊K X

K
H and X

G
H defined by the map

sending the elementary tensor f ⊗ b ∈ Cc(G,A) ⊙ Cc(K,A) ⊂ X
G
K ⊗A⋊K X

K
H to

f · b ∈ X
G
H where Cc(K,A) acts on the right of Cc(G,A) via the action of A⋊α|K K

on X
G
K given by (4.56) (with K in place of H).

Proof. We’ll write γKH (t) for (∆K(t)/∆H(t))
1
2 . To see that the indicated map is

isometric, we compute as follows:

〈f ⊗ b , g ⊗ c〉
A⋊H

(t) =
〈
b , 〈f , g〉

A⋊K
∗ c

〉
A⋊H

(t)

= γKH (t)

∫

K

α−1
z

(
b(z)∗〈f , g〉

A⋊K
∗ c(zt)

)
dµK(z)

= γKH (t)

∫

K

∫

K

α−1
z

(
b(z)∗〈f , g〉

A⋊K
(w)

αw
(
c(w−1zt)

))
dµK(w) dµK (z)

=

∫

K

∫

K

∫

G

γKH (t)γGK(w)α−1
z

[
b(z)∗α−1

s

(
f(s)∗g(sw)

)

αw
(
c(w−1zt)

)]
dµG(s) dµK(w) dµK (z)

which, after sending s 7→ sz−1, is

=

∫

G

∫

K

∫

K

γKH (t)γGK(w)∆G(z−1)α−1
z

(
b(z)∗

)
α−1
s

(
f(sz−1)∗g(sz−1w)

)

αz−1w

(
c(w−1zt)

)
dµK(w) dµK(z) dµG(s)

which, after sending z 7→ z−1, is

=

∫

G

∫

K

∫

K

γKH (t)γGK(w)∆G(z)∆K(z−1)α−1
s

[
αsz

(
b(z−1)∗

)
f(sz)∗

g(szw)αszw
(
c(w−1z−1t)

)]
dµK(w) dµK(z) dµG(s)

which, after sending w 7→ z−1tw, is
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=

∫

G

∫

K

∫

K

γKH (t)γGK(z−1tw)γGK(z)2α−1
s

[
αsz

(
b(z−1)∗

)
f(sz)∗

g(stw)αstw
(
c(w−1)

)]
dµK(w) dµK(z) dµG(s)

= γGH(t)

∫

G

α−1
s

[(∫

K

f(sz)αsz
(
b(z−1)

)
γGK(z) dµK(z)

)∗

(∫

K

g(stw)αstw
(
c(w−1)

)
γGK(w) dµK(w)

)]
dµG(s)

= γGH(t)

∫

G

α−1
s

(
f · b(s)∗g · c(st)

)
dµG(s)

= 〈f · b , g · c〉
A⋊H

(t).

To see that the map has dense range, it suffices to check that

{ f · b : f ∈ Cc(G,A) and b ∈ Cc(K,A) } (5.8)

is dense in Cc(G,A) in the inductive limit topology. To see this, recall that we
can view Cc(G,A) as a Cc(G×G/K,A) – Cc(K,A) pre-imprimitivity bimodule Z0

coming from the Symmetric Imprimitivity Theorem with respect to the module
actions and inner products given in (4.51)–(4.54). If we write f : b for the right
action of b ∈ Cc(K,A) on f viewed as an element in Z0, then it follows from
symmetry and Proposition 4.5 on page 113 that there is an approximate identity in
Cc(K,A), { bi }, such that f : bi → f in the inductive limit topology on Cc(G,A).

However if u(f)(s) := ∆G(s)−
1
2 f(s), then u(f : b) = u(f) · b. Therefore, f · bi → f

in the inductive limit topology, and (5.8) is dense as required.

Proof of Theorem 5.9. We define a unitary U to be the composition U2 ◦ U1

X
G
K ⊗A⋊K (XKH ⊗A⋊H HL)

U1 //

U ++

(XGK ⊗A⋊K X
K
H) ⊗A⋊H HL

U2

��
X
G
H ⊗A⋊H HL,

where U2 is defined using Lemma 5.10 on the preceding page, and U1 is defined
using Lemma I.4 on page 481. Thus on elementary tensors

U
(
f ⊗ (b⊗ h)

)
= f · b⊗ h.

Since

U ◦ IndGK IndKH L(g)
(
f ⊗ (b⊗ h)

)
= U

(
g ∗ f ⊗ (b⊗ h)

)

= (g ∗ f) · b⊗ h,
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and since

(g ∗ f) · b(s) =

∫

K

g ∗ f(sz)αsz
(
b(z−1)

)
γGK(z) dµK(z)

=

∫

G

∫

K

g(r)αr
(
f(r−1sz)

)
αsz

(
b(z−1)

)
γGK(z) dµK(z) dµG(r)

=

∫

G

g(r)αr

(∫

K

f(r−1sz)αr−1sz

(
b(z−1)

)
γHK (z) dµK(z)

)
dµG(r)

=

∫

G

g(r)αr
(
f · b(r−1s)

)
dµG(r)

= g ∗ (f · b)(s),
we have

U ◦ IndGK IndKH L(g) = IndGH L(g) ◦ U.
This completes the proof.

Having defined induced representations of A ⋊α G, it is natural to ask which
representations of A⋊α G are induced from A⋊α|H H for a given closed subgroup
H of G. Such results are usually called imprimitivity theorems, and the Symmetric
Imprimitivity Theorem and Green’s Imprimitivity Theorem derive their names from
the fact that they provide the key ingredient in answering the above question. The
following remarks will be helpful.

Remark 5.11. By identifying an elementary tensor ϕ⊗a with a function on G/H in
the obvious way, we obtain a map of C0(G/H)⊙A into C0(G/H,A). This extends
to an isomorphism of C0(G/H) ⊗ A with C0(G/H,A) [139, Proposition B.16].
Using [139, Corollary B.22], we note that every representation R of C0(G/H,A) is
determined by a pair (η, π) of commuting representations η : C0(G/H) → B(H)
and π : A→ B(H) such that

R(ϕ⊗ a) = η(ϕ)π(a). (5.9)

In particular, if kC0(G/H) and kA are the natural maps of C0(G/H) and A, re-

spectively, into M
(
C0(G/H,A)

)
, then η = R̄ ◦ kC0(G/H) and π = R̄ ◦ kA. Since

commutative C∗-algebras are nuclear ([139, Theorem B.43]), C0(G/H) ⊗ A =
C0(G/H) ⊗max A, and every pair (η, π) of commuting representations as above
gives rise to a representation R = η ⊗max π satisfying (5.9) ([139, Theorem B.27]).

To cut down on distracting notation in the sequel, let EGH(A) be the imprimitiv-
ity algebra C0(G/H,A) ⋊lt⊗α G. Suppose that L is a representation of A⋊α|H H .
Let X–IndL be the representation of EGH(A) coming from Green’s EGH(A) – A⋊α|H

H-imprimitivity bimodule X = X
G
H . Then by definition, X–IndL acts on the space

of IndGH L, and
X–IndL(F )(g ⊗ h) := M ⋊ v(F )(g) ⊗ h,

where (M, v) is the covariant homomorphism giving the natural action of EGH(A)
on X (Corollary 4.23 on page 133). As in Remark 5.3 on page 152, it follows that
X–IndL = (M ⊗ 1) ⋊ (v ⊗ 1), where

(M ⊗ 1)(z)(g ⊗ h) = M(z)(g) ⊗ h.
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In view of Remark 5.11 on the preceding page, we have M ⊗ 1 = η ⊗max π for
commuting representations η of C0(G/H) and π of A. On the other hand, by
Remark 5.3 on page 152, IndGH L = (N ⊗1)⋊ (v⊗1). Since N = M ◦̄kA, it follows
that N ⊗ 1 = (M ⊗ 1)¯◦ kA. Therefore, N ⊗ 1 = π. We have proved the first part
of our imprimitivity theorem.

Theorem 5.12 (Imprimitivity Theorem for Crossed Products). Suppose that
(A,G, α) is a dynamical system and that H is a closed subgroup of G. If L is a
representation of A⋊α|H H and if X–IndL = (η ⊗max π) ⋊ U is the corresponding
representation of Green’s imprimitivity algebra EGH(A) = C0(G/H,A) ⋊lt⊗α G,

then IndGH L = π ⋊ U .
In particular, suppose that R = π ⋊ U is a nondegenerate representation of

A ⋊α G on H. Then R is unitarily equivalent to a representation induced from
A ⋊α|H H if and only if there is a nondegenerate representation η : C0(G/H) →
B(H) such that η and π are commuting representations, and such that (η, U) is a
covariant representation of

(
C0(G/H), G, lt

)
.

Proof. The first assertion follows from the above discussion. Let R = π ⋊ U and η
be as in the statement of the theorem. Then it is straightforward to see that (η⊗max

π, U) is a nondegenerate covariant representation of
(
C0(G/H,A), G, lt⊗α

)
. The

integrated form is a representation of EGH(A). Since X = X
G
H is a EGH(A) –A⋊α|HH-

imprimitivity bimodule, R is equivalent to a representation of the form X–IndL =
(η′ ⊗max π

′) ⋊ U ′ for some representation L of A ⋊α|H H ([139, Theorem 3.29]).

By the above, IndGH L = π′ ⋊ U ′. Using Proposition 2.40 on page 59, we must
have η ⊗max π equivalent to η′ ⊗max π

′, and U equivalent to U ′. This implies that
π = (η ⊗max π)¯ ◦ kA is equivalent to π′ = (η′ ⊗max π

′)¯ ◦ kA. Thus R = π ⋊ U is
equivalent to IndGH L = π′ ⋊ U ′, which is what we wanted.

On the other hand, if π⋊U = IndGH L, then X–IndL = (η⊗max π)⋊U for some
representation η ofC0(G/H). It is easy to see that η has the required properties.

Remark 5.13. The relationship between IndGH L and X–IndL is made
explicit by the Imprimitivity theorem on this page. Another take is as
follows. Let (jC0(G/H,A), jG) be the canonical covariant homomorphism of(
C0(G/H,A), G, lt⊗α

)
into M

(
EGH(A)

)
. Then j′A := ̄C0(G/H,A) ◦ kA is an

nondegenerate homomorphism of A into M
(
EGH(A)

)
such that (j′A, jG) is a

covariant homomorphism of (A,G, α) into M
(
EGH(A)

)
. By checking on generators,

it follows that

(X–IndL)¯ ◦ (j′A ⋊ jG) = IndGH L. (5.10)

It is also helpful to keep in mind that the natural identification of EGH(A) with
K(XGH) intertwines j′A ⋊ jG with N ⋊ v.

5.2 An Example

Although Proposition 5.4 on page 153 gives a fairly concrete realization of an in-
duced representation, there is still plenty of work to do to make sense of specific
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examples. A case where we can give a fairly complete description is that of inducing
a character of an abelian group. We will use this material in Section 8.3.

Suppose now that G is abelian. Then the Fourier transform ϕ 7→ ϕ̂ extends to
an isomorphism of C∗(G) onto C0(Ĝ) (Proposition 3.1 on page 82), where Ĝ is the
Pontryagin dual and

ϕ̂(σ) :=

∫

G

ϕ(s)σ(s) dµG(s).

If τ is a character on G, then since we can identify Cc(G) ⊙C with Cc(G), the in-
duced representation L := IndGH(τ |H) acts on the completion of Cc(G) with respect
to the inner product

(ϕ | ψ)L =

∫

H

∫

G

ψ(r)ϕ(rt)τ(t) dµG(r) dµH(t). (5.11)

Of course, L(s)[ϕ] = [lts ϕ].
The left-regular representation of G on Cc(G) ⊂ L2(G) is given by λ(r)ϕ(s) =

ϕ(r−1s), and as a representation of Cc(G), λ is given by convolution: λ(ψ)(ϕ) =

ψ ∗ ϕ. Since (ϕ ∗ ψ)̂ = ϕ̂ψ̂, it follows that as a representation of C0(Ĝ), λ is

equivalent to the multiplication representation M of C0(Ĝ) on L2(Ĝ) given by

M(g)f = gf.

Since λ = IndG{ e } ι, a modest generalization of the above discussion is the following.

Recall that if H is a closed subgroup of an abelian group G, then H⊥ := { σ ∈
Ĝ : σ(t) = 1 for all t ∈ H }, and that we can identify H⊥ with the dual of G/H
[56, Theorem 4.39].

Proposition 5.14. Suppose that G is a locally compact abelian group and that
τ ∈ Ĝ. If H is a closed subgroup, then IndGH(τ |H) is equivalent to the representation

M τ of C0(Ĝ) on L2(H⊥) given by

M τ (f)ξ(σ) = f(τσ)ξ(σ).

In particular,

ker
(
IndGH(τ |H)

)
= { f ∈ C0(Ĝ) : f vanishes on τH⊥ }.

Since τ ∈ Ĝ is, as a representation of C0(Ĝ), simply evaluation at τ , we get the
following result as an immediate corollary.

Corollary 5.15. If τ ∈ Ĝ and if H is a closed subgroup of G, then

ker
(
IndGH(τ |H)

)
⊂ ker τ.

Proof of Proposition 5.14. We realize L := IndGH(τ |H) on the completion of Cc(G)
as in (5.11). We can choose a Haar measure µG/H on G/H such that for all
f ∈ Cc(G) we have

∫

G

f(s) dµG(s) =

∫

G/H

∫

H

f(st) dµH(t) dµG/H(ṡ).
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Then we define U : Cc(G) → Cc(G/H) by

U(f)(ṙ) :=

∫

H

f(rt)τ(rt) dµH (t).

Using a Bruhat approximate cross section (Proposition H.17 on page 466), we see
that U is surjective. Furthermore, interchanging the order of integration as needed,
we have

(
U(ϕ) | U(ψ))L2(G/H) =

∫

G/H

U(ϕ)(ṡ)U(ψ)(ṡ) dµG/H(ṡ)

=

∫

G/H

∫

H

∫

H

ϕ(st)ψ(sv)τ(tv−1) dµH(t) dµH(v) dµG/H (ṡ)

=

∫

H

∫

G/H

∫

H

ψ(sv)ϕ(svt)τ(t) dµH (v) dµG/H(ṡ) dµH(t)

=

∫

H

∫

G

ψ(s)ϕ(st)τ(t) dµG(s) dµH(t)

= (ϕ | ψ)L.

Therefore U extends to a unitary of HL onto L2(G/H). Also,

U
(
L(s)(ϕ)

)
(ṙ) =

∫

H

L(s)ϕ(rt)τ(rt) dµH (t)

=

∫

H

ϕ(s−1rt)τ(rt) dµH (t)

= τ(s)U(ϕ)(s−1 · ṙ).

Therefore U intertwines L = IndGH(τ |H) with the representation R on L2(G/H)
given by

R(s)F (ṙ) = τ(s)F (s−1 · ṙ).
Since we can identify H⊥ with (G/H )̂ , the Plancherel Theorem [56, 4.25] implies
that the Fourier transform induces a unitary V : L2(G/H) → L2(H⊥) given on
F ∈ Cc(G/H) by

V (F )(σ) =

∫

G/H

F (ṙ)σ(r) dµG/H (ṙ) := F̂ (σ).

If ϕ ∈ Cc(G), then

R(ϕ)F (ṙ) =

∫

G

ϕ(s)τ(s)F (s−1 · ṙ) dµG(s),

and

V
(
R(ϕ)F

)
(σ) =

∫

G/H

R(ϕ)F (ṙ)σ(r) dµG/H (ṙ)

=

∫

G/H

∫

G

ϕ(s)τ(s)F (s−1 · ṙ)σ(r) dµG(s) dµG/H (ṙ)
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which, after interchanging the integrals and using the invariance of the Haar mea-
sure µG/H to replace s−1 · ṙ = s−1rH = s−1HrH with ṙ = rH , is

=

∫

G

∫

G/H

ϕ(s)τ(s)F (ṙ)σ(sr) dµG/H (ṙ) dµG(s)

= ϕ̂(τσ)V (F )(σ).

Thus V U intertwines L = IndGH(τ |H) with the representation M τ . The rest follows
easily.

5.3 Inducing Ideals

If A is a C∗-algebra, then I(A) denotes the set of (closed two-sided) ideals in A.
The set I(A) is partially ordered by inclusion: that is, I ≤ J means I ⊂ J . Then
I(A) is a lattice with I ∧ J := I ∩ J and I ∨J is the ideal generated by I and J . It
is sometimes convenient to equip I(A) with the topology with subbasic open sets
indexed by J ∈ I(A) given by

OJ = { I ∈ I(A) : J 6⊂ I }.
(Thus the open sets are the unions of finite intersections

⋂{OJ : J ∈ F}; the whole
space arises as the intersection over the empty set F .) It is important to keep in
mind that when restricted to PrimA, the OJ form a basis for a topology — the
hull-kernel or Jacobson topology. In particular, the relative topology on PrimA as
a subset of I(A) is the natural one.

We need the following result which is essentially contained in [139, §3.3].

Lemma 5.16. If H is a closed subgroup of G, then there is a containment preserv-
ing continuous map

IndGH : I(A⋊α|H H) → I(A⋊α G) (5.12)

such that
IndGH kerL = ker IndGH L (5.13)

for all nondegenerate representations of A⋊α|H H. Moreover

IndGH J = { f ∈ A⋊α G : N ⋊ v(f)(X) ⊂ X · J }, (5.14)

where X = X
G
H is the C0(G/H,A) ⋊lt⊗α G –A ⋊α|H H-imprimitivity bimodule of

Theorem 4.22 on page 132, and (N, v) is the natural covariant homomorphism of
(A,G, α) into L(X) given in Corollary 4.23 on page 133.

Remark 5.17. The Cohen Factorization Theorem [139, Proposition 2.33] implies
that

X · J := span{ x · a : x ∈ X and a ∈ J } = { x · a : x ∈ X and a ∈ J }.
In particular, we could replace X · J with X ·J in formulas such as (5.14). However,
while this observation can be useful in certain cases, I have chosen to retain the
overlines for emphasis.
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Proof. The map IndGH is defined on page 61 of [139] to be the composition of the
restriction map ResN⋊v : I

(
K(X)

)
→ I(A ⋊α G) and the Rieffel homeomorphism

X–Ind : I(A⋊α|H H) → I
(
K(X)

)
where

ResN⋊v I := { f ∈ A⋊α G : N ⋊ v(f)
(
K(X)

)
⊂ I }.

Thus

IndGH J = { f ∈ A⋊α G : N ⋊ v(f)
(
K(X)

)
⊂ X–IndJ }. (5.15)

If J := kerL, then the right-hand side of (5.15) is the kernel of IndGH L by [139,
Proposition 3.34].

We have (X–IndJ) · X = X · J by [139, Proposition 3.24]. Since K(X) acts
nondegenerately on X, it follows that whenever f ∈ IndGH J , we have

N ⋊ v(f)(X) ⊂ X · J.

On the other hand, if f ∈ A ⋊α G and x ∈ X is such that N ⋊ v(f)(x) /∈ X · J ,
then we can write x = Ty for y ∈ X and T ∈ K(X) by [139, Proposition 2.31], and
conclude that (N ⋊ v(f)T )y /∈ X · J . Thus

N ⋊ v(f)
(
K(X)

)
6⊂ X–IndJ,

and we have proved (5.14).
The continuity of IndGH is proved in [139, Corollary 3.35]. It will also follow

from the next two lemmas.

We take a slight detour to show that induction of ideals preserves intersections.
This will be useful in Section 8.1, and together with the following observation, it
also takes care of the continuity assertion in Lemma 5.16 on the facing page.

Lemma 5.18. Let A and B be C∗-algebras with ideal spaces I(A) and I(B), respec-
tively. If ϕ : I(A) → I(B) preserves arbitrary intersections, then ϕ is continuous.

Proof. Notice that if I ∈ { Ik } in I(A), then
⋂
k Ik ⊂ I. (If not, then OT

k Ik
is a

neighborhood of I which is disjoint from { Ik }.) If ϕ preserves intersections and
I ⊂ J , then ϕ(I) = ϕ(I ∩ J) = ϕ(I) ∩ ϕ(J) ⊂ ϕ(J). Therefore ϕ also preserves
containment. If { Ik } is a net in I(A) converging to I, it will suffice to see that
{ϕ(Ik) } is eventually in any basic neighborhood OJ of ϕ(I). If this fails for an
ideal J , then we can pass to a subnet, relabel, and assume that ϕ(Ik) /∈ OJ for all
k. Since ϕ(Ik) ⊃ J for all k and since Ik → I implies that

⋂
Ik ⊂ I, we have

ϕ(I) ⊃ ϕ
(⋂

Ik

)
(since ϕ preserves containment)

=
⋂
ϕ(Ik) (since ϕ preserves intersections)

⊃ J.

But this contradicts our choice of J .
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Lemma 5.19. Suppose that (A,G, α) is a dynamical system, that H is a closed
subgroup of G and that { Ik }k∈K is a (possibly infinite) family of ideals in I(A⋊α|H

H). Then

IndGH

( ⋂

k∈K

Ik

)
=

⋂

k∈K

IndGH Ik.

Proof. Let X = X
G
H be the C0(G/H,A)⋊lt⊗αG –A⋊α|H H-imprimitivity bimodule

of Theorem 4.22 on page 132. Then the result will follow immediately from (5.14)
once we verify that

X ·
⋂
Ik =

⋂
X · Ik. (5.16)

Since the right-hand side of (5.16) is a closed sub-bimodule of X and since the
Rieffel correspondence [139, Theorem 3.22] establishes a bijection between closed
submodules of X and ideals in A⋊α|H H ,

⋂
X · Ik = X · J,

where
J = { 〈x , y〉

A⋊H
: x ∈ X and y ∈

⋂
X · Ik }.

But 〈
X ,

⋂
X · Ik

〉
A⋊H

⊂
⋂
Ik

and therefore ⋂
X · Ik = X · J ⊂ X ·

⋂
Ik.

Since the other containment is clear, we’re done.

Remark 5.20. One can also prove Lemma 5.19 by showing that IndGH preserves
direct sums. Then the result follows from (5.13).

5.4 Invariant Ideals and the Induction Process

If I is an α-invariant ideal in A and if H is a closed subgroup of G, then we’d like to
see that the decomposition ofA⋊αG given in Proposition 3.19 on page 93 is compat-
ible with the inducing process. We continue to write EGH(A) for the imprimitivity
algebra C0(G/H,A)⋊lt⊗αG, and similarly with EGH(I) := C0(G/H, I)⋊lt⊗αG and
EGH(A/I) := C0(G/H,A/I) ⋊lt⊗αI G. Let X

G
H be the EGH(A) –A ⋊α|H H-imprim-

itivity bimodule of Theorem 4.22 on page 132. We also have a EGH(I) – I ⋊α|H H-
imprimitivity bimodule Y

G
H and a EGH(A/I) –A/I ⋊αI |H H-imprimitivity bimodule

Z
G
H . As usual, we’ll write X0, Y0 and Z0 for the dense subspaces Cc(G,A), Cc(G, I)

and Cc(G,A/I) of X
G
H , Y

G
H and Z

G
H , respectively.

Now suppose that L is a nondegenerate representation of I ⋊α|H H . Let

Y–IndGH L be the representation of I ⋊α G induced via Y
G
H . Since Y–IndGH L is

nondegenerate, it extends to a representation Y–Ind
G

H L of A ⋊α G. On the other
hand, L has a canonical extension to a representation L̄ of A, and we can form
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X–IndGH L̄. Naturally, we expect that Y–Ind
G

H L and X–IndGH L̄ are equivalent.
Proving this requires untangling a bit of the machinery of the Rieffel correspon-
dence as described in [139, §3.3]. Recall that if X is any E –A-imprimitivity
bimodule and I ∈ I(A), then X · I is a closed E –A-sub-bimodule of X. The Rieffel
map X–Ind : I(A) → I(E) sending I to

E
〈X · I , X · I〉 = span{

E
〈x , y〉 : x, y ∈ X · I }

is a lattice bijection ([139, Proposition 3.24]), and X · I is a X–Ind I – I-imprimi-
tivity bimodule with respect to the inherited actions and inner products. ([139,
Proposition 3.25]).

Proposition 5.21. Suppose that (A,G, α) is a dynamical system and that I is
an α-invariant ideal in A. If we identify EGH(I) with the ideal Ex

(
C0(G/H, I)

)
in

EGH(A), then
EGH(I) = X–Ind(I ⋊α|H H),

and XI⋊H := XGH · (I ⋊α|H H) is a EGH(I) – I ⋊α|H H-imprimitivity bimodule. The
inclusion of Cc(G, I) into Cc(G,A) induces an imprimitivity bimodule isomorphism
of Y

G
H onto XI⋊H . If L is a nondegenerate representation of I ⋊α|H H, then

Y–Ind
G

H L and X–IndGH L̄

are equivalent representations of A⋊α G.

We need a simple observation.

Lemma 5.22. The submodule XI⋊H is the closure of Cc(G, I) in X
G
H .

Proof. Using Equation (4.56) of Theorem 4.22 on page 132, it is easy to see that
f · b belongs to Cc(G, I) when f ∈ Cc(G,A) and b ∈ Cc(H, I). Thus we have
X · (I ⋊α|H H) ⊂ Cc(G, I). Let { ui } ⊂ Cc(H, I) be an approximate identity for
I ⋊α|H H . Thus b ∗ ui → b and ui ∗ b→ b in I ⋊α|H H , and therefore in A⋊α|H H ,
for all b ∈ Cc(H, I). If f ∈ Cc(G, I), then 〈f , f〉

A⋊H
∈ Cc(H, I) and

‖f · ui − f‖2
XG

H
=

‖ui ∗ 〈f , f〉
A⋊H

∗ ui − 〈f , f〉
A⋊H

∗ ui − ui ∗ 〈f , f〉
A⋊H

+ 〈f , f〉
A⋊H

‖

tends to zero as i increases. Since each f · ui ∈ X · (I ⋊α|H H), we have Cc(G, I) ⊂
XI⋊H . This completes the proof.

Proof of Proposition 5.21. Since we have identified EGH(I) with the corresponding
ideal in EGH(A), it follows from (4.58) in Theorem 4.22 on page 132 that

EG
H (I)

〈f , g〉 =
EG

H (A)
〈f , g〉 for all f, g ∈ Cc(G, I). (5.17)

Since
X–IndGH(I ⋊α|H H) =

EG
H (A)

〈XI⋊H , XI⋊H〉
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and since Cc(G, I) is dense in XI⋊H , it follows from (5.17) that

X–IndGH(I ⋊α|H H) = EGH(I) = C0(G/H, I) ⋊lt⊗α G,

and XI⋊H is a EGH(I) – I ⋊α|H H-imprimitivity bimodule as claimed.
It now follows from Lemma 5.22 on the previous page and (5.17) that the in-

clusion map induces an isomorphism ΦI of Y
G
H onto XI⋊H .

Notice that each T ∈ L(XGH) is I ⋊α|H H-linear so that XI⋊H is an invariant
subspace for T . Thus restriction gives us a map r : L(XGH) → L(XI⋊H). If (NA, vA)
is the covariant homomorphism of (A,G, α) into L(X) given in Corollary 4.23 on
page 133 and if f ∈ I ⋊α G (which we view as an ideal in A⋊α G), then

N I ⋊ vI(f) = Φ−1
I ◦ r

(
NA ⋊ vA(f)

)
◦ ΦI .

Thus Y–Ind
G

H L is equivalent to the representation on XI⋊H ⊗I⋊H HL given by the
left-action of A⋊α G on XI⋊H .

On the other hand, X–IndGH L̄ acts on X
G
H⊗A⋊HHL by the left-action of A⋊αG

on X
G
H . If f1, . . . , fn, g1, . . . , gn ∈ Cc(G,A) ⊂ X

G
H and if b1, . . . , bn, c1, . . . , cn ∈

I ⋊α|H H , then
(∑

i

fi ⊗ L(bi)hi
∣∣ ∑

j

gj ⊗ L(cj)kj

)
=

∑

ij

(
L

(〈
gj · cj , fi · bi

〉
A⋊H

)
hi | kj

)

=
∑

ij

(
L

(〈
gj · cj , fi · bi

〉
I⋊H

)
hi | kj

)

=
(∑

i

fi · bi ⊗ hi
∣∣ ∑

j

gj · cj ⊗ kj

)
.

Since L is nondegenerate, it follows that
∑

i

fi ⊗ L(bi)hi 7→
∑

i

fi · bi ⊗ hi

extends to a unitary isomorphism of X⊗A⋊HHL onto XI⋊H ⊗I⋊HHL intertwining

the left A⋊α G-actions. This proves that Y–Ind
G

H L and X–IndGH L̄ are equivalent.

If R is a representation of A/I⋊αI |H H and if jH : A⋊α|H H → A/I⋊αI |H H is

the quotient map as in Proposition 3.19 on page 93, then R◦ jH is a nondegenerate
representation of A ⋊α|H H . On the other hand, Z–IndGH R is a representation of
A/I ⋊αI G, and we want to compare

X–IndGH(R ◦ jH) and (Z–IndGH R) ◦ jG,
where jG : A⋊αG→ A/I⋊αI G is the quotient map. To do this, we’ll want to work
with the quotient module X

I⋊H := X
G
H/XI⋊H which is a EGH(A)/EGH(I) –A ⋊α|H

H/I ⋊α|H H-imprimitivity bimodule by [139, Proposition 3.25]. Proposition 3.19
on page 93 allows us to identify A ⋊α|H H/I ⋊α|H H with A/I ⋊αI |H H , and

EGH(A)/EGH(I) with C0(G/H,A)/C0(G/H, I) ⋊
(lt⊗α)EG

H
(I) G. The latter crossed

product can then be identified with EGH(A/I) in view Lemma 3.18 on page 93.



5.4 Invariant Ideals and the Induction Process 169

Proposition 5.23. Suppose that (A,G, α) is a dynamical system and that I is
an α-invariant ideal in A. If we identify EGH(A)/EGH(I) with EGH(A/I) as above,
then the natural map q′ of Cc(G,A) onto Cc(G,A/I) given in Lemma 3.18 on
page 93 induces an imprimitivity bimodule isomorphism of X

I⋊H onto Z
G
H. If R is

a nondegenerate representation of A/I⋊αI |H H and jH : A⋊α|H H → A/I⋊αI |H H
is the quotient map of Proposition 3.19 on page 93, then

X–IndGH(R ◦ jH) and (Z–IndGH R) ◦ jG

are equivalent representations of A⋊α G. Furthermore, we always have

I ⋊α G ⊂ IndGH(I ⋊α|H H)

with equality if and only if the canonical map NA/I⋊vA/I of A/I⋊αI G into L(ZGH)
is faithful.

Remark 5.24. In Section 7.2, when we define the reduced crossed product A⋊α,rG,
we will prove in Lemma 7.12 on page 199 that A/I⋊αI ,rG = A/I⋊αI G if and only

if NA/I ⋊ vA/I is faithful, and therefore if and only if IndGH(I ⋊α|H H) = I ⋊α G.

Thus it will follow from Theorem 7.13 on page 199, that IndGH(I ⋊α|H H) = I ⋊αG
whenever G is amenable.

Proof. As described above, we view X
I⋊H as a EGH(A/I) –A/I ⋊αI |H H-imprimi-

tivity bimodule using [139, Proposition 3.25]. If q : X → X
I⋊H is the quotient map,

then the inner products on X
I⋊H are given by

〈
q(f) , q(g)

〉
A/I⋊H

:= jH
(
〈f , g〉

A⋊H

)
, and

EG
H (A/I)

〈
q(f) , q(g)

〉
:= j′

(
EG

H (A)
〈f , g〉

)
,

where j′ is the composition of the maps

EGH(A)

j′

44
// E

G
H(A)

EGH(I)
// C0(G/H,A)

C0(G/H, I)
⋊

(lt⊗α)EG
H

(I) G // EGH(A/I).

Since, for example,

jH
(
〈f , g〉

A⋊H

)
=

〈
q′(f) , q′(g)

〉
A/I⋊

αI G
,

q′ is isometric and induces an isomorphism of ΦI : X
I⋊H → Z

G
H as claimed.

Let (NA/I , vA/I) be the covariant homomorphism of (A/I,G, αI) into L(ZGH)
given by Corollary 4.23 on page 133. Since each T ∈ L(XGH) is I ⋊α|H H-linear,

we get a map p : L(X) → L(XI⋊H) given by p(T )
(
q(f)

)
:= q(Tf). Then for all

f ∈ A⋊α G,

(ΦI)−1 ◦ (NA/I ⋊ vA/I)
(
jG(f)

)
◦ ΦI = p ◦ (NA ⋊ vA)(f). (5.18)
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Since (5.14) of Lemma 5.16 on page 164 implies that

IndGH(I ⋊α|H H) = ker
(
p ◦ (NA ⋊ vA)

)
,

we have
IndGH(I ⋊α|H H) = ker

(
(NA/I ⋊ vA/I) ◦ jG

)
,

and it follows that

ker jG = Ex I = I ⋊α G ⊂ IndGH(I ⋊α|H H),

with equality if and only if NA/I ⋊ vA/I is faithful.
Furthermore, (5.18) implies that (Z–IndGH R) ◦ jG is equivalent to the repre-

sentation L of A ⋊α G on X
I⋊H ⊗A/I⋊H HR given by left multiplication: that is,

L(f)(q(g) ⊗ h) = q(f ∗ g) ⊗ h.
On the other hand, X–IndGH(R ◦ jH) is the representation of A⋊α G acting on

X
G
H ⊗A⋊H HR by left multiplication. Since

(f ⊗ h | g ⊗ k) =
(
R ◦ jH

(
〈g , f〉

A⋊H

)
h | k

)

=
(
R

(〈
q(g) , q(f)

〉
A/I⋊H

)
h | k

)

=
(
q(f) ⊗ h | q(g) ⊗ k

)
,

the map f ⊗ h 7→ q(f)⊗ h extends to a unitary isomorphism of X
G
H ⊗A⋊H HR onto

X
I⋊H ⊗A/I⋊H HR intertwining the A⋊α G-actions. This shows that

X–IndGH(R ◦ jH) and (Z–IndGH R) ◦ jG

are equivalent as claimed.

Notes and Remarks

The notion of an induced representation goes back to Frobenius [58]. Our jumping
off point is Mackey’s theory for locally compact groups [102–104]. Blattner extended
the theory to general locally compact groups in [10]. Rieffel recast that theory in
terms of Hilbert modules and Morita equivalence beginning with [145]. There is
an extensive treatment of the whole subject with complete references in [55, Chap.
XI & XII]. Using a “Mackey-like” approach, Takesaki extended the theory to crossed
products in [162]. The treatment in this chapter is based on Green’s “Rieffel-like”
theory of induced representations and ideals from [66].



Chapter 6

Orbits and Quasi-orbits

As we continue to uncover the general structure of crossed-products, we will find
that a great deal of information is encoded in the stability groups for the action of G
on PrimA, and in the topology of the orbit space G\PrimA. This is a particularly
powerful paradigm in the case of transformation group C∗-algebras. Although the
theory is more difficult in the general case, due to the appearance of projective
representations of the stability groups arising from Mackey obstructions, it is still
a central feature of the Effros-Hahn conjecture that much of the ideal structure
can be understood from the stability groups and orbit structure. Since we want to
consider general dynamical systems, we will have to pay attention to G-spaces such
as PrimA which fail to be Hausdorff.

6.1 The Mackey-Glimm Dichotomy

Earlier, we remarked that the orbit space G\X of a locally compact G-space X
was either pathological as in Example 3.26 on page 95, or enjoyed a number of
reasonable regularity conditions. It is time to address this vague assertion. There
are a number of conditions one might want to impose on a G-action. On the
one hand, we can ask that the orbit space G\X have a well-behaved topology.
However, examples show that requiring G\X to be Hausdorff is too restrictive. As
a minimum requirement, recall that a topological space is said to be T0 (or, if you’re
being formal, a topological space is said to satisfy the T0 axiom of separability) if
given distinct points p and q, there either exists an open set containing p and not
q or there exists an open set containing q and not p. (Alternatively, distinct points
must have distinct closures.) The textbook example of a T0 topological space is
the real line equipped with the topology whose nontrivial open sets are (a,∞) for
a ∈ R. The orbit space for Example 3.26 on page 95 is not T0, while that for
Example 3.32 on page 96 is.

It should be kept in mind that the primitive ideal space PrimA of a C∗-algebra
A is locally compact [28, Corollary 3.3.8], and although usually not Hausdorff,
it is always at least a T0-topological space [110, Theorem 5.4.7]. The primitive

171
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ideal space of GCR or postliminary C∗-algebras (see the discussion on page 221 of
[139]) always have a dense open subspace which is Hausdorff ([28, Theorem 4.4.5]
or [126, Theorem 6.2.11]).1 Since quotients of GCR algebras are GCR, it will
follow from Lemma 6.3 on the next page and the correspondence between closed
subsets of PrimA with the primitive ideal spaces of the corresponding quotient,
that the primitive ideal space of GCR C∗-algebras are “almost Hausdorff” in the
sense defined below.

Definition 6.1. A not necessarily Hausdorff locally compact space X is said to
be almost Hausdorff if each locally compact subspace V contains a relatively open
nonempty Hausdorff subset.

Note that with the exception of Example 3.26 on page 95, the orbit spaces
in our examples have all been almost Hausdorff. We’ll have more to say about
almost Hausdorff spaces in Lemma 6.3 on the next page. (In particular, an almost
Hausdorff space has a dense open Hausdorff subset as in Example 3.32 on page 96.)

Instead of focusing on the topology ofG\X , we might want the orbits themselves
to have nice properties. For example, if X is any G-space and if x ∈ X , then
sGx 7→ s · x is a continuous bijection of G/Gx onto the orbit G · x, and it would be
reasonable to insist that these maps always be homeomorphisms. As Example 3.26
on page 95 shows, this need not always be the case. Another property we can
ask of the orbits is that they at least be “nice” subspaces of X (in the relative
topology). For example, we might want them to be locally compact which, at least
when X is Hausdorff, is equivalent to insisting that they be locally closed subsets
of X (Lemma 1.26 on page 6).2 (Or, more simply, we want each G ·x to be open in
its closure G · x.) A generally weaker condition is that each orbit be a Baire space.3

Any locally compact Hausdorff space is a Baire space [168, Corollary 25.4], and any
Gδ subset of a locally compact Hausdorff space is again Baire [168, Theorem 25.3].4

It is easy to see that if a Baire space is the countable union of closed subsets, then
at least one of these sets has nonempty interior.5

As our next theorem implies, all the above properties on our wish list for the
orbits and orbit space are guaranteed provided the orbit space is tolerably nice and
that the spaces involved are second countable.6 Our result is a simplified version
of results due to Glimm [59] and extended to a wider class of G-spaces by Effros
[46, 48]. However, as examples such as Example 3.33 on page 97 show, some sort
of separability is crucial. Although the full results extend the dichotomy to the

1When we assert that U is a Hausdorff subspace of a space X, we are asserting that distinct
points in U have disjoint neighborhoods in U . It does not follow that distinct points in U have
disjoint neighborhoods in X.

2It is not hard to modify Lemma 1.26 to show that locally compact subsets of an almost
Hausdorff locally compact spaces are necessarily locally closed.

3Recall that Y is a Baire space if the countable intersection of open dense subsets of Y is again
dense.

4The result is proved for almost Hausdorff locally compact spaces in Lemma 6.4 on page 175.
5A subset A of a topological space Y is said to be of first category if can be written as a

countable union
S

Fn with each Fn having empty interior. Otherwise a set is said to be of second
category. A space is Baire if and only if every open subset is of second category.

6Classically, G-spaces with these regularity properties were called smooth.
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underlying Borel structure (cf. Appendix D.2 on page 374) and trace their origins
back to Mackey’s pioneering work [105], we’ll restrict to the topological issues here.

Theorem 6.2 (Mackey-Glimm Dichotomy). Suppose that X is a second count-
able almost Hausdorff locally compact G-space with G locally compact and second
countable. Then the following statements are equivalent.

(a) The orbit space G\X is a T0 topological space.

(b) Each orbit G · x is locally closed in X.

(c) Each orbit is a Baire space in its relative topology in X.

(d) For each x ∈ X, the map sGx 7→ s · x is a homeomorphism of G/Gx onto
G · x.

(e) The orbit space G\X is almost Hausdorff.

Before beginning the proof we need a couple of lemmas. The first is of some
interest in its own right. It says, in particular, that almost Hausdorff spaces really
are very close to being Hausdorff. Most importantly, it says that we can always
find a dense open relatively Hausdorff subset. However, the complement has a
dense open relatively Hausdorff subset, and so on. Unfortunately, this process, at
least in theory, can continue infinitely, and, even if the number of sets involved
is countable, the structure can be too complicated to allow us to naturally index
the resulting sets by positive integers. Instead, the natural indexing is provided
by a set Γ = {α ≤ γ } of ordinals. This means that Γ is a totally ordered set
in which each nonempty subset S ⊂ Γ has a smallest element minS ∈ S. We let
0 := min Γ. Note that each element α ∈ Γ r { γ } has an immediate successor
α+ 1 := min{λ ∈ Γ : λ > α }. An element α > 0 has an immediate predecessor if
there is an element α′ such that α′ + 1 = α. An element α without an immediate
predecessor is called a limit ordinal . One says γ is finite if Γ0 := {α : 0 ≤ α < γ }
is finite in which case γ can be identified with the subset of integers 0 ≤ k ≤ n for
a positive integer n. We say that γ is countable if Γ0 is countable. Notice that Γ0

can still contain limit ordinals even if γ is countable.

Lemma 6.3. Suppose that X is a not necessarily Hausdorff locally compact space.
Then the following are equivalent.

(a) X is almost Hausdorff.

(b) Every nonempty closed subspace of X has a relatively open nonempty Haus-
dorff subspace.

(c) Every closed subspace of X has a dense relatively open Hausdorff subspace.

(d) There is an ordinal γ and open sets {Uα : α ≤ γ } such that

(i) α < β ≤ γ implies that Uα ( Uβ,

(ii) α < γ implies that Uα+1 rUα is a dense Hausdorff subspace of X rUα.

(iii) if δ is limit ordinal, then

Uδ =
⋃

α<δ

Uα,
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(iv) U0 = ∅ and Uγ = X.

(e) Every subspace of X has a relatively open dense Hausdorff subspace.

Furthermore, if X is a second countable almost Hausdorff locally compact space,
then we can take γ to be countable in part (c).

Proof. Clearly (a) =⇒ (b). Suppose (b) holds and let F be a nonempty closed
subset of X . By assumption there is an open subset V ⊂ X such that V ∩ F is
nonempty and Hausdorff in F . A simple Zorn’s Lemma argument implies there is
a maximal such V . We claim that V ∩ F is dense in F . Suppose not. Then F r V
contains an open subset of F . Thus there is an open set W ⊂ X such that W ∩F is
a nonempty and contained in F r V . By assumption, W ∩ F contains a nonempty
relatively open Hausdorff subset which must be of the form W ′∩ (W ∩ F ) for some
open subset W ′ ⊂ X . If W ′ ∩W ∩ F = ∅, then X rW ′ is a closed set containing
W ∩F . This is nonsense as it implies W ′ ∩ (W ∩ F ) = ∅. Therefore W ′ ∩W ∩F is
nonempty open Hausdorff subset of F . Let V ′ := V ∪ (W ′ ∩W ). Since W ′∩W ∩F
and V ∩ F are disjoint, V ′ ∩ F is Hausdorff. Since V ( V ′, this contradicts the
maximality of V . Thus V is dense and we’ve proved that (b) =⇒ (c).

(c) =⇒ (d): We proceed by transfinite induction. Let U0 := ∅, and suppose
that Uα has been defined for all α < β. Suppose that β is not a limit ordinal and has
an immediate predecessor β−. If Uβ− = X , then we’re done. Otherwise, X r Uβ−

is a nonempty closed subset and by assumption there is an open set V ⊂ X such
that (X r Uβ−) ∩ V is dense and relatively Hausdorff in X r Uβ− . Therefore we
can set Uβ := V ∪ Uβ− .

If β is a limit ordinal, then we can set

Uβ :=
⋃

α<β

Uα.

This completes the induction and the proof that (c) =⇒ (d).
(d) =⇒ (e): Let {Uα }α≤γ be as specified in the lemma. Let S ⊂ X be

any nonempty set. Let β be the least ordinal such that S ∩ Uβ 6= ∅. If β were
a limit ordinal, then S ∩ ⋃

α<β Uα 6= ∅ implies that S ∩ Uα 6= ∅ for some α < β
which contradicts our choice of β. Thus, β has an immediate predecessor β−, and
S ∩ Uβ− = ∅. Then ∅ 6= S ∩ Uβ = S ∩ (Uβ r Uβ−) is an nonempty open Hausdorff
subset of S. It follows that S has a maximal open Hausdorff subset V . If V is not
dense in S, then S has a nonempty open subset S′ disjoint from V . By the above,
S′ has a nonempty open Hausdorff subset V ′. Since V and V ′ are disjoint open
subsets of S, V ∪ V ′ is Hausdorff. This contradicts the maximality of V . We have
shown that (d) =⇒ (e), and (e) =⇒ (a) is trivial.

Now assume that X is a second countable almost Hausdorff locally compact
space. Let {Uα }α≤γ be as in (c), and let {Pn }∞n=1 be a countable basis for the
topology on X . Since each Uα is a union of Pn’s, there is at least one n such that
Pn ⊂ Uα+1 while Pn ∩ (Uα+1 r Uα) 6= ∅. Let n(α) be the least such integer. If
α < β, then Pn(α) ⊂ Uα+1 ⊂ Uβ so that Pn(α)∩(Uβ+1rUβ) = ∅. Thus n(α) 6= n(β)
and α 7→ n(α) is a one-to-one map into N and {α ≤ γ } must be countable.

Now we record some topological technicalities for use in the proof of the theorem.
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Lemma 6.4. Every Gδ subset of an almost Hausdorff locally compact space X is
a Baire space in its relative topology.

Proof. We first observe that X itself is Baire. Let Gn be a dense open subspace of
X for n = 1, 2, 3, . . . . By Lemma 6.3 on page 173, X has an open dense Hausdorff
subspace U . Then U is a locally compact Hausdorff space, and therefore a Baire
space. Therefore

∞⋂

n=1

Gn ∩ U

is dense in U , and it follows that
⋂
Gn is dense in X . Thus X is a Baire space.

Now assume that Un is open in X for n = 1, 2, 3, . . . , and that A =
⋂
Un is

a Gδ subspace of X . Since A is an almost Hausdorff locally compact space, we
can replace X by A and Un by Un ∩ A. Thus we can assume that A is dense in
X , and that each Un is open and dense in X . Now assume that Gn is open and
dense in A for n = 1, 2, 3, . . . . Then there are open dense subsets Jn of X such that
Gn = Jn ∩A. Since X is a Baire space,

⋂
(Un ∩ Jn) is dense in X . But

⋂
(Un ∩ Jn) =

⋂
Un ∩

⋂
Jn

= A ∩
⋂
Jn

=
⋂
Gn.

It follows that
⋂
Gn is dense in A. This completes the proof.

Lemma 6.5. A second countable locally compact Hausdorff space X is completely
metrizable; that is there is a complete metric on X inducing the given locally com-
pact topology on X.

Remark 6.6. A completely metrizable second countable space is called a Polish
space. Thus the lemma simply says that second countable locally compact spaces
are Polish.

Proof. The Urysohn Metrization Theorem [168, Theorem 23.1] certainly implies
that X is metrizable. To get completeness requires a bit more.

LetX+ be the one point compactification ofX , and let τ = {Un } be a countable
basis for the topology onX . We can also find compact setsKn such thatKn belongs
to the interior of Kn+1, and such that

X =

∞⋃

n=1

Kn.

Note that the requirement on the interiors implies that any compact set in X is
contained in some Kn. By definition, β = {X+ rKn }∞n=1 are open neighborhoods
of ∞ in X+. In fact, any neighborhood V of ∞ must contain a neighborhood of
the form X+ rK for K ⊂ X compact. But then there is an n such that

X+ rKn ⊂ X+ rK ⊂ V.
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It follows that τ ∪ β is a countable basis for X+. Therefore X+ is a second count-
able compact Hausdorff space. It follows that X+ is regular, and then Urysohn’s
Metrization theorem implies that X+ is metrizable. Since any metric on a compact
space is complete, X+ is completely metrizable. Since X is open in X+, it too
is completely metrizable by [168, Theorem 24.12]. To see this directly, let d be
the metric on X+ and define f(s) = 1/d(s,∞). Then f is continuous on X , and
s 7→ (s, f(s)) is a homeomorphism of X onto its image in the complete metric space
X+ × R. It is not hard to see that this image is closed, and a closed subset of a
complete metric space is still complete.

Lemma 6.7. Suppose that X is a second countable almost Hausdorff locally com-
pact G-space, that N is a compact neighborhood of e in G and that P and U are
open Hausdorff subsets in X such that N · P ⊂ U . If there is a x ∈ P such that

N · x ∩ P ( G · x ∩ P,

then there is a neighborhood V of x such that N · V ∩ P 6⊃ G · x ∩ P .

Proof. Let {Vk } be a countable neighborhood basis at x of open sets with Vk+1 ⊂
Vk. If G ·x∩P ⊂ N ·Vk∩P for all k, then given s ·x ∈ G ·x∩P , there exist nk ∈ N ,
vk ∈ Vk such that nk · vk = s · x. Since N is compact, there is a subsequence nkj

converging to n ∈ N . Furthermore, vk → x. Since s · x and n · x are contained in
the Hausdorff set U , it follows that n · x = s ·x. This implies N · x∩P = G · x∩P .
The result follows.

Lemma 6.8. Let q : X → G\X be the orbit map. Then

q−1
(
{ q(x) }

)
= G · x.

Proof. Since q−1
(
{ q(x) }

)
is a closed set containing G · x, we clearly have

q−1
(
{ q(x) }

)
⊃ G · x. However, X r G · x is a G-invariant open set and

q(X rG · x) is an open set disjoint from q(x). Thus { q(x) } ⊂ q(G · x) which gives
the other inclusion.

Proof of Theorem 6.2 on page 173. We’ll show that

(a) =⇒ (c) =⇒ (d) =⇒ (e) =⇒ (b) =⇒ (a).

We’ll start with (a) =⇒ (c). Fix u = q(x) in G\X . By Lemma 3.35 on page 97,
there is a countable basis {Un } of open sets for the topology on G\X . Let

Bn :=

{
Un if u ∈ Un, and

G\X r Un if u /∈ Un.

Clearly, u ∈ ⋂
Bn. Suppose v 6= u. If there is an open set V containing u and

not v, then there is a Uk such that u ∈ Uk ⊂ V . It follows that v /∈ ⋂
Bn.

Similarly, if there is a W containing v but not u, then there is a Uk such that
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v ∈ Uk ⊂W . Again, it follows that v /∈ ⋂
Bn. Since G\X is a T0 space, we always

have
⋂
Bn = { u }. Consequently,

G · x = q−1(u) =
⋂
q−1(Bn).

Since each q−1(Bn) is either open or closed, it follows easily that G · x is the
intersection of a Gδ subset of X with a closed subset of X . Since any closed subset
of X is an almost Hausdorff locally compact space, G · x must be a Baire space by
Lemma 6.4 on page 175.

(c) =⇒ (d): Fix x ∈ X . Since the natural map of G → G/Gx is open and
continuous, it will suffice to show that V · x is open in G · x whenever V is open in
G. We claim it suffices to see that N · x has nonempty interior in G · x whenever
N is a compact neighborhood of e in G. To prove the claim, let s ∈ V . Choose
compact neighborhoods P and N of e in G such that sP ⊂ V and N−1N ⊂ P . By
assumption, there is a r ∈ N such that r ·x ∈ int(N ·x). (Here, int(N ·x) will always
denote the interior of N · x in G ·x.) Since multiplication by r and r−1 continuous,
it follows that multiplication by r−1 is a homeomorphism of G · x onto itself, and
x ∈ int(r−1N · x) ⊂ int(P · x). Similarly, this implies s · x ∈ int(sP · x) ⊂ V · x.
Since s ∈ V was arbitrary, V · x is open in G · x. This establishes the claim.

Let N be a compact neighborhood of e in G. Since X is almost Hausdorff,
G · x has an open dense Hausdorff subspace V (Lemma 6.3 on page 173). Since
multiplication by elements of G induces a homeomorphism of G ·x to itself, we can
assume that x ∈ V . Since V is a dense open subspace of a Baire space, V is a Baire
space. As s 7→ s · x is continuous from G to G · x, there is an open neighborhood
U of e in G such that V = U · x. Since G is second countable, there are compact
neighborhoods {Vn }∞n=1 of e in G and { sn }∞n=1 in G such that each Vn ⊂ N and
U =

⋃∞
n=1 snVn.7 Thus

V = U · x =

∞⋃

n=1

snVn · x. (6.1)

Since each Vn is compact, each snVn · x is compact in the Hausdorff space V .
Therefore (6.1) is a countable union of closed subspaces of V , and since V is Baire,
at least one of these sets, say snVn · x, has interior in V — and therefore in G · x.
Multiplying by s−1

n , we see that Vn · x ⊂ N · x has interior as required.
(d) =⇒ (e): In view of Lemma 6.3 on page 173, it suffices to see that every

nonempty closed subset of G\X has a nonempty relatively open Hausdorff subset.
But if F ⊂ G\X is closed, then q−1(F ) is a second countable almost Hausdorff
locally compact G-space in which each orbit is homeomorphic to G/Gx via the
natural map. Therefore, it will suffice to see that G\X has a nonempty open
Hausdorff subspace.

Let U be a nonempty Hausdorff open subspace of X . If x ∈ U , then there is a
compact neighborhood N of e in G and an open neighborhood P0 of x such that

7Let { Vn } be a countable neighborhood basis for e consisting of compact neighborhoods of e
such that Vn ⊂ N . If { sk } is dense in G, then given any open set W and s ∈W , there is a n such
that sV −1

n Vn ⊂ W and a k such that sk ∈ sV −1
n . But then s ∈ skVn and skVn ⊂ sV −1

n Vn ⊂W .
This suffices as the collection { skVn } is countable.
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N · P0 ⊂ U . We make the following claim: if (d) holds and if N and P0 are as
above, then there is a nonempty open set P ⊂ P0 such that

N · x ∩ P = G · x ∩ P for all x ∈ P . (6.2)

We prove the claim. Suppose no such set P exists. Since U is a second countable
locally compact Hausdorff space, there is a metric d on U compatible with the
topology on U (Lemma 6.5 on page 175). If A ⊂ U , then diaA := sup{ d(x, y) :
x, y ∈ A }. Following Effros’s argument in [46, p. 48], we will inductively define a
sequence {Pn }∞n=1 of open subsets of P0 and elements { sn }∞n=1 ⊂ G such that

(a) the closure of Pn+1 in U is compact and is contained in Pn,

(b) dia(Pn) < 1
n for all n ≥ 1, and

(c) sn+1Pn+1 ⊂ Pn rN · Pn+1.

Let P0 be as above, and assume that we have defined {Pk }nk=0 and { sk }nk=1. By
assumption, there is at least one x ∈ Pn such that

N · x ∩ Pn ( G · x ∩ Pn.

It follows from Lemma 6.7 on page 176, that there is a compact neighborhood M
of x in Pn such that G · x ∩ Pn 6⊂ N ·M ∩ Pn. Thus there is a sn+1 ∈ G such that

sn+1 · x ∈ Pn rN ·M. (6.3)

Since N and M are compact, N ·M is a compact subset of U , and therefore closed
in U . Thus the right-hand side of (6.3) is open, and since G acts continuously on
X , there is a open neighborhood Pn+1 of x such that

sn+1 · Pn+1 ⊂ Pn rN ·M.

Since U is a locally compact Hausdorff space, we can shrink Pn+1 a bit, if necessary,
and arrange that the closure of Pn+1 in U is contained in Pn∩M and that diaPn+1 <

1
n+1 . Then we also have

sn+1 · Pn+1 ⊂ Pn rN ·M ⊂ Pn rN · Pn+1.

Continuing in this way, we get our sequences {Pn } and { sn } as required. Since
the closure of Pn+1 in U is compact and contained in Pn, and since diaPn → 0, it
easy to see that there is a x0 ∈ X such that

{ x0 } =

∞⋂

n=0

Pn.

Furthermore, sn+1 · x0 ∈ Pn for all n, and it follows that sn · x0 → x0. However,
condition (c) implies that for all n, sn · x0 /∈ N · x0. This means N · x0 is not a
neighborhood of x0 which contradicts the openness of the map sGx0 7→ s ·x0. Thus
we have established the claim.

Now let N and P be as in (6.2). It suffices to see that q(P ) is Hausdorff in
G\X . To prove this, we’ll show that a convergent sequence in q(P ) has a unique
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limit in q(P ). Let { pi } be a sequence in q(P ) converging to both q(x) and q(y)
for x, y ∈ P . Since q : X → G\X is open we can use Proposition 1.15 on page 4,
pass to a subsequence, relabel, and assume that there are xi ∈ X with q(xi) = pi
and xi → x. Since q(xi) → q(y), we can apply Lemma 3.38 on page 98, pass to
subsequence, relabel, and assume that there are si ∈ G such that si · xi → y. Since
P is a neighborhood of x, we can assume the xi are eventually in P . Therefore we
eventually have

N · xi ∩ P = G · xi ∩ P.
Thus we can assume that the si are eventually in the compact neighborhood N .
Thus we can pass to a subsequence, relabel, and assume that si → s in N ⊂ G.
Thus si · xi converges to s · x as well as y. Since N · P ⊂ N · P0 ⊂ U , both y and
s · x are in the open Hausdorff set U . Therefore y = s · x and q(x) = q(y). This
completes the proof that (d) =⇒ (e).

(e) =⇒ (b): In view of Lemma 6.8 on page 176, it suffices to see that for each
v ∈ G\X , { v } is open in { v }. But G\X almost Hausdorff implies { v } has a dense
Hausdorff open subset C. Since C ⊂ { v }, every neighborhood of every point in C
must contain v. Therefore v ∈ C. Suppose that u is a point of C distinct from v.
Since C is Hausdorff in its relative topology in { v }, there must be an open set U
in { v } which contains u and not v. But then u /∈ { v } which is nonsense. Thus
C = { v }, and since C is open, we’re done.

(b) =⇒ (a): Suppose that q(x) and q(y) are distinct points in G\X . Then G ·x
and G · y are distinct orbits in X . Suppose that G · x ∩G · y = ∅. Then X rG · x
is an open G-invariant set disjoint from G · x. Therefore q(X r G · x) is an open
set in G\X containing q(y) and not containing q(x).

If, on the other hand, G · x ∩ G · y 6= ∅, then, as both sets are G-invariant, we
must have G · y ⊂ G · x. By assumption, there is an open set U ⊂ X such that
U ∩G · x = G · x. Thus U ∩G · y = ∅. Let

V =
⋃

s∈G

s · U = G · U.

Since G · x, G · y and G · x are G-invariant, we still have

V ∩G · x = G · x and V ∩G · y = ∅.

Since V is open and G-invariant, q(V ) is an open set in G\X which contains q(x)
but not q(y). This shows that G\X is a T0 topological space.

This completes the proof of the theorem.

6.2 The Res Map and Quasi-Orbits

If (A,G, α) is a dynamical system, then the structure of the G-space PrimA (cf.
Lemma 2.8 on page 44) is an important tool in understanding the ideal structure.
In general, PrimA need not be almost Hausdorff so Theorem 6.2 on page 173 will
not apply without some additional hypotheses. Nevertheless, we will need to look
carefully at the orbit space G\PrimA. Since the primitive ideal space of A⋊α G,
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or of any C∗-algebra, is always a T0 topological space, the sort of information about
PrimA⋊α G we expect to glean from G\PrimA will come from a topological T0-
quotient of the orbit space which we call the T0-ization (for lack of a better term).

Definition 6.9. If X is a topological space, then the T0-ization of X is the quotient
space (X)∼ = X/∼ where ∼ is the equivalence relation on X defined by x ∼ y if
{ x } = { y }. We give (X)∼ the quotient topology, which is the largest topology
making the quotient map q : X → (X)∼ continuous. A subset of X is said to be
saturated if it is a union of equivalence classes.

Naturally, we want the T0-ization to be T0. In fact, the (X)∼ is the largest
quotient of X which is T0.

Lemma 6.10. If X is a topological space, then (X)∼ is a T0 topological space.
If Y is any T0 topological space and if f : X → Y is continuous, then there is a
continuous map f ′ : (X)∼ → Y such that

X

q

��

f

""D
D

D
D

D
D

D
D

D

(X)∼
f ′

// Y

commutes.

Proof. Suppose that q(x) and q(y) are distinct elements in (X)∼. If { x } ⊂
{ y }, then U = X r { x } is a saturated open set containing y but not x. Since
q−1

(
q(U)

)
= U , q(U) is an open set in (X)∼ containing q(y) but not q(x). If

{ x } 6⊂ { y }, then V = X r { y } is a saturated open set containing x but not y.
Thus q(V ) is an open set containing q(x) but not q(y). Thus (X)∼ is T0.

Now suppose that Y is T0, and that f : X → Y is continuous. If f(x) 6= f(y),
then, interchanging x and y if necessary, there is an open set U in Y such that
f(x) ∈ U and f(y) /∈ U . Thus f−1(U) is an open set in X containing x but not
containing y. Thus x /∈ { y } and q(x) 6= q(y). It follows that there is a well-
defined function f ′ : (X)∼ → Y given by f ′

(
q(x)

)
= f(x). If U is open in Y , then

q−1
(
(f ′)−1(U)

)
= f−1(U). Thus (f ′)−1(U) is open and f ′ is continuous.

Definition 6.11. If (A,G, α) is a dynamical system, then the quasi-orbit space is
the T0-ization Q of G\PrimA. Each class in Q is called a quasi-orbit.

If G\PrimA is T0, then Q = G\PrimA and quasi-orbits are just orbits. In
general, P and Q in PrimA determine the same quasi-orbit if and only if G · P =
G ·Q in PrimA (using Lemma 6.8 on page 176). In view of the definition of
the topology on PrimA, P and Q determine the same quasi-orbit exactly when⋂
s∈G s · P =

⋂
s∈G s ·Q.

Lemma 6.12. If (A,G, α) is a dynamical system, then the natural map
k : PrimA→ Q is continuous and open. In particular, if A is separable, then Q is
second countable. The map k is called the quasi-orbit map.
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Proof. Note that k is the composition of the orbit map from PrimA to G\PrimA
and the quotient map from G\PrimA to Q. Hence k is continuous.

To show that k is open, it will suffice to see that k−1
(
k(OI)

)
is open in PrimA,

where OI := {P ∈ PrimA : P 6⊃ I }. In fact, we will show that

k−1
(
k(OI)

)
=

⋃

s∈G

Os·I , (6.4)

where s · I = {αs(a) : a ∈ I }. This will suffice. Let J be the α-invariant ideal
generated by

⋃
s∈G s · I. Note that if P ∈ OI , then

⋂
s∈G s · P 6⊃ J . On the other

hand, if
⋂
s∈G s ·Q 6⊃ J , then there must be a s ∈ G such that s ·Q 6⊃ I, and hence

k(Q) = k(s ·Q) ∈ k(OI). Thus,

k−1
(
k(OI)

)
= {Q ∈ PrimA :

⋂

s∈G

s ·Q 6⊃ J }

= {Q ∈ PrimA : there is a s ∈ G such that s ·Q 6⊃ I }
=

⋃

s∈G

Os·I

which establishes (6.4).
If A is separable, then PrimA is second countable. (This follows from [139,

Theorem A.38] and [139, Proposition A.46].) Since the continuous open image of
a second countable space is second countable (as in Lemma 3.35 on page 97), the
final assertion follows.

To see the importance of quasi-orbits, it will be helpful to pause and introduce
the restriction map. Let (A,G, α) be a dynamical system and suppose that (π, U)
is a covariant representation of (A,G, α) on H. If H is a closed subgroup of G,
then (π, U |H) is a covariant representation of (A,H, α|H). Since (π, U) is, by def-
inition, nondegenerate whenever π is, (π, U |H) is nondegenerate whenever (π, U)
is. The representation π ⋊ U |H is called the restriction of π ⋊ U , and is denoted
ResGH(π ⋊ U). Since every representation of A ⋊α G is the integrated form of a
unique nondegenerate covariant representation (Proposition 2.40 on page 59), it
make perfect sense to apply ResGH to any representation of A⋊αG. More generally,
we make the following definition.

Definition 6.13. Suppose that X is Hilbert B-module. If (π, u) is a covariant
homomorphism of (A,G, α) into L(X) and if H is a closed subgroup of G, then the
restriction of π ⋊ u to A⋊α|H H is the representation ResGH(π ⋊ u) := π ⋊ u|H . If

H = { e }, then we write Res in place of ResG{ e }.

Lemma 6.14. Suppose that (A,G, α) is a dynamical system and that L is a rep-
resentation of A ⋊α G. If H is a closed subgroup of G and if z ∈ A ⋊α|H H,
then

ResGH L(z) = L̄
(
ResGH(iA ⋊ iG)(z)

)
,

where (iA, iG) is the canonical covariant homomorphism of (A,G, α) into M(A⋊α

G) defined in Proposition 2.34 on page 54.
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Proof. Suppose that L = π ⋊ U . It suffices to consider z ∈ Cc(H,A). Then using
Lemma 1.101 on page 35 and L̄ ◦ iA = π and L̄ ◦ iG = U ,

L̄
(
ResGH(iA ⋊ iG)(z)

)
= L̄

(∫

H

iA
(
z(t)

)
iG(t) dµH(t)

)

=

∫

H

π
(
z(t)

)
Ut dµH(t)

= ResGH L(z).

Corollary 6.15. If (A,G, α) is a dynamical system and if H is a closed subgroup
of G, then there is a continuous map

ResGH : I(A⋊α G) → I(A ⋊α|H H)

such that for all representations L of A⋊α G

ResGH(kerL) = ker(ResGH L). (6.5)

Proof. Let J be an ideal in A⋊α G. Define

ResGH J := { z ∈ A⋊α|H H : ResGH(iA ⋊ iG)(z)(A ⋊α G) ⊂ J }. (6.6)

Let z ∈ A ⋊α|H H , f ∈ A ⋊α G and h ∈ H. Then Lemma 6.14 on the preceding
page implies that

ResGH(L)(z)
(
L(f)h

)
= L

(
ResGH(iA ⋊ iG)(z)(f)

)
h. (6.7)

Thus if z ∈ ResGH(kerL), then ResGH(iA⋊ iG)(z)(f) ∈ kerL, and the right-hand side
of (6.7) is zero. Since L is nondegenerate, this implies ResGH(kerL) ⊂ kerResGH L.

On the other hand, if z ∈ kerResGH L, then (6.7) implies that ResGH(iA ⋊

iG)(z)(f) ∈ kerL for all f ∈ A ⋊α G. Thus z ∈ ResGH(kerL) and we’ve proved
that (6.5) holds. Since the right-hand side of (6.5) is always an ideal, it follows
that (6.6) is always an ideal and that ResGH maps I(A⋊α G) into I(A⋊α|H H).8

We want to see that ResGH is continuous.9 It suffices to see that (ResGH)−1(OI)
is open in I(A⋊α G), where I is an ideal in A⋊α|H H , and by definition,

OI := { I ′ ∈ I(A⋊α|H H) : I ′ 6⊃ I }.

Let K be the ideal in A⋊αG generated by ResGH(iA⋊ iG)(I)(A⋊αG). Since J ⊃ K
if and only if ResGH J ⊃ I, it follows easily that J ∈ (ResGH)−1(OI) if and only if
J ∈ OK ⊂ I(A⋊α G). This suffices.

Lemma 6.16. Suppose that (A,G, α) is a dynamical system. Recall that Res :=
ResG{ e }. For all J ∈ I(A⋊αG), Res J is an α-invariant ideal. In particular, if π⋊U
is a covariant representation of A⋊αG, then kerπ is α-invariant, and π⋊U factors
through A/ kerπ ⋊αker π G. If I is an α-invariant ideal, then Res(I ⋊α G) = I.

8Every ideal in a C∗-algebra is the kernel of some representation.
9The continuity can also be derived from Lemma 8.35 on page 249.
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Proof. Suppose that a ∈ ResJ . Then by definition, iA(a)(A ⋊α G) ⊂ J . Thus if
f ∈ A⋊α G, then since J is an ideal in M(A⋊α G),

iA
(
αs(a)

)
(f) = iG(s)iA(a)iG(s−1)(f) ∈ J.

Since f ∈ A⋊α G was arbitrary, we have shown that αs(a) ∈ ResJ whenever a is.
Therefore Res J is α-invariant.

Since kerπ = Res
(
ker(π ⋊ U)

)
(Corollary 6.15 on the facing page), it follows

that kerπ is α-invariant. If I is any α-invariant ideal in A, then Proposition 3.19
on page 93 allows us to identify I ⋊α G with an ideal in A⋊α G, and implies that
the quotient map q : A → A/I induces an isomorphism of (A ⋊α G)/(I ⋊α G)
with A/I ⋊αI G. If I = kerπ, then π = π′ ◦ q for a representation π′ of A/I and
(π′, U) is the covariant representation of (A/I,G, αI) corresponding to (π, U). This
shows that π ⋊ V factors through A/I ⋊αI G. On the other hand, if ρ ⋊ V is a
faithful representation of A/I⋊αI G, then Corollary 6.15 on the facing page implies
that ρ must be a faithful representation of A/I. Then (ρ ◦ q, V ) is a covariant
representation of (A,G, α) and ker(ρ ◦ q ⋊ V ) = I ⋊α G. Thus

Res(I ⋊α G) = Res
(
ker(ρ ◦ q ⋊ V )

)
= ker(ρ ◦ q) = I.

The connection between quasi-orbits and restriction begins to come into focus
with the next definition and remark.

Definition 6.17. A representation L = π ⋊ U of A⋊α G lives on a quasi-orbit if
there is a P ∈ PrimA such that

Res(kerL) = kerπ =
⋂

s∈G

s · P.

A dynamical system (A,G, α) is called quasi-regular if every irreducible represen-
tation lives on a quasi-orbit.

Remark 6.18. If L lives on the quasi-orbit associated to P ∈ PrimA, then
Lemma 6.16 on the preceding page implies L factors through A/I ⋊αI G where
I :=

⋂
s∈G s · P . Note that A/I is the quotient of A associated to the closed set

G · P in PrimA — this is supposed to justify the “lives on” terminology. The
concept of quasi-regularity will play a role in Sections 7.5 and 8.3.

Induced representations are examples of representations that often live on quasi-
orbits.

Lemma 6.19. Suppose that (A,G, α) is a dynamical system, that H is closed
subgroup of G and that L is a representation of A⋊α|H H. Then

Res
(
ker

(
IndGH L

))
=

⋂

s∈G

s ·
(
Res(kerL)

)
.

In particular, if Res(kerL) is a primitive ideal P ∈ PrimA, then IndGH L lives on
the quasi-orbit corresponding to P .
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Proof. Let L = π ⋊ u. Using Proposition 5.4 on page 153, we can realize IndGH L
as the representation Π ⋊ U on L2

u(G,µG/H ,HL) = Vc (adopting the notations of
Proposition 5.4). Let P = Res(kerL) = kerπ (Corollary 6.15 on page 182), and
define

J :=
⋂
s · P.

If a ∈ J , then π
(
α−1
s (a)

)
= 0 for all s. Using Equation (5.2), it follows that

Π(a) = 0. Therefore J ⊂ kerΠ = Res
(
ker

(
IndGH L

))
.

If a /∈ J , then there is a r ∈ G such that π
(
α−1
r (a)

)
6= 0. We want to see that

Π(a) 6= 0. Since the definition of L2
u(G,µG/H ,HL) is complicated, this requires a

bit of fussing. Let h be a unit vector in HL and ǫ > 0 be such that

‖π
(
α−1
r (a)

)
h‖ ≥ 2ǫ > 0.

Choose g ∈ C+
c (G) such that

∫
H g(t) dµH(t) = 1 and such that t ∈ supp(g) ∩

H implies that ‖ut(h) − h‖ < ǫ. Let f(s) := g(r−1s) and define ξ ∈ Vc ⊂
L2
u(G,µG/H ,HL) by

ξ(s) :=

∫

H

f(st)ut(h) dµH(t).

Then

‖ξ(r) − h‖ =
∥∥∥
∫

H

f(rt)
(
ut(h) − h

)
dµH(t)

∥∥∥ ≤ ǫ/‖a‖.

Therefore Π(a)ξ(r) = π
(
α−1
r (a)

)
ξ(r) 6= 0. Since Π(a)ξ ∈ Vcr{ 0 }, Π(a) 6= 0. Thus

Res
(
ker

(
IndGH L

))
= kerΠ = J . The last statement is an easy consequence.

Naturally, having bothered to define the term quasi-regular, we want to see that
there are conditions that force a dynamical system to be quasi-regular. As we shall
see, most systems we’re interested in will be quasi-regular and it may even be the
case that all are.10 Let L = π ⋊ U be an irreducible representation of A ⋊α G.
Let I := Res(kerL) = kerπ, and D := {P ∈ PrimA : P ⊃ I }. Then D is
closed, and since I is α-invariant by Lemma 6.16 on page 182, D is G-invariant.
If P ∈ D and Q ∈ PrimA is such that

⋂
s · P =

⋂
s · Q, then Q ∈ G · P and

Q ∈ D. Thus D is saturated with respect to the equivalence relation induced by
the map k : PrimA → Q. Therefore, C := k(D) is closed in Q. We claim that C
is irreducible in that it is not possible to decompose it as the union of two proper
closed subsets. To prove the claim, we suppose to the contrary that

C = C1 ∪ C2 (6.8)

with both Cj proper closed subsets of C. Let

Ij :=
⋂

k(P )∈Cj

P.

10This question is closely related to the question of whether prime ideals in a C∗-algebra must
be primitive. This question was answered negatively in [165], so there may be some pathological
nonseparable systems out there which fail to be quasi-regular.
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Since k−1(Cj) is closed, P ⊃ Ij if and only if k(P ) ∈ Cj . Since every ideal in a
C∗-algebra is the intersection of the primitive ideals which contain it, I = I1 ∩ I2.
Thus

(I1 ⋊α G)(I2 ⋊α G) ⊂ I ⋊α G ⊂ kerL.

Since L is irreducible, kerL is primitive and therefore a prime ideal [139, Proposi-
tion A.17]. Thus for some j,

Ij ⋊α G ⊂ kerL.

Therefore Lemma 6.16 on page 182 and Corollary 6.15 on page 182 imply that

Ij = Res(Ij ⋊α G) ⊂ Res(kerL) = I.

But then
Cj = { k(P ) : P ⊃ Ij } ⊃ C = { k(P ) : P ⊃ I },

which contradicts our assumption that Cj is a proper subset of C. Therefore C is
irreducible as claimed.

Note that a point closure is always an example of an irreducible closed set.

Lemma 6.20. Suppose that L is an irreducible representation of A⋊α G and let

C := { k(P ) ∈ Q : P ∈ PrimA and P ⊃ Res(kerL) }
be the irreducible closed set considered above. If C = { k(P ) } for some P ∈ PrimA,
then k−1(C) = G · P and L lives on the quasi-orbit associated to P .

Proof. LetQ ∈ k−1(C). IfQ /∈ G · P , then PrimArG · P is a saturated open subset
of PrimA containing Q but not P . Thus k(PrimA r G · P ) is a neighborhood of
Q in Q containing k(Q) but not k(P ). This implies k(Q) /∈ { k(P ) } which is a
contradiction.

On the other hand, if Q ∈ G · P , then there are si ∈ G and a net si · P → Q.
Since k is continuous and k(si · P ) = k(P ), k(Q) ∈ { k(P ) }.

In view of Lemma 6.20, quasi-regularity can be established by showing that all
irreducible subsets of a quasi-orbit space are point closures. There are certainly
nasty topological spaces where this fails; for example, Weaver [165] has recently
shown that there are (necessarily nonseparable) C∗-algebras which contain prime
ideals which are not primitive. As in the proof of [139, Theorem A.50], if I is prime,
then C = {P ∈ PrimA : P ⊃ I } is irreducible, and then I is primitive if and only
if C is a point closure.

To exhibit quasi-regular systems, we will want to take advantage of the fact
that the primitive ideal space of a C∗-algebra is a totally Baire space. (A space is
totally Baire if each closed subset is a Baire space.) Since any closed subspace of a
primitive ideal space of a C∗-algebra is the primitive ideal space of a quotient, and
since the continuous open image of a totally Baire space is totally Baire, it follows
from [139, Corollary A.47] that the primitive ideal spaces of separable C∗-algebras
are totally Baire. The general case is proved in [28, Corollary 3.4.13]. Since Q is
the continuous open image of PrimA (Lemma 6.12 on page 180), Q is totally Baire.
(Since we only want to use this fact when Q is second countable, the proof in [139]
suffices.)
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Proposition 6.21. Let Q be the quasi-orbit space of (A,G, α). If Q is either second
countable or almost Hausdorff, then (A,G, α) is quasi-regular. In particular, if A
is separable, then (A,G, α) is quasi-regular.

Proof. In view of Lemma 6.20 on the previous page, it suffices to see that every
irreducible closed subset of Q is a point closure. First suppose that Q is second
countable. If C is an irreducible closed subset, then C is second countable and
has a basis {Un } of open sets. But any nonempty open subset of C is necessarily
dense, and since Q is totally Baire, we have

⋂
Un 6= ∅. However, any point in the

intersection meets every open set in C and is therefore dense in C. Therefore, C
contains a dense point as required.

Now suppose that Q is almost Hausdorff. Then C contains a dense open Haus-
dorff subset W . But if W contains two distinct points p and q, then there are
disjoint nonempty open sets U and V such that p ∈ U and q ∈ V . This gives a
contradiction as C = (C rU)∪ (C rV ) is a decomposition of C into proper closed
subsets. Therefore W must be a single point and C is a point closure.

The final assertion follows since Q is second countable if A is separable
(Lemma 6.12 on page 180).

Definition 6.22. Let (A,G, α) be a dynamical system. An orbit G ·P in PrimA is
called regular if it is locally closed in PrimA and if sGP 7→ s·P is a homeomorphism
of G/GP onto G · P . We say that (A,G, α) is regular if (A,G, α) is quasi-regular
and every orbit is regular.

Remark 6.23. The word regular is over used in mathematics. I took the term and
definition from Green [66]. Unfortunately, the use described in Definition 6.22 is
not universally accepted. For example, Quigg and Speilberg have used “regular”
to describe systems in which the reduced norm coincides with the universal norm
[131]. Nevertheless, I like the term and will use it here. The next result can be
seen as partial justification for this. It says that the Mackey-Glimm Dichotomy
implies that regular systems are more common than one might suspect and have
many pleasing properties justifying the terminology. To see this, we have to appeal
to the result that the primitive ideal spaces of GCR algebras are almost Hausdorff.

Proposition 6.24. Suppose that A is a separable GCR algebra and that G is a
second countable locally compact group. Then (A,G, α) is regular if and only if
G\PrimA is a T0 space.

Proof. Since PrimA must be second countable if A is separable, Q is second count-
able, and (A,G, α) is quasi-regular by Proposition 6.21. Since A is GCR, PrimA
is locally Hausdorff by either [28, Theorem 4.4.5] or [126, Theorem 6.2.11]. Thus
(G,PrimA) satisfies the hypotheses for Theorem 6.2 on page 173, and the result
follows.

Notes and Remarks

Theorem 6.2 and its proof are a blend of Effros’s main result from [46] and Glimm’s
main result in [59]. Effros and Glimm’s results include important tie ins to Borel
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structures, based on Mackey’s work in [105], which weren’t necessary for the modest
goals here. The material on Res and quasi-orbits is based primarily on Green’s
treatment in [66].





Chapter 7

Properties of Crossed
Products

Now that we’ve built up a fair amount of technology for crossed products, it’s
definitely time to prove some general structure results. In Section 7.1 we generalize
the Pontryagin duality theorem for abelian groups to crossed products by abelian
groups. This result is due to Takai [161], although the proof given here is strongly
influenced by both Raeburn [133] and Echterhoff. In Section 7.2, we develop the
crossed product analogue of the reduced group C∗-algebra. (The reduced group
C∗-algebra is defined to be the closure in B

(
L2(G)

)
of the image of the left-regular

representation.) If G is amenable, then this is a faithful representation of C∗(G).1

We give the corresponding construction of the reduced crossed product, and prove
an analogous result for actions of amenable groups.

In Section 7.3, we consider crossed products determined by projective repre-
sentations α : G → Aut

(
K(H)

)
. This leads naturally to discussion of cocycle

representations in Section 7.3.2 We use this discussion as an excuse to give a brief
aside on (Green) twisted crossed products in Section 3.3. In particular, we show
that if G has a normal subgroup N , then A ⋊α G is an iterated (twisted) crossed
product in the spirit of our results for semidirect products.

We finish this chapter with a preliminary look at the question of when a crossed
product is CCR or GCR. These sorts of questions are much easier for transformation
group C∗-algebras, and we come back to the subject for transformation group C∗-
algebras at the end of Section 8.3.

7.1 The Takai Duality Theorem

In these notes, the Takai Duality Theorem is a theorem about abelian groups.
There are versions for nonabelian groups involving coactions, but we’ll have little

1Amenable groups are discussed in detail in Appendix A.
2Projective representations and cocycle representations are discussed in Appendix D.3.

189
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to say about that here (cf., [130,134]). So in this section, G will be an abelian group
unless specifically stated otherwise. Let (A,G, α) be a dynamical system. For each

γ ∈ Ĝ, define a ∗-isomorphism α̂γ : Cc(G,A) → Cc(G,A) by α̂γ(f)(s) := γ(s)f(s).
Then α̂γ is continuous with respect to the inductive limit topology, and therefore
bounded with respect to the universal norm (Corollary 2.47). Thus α̂γ extends to
an element of Aut(A⋊α G), and we get a homomorphism

α̂ : Ĝ→ Aut(A⋊α G).

If γi → γ in Ĝ and if f ∈ Cc(G,A), then α̂γi(f) → α̂γ(f) in the inductive limit
topology. It follows that γ 7→ α̂γ(f) is continuous on A ⋊α G. Therefore (A ⋊α

G, Ĝ, α̂) is a dynamical system called the dual system, and α̂ is called the dual
action.

The Duality Theorem implies that the iterated crossed product (A⋊αG)⋊α̂ Ĝ,
is isomorphic to A⊗K

(
L2(G)

)
.3

The Pontryagin Duality Theorem allows us to identify G with the dual of Ĝ
where s ∈ G is associated to the character γ 7→ γ(s) on Ĝ. Therefore there is a

double dual action ˆ̂α of G on the iterated crossed product, and it is of interest to
see what the induced action on A ⊗ K

(
L2(G)

)
is. For this we need the following.

Let ρ : G→ U
(
L2(G)

)
be the right-regular representation and form the dynamical

system Ad ρ : G→ AutK
(
L2(G)

)
where (Ad ρ)s(T ) := ρ(s)Tρ(s−1). Then we can

form the tensor product dynamical system α⊗ Ad ρ : G→ Aut
(
A⊗K

(
L2(G)

))
.

Theorem 7.1 (Takai Duality). Suppose that G is an abelian group and that
(A,G, α) is a dynamical system. Then there is an isomorphism Ψ from the iterated

crossed product (A ⋊α G) ⋊α̂ Ĝ onto A ⊗ K
(
L2(G)

)
which is equivariant for the

double dual action ˆ̂α of G on (A ⋊α G) ⋊α̂ Ĝ, and the action α ⊗ Ad ρ of G on
A⊗K

(
L2(G)

))
.

The proof given here is a variation of Raeburn’s proof in [133] and was shown to
me by Siegfried Echterhoff. We will produce the isomorphism Ψ as a composition:

(A⋊α G) ⋊α̂ Ĝ
Φ1 // (A⋊id Ĝ) ⋊

bid
−1

⊗α
G

Φ2 // C0(G,A) ⋊lt⊗α G

Φ3

zz
C0(G,A) ⋊lt⊗ id G // C0(G) ⋊lt G⊗A // A⊗K

(
L2(G)

)
.

As usual, we want to work with dense subalgebras, and this will pose some
technical problems in the case of Φ1. In general, if we have an iterated crossed
product

(A⋊β K) ⋊δ H, (7.1)

3When working with crossed products, the tensor product of choice is usually the maximal
tensor product ⊗max. Here since one of the factors is the compacts, all tensor product norms
coincide [139, Corollary B.44], and we are free to use whatever definition we like for the tensor
product. In this situation, it is standard to use an undecorated symbol ⊗.
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then it is straightforward to check that Cc(H × K,A) can be viewed as a dense
subspace. For example, if F ∈ Cc(H ×K,A), then

λF (h)(k) := F (h, k)

defines an element λF ∈ Cc(H,A ⋊β K) and we can appeal to Lemma 1.87 on
page 29. In many cases, such as that for transformation group C∗-algebras, Cc(H×
K,A) will be a ∗-subalgebra. To ensure that this is the case here, we want to add
the assumption that Cc(K,A) ⊂ A⋊β K is invariant for δ, and that

(h, h′, k) 7→ δh
(
λF (h′)

)
(k) (7.2)

is continuous with compact support in h′ and k. In this event, we say that the
action δ is compatible with β. Then, if F1 and F2 are in Cc(H×K,A), (7.2) implies
that

(h, h′, k′, k) 7→ λF1(h)(k)βk
(
δh

(
λF2(h

−1h′)
)
(k−1k′)

)

is in Cc(H ×H ×K ×K,A). Therefore Corollary 1.104 implies that

(h, h′, k′) 7→
∫

K

λF1(h)(k)βk
(
δh

(
λF2(h

−1h′)
)
(k−1k′)

)
dµK(k)

= λF1(h) ∗ δh
(
λF2(h

−1h′)
)
(k′)

is in Cc(H ×H ×K,A), and that

(h′, k′) 7→
∫

H

λF1(h) ∗ δh
(
λF2(h

−1h′)
)
(k′) dµH(h) (7.3)

is in Cc(H × K,A). To see that (7.3) really represents λF1 ∗ λF2 , recall that the
product of the λFi in (A⋊βK)⋊δH is formally given by the A⋊βK-valued integral

λF1 ∗ λF2(h
′) =

∫ A⋊βK

H

λF1(h) ∗ δh
(
λF2(h

−1h′)
)
dµH(h). (7.4)

However, we can apply Lemma 1.108 on page 39 — with Q(h, k) = λF1(h) ∗
δh

(
λF2(h

−1h′)
)
(k) — to conclude that the (7.4) takes its value in Cc(K,A) ⊂

A⋊β K, and that

λF1 ∗ λF2(h
′)(k′) =

∫

H

λF1(h) ∗ δh
(
λF2(h

−1h′)
)
(k′) dµH(h)

=

∫

H

∫

K

λF1(h)(k)βk
(
δh

(
λF2(h

−1h′)
)
(k−1k′)

)
dµK(k) dµH(h),

(7.5)

as you would expect. Therefore we can view Cc(H × K,A) as a ∗-subalgebra of
(A⋊βK)⋊δH with the convolution product given by (7.5) (the involution presents
no problem).
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Now we want to apply (7.5) when K = G, β = α, H = Ĝ and δ = α̂. Then it
is easy to see that α̂ is compatible with α, and we can plug into (7.5) to get

λF1 ∗ λF2(γ)(s)

=

∫

bG

∫

G

λF1(σ)(r)σ(r−1s)αr
(
λF2(σ̄γ)(r

−1s)
)
dµ(r) dµ̂(σ). (7.6)

To be a little less pedantic, we can rewrite (7.6) as

F1 ∗ F2(γ, s) =

∫

bG

∫

G

F1(σ, r)σ(r−1s)αr
(
F2(σ̄γ, r

−1s)
)
dµ(r) dµ̂(σ),

which is what you would expect.
Now let K = Ĝ and β = id. In this case, A ⋊β K = A ⋊id Ĝ ∼= C∗(Ĝ) ⊗ A by

Lemma 2.73.4 Let îd be the dual action on C∗(Ĝ) which is given on ϕ ∈ Cc(Ĝ)

by îds(ϕ)(γ) = γ(s)ϕ(γ). Since Ĝ is abelian, îd
−1

is an action, and we can form

the tensor product action îd
−1 ⊗ α on C∗(Ĝ) ⊗ A. We’ll use the same notation

for the action on A ⋊id Ĝ, and note that it is given on Cc(Ĝ, A) ⊂ A ⋊β K by

(îd
−1 ⊗ α)s(f)(γ) = γ(s)αs

(
f(γ)

)
. So, if we set H = G and δ = îd

−1 ⊗ α, then

îd
−1 ⊗ α is compatible with id. Therefore if F̃1 and F̃2 are in Cc(G × Ĝ, A) ⊂

(A⋊id Ĝ) ⋊
bid

−1
⊗α

G, then (7.5) implies

F̃1 ∗ F̃2(s, γ) = λF̃1
∗ λF̃2

(s)(γ)

=

∫

G

∫

bG

λF̃1
(r)(σ)(îd

−1 ⊗ α)r
(
λF̃2

(r−1s)
)
(σ̄γ) dµ̂(σ) dµ(r)

=

∫

G

∫

bG

λF̃1
(r)(σ)σ̄(r)γ(r)αr

(
λF̃2

(r−1s)(σ̄γ)
)
dµ̂(σ) dµ(r)

=

∫

G

∫

bG

F̃1(r, σ)σ̄(r)γ(r)αr
(
F̃2(r

−1s, σ̄γ)
)
dµ̂(σ) dµ(r).

(7.7)

Lemma 7.2. Suppose that G is an abelian group and that (A,G, α) is a dynamical
system. Then there is an isomorphism

Φ1 : (A⋊α G) ⋊α̂ Ĝ→ (A⋊id Ĝ) ⋊
bid

−1
⊗α

G

which maps the dense subalgebra Cc(Ĝ × G,A) onto the dense subalgebra Cc(G ×
Ĝ, A) and satisfies

Φ1(F )(s, γ) = γ(s)F (γ, s) F ∈ Cc(Ĝ×G,A).

Proof. It follows easily from (7.6) and (7.7), together with an application of Fubini’s

Theorem (as in Proposition 1.105), that Φ1 defines a homomorphism from Cc(Ĝ×
4Note that C∗( bG) is commutative and so nuclear [139, Proposition B.43].
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G,A) onto Cc(G× Ĝ, A). To see that Φ1 is a ∗-homomorphism, we need to see that
λ∗Φ1(F ) = Φ1(λ

∗
F ). But

λ∗Φ1(F )(s)(γ) = (îd
−1 ⊗ α)s

(
λΦ1(F )(s

−1)∗
)
(γ)

= γ(s)αs
(
λΦ1(F )(s

−1)∗(γ)
)

= γ(s)αs
(
λΦ1(F )(s

−1)(γ̄)
)∗

= γ(s)αs
(
Φ1(F )(s−1, γ̄)

)∗

= αs
(
F (γ̄, s−1)

)∗

= αs
(
λF (γ̄)(s−1)

)∗

= λF (γ̄)∗(s)

= γ(s)λ∗F (γ)(s)

= Φ1(λ
∗
F )(s)(γ).

Since Φ1 maps a dense subalgebra onto a dense subalgebra, we only need to see
that Φ1 is isometric for the universal norms. We could do this using the fact that
Φ1 is continuous with the inductive limit topology and proving a slightly fussier
version of Lemma 2.45. Instead, we’ll follow the more traditional route of examining
covariant representations.

Let L be a representation of (A ⋊id Ĝ) ⋊
bid

−1
⊗α

G. Then L = R ⋊ U for a

covariant representation (R,U) of (A ⋊id Ĝ,G, îd
−1 ⊗ α), and R = π ⋊ V for a

covariant representation (π, V ) of (A, Ĝ, id). Let j
bG be the canonical map of G into

M
(
C∗(G)

)
. Since j

bG(γ)ϕ(σ) := ϕ(γ̄σ), an easy computation shows that

îd
−1

s ◦ j
bG(γ) = γ(s)j

bG(γ) ◦ îd
−1

s .

Now if a ∈ A, ϕ ∈ Cc(Ĝ) and f ∈ Cc(G), then functions which are elementary

tensors of the form ϕ⊗ f ⊗ a span a dense subset of Cc(Ĝ×G,A) and

UsVγL(ϕ⊗ f ⊗ a) = UsVγπ(a)V (ϕ)U(f)

= Usπ(a)VγV (ϕ)U(f)

= Usπ(a)V
(
j

bG(γ)ϕ
)
U(f)

= Usπ ⋊ V
(
j

bG(γ)(ϕ) ⊗ a
)
U(f)

= π
(
αs(a)

)
V

(
îd

−1

s ◦ j
bG(γ)ϕ

)
UsU(f)

= γ(s)Vγπ
(
αs(a)

)
V

(
îd

−1

s ϕ
)
UsU(f)

= γ(s)VγUsπ(a)V (ϕ)U(f)

= γ(s)VγUsL(ϕ⊗ f ⊗ a).

Since L is nondegenerate, it follows that

UsVγ = γ(s)VγUs. (7.8)
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A similar computation shows that

Usπ(b)π(a)V (ϕ)U(f) = Usπ(ba)V (ϕ)U(f)

= Usπ ⋊ V
(
ϕ⊗ ba

)
U(f)

= π
(
αs(ba)

)
V

(
îd

−1

s (ϕ)
)
UsU(f)

= π
(
αs(b)

)
Usπ(a)V (ϕ)U(f).

Thus (π, U) is a covariant representation of (A,G, α). We also claim that (π⋊U, V )

is a covariant representation of (A⋊αG, Ĝ, α̂). This is straightforward using (7.8):

Vγπ ⋊ U(a⊗ f) = π(a)Vγ

∫

G

f(s)Us dµ(s)

= π(a)

∫

G

f(s)γ(s)Us dµ(s)Vγ

= π ⋊ U
(
α̂γ(a⊗ f)

)
Vγ .

From the above, L′ = (π ⋊ U) ⋊ V is a representation of (A⋊α G) ⋊α̂ Ĝ and

L
(
Φ1(F )

)
=

∫

G

π ⋊ V
(
λΦ1(F )(s)

)
Us dµ(s)

=

∫

G

∫

bG

π
(
Φ1(F )(s, γ)

)
VγUs dµ̂(γ) dµ(s)

=

∫

G

∫

bG

π
(
F (γ, s)

)
γ(s)VγUs dµ̂(γ) dµ(s)

which, by Fubini (Proposition 1.105) and (7.8), is

=

∫

bG

∫

G

π
(
F (γ, s)

)
UsVγ dµ(s) dµ̂(γ)

= L′(F ).

It follows that ‖Φ1(F )‖ ≤ ‖F‖. Reversing the above argument gives ‖F‖ ≤
‖Φ1(F )‖, and this completes the proof.

Now C0(G,A) ∼= C0(G) ⊗ A (e.g., [139, Propositions B.16 and B.43]), and we
can form the tensor product action lt⊗α on C0(G,A):

(lt⊗α)s(f)(r) = αs
(
f(s−1r)

)
.

Furthermore, since G is the dual of Ĝ, Proposition 3.1 tells us that C∗(Ĝ) is iso-
morphic to C0(G) via the Fourier transform. However if we use the formula for the
Fourier transform given in section 3.1 and the identification of G with the dual of
Ĝ given above, we don’t get quite the formula we want for the next proof: we’re
off by a complex conjugate. This is often the case when working with the Fourier
transform because the formula depends on how we identify elements in the dual
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with actual functions on the group. For example, we think of R̂ as being equal
to R, but this is because we make the identification of x ∈ R with the character
y 7→ e−ixy. Thus the Fourier transform becomes

f̂(x) =

∫ ∞

−∞

f(y)e−ixy dy.

Of course, if we associate x to y 7→ eixy then the formula above changes by a
conjugate. Similarly, if we identify G with the dual of Ĝ by associating s ∈ G to
the character γ 7→ γ(s), the isomorphism of C∗(Ĝ) with C0(G) is given on functions

ϕ ∈ Cc(Ĝ) by

ϕ̂(s) =

∫

bG

ϕ(γ)γ(s) dµ̂(γ).

Lemma 7.3. Suppose that G is abelian and that (A,G, α) is a dynamical system.
Then there is an isomorphism

Φ2 : (A⋊id Ĝ) ⋊
bid

−1
⊗α

G→ C0(G,A) ⋊lt⊗α G

which maps F ∈ Cc(G× Ĝ, A) into Cc
(
G,C0(G,A)

)
by the formula

Φ2(F )(s, r) =

∫

bG

F (s, γ)γ(r) dµ̂(γ).

Proof. The map a ⊗ ϕ 7→ a ⊗ ϕ̂ defines a ∗-homomorphism from the span of ele-
mentary tensors in A⋊id Ĝ ∼= A⊗C∗(Ĝ) into C0(G,A) ∼= C0(G)⊗A which extends

to an isomorphism ϕ2 : A⋊id Ĝ→ C0(G,A) satisfying

ϕ2(ψ)(r) :=

∫

bG

ψ(γ)γ(r) dµ̂(γ) for ψ ∈ Cc(Ĝ, A).

Since

ϕ2

(
(îd

−1 ⊗ α)s(ψ)
)
(r) =

∫

bG

(îd
−1 ⊗ α)s(ψ)(γ)γ(r) dµ̂(γ)

=

∫

bG

γ(s)αs
(
ψ(γ)

)
γ(r) dµ̂(γ)

= αs

(∫

bG

ψ(γ)γ(s−1r) dµ̂(γ)
)

= (lt⊗α)s
(
ϕ2(ψ)

)
(r),

ϕ2 is equivariant, and Φ2 := ϕ2 ⋊ id is the required map (cf. Corollary 2.48 on
page 63).

Lemma 7.4. Suppose that G is an abelian group and that (A,G, α) is a dynamical
system. Then there is an isomorphism

Φ3 : C0(G,A) ⋊lt⊗α G→ C0(G,A) ⋊lt⊗ id G
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which satisfies
Φ3(F )(s, r) = α−1

r

(
F (s, r)

)

for F ∈ Cc
(
G,C0(G,A)

)
.

Proof. We can define an isomorphism ϕ3 : C0(G,A) → C0(G,A) by

ϕ3(f)(r) := α−1
r

(
f(r)

)
.

Then

ϕ3

(
(lt⊗α)s(f)

)
(r) = α−1

r

(
αs

(
f(s−1r)

))

= α−1
s−1r

(
f(s−1r)

)

= (lt⊗ id)s
(
ϕ3(f)

)
(r).

Therefore ϕ3 is equivariant and Φ3 := ϕ3 ⋊ id is the required isomorphism.

Let rt denote right-translation on C0(G): rtr(f)(s) := f(sr). Since right and
left translation commute, rtr is equivariant on

(
C0(G), G, lt

)
for each r ∈ G, and it

is not hard to see that we get a dynamical system rt⊗ id : G→ Aut
(
C0(G) ⋊ltG

)
.

Lemma 7.5. If G is a (possibly nonabelian) locally compact group, then there is
an equivariant isomorphism ϕ4 from

(
C0(G) ⋊lt G,G, rt⊗ id

)
onto

(
K

(
L2(G)

)
, G,Ad ρ

)

defined on f ∈ Cc(G×G) ⊂ C0(G) ⋊lt G and h ∈ Cc(G) ⊂ L2(G) by

ϕ4(f)(h)(r) =

∫

G

f(s, r)h(s−1r) dµ(s).

Proof. We proved that ϕ4 is an isomorphism in Theorem 4.24 on page 133. But

ρ(v)ϕ4(f)(h)(r) = ∆(v)
1
2ϕ4(f)(h)(rv)

= ∆(v)
1
2

∫

G

f(s, rv)h(s−1rv) dµ(s)

=

∫

G

(rt⊗ id)v(f)(s, r)ρ(v)(h)(s−1r) dµ(s)

=

∫

G

ϕ4

(
(rt⊗ id)v(f)

)
ρ(v)(h)(r).

It follows that ρ(v)ϕ4(f)ρ(v−1) = ϕ4

(
(rt⊗ id)v(f)

)
as required.

Combining Lemma 7.5 with Lemma 2.75, we obtain the following.

Lemma 7.6. If G is an locally compact group and (A,G, α) is a dynamical system,
then there is an equivariant isomorphism Φ4 := ϕ4 ⊗ id from

(
C0(G,A) ⋊lt⊗ id G,G, (rt⊗α) ⊗ id

)
onto

(
A⊗K

(
L2(G)

)
, G, α⊗ Ad ρ

)
.
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Proof of Theorem 7.1. In view of Lemmas 7.2, 7.3 and 7.4, there is an isomor-
phism Φ := Φ3 ◦ Φ2 ◦ Φ1 from the iterated crossed product (A ⋊α G) ⋊α̂ Ĝ onto

C0(G,A) ⋊lt⊗ id G mapping F ∈ Cc
(
Ĝ×G,A

)
to the element in Cc

(
G,C0(G,A)

)

given by

Φ(F )(s, r) = Φ3 ◦ Φ2 ◦ Φ1(F )(s, r)

= α−1
r

(
Φ2 ◦ Φ1(F )(s, r)

)

= α−1
r

(∫

bG

Φ1(F )(s, γ)γ(r) dµ̂(γ)
)

=

∫

bG

α−1
r

(
F (γ, s)

)
γ(s−1r) dµ̂(γ).

Now ˆ̂α is given on Cc(Ĝ×G,A) ⊂ (A⋊α G) ⋊α̂ Ĝ by

ˆ̂αv(F )(γ, s) = γ(v)F (γ, s).

Therefore

Φ
(
ˆ̂αv(F )

)
(s, r) =

∫

bG

α−1
r

(
ˆ̂αv(F )(γ, s)

)
γ(s−1r) dµ̂(γ)

= αv

(∫

bG

α−1
rv

(
F (γ, s)

)
γ(s−1rv) dµ̂(γ)

)

= αv
(
Φ(F )(s, rv)

)
.

Thus Φ ◦ ˆ̂αv = (rt⊗α)v ⊗ id ◦Φ, and the Theorem follows from Lemma 7.6.

7.2 The Reduced Crossed Product

Since it can be very difficult to pin down the universal norm, it can be useful to
exhibit an concrete realization of A⋊α G. This is done via regular representations
which give rise to the reduced norm on Cc(G,A). The completion of Cc(G,A)
in the reduced norm is called the reduced crossed product. The reduced norm is
dominated by the universal norm, but agrees with the universal norm at least when
G is amenable. We formalize this discussion in this section. Amenable groups are
discussed in Appendix A.

An important consequence of Lemma 5.16 on page 164 is that the kernel of
IndGH L depends only on the kernel of L. Thus if J := kerL and f ∈ A⋊α G, then

‖ IndGH L(f)‖ = ‖f + ker IndGH L‖ = ‖f + IndGH J‖

in the quotient A⋊α G/ IndGH J . Therefore if kerL = kerL′, then

‖ IndGH L(f)‖ = ‖ IndGH L
′(f)‖.

In particular, if ρ and ρ′ are both faithful representations of A, then the associated
regular representations IndGe ρ and IndGe ρ

′ have the same kernel, and

‖ IndGe ρ(f)‖ = ‖ IndGe ρ
′(f)‖ for all f ∈ A⋊α G. (7.9)
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This insures that the following definition is independent of the choice of a faithful
representation ρ.

Definition 7.7. If (A,G, α) is a dynamical system, then the reduced norm on
Cc(G,A) is given by

‖f‖r := ‖ IndGe ρ(f)‖,
where ρ is any faithful representation of A. The completion A ⋊α,r G of Cc(G,A)
with respect to ‖ · ‖r is called the reduced crossed product.

If π is any representation of A, then we certainly have IndGe (kerπ) ⊃ IndGe { 0 }.
Thus for any f and π,

‖ IndGe π(f)‖ ≤ ‖f‖r.
Recall that a representation π of A is said to “factor through” a quotient A/I
when I ⊂ kerπ. Such a representation determines a representation π̃ of A/I by
π̃(a+ I) := π(a). We can summarize some of the above discussion as follows.

Lemma 7.8. Suppose that (A,G, α) is a dynamical system. Then the reduced cross
product A⋊α,r G is (isomorphic to) the quotient of A⋊αG by the kernel of IndGe π

for any faithful representation π of A. Every regular representation IndGe π factors
through A⋊α,r G, and for each f ∈ Cc(G,A),

‖f‖r = sup{ ‖ IndGe π(f)‖ : π is a representation of A }.

Example 7.9. As always, the group C∗-algebra is an important example. If A = C,
then the reduced crossed product C ⋊id,r G is denoted C∗

r (G) and is called the
reduced group C∗-algebra. The only regular representation of Cc(G) is the left-
regular representation, and C∗

r (G) is (isomorphic to) the closure in B
(
L2(G)

)
of

{λ(f) : f ∈ Cc(G) ⊂ C∗(G) },

where
λ(f)(g) = f ∗ g for all g ∈ Cc(G) ⊂ L2(G).

In particular, ‖f‖r = ‖λ(f)‖.
Example 7.10. If G is compact, then the Peter-Weyl Theorem [56, Theorem 5.12]

implies that each u ∈ Ĝ is equivalent to a subrepresentation of the left-regular
representation λ. In particular, ‖u(f)‖ ≤ ‖λ(f)‖ for all f ∈ Cc(G). Since [139,
Theorem A.14] implies that

‖f‖ = sup
u∈ bG

‖u(f)‖,

it follows that ‖f‖ ≤ ‖λ(f)‖. Since we always have ‖λ(f)‖ ≤ ‖f‖, it follows that
‖ · ‖r = ‖ · ‖, and C∗

r (G) = C∗(G) for compact groups.

Example 7.11. If G is an abelian group, then the Plancherel Theorem [56, Theo-

rem 4.25] implies that for each f ∈ Cc(G), ‖f‖2 = ‖f̂‖2, where f̂ is the Fourier
Transform defined in (1.20). But it is straightforward to check that

λ(f)(g)∧ = f̂ ĝ,
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and it follows that
‖f‖r = ‖λ(f)‖ = ‖f̂‖∞ = ‖f‖,

where the last equality follows from Proposition 3.1 on page 82. Thus we again
have C∗

r (G) = C∗(G).

There are groups, and therefore crossed products, for which the reduced C∗-
algebra is a proper quotient of the universal one. However, there is a complete
description of those groups for which the universal norm and reduced norm coin-
cide: these are the amenable groups discussed in Section A.2. The main result
is Theorem A.18 on page 326 which verifies that the left-regular representation of
G is faithful on C∗(G) if and only if G is amenable. Although abelian, compact,
nilpotent and solvable groups are amenable, there are many groups which are not.
An important example is the free group on two generators F2; therefore the reduced
norm on Cc(F2) does not agree with the universal norm.

If (A,G, α) is a dynamical system, then the equality of the reduced and uni-
versal norms can be decided by looking at the natural map N ⋊ v of A ⋊α G into
L(X), where X = X

G
e is the C0(G,A)⋊lt⊗αG –A-imprimitivity bimodule of Green’s

Imprimitivity Theorem on page 132. Let ρ be a faithful representation of A. Since
X is an imprimitivity bimodule, the Rieffel correspondence implies that X–Ind ρ is
a faithful representation of the imprimitivity algebra EGe (A) = C0(G,A) ⋊lt⊗α G.
Therefore the canonical extension X–Ind ρ of X–Ind ρ to L(X) is also faithful. It
follows easily that IndGe ρ = X–Ind ρ◦N ⋊v. Hence it follows that IndGe ρ is faithful
if and only if N ⋊ v is. We summarize this observation below.

Lemma 7.12. Suppose that (A,G, α) is a dynamical system. Then the reduced
norm on Cc(G,A) coincides with the universal norm if and only if the canonical
embedding N ⋊ v of A⋊α G into L(XGe ) is faithful.

Unlike the situation for group C∗-algebras, for crossed products, there is no
definitive characterization of the dynamical systems (A,G, α) for which N ⋊ v is
faithful. It is clear that any such characterization will have to involve more than just
properties of the group. For example, for any locally compact group G, amenable
or not, C0(G)⋊ltG is simple (Theorem 4.24 on page 133), and any nonzero regular
representation is necessarily faithful. However, the remainder of this section will
be devoted to proving A ⋊α G = A ⋊α,r G when G is amenable. The proof given
here is taken from [66]. (We give a variation of this result, using EH-regularity, in
Theorem 8.19 on page 240).

Theorem 7.13. If G is amenable, then the reduced norm ‖ · ‖r coincides with the
universal norm on Cc(G,A) and A⋊α,rG = A⋊αG. In particular, if π is a faithful

representation of A, then π̃ ⋊ λ = IndGe π is a faithful representation of A⋊α G.

Proof. Let π ⋊ U be a faithful representation of A ⋊α G on H. Since it suffices
to produce a faithful regular representation (Lemma 7.8 on the facing page), it
will suffice to produce a regular representation L of A⋊α G containing π ⋊ U as a
subrepresentation.

Let λ : G → U
(
L2(G)

)
be the left-regular representation, and let ω : C0(G) →

B
(
L2(G)

)
be given by pointwise multiplication: ω(g)ξ(s) := g(s)ξ(s) for all g ∈
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C0(G) and ξ ∈ L2(G). Let W be the unitary representation of G on the Hilbert
space tensor product L2(G)⊗H given by Ws(ξ⊗h) := λsξ⊗Ush. (W is called the
internal tensor product of λ and U , and is often denoted by λ ⊗ U .) Let ρ be the
representation of C0(G,A) ∼= C0(G) ⊗A on L2(G) ⊗H given by ω ⊗ π. That is, if
g ⊗ a is an elementary tensor in C0(G,A), then ρ(g ⊗ a)(ξ ⊗ h) := ω(g)ξ ⊗ π(a)h.
Since

Wsρ(g ⊗ a)(ξ ⊗ h) = λsω(g)ξ ⊗ Usπ(a)h = ω(lts g)λsξ ⊗ π
(
αs(a)

)
Ush,

it follows that (ρ,W ) is a covariant representation of
(
C0(G,A), G, lt⊗α

)
. Since

EGe (A) = C0(G,A) ⋊lt⊗α G is Morita equivalent to A via X, every representation
of EGe (A) is of the form X–Ind η for a representation η of A. In particular,

ρ⋊W = (ω ⊗ π) ⋊W = X–Ind η

for some η. Since ω ⊗ π = (ω ⊗ 1) ⊗max (1 ⊗ π), it follows from the Imprimitivity
Theorem on page 161 that L := π′ ⋊W = IndGe η is a regular representation, where
π′(a) = 1 ⊗ π(a). We can complete the proof by showing that L is faithful.

Let D be the concrete spatial tensor product

λ
(
C∗(G)

)
⊗ π ⋊ U(A⋊α G) ⊂ B

(
L2(G) ⊗H

)
;

that is,

D := span{λ(z) ⊗ π ⋊ U(f) ∈ B
(
L2(G) ⊗H

)
: z ∈ Cc(G) and f ∈ Cc(G,A) }.

By [139, Proposition 2.53], we can identify M(D) with the operators

{T ∈ B
(
L2(G) ⊗H

)
: TS ∈ D and ST ∈ D for all S ∈ D }. (7.10)

Since π′(a) = 1⊗π(a) = 1⊗(π⋊U)
(̄
iA(a)

)
andWs = λs⊗Us = λs⊗(π⋊U)

(̄
iG(s)

)

clearly belong to (7.10), we can view (π′,W ) as a nondegenerate covariant homo-
morphism of (A,G, α) into M(D). Thus L = π′ ⋊ W is a nondegenerate homo-
morphism of A⋊αG into M(D) (Proposition 2.39 on page 58 and Remark 2.38 on
page 58).

Let ι : G → C be the trivial representation of G. Since G is amenable, λ is
faithful on C∗(G) (Theorem A.18 on page 326), and the integrated form of ι must
factor through λ

(
C∗(G)

)
. Therefore we can define a representation S′ of D on

(L2(G) ⊕ C) ⊗ H by S′ = (id1 ⊕ι′) ⊗ id2, where id1 is the identity representation
of λ

(
C∗(G)

)
and id2 denotes the identity representation of π ⋊ U(A⋊α G), and ι′

is the representation of λ
(
C∗(G)

)
induced by ι: λ(z) 7→ ι(z). Identifying (L2(G)⊕

C) ⊗H with (L2(G) ⊗H) ⊕H in the obvious way, we see that S′ is equivalent to
a representation S defined on elementary tensors by

S
(
λ(z) ⊗ π ⋊ U(f)

)
=

(
λ(z) ⊗ π ⋊ U(f)

)
⊕

(
ι(z) · π ⋊ U(f)

)
.

Since S is nondegenerate, we can extend S to S̄ on all of M(D). Notice that

S̄(λs ⊗ Us) = (λs ⊗ Us) ⊕ Us and S̄(1 ⊗ π(a)) = (1 ⊗ π(a)) ⊕ π(a).
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Thus if R := S̄ ◦L, then R is a representation of A⋊αG having a subrepresentation
(on the invariant subspace 0 ⊕ H) equivalent to π ⋊ U . Since π ⋊ U was assumed
to be faithful, it follows that R and hence L must be faithful. This completes the
proof.

Suppose that (A,G, α) is a dynamical system with I an α-invariant ideal in A.
Let ρ : A→ B(H) be a faithful representation. Then ρ|I is a faithful representation
of I — although it may be degenerate. If ess(ρ|I) is the essential part, then realizing
IndGe ρ on L2(G,Hρ), we easily see that IndGe

(
ess(ρ|I)

)
= ess

((
IndGe ρ

)
|I⋊αG

)
. Thus

for any f ∈ Cc(G, I),

∥∥IndGe
(
ess(ρ|I)

)
(f)

∥∥ =
∥∥IndGe (ρ)(f)

∥∥.

It follows that we have an injection ι⋊r id of I ⋊α,r G into A⋊α,r G.

Remark 7.14. If (A,G, α) is a dynamical system, if I is an α-invariant ideal of A,
if q : A → A/I is the natural map and if ρ′ is a representation of A/I, then it is
not hard to check that IndGe (ρ′ ◦ q) = (IndGe ρ

′) ◦ (q ⋊ id).

If ρ′ is a faithful representation of A/I and if f ∈ Cc(G,A), then using Re-
mark 7.14,

‖q ◦ f‖A/I⋊
αI,r

G =
∥∥IndGe (ρ′)(q ◦ f)

∥∥

=
∥∥IndGe (ρ′ ◦ q)(f)‖

≤ ‖f‖A⋊α,rG.

Thus q ⋊ id induces a surjection q ⋊r id of A ⋊α,r G onto A/I ⋊αI ,r G. In view of
Proposition 3.19 on page 93, it is reasonable to suspect that ker(q⋊r id) = I⋊α,rG
(viewed as an ideal in A⋊α,r G) so that we would get an exact sequence

0 // I ⋊α,r G
ι⋊rid // A⋊α,r G

q⋊r id// A/I ⋊αI ,r G // 0. (7.11)

However, the exactness of (7.11) is a subtle question. Groups for which (7.11) is
exact for all dynamical systems (A,G, α) with I α-invariant in A are called exact .
Of course amenable groups are exact, but Gromov has announced the existence
of finitely generated discrete groups which fail to be exact. However, no other
examples of non-exact groups are known as this is written. See [92] for further
discussion and references.

In Section 2.6, we observed the important role of the maximal tensor product
in the theory of crossed products. Here we want to observe that the spatial tensor
product plays a similar role for reduced crossed products.

Remark 7.15. If A and B are potentially non-nuclear C∗-algebras, then, since the
maximal norm dominates the minimal norm, we can identify the spatial tensor
product A⊗σB as a quotient of the maximal tensor product A⊗maxB. We do this
as follows. Let ρA : A → B(HA) and ρB : B → B(HB) be faithful representations
so that ρA ⊗ ρB is a faithful representation of A ⊗σ B on H := HA ⊗ HB. Then
πA := ρA ⊗ 1 and πB := 1 ⊗ ρB are commuting faithful representations and we
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get a representation πA ⊗max πB whose image is isomorphic to A⊗σ B. In fact, if
κ := κA,B : A⊗max B → A⊗σ B is the natural map, then

πA ⊗max πB = (ρA ⊗ ρB) ◦ κA,B.
Suppose that (A,G, α) is a dynamical system and that B is a C∗-algebra. Let

ρA : A→ B(HA) and ρB : B → B(HB) be faithful representations, and let πA and
πB be the corresponding commuting representations on HA ⊗HB as above. As in
Example 2.14 on page 45, let (π̃A, U) be the covariant pair such that

π̃A ⋊ U = IndGe (ρA ⊗ 1HB )

on the Hilbert space L2(G,HA ⊗ HB). If we identify L2(G,HA ⊗ HB) with
L2(G,HA) ⊗HB, then its straightforward to check that

IndGe (ρA ⊗ 1HB ) = IndGe (ρA) ⊗ 1HB .

If π̃B := 1L2(G,HA) ⊗ ρB, then as in Remark 7.15 on the preceding page, we have

(π̃A ⋊ U) ⊗max π̃B =
(
(IndGe ρA) ⊗ ρB

)
◦ κ,

where κ := κA⋊αG,B : A⋊α G⊗max B → A⋊α G⊗σ B is the quotient map. Thus
we can identify the range of (π̃A ⋊ U) ⊗max π̃B with (A⋊α,r G) ⊗σ B.

On the other hand, the kernel of κ′ := κA,B : A ⊗max B → A ⊗σ B is α ⊗ id-
invariant (Remark 2.74 on page 77). Thus in view of Remark 7.14 on the preceding
page, we have

IndGe (ρA ⊗ ρB) ◦ (κ′ ⋊ id) = IndGe
(
(ρA ⊗ ρB) ◦ κ′

)

= IndGe (πA ⊗max πB)

= (πA ⊗max πB)∼ ⋊ U

= (π̃A ⊗max π̃B) ⋊ U.

(7.12)

Thus we can identify the range of (π̃A ⊗max π̃B) ⋊ U with (A ⊗σ B) ⋊α⊗id,r G.
Lemma 2.75 on page 78 implies there is an isomorphism L : (A ⊗max B) ⋊α⊗id G
onto (A⋊αG)⊗maxB which intertwines (π̃A ⋊U)⊗max π̃B and (π̃A⊗max π̃B) ⋊U .
Thus, with our identifications, we obtain a commutative diagram

(A⊗max B) ⋊α⊗id G
∼= //

(π̃A⊗maxπ̃B)⋊U

��

(A⋊α G) ⊗max B

(π̃A⋊U)⊗maxπ̃B

��
(A⊗σ B) ⋊α⊗id,r G

∼= // (A⋊α,r G) ⊗σ B.

(7.13)

We can summarize this discussion in the following result which is an analogue for
reduced crossed products to Lemma 2.75 on page 78.

Lemma 7.16. Suppose that (A,G, α) is a dynamical system and that B is a C∗-
algebra. Then the isomorphism of Lemma 2.75 on page 78 between (A⊗maxB)⋊α⊗id

G onto (A⋊α G) ⊗max B induces an isomorphism of

(A⊗σ B) ⋊α⊗id,r G onto (A⋊α,r G) ⊗σ B
taking (a⊗σ b) ⊗ f to (a⊗ f) ⊗σ b as in (7.13).
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Corollary 7.17. If ι is the trivial action of G on A, then A⋊ι,rG ∼= A⊗σ C∗
r (G).

As with the question of when the reduced crossed product coincides with the
universal one, there is no known characterization of which crossed products are
nuclear C∗-algebras. Even for group C∗-algebras the situation is nontrivial and
not completely understood. Guichardet has noticed that if G is amenable, then
C∗(G) is nuclear [69] (this also follows from Corollary 7.18). Lance has proved that
for a discrete group G, C∗

r (G) is nuclear if and only if G is amenable [97]. Since
quotients of nuclear C∗-algebras are nuclear, C∗(G) nuclear implies that C∗

r (G) is
too. Thus Lance’s result also holds for the universal group algebra. Naturally, the
situation is muddier for crossed products. As an example, notice for any group G,
C0(G) ⋊lt G is isomorphic to the compacts (Theorem 4.24 on page 133) and hence
nuclear. Nevertheless, the following result is very useful. This result goes back
to at least [66, Proposition 14], and the proof given here is based on an idea of
Echterhoff’s.

Corollary 7.18. If (A,G, α) is a dynamical system with A nuclear and G
amenable, then A⋊α G is nuclear.

Proof. If A is nuclear, then, by definition, κ′ := κA,B is an isomorphism as is κ′⋊id.

Since G is amenable, IndGe (ρA ⊗ ρB) is faithful (Theorem 7.13 on page 199). This
forces (πA⋊U)⊗maxπB to be an isomorphism in (7.13). In particular, κ := κA⋊αG,B

is an isomorphism. Since this holds for any C∗-algebra B, A⋊α G is nuclear.

Remark 7.19. Note that in proving Corollary 7.18, it would not suffice to use
Lemma 2.75 on page 78 and Lemma 7.16 on the preceding page to show that
(A⋊α G) ⊗max B and (A⋊α G) ⊗σ B are merely isomorphic. We have to see that
the minimal norm and the maximal norm coincide — which happens exactly when
κ is injective.

Remark 7.20 (Exact Groups). It follows from Corollary 7.17 that if G is exact, then
C∗
r (G) is an exact C∗-algebra (cf. [164]).5 A great number of properties of exact

groups can be found in [91, 92].

7.3 Crossed Products Involving the Compacts

In this section, we want to consider dynamical systems
(
K(H), G, α

)
where K(H),

as usual, denotes the compact operators on a complex Hilbert space H. A strongly
continuous homomorphism α : G → AutK(H) is also called a projective represen-
tation of G, and as we shall see, the material in this section is closely related to
projective and multiplier representations. These notions are discussed briefly in
Appendix D.3, and we will make some use of that material here.

5A C∗-algebra A is called exact if

0 // A⊗σ I // A⊗σ B // A⊗σ B/I // 0

is exact for all C∗-algebras B and every ideal I ⊂ B. A C∗-algebra is exact if and only if it can
be embedded in a nuclear C∗-algebra [89].
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It is well known (cf. [139, Chap. 1]) that any automorphism α of K(H) must be
of the form AdU for some unitary U ∈ U(H); that is, each such α must be inner.
Furthermore, if AdU = AdV on K(H), then there is a unimodular scalar z ∈ T
such that V = zU . Let G′ be the group

G′ := { (s, U) ∈ G× U(H) : αs = AdU }

equipped with the relative topology from G × U(H) (where U(H) has the strong
operator topology). Then we get an algebraic short exact sequence

1 // T
i // G′

j // G // e, (7.14)

with i(z) := (e, z1H) and j(s, U) = s. Clearly, i and j are continuous. To see
that (7.14) is a short exact sequence of topological groups, we also need to verify
that j is open and that i is a homeomorphism onto its range. To see that j is
open, we’ll use Proposition 1.15 on page 4. Suppose that sn → s0 in G, and that
(s0, U0) ∈ G′. By Lemma D.24 on page 380, there is a neighborhood N of αs0 in
AutK(H) and a continuous map c : N → U(H) such that Ad c(αs) = αs for all
αs ∈ N and such that c(αs0) = U0. Since α : G → AutK(H) is continuous, we
eventually have αsn ∈ N , and for large n,

(
sn, c(αsn)

)
∈ G′. Thus j is an open

map by Proposition 1.15 on page 4. A much more straightforward argument shows
that i is a homeomorphism onto its range. Thus (7.14) is a short exact sequence of
topological groups, and since both T and G are locally compact, Corollary 1.52 on
page 15 implies that G′ is too.

To state the main theorem in this section, we need to work with a natural
quotient C∗(G′, τ) of C∗(G′). The construction is a special case of the one described
on pages 383–385 in Appendix D.3, and we’ll only sketch the particulars here.

Notice that if f ∈ Cc(G
′) and if (s, U) ∈ G′, then the integral

∫

T

f(s, zU) dz

depends only on s and that we get a Haar integral on G′ by
∫

G′

f(s, U) dµG′(s, U) :=

∫

G

∫

T

f(s, zU) dz dµ(s).

Let τ : T → T be given by τ(z) = z̄. Then a representation π of G′ is said to
preserve τ if

π(e, z1H) = z̄1Hπ for all z ∈ T.

We let I be the ideal of M
(
C∗(G′)

)
generated by { iG′

(
(e, z1H)

)
− z̄1G′ : z ∈ T },

and define
Iτ := I ∩ C∗(G′).

Then it is not hard to see that π preserves τ if and only if Iτ ⊂ kerπ. Thus the
representations of C∗(G′) which factor through the quotient

C∗(G′, τ) := C∗(G′)/Iτ
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are exactly those which preserve τ . Proposition D.30 on page 385 implies that we
can realize C∗(G′, τ) as the completion of the ∗-subalgebra

Cc(G
′, τ) := { f ∈ Cc(G

′) : f(s, zU) = zf(s, U) for all z ∈ T }

of Cc(G
′) ⊂ C∗(G′) with respect to the norm

‖f‖τ := sup{ ‖π(f)‖ : π is a representation of G′ which preserves τ }.

Note that if f and g are in Cc(G
′, τ) and if (r, V ) and (s, U) are in G′, then

(r, V ) 7→ f(r, V )g(r−1s, V ∗U) is constant on T-cosets. It follows that

f ∗ g(s, U) =

∫

G

f(r, V )g(r−1s, V ∗U) dµ(r).

Similarly, if π preserves τ , then f(s, U)π(s, U) depends only on s and

π(f) =

∫

G

f(s, U)π(s, U) dµ(s).

We also have a surjective ∗-homomorphism Qτ : Cc(G
′) → Cc(G

′, τ), given by

Qτ (f)(s, U) =

∫

T

f(s, zU)z̄ dz,

which satisfies
π
(
Qτ (f)

)
= π(f)

provided π is a representation of G′ preserving τ .

Theorem 7.21. Suppose that
(
K(H), G, α

)
is a dynamical system, that G′ is the as-

sociated extension (7.14) of T by G and that τ(z) = z̄ for all z ∈ T. If f ∈ Cc(G
′, τ)

and T ∈ K(H), then (s, U) 7→ f(s, U)TU∗ is constant on T-cosets. Identifying G
with G′/T, the map

ψ : Cc(G
′, τ) ⊙K(H) → Cc

(
G,K(H)

)

given by ψ(f⊗T )(s) = f(s, U)TU∗ extends to an isomorphism of C∗(G′, τ)⊗K(H)
with K(H) ⋊α G.

Remark 7.22. If G is second countable and if H is separable, then C∗(G′, τ) is
isomorphic to C∗(G, ω̄) where [ω] is the Mackey obstruction for α. Thus the repre-
sentations of C∗(G′, τ) on separable Hilbert spaces are in one-to-one correspondence
with ω̄-representations of G. See Appendix D.3 for further details and definitions.

Proof. It is not too hard to check that if U(H) has the strong operator topology,
then the map U 7→ UT is continuous from U(H) into K(H) for each compact oper-
ator T .6 Since unitaries have norm one, it follows that (U, T ) 7→ TU is continuous

6It’s enough to check for T finite rank. Alternatively, we could observe that the strong topology
on U(H) is the strict topology [139, Corollary C.8].
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from U(H)×K(H) into K(H). Hence, if f ∈ Cc(G
′, τ), then (s, U) 7→ f(s, U)TU∗ is

continuous on G′ and constant on T-cosets. Thus ψ(f⊗T ) is a well-defined element
of Cc

(
G,K(H)

)
. We want to see that the image of ψ is dense in Cc

(
G,K(H)

)
in the

inductive limit topology. We begin by defining ψ′ : Cc(G
′)⊙K(H) → Cc

(
G′,K(H)

)

by
ψ′(h⊗ T )(s, U) := h(s, U)TU∗.

Then a quick calculation shows that the diagram

Cc(G
′) ⊙K(H)

ψ′

//

Qτ⊗id

��

Cc
(
G′,K(H)

)

β

��
Cc(G

′, τ) ⊙K(H)
ψ // Cc

(
G,K(H)

)

commutes when β is defined by

β(g)(s) :=

∫

T

g(s, zU) dz.

Since Qτ ⊗ id is surjective, we can establish that ψ has dense range by showing
that β ◦ ψ′ has dense range. In view of Lemma 1.87 on page 29, we can view
Cc(G

′) ⊙ K(H) as a dense subspace of Cc
(
G′,K(H)

)
. We can easily extend ψ′ to

all of Cc
(
G′,K(H)

)
by

ψ̄′(f)(s, U) = f(s, U)U∗.

Since supp ψ̄′(f) = supp f and ‖ψ̄′(f)‖∞ = ‖f‖∞, it follows that ψ̄′ is continu-
ous with respect to the inductive limit topology. Since ϕ(g)(s, U) = g(s, U)U is
clearly an inverse for ψ̄′, ψ̄′ is surjective. Therefore ψ′

(
Cc(G

′) ⊙ K(H)
)

is dense

in Cc
(
G′,K(H)

)
. Since β is onto and easily seen to be continuous in the inductive

limit topology, β ◦ ψ′ has dense range. Thus ψ has dense range.
To see that ψ is multiplicative, consider

ψ(f ⊗ T ) ∗ ψ(g ⊗ T ′)(s) =

∫

G

ψ(f ⊗ T )(r)αr
(
ψ(f ⊗ T ′)(r−1s)

)
dµ(r)

=

∫

G

f(r, V )TV ∗αr
(
g(r−1s, V ∗U)T ′U∗V

)
dµ(r)

=

∫

G

f(r, V )g(r−1s, V ∗U) dµ(r)TT ′U∗

= ψ(f ∗ g ⊗ TT ′)(s).

On the other hand,

ψ(f ⊗ T )∗(s) = ∆(s−1)αs
(
ψ(f ⊗ T )(s−1)

)∗

= ∆(s−1)αs
(
f(s−1, U∗)TU

)∗

= ∆(s−1)f(s−1, U∗)T ∗U∗

= ψ(f∗ ⊗ T ∗)(s).
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Thus ψ is a ∗-homomorphism.
Therefore it only remains to show that ψ is isometric. Let π be a representation

of G′ which preserves τ and let ρ be a representation of K(H) that commutes with
(the integrated form of) π. Thus π(s, U) and ρ(T ) commute for each (s, U) ∈ G′

and each T ∈ K(H). Since π preserves τ , π(s, U)ρ̄(U) depends only on s, and

π′(s) := π(s, U)ρ̄(U)

defines a representation of G ∼= G′/T. Furthermore,

π′(s)ρ(T ) = π(s, U)ρ(UT )

= ρ(UT )π(s, U)

= ρ(UTU∗)ρ̄(U)π(s, U)

= ρ
(
αs(T )

)
π(s, U)ρ̄(U)

= ρ
(
αs(T )

)
π′(s).

Thus (ρ, π′) is a covariant representation of
(
K(H), G, α

)
, and

ρ⋊ π′
(
ψ

(∑
fi ⊗ Ti

))
=

∑
π(fi)ρ(Ti) = π ⊗ ρ

(∑
fi ⊗ Ti

)
.

It follows that ∥∥∥ψ
(∑

fi ⊗ Ti
)∥∥∥ ≥

∥∥∥
∑

fi ⊗ Ti

∥∥∥. (7.15)

On the other hand, if (ρ, π′) is a covariant representation of
(
K(H), G, α

)
, then

π′(s)ρ̄(U) = ρ̄
(
ᾱs(U)

)
π′(s) for all s ∈ G and U ∈ U(H).

It follows that
π(s, U) := π′(s)ρ̄(U∗)

is a representation of G′:

π(s, U)π(r, V ) = π′(s)ρ̄(U∗)π′(r)ρ̄(V ∗)

= π′(sr)ρ̄(V ∗U∗V )ρ̄(V ∗)

= π′(sr)ρ̄(V ∗U∗)

= π(sr, UV ).

Furthermore,

π(s, U)ρ(T ) = π′(s)ρ(U∗T )

= ρ(TU∗)π′(s)

= ρ(T )ρ̄(U∗)π′(s)

= ρ(T )π′(s)ρ̄(U∗) = ρ(T )π(s, U).

Therefore π and ρ are commuting representations of G′ and K(H), respectively,
satisfying

π′(s) = π(s, U)ρ̄(U).

Since π clearly preserves τ , we must have equality in (7.15), and ψ is isometric.
This completes the proof.
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7.4 Aside on Twisted Crossed Products

Suppose that (A,G, α) is a dynamical system with a normal subgroup M . In
Section 3.3 we saw that if G is a semidirect product, say G = M ⋊ϕH , then we can
decompose A⋊αG as an iterated crossed product (A⋊αM)⋊βH (Proposition 3.11
on page 87). In Section 7.3, and in more detail in Appendix D.3, we introduced
a C∗-algebra C∗(E, τ) associated to a locally compact group E having T as a
central normal subgroup. We want to think of C∗(E, τ) as a “twisted group C∗-
algebra” for G := E/T with respect to a character τ : T → T (cf. Remark 7.22
on page 205). In this section, we want to generalize this twisting construction to
exhibit A ⋊α G as a twisted crossed product of A⋊αM by G/M . However, as in
our treatment of C∗(E, τ), G/M does not appear explicitly. Instead, we exhibit
the iterated crossed product as a quotient of a crossed product of A ⋊α M by G.
This approach is due to Green [66] and Dang Ngoc [112]. It is also possible to
build a iterated crossed product using G/M explicitly — in analogy with C∗(G,ω)
as defined in Appendix D.3 — using cocycles taking values the the unitary group
of the multiplier algebra of A ⋊αM . Although this is done elegantly in [119–121]
(based on work in [15] and [100]), we will not discuss this approach here.7

7.4.1 Twisted Systems

If (A,G, α) is a dynamical system, then a twisting map, or a Green twisting map,
is a strictly continuous homomorphism τ : Nτ → UM(A) from a normal subgroup
Nτ of G into the unitary group UM(A) of the multiplier algebra of A such that for
all n ∈ Nτ , a ∈ A and s ∈ G

τ(n)aτ(n)∗ = αn(a) (7.16)

ᾱs
(
τ(n)

)
= τ(sns−1). (7.17)

Then (A,G, α, τ) is called a (Green) twisted dynamical system. A covariant repre-
sentation (π, U) of (A,G, α) is said to preserve τ if

π̄
(
τ(n)

)
= U(n) for all n ∈ Nτ . (7.18)

The goal is to define the twisted crossed product, A ⋊τ
α G, to be the quotient of

A⋊αG whose representations are exactly those which preserve τ . To see that there
is such a quotient, we proceed as follows. Let I be the ideal of M(A⋊αG) generated
by

{ iG(n) − ı̄A
(
τ(n)

)
: n ∈ Nτ },

and let Iτ := I ∩A⋊α G.

Proposition 7.23. Let (A,G, α, τ) be a twisted dynamical system, and let Iτ the
ideal of A⋊αG defined above. Then a representation π⋊U preserves τ if and only if

7Because there are two approaches to twisted crossed products, the term “twisted crossed
product” is slightly ambiguous. In the literature, the type we are interested in here are often called
“Green” twisted crossed products. Twisted crossed products defined on G/M using cocycles are
called “Busby-Smith” twisted crossed products.
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Iτ ⊂ ker(π⋊U). In particular, the set of irreducible representations which preserve
τ is the closed subset of the spectrum (A⋊α G)

∧
corresponding to the quotient

A⋊τ
α G := A⋊α G/Iτ .

We call A⋊τ
α G the (Green) twisted crossed product associated to (A,G, α, τ).

Proof. It suffices to prove the first assertion. Suppose that π⋊U is a representation
of A⋊α G. Then

(π ⋊ U )̄
(
iG(n)

)
= U(n) and (π ⋊ U )̄

(
ı̄A

(
τ(n)

))
= π̄

(
τ(n)

)
.

Therefore, if (π, U) preserves τ , we must have (π ⋊ U )̄ (I) = { 0 }. Thus

Iτ ⊂ ker(π ⋊ U). (7.19)

On the other hand, if (7.19) holds, then since π ⋊ U is nondegenerate, it follows
that (π ⋊ U )̄ (I) = { 0 }, and π ⋊ U preserves τ .

Instead of working with the quotient A⋊αG/Iτ , it is often preferable to realize
A⋊τ

α G as the completion of a ∗-algebra of functions on G. Let Cc(G,A, τ) be the
set of continuous A-valued functions on G such that

f(ns) = f(s)τ(n)∗ for all s ∈ G and n ∈ Nτ , (7.20)

and such that there is a compact set K ⊂ G such that supp f ⊂ KNτ . Since any
Haar measure is unique up to a positive scalar, we can assume that we have fixed
Haar measures on G, Nτ and G/Nτ such that

∫

G

g(s) dµ(s) =

∫

G/Nτ

∫

Nτ

g(sn) dµNτ (n) dµG/Nτ
(ṡ) for all g ∈ Cc(G).

If f, g ∈ Cc(G,A, τ), then for each s ∈ G,

r 7→ f(r)αr
(
g(r−1s)

)

is constant on Nτ -cosets: using (7.20)

f(rn)αrn
(
g(n−1r−1s)

)
= f(r)τ(rnr−1)∗αrn

(
g(r−1s)τ(n−1)∗

)

= f(r)τ(rn−1r−1)αrn
(
g(r−1s)

)
τ(rn−1r−1)∗

which, using (7.16), is

= f(r)αr
(
g(r−1s)

)
.

Therefore (ṙ, s) 7→ f(r)αr
(
g(r−1s)

)
is continuous on G/Nτ ×G, and has compact

support in the first variable. Using Lemma 1.102 on page 36, we can define f ∗ g ∈
Cc(G,A, τ) by

f ∗ g(s) :=

∫

G/Nτ

f(r)αr
(
g(r−1s)

)
dµG/Nτ

(ṙ). (7.21)
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We can also define f∗ ∈ Cc(G,A, τ) by

f∗(s) := ∆G/Nτ
(ṡ−1)αs

(
f(s−1)∗

)
. (7.22)

Rather than verify directly that these operations turn Cc(G,A, τ) into a ∗-algebra,
we proceed as follows. If f ∈ Cc(G,A), then (n, s) 7→ f(sn)τ(sns−1) is continuous
on Nτ ×G, and if we restrict the second variable to a compact neighborhood of s,
it has compact support. Thus Lemma 1.102 on page 36 implies that

Φ(f)(s) :=

∫

Nτ

f(sn)τ(sns−1) dµNτ (n) (7.23)

is continuous in s and defines an element of Cc(G,A, τ):

Φ(f)(ms) =

∫

Nτ

f(msn)τ(msns−1) dµNτ (n)τ(m)∗

which, after replacing n by s−1m−1sn, is

=

∫

Nτ

f(sn)τ(sns−1) dµNτ (n)τ(m)∗

= Φ(f)(s)τ(m)∗.

If g ∈ Cc(G,A, τ) and if b is a Bruhat approximate cross section for G over Nτ (as
defined in Appendix H.3), then f(s) := b(s)g(s) is in Cc(G,A) and

Φ(f)(s) =

∫

Nτ

b(sn)g(sn)τ(sns−1) dµNτ (n)

= g(s)

∫

Nτ

b(sn) dµNτ (n)

= g(s).

Thus Φ : Cc(G,A) → Cc(G,A, τ) is surjective.

We’ll need the following observation concerning how the Haar measure of a
normal subgroup behaves under the action of G. If M is a normal subgroup of G
and s ∈ G, then the uniqueness of Haar measure implies that there is a positive
scalar ∆G,M (s) such that

∫

M

g(sms−1) dµM (m) = ∆G,M (s)

∫

M

g(m) dµM (m) (7.24)

for all g ∈ Cc(M). If f ∈ Cc(G), then for an appropriate choice of Haar measure
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on G/M ,

∆G(s)

∫

G

f(r) dµ(r) =

∫

G

f(srs−1) dµ(r)

=

∫

G/M

∫

M

f(srms−1) dµM (m) dµG/M (ṙ)

= ∆G,M (s)

∫

G/M

∫

M

f(srs−1m) dµM (m) dµG/M (ṙ)

= ∆G,M (s)∆G/M (ṡ)

∫

G/M

∫

M

f(rm) dµM (m) dµG/M (ṙ)

= ∆G,M (s)∆G/M (ṡ)

∫

G

f(r) dµ(r).

Therefore, we must have

∆G,M (s) = ∆G(s)∆G/M (ṡ−1). (7.25)

It follows that ∆G,M is a continuous homomorphism into the multiplicative positive
reals.

Lemma 7.24. With the operations defined by (7.21) and (7.22), Cc(G,A, τ) is a
∗-algebra, and (7.23) defines a surjective ∗-homomorphism

Φ : Cc(G,A) → Cc(G,A, τ).

Proof. Since Cc(G,A) is a ∗-algebra and since Φ is surjective, it suffices to show
that Φ(f ∗ g) = Φ(f) ∗ Φ(g) and Φ(f∗) = Φ(f)∗. So compute that

Φ(f ∗ g)(s) =

∫

Nτ

f ∗ g(sn)τ(sns−1) dµNτ (n)

=

∫

Nτ

∫

G

f(r)αr
(
g(r−1sn)

)
τ(sns−1) dµ(s) dµNτ (n)

=

∫

Nτ

∫

G/Nτ

∫

Nτ

f(rm)αrm
(
g(m−1r−1sn)

)
τ(sns−1)

dµNτ (m) dµG/Nτ
(ṙ) dµNτ (n)

which, after using Fubini’s Theorem and replacing n by s−1rmr−1sn, is

=

∫

G/Nτ

∫

Nτ

∫

Nτ

f(rm)αrm
(
g(r−1sn)

)
τ(rmr−1sns−1)

dµNτ (n) dµNτ (m) dµG/Nτ
(ṙ)

=

∫

G/Nτ

Φ(f)(r)αr

(∫

Nτ

g(r−1sn)τ(r−1sns−1r) dµNτ (n)
)

dµG/Nτ
(ṙ)

=

∫

G/Nτ

Φ(f)(r)αr
(
Φ(g)(r−1s)

)
dµG/Nτ

(ṙ)

= Φ(f) ∗ Φ(g)(s).
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Similarly, we compute that

Φ(f)∗(s) = ∆G/Nτ
(ṡ−1)αs

(
Φ(f)(s−1)∗

)

= ∆G/Nτ
(ṡ−1)αs

(∫

Nτ

f(s−1n)τ(s−1ns) dµNτ (n)
)∗

= ∆G/Nτ
(ṡ−1)

∫

Nτ

αs
(
τ(s−1n−1s)f(s−1n)∗

)
dµNτ (n)

which, by (7.17), is

= ∆G/Nτ
(ṡ−1)

∫

Nτ

τ(n)∗αs
(
f(s−1n)

)∗
dµNτ (n)

which, by (7.16), is

= ∆G/Nτ
(ṡ−1)

∫

Nτ

αn−1s

(
f(s−1n)

)∗
τ(n)∗ dµNτ (n)

which, using (7.24), is

= ∆G/Nτ
(ṡ−1)∆G,Nτ (s−1)

∫

Nτ

αsn−1

(
f(ns−1)

)∗
τ(sn−1s−1) dµNτ (n)

which, using (7.25), is

= ∆G(s−1)

∫

Nτ

αsn
(
f(n−1s−1)

)∗
τ(sns−1)∆Nτ (n−1) dµNτ (n)

=

∫

Nτ

f∗(sn)τ(sns−1) dµNτ (n)

= Φ(f∗)(s).

This completes the proof.

Now suppose that (π, U) is a covariant representation of (A,G, α) on H which
preserves τ . If g ∈ Cc(G,A, τ), then

s 7→ π
(
g(s)

)
U(s)

is constant on Nτ -cosets. Thus we can define an operator on H by

π ⋊τ U(g) =

∫

G/Nτ

π
(
g(s)

)
U(s) dµG/Nτ

(ṡ).

In fact if f ∈ Cc(G,A), then

π ⋊τ U
(
Φ(f)

)
=

∫

G/Nτ

π
(
Φ(f)(s)

)
U(s) dµG/Nτ

(ṡ)

=

∫

G/Nτ

∫

Nτ

π
(
f(sn)τ(sns−1)

)
dµNτ (n)U(s) dµG/Nτ

(ṡ)
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which, since (π, U) preserves τ , is

=

∫

G/Nτ

∫

Nτ

π
(
f(sn)

)
U(sn) dµNτ (n) dµG/Nτ

(ṡ)

= π ⋊ U(f).

It follows from this computation that if (π, U) preserves τ , then π ⋊τ U defines a
∗-representation of Cc(G,A, τ), and that

‖g‖ := sup{ ‖π ⋊τ U(g)‖ : (π, U) preserves τ } (7.26)

is a C∗-norm on Cc(G,A, τ) such that ‖Φ(f)‖ is the norm of the image of f in the
quotient A ⋊τ

α G. We can summarize the discussion to this point in the following
lemma.

Lemma 7.25. Suppose that (A,G, α, τ) is a twisted dynamical system. Then we
can identify the completion Cc(G,A, τ) of Cc(G,A, τ), with respect to the norm ‖ ·‖
defined by (7.26), with A ⋊τ

α G. Then, after this identification, the ∗-homomor-
phism Φ of Lemma 7.24 on page 211 extends to the quotient map from A⋊αG onto
A⋊τ

α G.

The following analogue of Corollary 2.46 on page 63 will be useful in the next
section.

Lemma 7.26. Suppose that (A,G, α, τ) is a twisted dynamical system, and that
R : Cc(G,A, τ) is a nondegenerate ‖ · ‖1-norm decreasing ∗-representation. Then R
is norm decreasing for the universal norm on A⋊τ

αG and extends to a representation
of A⋊τ

α G.

Proof. It is not hard to check that ‖Φ(f)‖1 ≤ ‖f‖1 (with respect to the L1-norms
on Cc(G,A) and Cc(G,A, τ), respectively). Therefore R′ := R ◦ Φ is a ‖ · ‖1-norm
decreasing representation of Cc(G,A) which must be bounded with respect to the
universal norm on A⋊αG by Corollary 2.46. Since ϕ

(
ı̄A

(
τ(n)

)
f
)

= Φ
(
iG(n)f

)
for

all f ∈ Cc(G,A), it follows that R̄′
(
ı̄
(
τ(n)

))
= R̄′

(
iG(n)

)
for all n ∈ Nτ . Therefore

R′ = π⋊U for a covariant pair (π, U) which preserves τ . Thus R = π⋊τ U is norm
decreasing with respect to the universal norm as required.

7.4.2 Decomposition with Respect to a Normal Subgroup

Suppose that (A,G, α, τ) is a twisted dynamical system8 and that M is a normal
subgroup of G such that Nτ ⊂M . We want to build a strongly continuousG-action

γ : G→ Aut
(
A⋊τ

αM
)
.

8The decomposition result is most germane to our discussion of ordinary crossed products
when τ is trivial and Nτ = { e } so that A ⋊

τ
α G = A ⋊α G. However, even in this case, the

conclusion involves a twisted crossed product. Starting with a possibly nontrivial τ adds a little
extra generality and doesn’t significantly complicate the proof, so we include it for reference.
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We’ll need the modular function ∆G/Nτ ,M/Nτ
defined in (7.24). Since the notation

is getting a bit unwieldy, let

δ(s) := ∆G/Nτ ,M/Nτ
(ṡ) = ∆G/Nτ

(ṡ)∆G/M (ṡ−1),

where the last equality comes from (7.25). (We’ve identified (G/Nτ )/(M/Nτ ) with
G/M .) If f ∈ Cc(M,A, τ), then define

γs(f)(m) := δ(s)αs
(
f(s−1ms)

)
.

Note that if n ∈ Nτ and m ∈M , then

γs(f)(nm) = δ(s)αs
(
f(s−1nms)

)

= δ(s)αs
(
f(s−1nss−1ms)

)

= δ(s)αs
(
f(s−1ms)τ(s−1ns)∗

)

= δ(s)αs
(
f(s−1ms)

)
τ(n)∗;

thus, γs(f) ∈ Cc(M,A, τ). Furthermore, if (ρ, V ) is a covariant representation of
(A,M,α) which preserves τ , and if s ∈ G, then a straightforward computation
shows that we get another covariant τ -preserving representation (s · ρ, s · V ) where

s · ρ(a) := ρ
(
α−1
s (a)

)
and s · V (m) := V (s−1ms).

Moreover, if f ∈ Cc(M,A, τ), then

ρ⋊τ V
(
γs(f)

)
= δ(s)

∫

M/Nτ

ρ
(
αs

(
f(s−1ms)

))
V (m) dµM/Nτ

(ṁ)

=

∫

M/Nτ

ρ
(
αs

(
f(m)

))
V (sms−1) dµM/Nτ

(ṁ)

= s−1 · ρ⋊τ s−1 · V (f).

Since (ρ, V ) is arbitrary, the above computation shows that ‖γs(f)‖ ≤ ‖f‖ for all
f ∈ Cc(M,A, τ).

Now we compute that

γs(f ∗ g)(m) = δ(s)αs
(
f ∗ g(s−1ms)

)

=

∫

M/Nτ

δ(s)αs
(
f(n)αn

(
g(n−1s−1ms)

))
dµM/Nτ

(ṅ)

=

∫

M/Nτ

δ(s)2αs
(
f(s−1ns)

)
αns

(
g(s−1n−1ms)

))
dµM/Nτ

(ṅ)

= γs(f) ∗ γs(g)(m).

To check that γs is ∗-preserving, we need to know that if M is normal in G, then
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for all s ∈ G, ∆M (sms−1) = ∆M (m). But

∆M (sns−1)

∫

M

g(msns−1) dµM (m) =

∫

M

g(m) dµM (m)

= ∆G,M (s−1)

∫

M

g(sms−1) dµM (m)

= ∆G,M (s−1)∆M (n)

∫

M

g(smns−1) dµM (m)

= ∆M (n)

∫

G

g(msns−1) dµM (m).

Now

γs(f
∗)(m) = δ(s)αs

(
f∗(s−1ms)

)

= δ(s)∆M/Nτ
(s−1m−1s)αms

(
f(s−1m−1s)∗

)

which, since M/Nτ is normal in G/Nτ , is

= δ(s)∆M/Nτ
(m−1)αm

(
αs

(
f(s−1m−1s)∗

))

= ∆M/Nτ
(m−1)αm

(
γs(f)(m−1)∗

)

= γs(f)∗(m).

Thus γs defines an endomorphism of A⋊τ
αM . Since we certainly have γsr = γs ◦γr

and γe = id, s 7→ γs is a homomorphism of G into Aut
(
A⋊τ

αM
)
.

We’ve made a good start on the following result.

Lemma 7.27. If M is a normal subgroup of G and if (A,G, α, τ) is a twisted
dynamical system, then there is a dynamical system

γ : G→ Aut
(
A⋊τ

αM
)

such that γs(g)(m) = δ(s)αs
(
g(s−1ms)

)
for g ∈ Cc(M,A, τ). Let

τM : M → UM
(
A⋊τ

αM
)

be the composition of the natural map iM : M → UM(A ⋊αM) with the quotient
map Φ of A⋊αM onto A⋊τ

αM ; thus if g ∈ Cc(M,A, τ), then

τM (n)(g)(m) = αn
(
g(n−1m)

)
. (7.27)

Furthermore, τM is a twisting map for γ and (A ⋊τ
α M,G, γ, τM ) is a twisted

dynamical system.

Proof. Given the above discussion, in order to show that (A ⋊τ
α M,G, γ) is a

dynamical system all that remains is to show that γ is strongly continuous. If
g ∈ Cc(M,A, τ) and if si → s in G, then it will suffice to see that

‖γsi(g) − γs(g)‖ → 0.
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Let K ⊂ M be a compact set such that supp g ⊂ KNτ . Let C be a compact
symmetric neighborhood of both K and s. We can assume that each si ∈ C. Since
Nτ is normal in G, (CKNτC

−1) ∩M = (CKC−1 ∩M)Nτ , and

m 7→ γsi(g)(m) − γs(g)(m)

vanishes off the saturation of the compact set K ′ := CKC−1 ∩M in M . Since

‖g‖ ≤ ‖g‖1 :=

∫

M/Nτ

‖g(m)‖ dµM/Nτ
(ṁ),

it suffices to see that γsi(g) → γs(g) uniformly. If this were not true, then we could
pass to a subnet, relabel, and assume that there is an ǫ > 0 and mi ∈M such that

‖γsi(g)(mi) − γs(g)(mi)‖ ≥ ǫ for all i. (7.28)

Since ‖γr(g)(m)‖ = ‖γr(g)(mn)‖ for all m ∈ M and n ∈ Nτ , we can assume that
each mi ∈ K ′. Since K ′ is compact, we may as well assume that mi → m in M .
But then the left-hand side of (7.28) tends to zero. This is a contradiction and
completes the proof that γ is strongly continuous.

Now let τM = Φ̄◦iM . Since iM is strictly continuous, τM is a strictly continuous
homomorphism ofM intoM(A⋊τ

αM). To verify (7.27), notice that if f ∈ Cc(G,A),
then by Lemma 7.25 on page 213 and by definition,

τM (n)Φ(f)(m) = Φ(iM (n)f)(m)

=

∫

Nτ

iM (n)(f)(mv)τ(mvm−1) dµNτ (v)

=

∫

N

αn
(
f(n−1mv)

)
τ(mvm−1) dµNτ (v)

=

∫

Nτ

αn
(
f(n−1mv)τ(n−1mvm−1n)

)
dµNτ (v)

= αn
(
Φ(f)(n−1m)

)
.

Since Φ is surjective, this suffices. To verify (7.16) we use (7.27) to compute that
for n ∈ Nτ and f, g ∈ Cc(M,A, τ) we have

τM (n)fτM (n)∗ ∗ g(m′) = τM (n)f ∗ τM (n−1)g(m′)

=

∫

M/Nτ

αn
(
f(n−1m)

)
αmn−1

(
g(nm−1m′)

)
dµM/Nτ

(ṁ)

which, since the integrand is constant on Nτ -cosets and since δ is identically one
on Nτ , is

=

∫

M/Nτ

αn
(
f(n−1mn)

)
αm

(
g(m−1m′)

)
dµM/Nτ

(ṁ)

= γn(f) ∗ g(m′).

To check (7.17) we use (7.27) to compare the values of γs
(
τM (n)f

)
(m) and

τM (sns−1)
(
γs(f)

)
(m).
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Proposition 7.28. Suppose that (A,G, α, τ) is a twisted dynamical system, and
that M is a normal subgroup of G with Nτ ⊂M . Then there is an isomorphism

Ψ : A⋊τ
α G→

(
A⋊τ

αM
)

⋊τM

γ G

such that if f ∈ Cc(G,A, τ), then for each s ∈ G, Ψ(f)(s) ∈ Cc(M,A, τ) and

Ψ(f)(s)(m) = δ(s)f(ms). (7.29)

Furthermore, Ψ intertwines a covariant representation (π, U) of (A,G, α, τ) with
the covariant representation (π ⋊ U |M , U) of (A⋊τ

αM,G, γ, τM ).

We will need the following technical lemma for the proof.

Lemma 7.29. Let (A,G, α, τ) be a twisted dynamical system. Then for each s ∈ G,

{ g(s) : g ∈ Cc(G,A, τ) }
is dense in A. Conversely, if B is a subspace of Cc(G,A, τ) such that { g(s) : g ∈ B }
is dense in A for all s ∈ G and such that B is closed under pointwise multiplication
by elements of Cc(G/Nτ ), then B is dense in A⋊τ

α G.

Proof. To prove the first statement, consider a ∈ A, s ∈ G and ǫ > 0. Since
n 7→ τ(n) is strictly continuous, there is a neighborhood V of e in G such that
n ∈ V implies ‖aτ(sns−1) − a‖ < ǫ. Choose ϕ ∈ C+

c (G) such that suppϕ ⊂ sV
and such that ∫

Nτ

ϕ(sn) dµNτ (n) = 1.

Let f(s) = ϕ(s)a and g := Φ(f). Then

‖g(s) − a‖ =
∥∥∥
∫

Nτ

ϕ(sn)
(
aτ(sns−1) − a

)
dµNτ

∥∥∥

≤ ǫ

∫

Nτ

ϕ(sn) dµNτ (n) = ǫ.

This proves the first assertion.
Now assume thatB is as in the statement of the lemma and that g ∈ Cc(G,A, τ).

Let K ⊂ G be a compact set such that supp g ⊂ KNτ . Let K ′ be a compact
neighborhood of K. Fix ǫ > 0. By assumption, for each s ∈ K, there is a gs ∈ B
such that

‖g(s) − gs(s)‖ < ǫ

By continuity, there is a neighborhood Vs of s such that Vs ⊂ K ′ and r ∈ Vs implies

‖g(r) − gs(r)‖ < ǫ. (7.30)

Since g and gs are in Cc(G,A, τ), (7.30) holds for all r ∈ VsNτ . Since K is compact,
there are s1, . . . , sn ∈ K such that Vs1 , . . . , Vsn cover K. Let ϕ1, . . . , ϕn be elements
of C+

c (G/Nτ ) such that suppϕi ⊂ VsiNτ and

n∑

i=1

ϕi(ṡ) = 1 for all s ∈ K.
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Then we let gǫ :=
∑
ϕi · gsi . By assumption gǫ ∈ B and

‖g − gǫ‖∞ < ǫ.

Therefore
‖g − gǫ‖1 ≤ ǫµG/Nτ

(K ′).

Since ǫ is arbitrary, this suffices.

Proof of Proposition 7.28 on the preceding page. If f ∈ Cc(G,A, τ) and Ψ is de-
fined as in the statement of the proposition, then it is straightforward to check that
Ψ(f)(s) ∈ Cc(M,A, τ). A similar argument to that in the beginning of the proof
of Lemma 7.27 on page 215 shows that s 7→ Ψ(f)(s) is continuous from G into
A⋊τ

αM . If g ∈ Cc(M,A, τ), then by expanding g ∗ τM (n)∗f , we see that

gτM (n)∗(m) = ∆M/Nτ
(ṅ)g(mn).

Since M/Nτ is normal in G/Nτ , ∆M/Nτ
(ṅ) = ∆G/Nτ

(ṅ), and if n,m ∈ M and
s ∈ G, we have

Ψ(f)(ns)(m) = δ(ns)f(mns)

= ∆G/Nτ
(ṅ)δ(s)f(mns)

= ∆M/Nτ
(ṅ)Ψ(f)(s)(mn)

= Ψ(f)(s)τM (n)∗(m).

Therefore, Ψ(f) ∈ Cc(G,A ⋊τ
αM, τM ), and we get a map

Ψ : Cc(G,A, τ) → Cc(G,A ⋊τ
αM, τM ).

To see that Ψ is a ∗-homomorphism, we calculate as follows.

Ψ(f ∗ g)(s)(m) = δ(s)f ∗ g(ms)

= δ(s)

∫

G/Nτ

f(r)αr
(
g(r−1ms)

)
dµG/Nτ

(ṙ)

which, after identifying (G/Nτ )/(M/Nτ ) with G/M , and choosing Haar measures
consistently, is

= δ(s)

∫

G/M

∫

M/Nτ

f(rn)αrn
(
g(n−1r−1ms)

)

dµM/Nτ
(ṅ) dµG/M (ṙ)

= δ(s)

∫

G/M

δ(r)

∫

M/Nτ

f(nr)αnr
(
g(r−1n−1ms)

)

dµM/Nτ
(ṅ) dµG/M (ṙ)

=

∫

G/M

∫

M/Nτ

Ψ(f)(r)(n)αn
(
δ(r)αr

(
Ψ(g)(r−1s)(r−1n−1mr)

))
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dµM/Nτ
(ṅ) dµG/M (ṙ)

=

∫

G/M

∫

M/Nτ

Ψ(f)(r)(n)αn
(
γr

(
Ψ(g)(r−1s)

)
(n−1m)

)

dµM/Nτ
(ṅ) dµG/M (ṙ)

=

∫

G/M

Ψ(f)(r) ∗ γr
(
Ψ(g)(r−1s)

)
(m) dµG/M (ṙ). (7.31)

Now, as in the discussion on pages 190–192, we can apply Lemma 1.108 on page 39
to conclude that Ψ(f) ∗ Ψ(g)(s) ∈ Cc(M,A, τ), and that (7.31) is

= Ψ(f) ∗ Ψ(g)(s)(m).

To see that Ψ is ∗-preserving, we first compute

Ψ(f)∗(s)(m) = ∆G/M (ṡ−1)γs
(
Ψ(f)(s−1)

)∗
(m)

= ∆G/M (ṡ−1)αm
(
γs

(
Ψ(f)(s−1)

)
(m−1)∗

)
∆M/Nτ

(ṁ−1)

= ∆G/M (ṡ−1)αm
(
δ(s)αs

(
Ψ(f)(s−1)(s−1m−1s)

)∗)
∆M/Nτ

(ṁ−1)

= ∆G/M (ṡ−1)∆M/Nτ
(ṁ−1)αms

(
f(s−1m−1)∗

)
.

On the other hand,

Ψ(f∗)(s)(m) = δ(s)f∗(ms)

= δ(s)αms
(
f(s−1m−1)∗

)
∆G/Nτ

(ṁṡ)−1

= ∆G/Nτ
(ṡ)∆G/M (ṡ−1)αms

(
f(s−1m−1)∗

)
∆G/Nτ

(ṁṡ)−1

which, since ∆G/Nτ
and ∆M/Nτ

agree on the normal subgroup M/Nτ , is

= ∆G/M (ṡ−1)∆M/Nτ
(ṁ−1)αms

(
f(s−1m−1)∗

)
.

Therefore, Ψ is ∗-preserving.
Also,

‖Ψ(f)‖1 :=

∫

G/M

‖Ψ(f)(s)‖ dµG/M (ṡ)

≤
∫

G/M

‖Ψ(f)(s)‖1 dµG/M (ṡ)

=

∫

G/M

∫

M/Nτ

‖Ψ(f)(s)(m)‖ dµM/Nτ
(ṁ) dµG/M (ṡ)

=

∫

G/M

∫

M/Nτ

δ(s)‖f(ms)‖ dµM/Nτ
(ṁ) dµG/M (ṡ)

=

∫

G/M

∫

M/Nτ

‖f(sm)‖ dµM/Nτ
(ṁ) dµG/M (ṡ)

= ‖f‖1.
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It follows that if R is any representation of
(
A ⋊τ

α M
)

⋊τM

γ G, then R ◦ Ψ is a
representation of A⋊τ

α G (Lemma 7.26 on page 213). Thus, ‖Ψ(f)‖ ≤ ‖f‖.
On the other hand, if (π, U) is a covariant representation of (A,G, α, τ), then

we shall see that (π⋊τ U |M , U) is a covariant representation of (A⋊τ
αM,G, γ, τM ).

Let g ∈ Cc(M,A, τ). Then

U(s)(π ⋊τ U |M )(g) =

∫

M/Nτ

U(s)π
(
g(m)

)
U(m) dµM/Nτ

(ṁ)

=

∫

M/Nτ

π
(
αs

(
g(m)

))
U(sm) dµM/Nτ

(ṁ)

=

∫

M/Nτ

δ(s)π
(
αs

(
g(s−1ms)

))
U(m) dµM/Nτ

(ṁ)U(s)

= π ⋊τ U |M
(
γs(g)

)
U(s).

Therefore, (π ⋊τ U |M , U) is a covariant representation of (A ⋊τ
α M,G, γ). To see

that it preserves τM as well, we need to check that

(π ⋊τ U |M )̄
(
τM (m)

)
= U(m);

but this follows immediately as τM = Φ̄ ◦ iM (m).
Now we compute that

(π ⋊τ U |M ) ⋊ U
(
Ψ(f)

)
=

∫

G/M

π ⋊ U |M
(
Ψ(f)(s)

)
U(s) dµG/M (ṡ)

=

∫

G/M

∫

M/Nτ

π
(
Ψ(f)(s)(m)

)
U(ms) dµM/Nτ

(ṁ) dµG/M (ṡ)

=

∫

G/M

∫

M/Nτ

δ(s)π
(
f(ms)

)
U(ms) dµM/Nτ

(ṁ) dµG/M (ṡ)

=

∫

G/M

∫

M/Nτ

π
(
f(sm)

)
U(sm) dµM/Nτ

(ṁ) dµG/M (ṡ)

= π ⋊τ U(f).

In particular,

‖π ⋊τ U(f)‖ = ‖(π ⋊τ U |M ) ⋊ U
(
Ψ(f)

)
‖ ≤ ‖Ψ(f)‖.

Since (π, U) was arbitrary, ‖f‖ ≤ ‖Ψ(f)‖ and Ψ is isometric. We can complete the
proof by showing that Ψ has dense range.

If s ∈ G, let

B := {Ψ(f)(s) : f ∈ Cc(G,A, τ) } ⊂ Cc(M,A, τ).

The first part of Lemma 7.29 on page 217 implies that { f(ms) : f ∈ Cc(G,A, τ) }
is dense in A for each m ∈M . Since B is closed under pointwise multiplication by
elements in Cc(M/Nτ ),

9 B is dense in A⋊τ
αM by the second part of Lemma 7.29.

9If ϕ ∈ Cc(M/Nτ ) and if ϕ̄ is an extension of ϕ to Cc(G/Nτ ), then since Nτ is normal, we can
define ψ(rNτ ) := ϕ̄(rs−1Nτ ). If g(r) := ψ(rNτ )f(r), we have g(ms) = ϕ(mNτ )f(ms).
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On the other hand, the range of Ψ is closed under multiplication by elements of
Cc(G/M). Therefore the range of Ψ is dense by Lemma 7.29. Thus Ψ is an
isomorphism.

7.5 The Type Structure of Regular Crossed Prod-
ucts

C∗-algebras are naturally divided into types based on their structure and the be-
havior of their representation theory. Such matters are discussed in detail in the
standard references on C∗-algebras such as [110, §5.6] or [126, Chap. 6]. In this
section, we want to look at CCR and GCR algebras. A C∗-algebra is called CCR
or liminary10 if π(A) = K(Hπ) for every irreducible representation π ∈ Â. In this
text, we define a C∗-algebra A to be GCR or postliminary if π(A) ⊃ K(Hπ) for all
π ∈ Â [110, p. 169]. This definition is best suited for the results below, and it has a
pleasing resemblance to the CCR definition. However, we should acknowledge that
it is not the classical one — although it is equivalent to the classical definition. The
essential feature that a GCR algebra A must possess is that it have a composition
series { Iα }0≤α≤α0 of ideals such that I0 = { 0 }, Iα0 = A, and such that Iα+1/Iα is
CCR. (Thus the “G” in GCR is probably meant to suggest that GCR algebras are
“generalized” CCR algebras.) Many classical texts [2, 28, 126] say that A is GCR
if every quotient A/J (with J 6= A) contains a nonzero CCR ideal. This version
of the definition has the advantage that it follows without too much difficulty that
it is equivalent to A having a composition series as above [2, Theorem 1.5.5]. To
see that our definition is equivalent to either of the above conditions requires in-
voking some of the outstanding results in the subject. In the separable case, these
conditions, and many others, are shown to be equivalent in the centerpiece results
[126, Theorem 6.8.7] or [28, Theorem 9.1]. In the possibly nonseparable case, it
is shown in [157] that A has a composition series as above if and only if A is a
type I C∗-algebra. This means that π(A)′′ is a type I von Neumann algebra for
all representations of A.11 In [158], it is shown that A is of Type I if and only if
every irreducible representation of A contains the compacts in its image (as in our
definition for a GCR algebra). Thus our definition is equivalent to the classical
ones.

If A is GCR, then all ideals and quotients of A are GCR [110, Theorem 5.6.2].
Furthermore, if A is GCR and P ∈ PrimA, then A/P is a primitive GCR algebra.12

Consequently, it must contain a canonical minimal ideal K(P ) isomorphic to the
compact operators on some Hilbert space. Since a C∗-algebra isomorphic to the

10The acronym “CCR” is supposed to suggest “completely continuous representations” as com-
pact operators once went by the term completely continuous operator. The term “liminary” is
meant to be an English equivalent of the French word “liminaire” meaning “preliminary”. The
spelling “liminal” is probably more common (cf., [28, 110]), but I prefer to follow Pedersen’s
spelling in [126]. In these notes, we’ll stick to the CCR and GCR designations despite Pedersen’s
admonition in [126, Remark 6.2.13].

11The terminology is classical, but unfortunate. A type I von Neumann algebra is usually not
a type I C∗-algebra.

12A C∗-algebra is called primitive if it has a faithful irreducible representation.
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compacts on some Hilbert space is called elementary, we call K(P ) the elementary
ideal determined by P .

In general, trying to determine conditions on a crossed product that force it
to be CCR or GCR is very difficult. However, if we assume that (A,G, α) is
separable and regular and that A is GCR, then we can say something.13 Even
with these restrictions, the discussion will get fairly complicated. To make the
general discussion a little easier to digest, it will be helpful to first look at the
situation for regular transformation groups. (We will look at possibly non-regular
transformation groups in Section 8.3.) We call a group G either CCR or GCR when
the group C∗-algebra C∗(G) is either CCR or GCR, respectively.

Let
(
C0(X), G, lt

)
be a regular system in which each orbit is locally closed.14

These hypotheses are automatically met if (G,X) is second countable and the
orbit space G\X is a T0 topological space (Theorem 6.2 on page 173). Let L =
π ⋊ u be an irreducible representation of C0(X) ⋊lt G. Since

(
C0(X), G, lt

)
is

quasi-regular, there is a x ∈ X such that kerπ = J(G · x), were J(F ) is the ideal
of functions in C0(X) vanishing on F . By Lemma 6.16 on page 182, L factors
though a representation L̄ = π̄ ⋊ u of C0(G · x) ⋊lt G. By assumption, G · x is
an open subset of G · x. Therefore, we can view C0(G · x) ⋊lt G as an ideal in
C0(G · x) ⋊lt G (Corollary 3.20 on page 94). Since ker π̄ = { 0 }, L̄ does not vanish
on C0(G · x) ⋊lt G, and it follows that the restriction L̄′ of L̄ to C0(G · x) ⋊lt G is
irreducible. Furthermore, L̄ is the canonical extension of L̄′. Since

(
C0(X), G, lt

)

is regular, the map sGx 7→ s · x is an equivariant homeomorphism of G/Gx onto
G ·x. Therefore C0(G ·x)⋊ltG is isomorphic to C0(G/Gx)⋊ltG. Thus, by Green’s
Imprimitivity Theorem, C0(G · x) ⋊lt G is Morita equivalent to C∗(Gx).

15

Proposition 7.30. Suppose that (G,X) is a second countable transformation group
and that G\X is a T0 topological space. Then C0(X) ⋊lt G is GCR if and only if
Gx is GCR for all x ∈ X.

Proof. We adopt the notation from the preceding discussion. Suppose that Gx
is GCR for all x and that L is an irreducible representation of C0(X) ⋊lt G.
Since Morita equivalence preserves the property of being GCR (Proposition I.44
on page 507), it follows that C0(G · x) ⋊lt G is GCR for all x. Hence if L is an irre-
ducible representation of C0(X) ⋊lt G, then the representation L̄′ described above
contains the compacts in its image. Hence so does L̄, and therefore L. This shows
that C0(X) ⋊lt G is GCR.

Suppose that C0(X) ⋊lt G is GCR, and that x ∈ X . Let U := X r G · x.
Then C0(G · x) ⋊lt G is isomorphic to the quotient of C0(X) ⋊lt G by the ideal
C0(U) ⋊lt G (Corollary 3.20 on page 94). Therefore C0(G · x) ⋊lt G is GCR as
is its ideal C0(G · x) ⋊lt G ([110, Theorem 5.6.2]). As we saw in the preceding
discussion, C0(G · x) ⋊lt G is Morita equivalent to C∗(Gx). Therefore C∗(Gx) is
GCR by Proposition I.44 on page 507.

13The case where (A,G,α) is not regular and A is not GCR is rather mysterious, and very few
general criteria are known. Certainly sweeping characterizations seem well out of reach.

14Recall that a subset of a topological space is locally closed if it is open in its closure
(Lemma 1.25 on page 6).

15In fact, by Theorem 4.30 on page 138, C0(G ·x)⋊ltG is isomorphic to C∗(Gx)⊗K(L2(G/Gx).



7.5 The Type Structure of Regular Crossed Products 223

Notice that if instead of insisting that orbits are merely locally closed, we insist
that orbits be closed, then in the above analysis, each irreducible representation
L of C0(X) ⋊lt G actually factors through some C0(G · x) ⋊lt G — rather than
possibly being lifted from an essential ideal. Since Morita equivalence also preserves
the property of being CCR (Proposition I.43 on page 507), we have the following
analogue of Proposition 7.30 on the facing page for CCR transformation group
C∗-algebras.

Proposition 7.31. Suppose that (G,X) is a second countable transformation group
and that each orbit is closed in X. Then C0(X) ⋊lt G is CCR if and only if every
Gx is CCR.

We now expand our discussion to allow for possibly noncommutative coefficient
algebras A. We still insist that A be GCR, and even then we will sketch some of
the details. As above, we also require that (A,G, α) be a regular dynamical system
and that each G-orbit is locally closed in PrimA. It will be helpful if we review
how closed, open and locally closed subsets of PrimA correspond to quotients,
ideals and subquotients of A, respectively, and verify that these identifications are
equivariant with respect to a strongly continuous action on A. It is well known, see
[139, Proposition A.27] for example, that open subsets of PrimA are in one-to-one
correspondence with ideals in A. If U ⊂ PrimA is open, then the corresponding
ideal is

IU = ker(PrimAr U) :=
⋂

{P ∈ PrimA : P /∈ U }.

Furthermore, there is a homeomorphism

hU : U → Prim IU given by hU (P ) = P ∩ IU . (7.32)

If V is also open in PrimA, if V ⊂ U and if π : IU → IU/IV is the quotient map,
then there is a homeomorphism

hU,V : U r V → Prim
(
IU/IV

)
given by hU,V (Q) = π(Q). (7.33)

Often, we’ll suppress the map π and write Q/IV in place of π(Q).

Lemma 7.32. Suppose that (A,G, α) is a dynamical system and that U and V
are G-invariant open subsets of PrimA with V ⊂ U . Then the maps hU and hU,V
defined in (7.32) and (7.33) are G-equivariant for the induced G-actions on PrimA,
Prim IU and Prim IU/IV .

Proof. Note that IU and IV are G-invariant ideals so that α induces actions on IU
and IU/IV . If s ∈ G and P ∈ U ⊂ PrimA, then

s · hU (P ) = αs
(
hU (P )

)

= αs
(
P ∩ IU

)

= αs(P ) ∩ IU
= hU (s · P ).
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On the other hand, if Q ∈ U r V , then

s · hU,V (Q) = αIV
s

(
π(Q)

)

= π
(
αs(Q)

)

= π(s ·Q)

= hU,V (s ·Q).

Recall that a subset F ⊂ PrimA is locally closed if F is open in its closure
F . Therefore F r F is closed and we can form the ideals corresponding the the
complements of F and F r F :

J := ker(F ) =
⋂

{P ∈ PrimA : P ∈ F } and

I := ker(F r F ) =
⋂

{P ∈ PrimA : P ∈ F r F }.

Then the subquotient I/J has primitive ideal space naturally identified with F as
in (7.33). It will be convenient to denote I/J by A(F ). For example, if P ∈ PrimA
and G·P is locally closed, then we can let A(G·P ) be the corresponding subquotient
of A. Then in the above discussion, J :=

⋂
s∈G P , and Q 7→ Q/J is a G-equivariant

homeomorphism of G · P onto Prim
(
A(G ·P )

)
. Similarly, A

(
G · P

)
is the quotient

A/J , and Q 7→ Q/J is an equivariant homeomorphism of G · P = {Q ∈ PrimA :
Q ⊃ ⋂

s∈G s · P } onto Prim
(
A(G · P )

)
.

With these conventions and notations in place, let L = π ⋊ u be an irreducible
representation of A⋊α G. By quasi-regularity, there is a P ∈ PrimA such that

kerπ =
⋂

s∈G

s · P.

Note that A
(
G · P

)
= A/ kerπ is a GCR algebra and that Q 7→ Q/ kerπ is a

homeomorphism of G · P onto Prim
(
A

(
G · P

))
. By Lemma 6.16 on page 182

and Corollary 3.20 on page 94, L factors through a representation L̄ = π̄ ⋊ u
of A

(
G · P

)
⋊αker π G with ker π̄ = { 0 }. By assumption G · P is open in G · P so

A(G · P ) is an invariant ideal in A
(
G · P

)
. Thus A(G · P ) = I/ kerπ where

I :=
⋂

{P ∈ PrimA : P ∈ G · P rG · P }.

Now we can view A(G·P )⋊αker πG as an ideal in A
(
G · P

)
⋊αker πG (Proposition 3.19

on page 93). Since π̄ is faithful, L̄ does not vanish on A(G · P ) ⋊αker π G, and it
follows that L̄ is the canonical extension of an irreducible representation L̄′ of
A(G · P ) ⋊αker π G. Since Q 7→ Q/ kerπ is an equivariant homeomorphism of G · P
onto Prim

(
A(G · P )

)
, and since by assumption sGP → s · P is a homeomorphism

of G/GP onto G · P , there is a continuous equivariant bijection of Prim
(
A(G · P )

)

onto G/GP matching up eGP with P/ kerπ. Since

A(G · P )

P/ kerπ
=
I/ kerπ

P/ kerπ
∼= I/P,
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Corollary 4.18 on page 130 implies that A(G · P ) ⋊αker π G is Morita equivalent to
I/P⋊αP GP . Since G ·P is Hausdorff (it is homeomorphic to G/GP ), I/P is simple
and must be the canonical elementary ideal K(P ) in the primitive GCR algebra
A/P . Theorem 7.21 on page 205 implies that I/P ⋊αP GP is Morita equivalent
to C∗(G′

P , τ) where G′
P is an extension of GP by T determined by the projective

representation α : GP → AutK(P ).16

Now we can state analogues of Proposition 7.30 and Proposition 7.31. The
proofs follow from the the above discussion and reasoning similar to the transfor-
mation group case. Proposition 7.33 is part of [162, Theorem 6.1].

Proposition 7.33. Suppose that (A,G, α) is a separable dynamical system with A
GCR, and G\PrimA a T0 topological space. For each P ∈ PrimA, let K(P ) be
the canonical elementary ideal of A/P as described above, and let C∗(G′

P , τ) be the
corresponding twisted group C∗-algebra associated to the projective representation
of GP on K(P ) as above. Then A ⋊α G is GCR if and only if each C∗(G′

P , τ) is
GCR.

Proposition 7.34. Suppose that (A,G, α) is a separable dynamical system such
that A is CCR and such that the G-orbits in PrimA are closed. Let C∗(G′

P , τ) be
as in Proposition 7.33. Then A⋊αG is CCR if and only if each C∗(G′

P , τ) is CCR.

Remark 7.35. As is clear from the discussion preceding Proposition 7.33, it would
suffice to assume merely that A is GCR in Proposition 7.34. However, the hypothe-
ses of Proposition 7.34 imply that each orbit is closed and homeomorphic to G/GP .
This implies that points are closed in PrimA. Since A is GCR, this implies that
A is actually CCR. Hence we have assumed A is CCR in Proposition 7.34 rather
than GCR. Assuming the later gives an extra generality which could none-the-less
be misleading.

Notes and Remarks

Theorem 7.1 is due to Takai [161]. The proof given here is adapted from Raeburn’s
proof in [133] and some comments of Echterhoff’s. Reduced crossed products, and
Theorem 7.13, were first introduced by Zeller-Meier for discrete groups in [173].
The extension to general crossed products is due to Takai [161]. Theorem 7.21 is
from Green’s [66] as is most of Section 7.4. Propositions 7.30 and 7.33 are due to
Gootman [62] and Takesaki [162], while Propositions 7.31 and 7.34 are due to the
author [169]. (The converses of these results will be considered in Section 8.3.)

16In Appendix D.3, we remark that G′

P is determined by a class [ωP ] ∈ H2(GP ,T) called the
Mackey obstruction for α at P . Furthermore, C∗(G′

P , τ)
∼= C∗(GP , ωP ) whose representations

correspond to ωP -representations of GP . There has been lots of work done on the structure of
these twisted group algebras. For example, see [42].





Chapter 8

Ideal Structure

The theme of this chapter, and indeed of the book, is that the fundamental structure
of a crossed product A ⋊α G is reflected in the structure of the orbit space for
the G-action on PrimA together with the subsystems (A,GP , α|GP ), where GP
is the stability group at P ∈ PrimA. In Section 8.1, we see that this paradigm
is particularly effective for regular (separable) systems. It is a remarkable and
deep result that we can push the envelope to include arbitrary separable systems
with G amenable. The principle difference is that we have to work with primitive
ideals rather than irreducible representations. This result was conjectured by Effros
and Hahn — hence systems for which the conjecture holds are known as EH-
regular. The proof that the Effros-Hahn conjecture holds is the work of many
hands, but the final step is due to Gootman and Rosenberg — building on work of
Sauvageot. The proof of the GRS-Theorem (Theorem 8.21 on page 241) is rather
lengthy and we devote all of Chapter 9 to it. In Section 8.2 we look at EH-regular
systems and investigate some of the powerful implications of EH-regularity. In
Section 8.3, we give a detailed discussion of the implications of the GRS-Theorem
for transformation group C∗-algebras. In particular, we give a complete description
of the primitive ideal space and its topology for the transformation groupC∗-algebra
C0(X) ⋊lt G when G is abelian. We also give a fairly complete characterization of
when C0(X) ⋊lt G is GCR or CCR for abelian G which completes the preliminary
discussion in Section 7.5. One of the key tools required in Section 8.3 is the Fell
topology on the closed subgroups of a locally compact group G as developed in
Appendix H. With this material in hand, it is straightforward to introduce the
Fell subgroup crossed product in Section 8.4 which gives a coherent way of working
with the subsystems (A,H, α|H) as H varies. The Fell subgroup crossed product is
used in the proof of the GRS-Theorem in Chapter 9.

8.1 Fibering Over the Orbit Space

Many C∗-algebras are naturally fibred over a base space, and as a consequence, a
good deal of information about the algebra can be obtained from an understanding
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of the structure of the fibres and how the fibres are “glued” together. A straightfor-
ward example is A = C

(
X,K(H)

)
for a compact Hausdorff space X and a complex

Hilbert space H. Certainly A can be thought of as being fibred over X with con-
stant fibre K(H). Since K(H) has a unique class of irreducible representation, it is
not surprising to see that the spectrum of A can be identified with X as a topolog-
ical space (cf. [139, Example A.24]). An essential ingredient in proving this is the
existence of a nondegenerate homomorphism of C(X) into the center ZM(A) of
the multiplier algebra M(A) of A. It should be kept in mind that a clear picture of
the spectrum or primitive ideal space, together with its topology, gives a complete
description of the ideal structure of the algebra (cf. [139, Remark A.29]).

In general, a C∗-algebra is called a C0(X)-algebra when there is a nondegenerate
homomorphism ΦA of C0(X) into the center ZM(A) of the multiplier algebra (Def-
inition C.1 on page 354). A summary of the properties of C0(X)-algebras needed
here is given in Appendix C. We’ll just recall some of the important terminology and
notation. In particular, A is a C0(X)-algebra if and only if there is a continuous map
σA : PrimA→ X (Proposition C.5 on page 355). If ΨA : Cb(PrimA) → ZM(A) is
the Dauns-Hofmann isomorphism (cf. [139, Theorem A.34]), then ΦA and σA are
related by

ΦA(ϕ) = ΨA(ϕ ◦ σA). (8.1)

The assertion that C0(X)-algebras are fibred overX is justified by the result stating
that A is a C0(X)-algebra if and only if there is an upper semicontinuous C∗-bundle
p : A → X (Definition C.16 on page 360) such that A is C0(X)-isomorphic to the
algebra Γ0(A) of sections vanishing at infinity (Theorem C.26 on page 367). Thus
elements in a ∈ A are (up to isomorphism) functions on X with a(x) taking values
in the fibre algebra Ax := p−1(x) of A over x. We can identify Ax with the quotient
A(x) := A/Ix, where Ix := {ϕ · a : a ∈ A and ϕ(x) = 0 } = { a ∈ A : a(x) = 0 } is
the ideal in A of sections vanishing at x. An upper semicontinuous C∗-bundle is
called simply a C∗-bundle (or a continuous C∗-bundle when we want to emphasize
the difference) if the map a 7→ ‖a‖ is continuous (cf. Definition C.16 on page 360).
Although C∗-bundles are more common in the literature than upper semicontinuous
C∗-bundles, the properties of upper semicontinuous bundles will be quite sufficient
for most of what we want to say here. In particular, the main property we want to
invoke is that every irreducible representation must live on a fibre A(x). Specifically,
if ρ is an irreducible representation with kernel P ∈ PrimA and if σA : PrimA→ X
is the continuous map satisfying (8.1), then σA(P ) = x if and only if P ⊃ Ix so that
ρ “factors through” A(x) = A/Ix (Proposition C.5 on page 355). When working
with C0(X)-algebras, we will normally suppress the map ΦA and write ϕ ·a in place
of ΦA(ϕ)(a) and view A as a C0(X)-bimodule such that

ϕ · a = a · ϕ, (a · ϕ)b = a(ϕ · b) and (ϕ · a)∗ = ϕ̄ · a∗.

Throughout this section it will be important to keep in mind that if (A,G, α) is a
dynamical system, then both the spectrum Â and the primitive ideal space PrimA
are (not necessarily Hausdorff) locally compact G-spaces (Lemma 2.8 on page 44).
If [π] is the class of an irreducible representation π in Â, then s · [π] := [s ·π], where
s · π := π ◦ α−1

s . If P ∈ PrimA, then s · P := αs(P ) = {αs(a) : a ∈ P }.
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Lemma 8.1. Suppose that (A,G, α) is a dynamical system. Let A be a C0(X)-
algebra with associated map σ : PrimA → X. Then the following statements are
equivalent.

(a) σ is G-invariant; that is, σ(s · P ) = σ(P ) for all P ∈ PrimA and s ∈ G.

(b) For all ϕ ∈ C0(X), s ∈ G and a ∈ A, αs(ϕ · a) = ϕ · αs(a).
(c) Each ideal Ix ⊂ A is α-invariant.

Proof. Let Ψ : Cb(PrimA) → ZM(A) be the Dauns-Hofmann isomorphism, and
recall that

ϕ · a = Ψ(ϕ ◦ σ)(a) for all ϕ ∈ C0(X) and a ∈ A.

Moreover, for all f ∈ Cb(PrimA), [139, Lemma 7.1] implies that

αs
(
Ψ(f)(a)

)
= Ψ

(
τs(f)

)
αs(a),

where τs(f)(P ) := f(s−1 · P ). If (a) holds, then

αs(ϕ · a) = αs
(
Ψ(ϕ ◦ σ)(a)

)

= Ψ
(
τs(ϕ ◦ σ)

)
αs(a)

= Ψ(ϕ ◦ σ)αs(a)

= ϕ · αs(a).

Therefore (a) =⇒ (b).
Since Ix is the closed linear span of elements of the form ϕ · a for a ∈ A and

ϕ ∈ C0(X) satisfying ϕ(x) = 0, we clearly have (b) =⇒ (c).
If (a) fails, then there is a s0 ∈ G and a P0 ∈ PrimA such that σ(s0 ·P0) 6= σ(P0).

Then there is a f ∈ C0(X) such that f
(
σ(P0)

)
= 1 while f

(
σ(s0 · P0)

)
= 0.

Proposition C.5 on page 355 implies that prop-gen-arv2.2.1
∥∥a

(
σ(P )

)∥∥ = sup
π∈Â

σ(kerπ)=σ(P )

‖π(a)‖.

Furthermore, the Dauns-Hofmann Theorem implies that for every π ∈ Â,

π
(
Ψ(f)(a)

)
= f(kerπ)π(a) for all f ∈ Cb(PrimA).

Thus if π ∈ Â is such that kerπ = s0 · P0 and a is such that π
(
αs0(a)

)
6= 0, then

π
(
αs0(f · a)

)
= π

(
αs0

(
Ψ(f ◦ σ)(a)

))

= π
(
Ψ

(
τs0(f ◦ σ)

)
αs0(a)

)

= f
(
σ(P0)

)
π
(
αs0(a)

)

= π
(
αs0(a)

)
6= 0

Therefore αs0(f · a) /∈ Iσ(s0·P0) while f · a ∈ Iσ(s0·P0). Thus

αs0(Iσ(s0·P0)) 6⊂ Iσ(s0·P0),

and (c) fails. Thus (c) =⇒ (a) and the proof is complete.
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Definition 8.2. If A is a C0(X)-algebra, then a dynamical system (A,G, α) is said
to be C0(X)-linear if αs(ϕ · a) = ϕ · αs(a) for all ϕ ∈ C0(X), a ∈ A and s ∈ G.

Recall that we think of M(A) as the collection L(AA) of adjointable operators
on A viewed as a right Hilbert module over itself. Thus A sits inside M(A) as left
multiplication operators: La(b) = ab.

Lemma 8.3. Suppose that A is a C∗-algebra and T ∈M(A) is such that T (ab) =
aT (b) for all a, b ∈ A (alternatively, TLa = LaT for all a ∈ A). Then T ∈ ZM(A).

Proof. Let S ∈M(A) and a, b ∈ A. Then

ST (ab) = S
(
aT (b)

)

= S(a)T (b)

= T
(
S(a)b

)

= TS(ab).

This suffices as A2 is dense in A.

Theorem 8.4. Suppose that A is a C0(X)-algebra and that (A,G, α) is a C0(X)-
linear dynamical system. Then for each x ∈ X there are dynamical systems(
A(x), G, αx

)
where

αxs
(
a(x)

)
= αs(a)(x).

Furthermore, A⋊α G is a C0(X)-algebra such that

ϕ · iA(a) = iA(ϕ · a) for all a ∈ A and ϕ ∈ C0(X), (8.2)

and we have

(A⋊α G)(x) ∼= A(x) ⋊αx G.

Proof. Since α is C0(X)-linear, Lemma 8.1 on the previous page implies each Ix
is α-invariant. Then we can form the quotient system

(
A(x), G, αIx

)
as described

in Section 3.4. Thus we can let αx = αIx . Then Proposition 3.19 on page 93
implies that A(x) ⋊αx G is isomorphic to the quotient of A ⋊α G by Ix ⋊α G.
Let ΦA : C0(X) → ZM(A) be the structure map ΦA(ϕ)(a) := ϕ · a. Define
ΦA⋊αG : C0(X) → M(A⋊α G) by ΦA⋊αG(ϕ) := ı̄A

(
ΦA(ϕ)

)
. Since ΦA and iA are

nondegenerate, so is ΦA⋊αG. Thus to see that A⋊αG is a C0(X)-algebra satisfying
(8.2), it suffices to see that ΦA⋊αG

(
C0(X)

)
⊂ ZM(A⋊αG). Let f ∈ Cc(G,A) and

recall that Corollary 2.36 on page 57 implies

f =

∫

G

iA
(
f(s)

)
iG(s) dµ(s). (8.3)

It follows that ΦA⋊αG(ϕ)(f) ∈ Cc(G,A) with

ΦA⋊αG(ϕ)(f)(s) = ϕ ·
(
f(s)

)
,
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and if f, g ∈ Cc(G,A), then

ΦA⋊αG(ϕ)(f ∗ g)(s) = ΦA(ϕ)

∫

G

f(r)αr
(
g(r−1s)

)
dµ(r)

=

∫

G

ϕ · f(r)αr
(
g(r−1s)

)
dµ(r)

= f ∗ ΦA⋊αG(ϕ)(g)(s).

Thus ΦA⋊αG : C0(X) → ZM(A⋊α G) by Lemma 8.3 on the facing page.

Now (A⋊αG)(x) is the quotient of A⋊αG by the idealKx generated by elements
of the form ϕ · f such that f ∈ A ⋊α G and ϕ ∈ C0(X) with ϕ(x) = 0. We can
restrict to f belonging to any subset of A ⋊α G which spans a dense subspace of
A ⋊α G. Letting f ∈ Cc(G,A), we clearly have Kx ⊂ Ex(Ix). Now let f be of
the form iA(a)iG(z) with a ∈ A and z ∈ Cc(G). Thus, as an element of Cc(G,A),
f = z ⊗ a where z ⊗ a(s) = z(s)a. Since ϕ · iA(a) = iA(ϕ · a), and since elements
of the form z ⊗ ϕ · a are dense in Ex(Ix) = Ix ⋊α G by Lemma 1.87 on page 29, it
follows that Kx = Ix ⋊α G. Thus (A⋊α G)(x) ∼= A(x) ⋊αx G as claimed.

Remark 8.5. Condition (8.2) is equivalent to

(ϕ · f)(s) = ϕ ·
(
f(s)

)
for all ϕ ∈ C0(X) and f ∈ Cc(G,A).

Corollary 8.6. Suppose that A is a C0(X)-algebra and that (A,G, α) is a C0(X)-
linear dynamical system. Then A⋊α G is the section algebra of an upper semicon-
tinuous C∗-bundle B over X with fibres Bx isomorphic to A(x) ⋊αx G (where αx

is as defined in Theorem 8.4 on the facing page). If in addition, A is the section
algebra of a continuous C∗-bundle A over X and if G is amenable, then B is also
a continuous C∗-bundle over X.

Proof. The first assertion follows immediately from Theorem 8.4 on the preceding
page and Theorem C.26 on page 367. The second assertion will follow once we
show that the associated map σ : PrimA⋊αG→ X is open. Recall that σ(P ) = x
if and only if P ⊃ Ix ⋊α G. Let U be an open neighborhood in PrimA ⋊α G and
suppose that xn → x in X with xn /∈ σ(U) for all n. It will suffice to see that
x /∈ σ(U). Since x ∈ { xn } and since A is a C∗-bundle, Ix ⊃ ⋂∞

n=1 Ixn . It follows
from Proposition 5.23 on page 169 (see Remark 5.24) that if G is amenable, then
Ex(Iy) := Iy ⋊α G is equal to IndGe Iy := Ind Iy. Thus Lemma 5.19 on page 166
implies that

∞⋂

n=1

(
Ixn ⋊α G

)
=

∞⋂

n=1

Ind Ixn = Ind
( ∞⋂

n=1

Ixn

)
⊂ Ind Ix = Ix ⋊α G. (8.4)

If we had x ∈ σ(U), then there would be a P ∈ U such that P ⊃ Ix ⋊α G and a
J ∈ I(A⋊α G) such that

P ∈ OJ = {Q ∈ PrimA⋊α G : Q 6⊃ J } ⊂ U.
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Since P 6⊃ J , it follows from (8.4) that there is a n such that

Ixn ⋊α G 6⊃ J.

Then there is a Q ∈ PrimA ⋊α G such that Q ⊃ Ixn ⋊α G and Q 6⊃ J . Thus
Q ∈ OJ and σ(Q) = xn ∈ σ(U) which is a contradiction.

Naturally, Theorem 8.4 on page 230 and Corollary 8.6 on the preceding page
are most useful when we can say something specific about the fibres. We will show
that we can often reduce to the case that the action of G on PrimA is transitive
and then invoke Corollary 4.18 on page 130.

Proposition 8.7. Suppose that (A,G, α) is a dynamical system and that G\PrimA
is Hausdorff. Then A ⋊α G is the section algebra of an upper semicontinuous C∗-
bundle B over G\PrimA with fibres A(G · P ) ⋊αG·P G. If G is amenable, then B
is a continuous C∗-bundle. If (A,G, α) is regular (Definition 6.22 on page 186),
then each fibre A(G · P ) ⋊αG·P G is Morita equivalent to A/P ⋊αP GP , where
GP = { s ∈ G : s · P = P } is the stability group at P .

Proof. The natural map σ : PrimA → G\PrimA is continuous and open. Since
G\PrimA is Hausdorff, Lemma 8.1 on page 229 and Theorem C.26 on page 367
imply that A is a C0(G\PrimA)-algebra and that (A,G, α) is a C0(G\PrimA)-
linear dynamical system. Thus A ⋊α G is a C0(G\PrimA)-algebra with fibres
A(G ·P )⋊αG·P G by Theorem 8.4 on page 230. Since A(G ·P ) = A/IG·P , it follows
from Lemma 7.32 on page 223 that the map

Q 7→ Q/IG·P

is a G-equivariant homeomorphism of G · P ⊂ PrimA onto PrimA(G · P ). Since
(A,G, α) is regular, there is a G-invariant homeomorphism of PrimA(G · P ) onto
G/GP taking Q := P/IG·P to eGP . Since

A(G · P )/Q = (A/IG·P )/(P/IG·P )

is equivariantly isomorphic to A/P (with respect to the induced GP -actions),
Corollary 4.18 on page 130 implies that A(G · P ) ⋊αG·P G is Morita equivalent
to A/P ⋊αP GP . The final assertion follows from Corollary 8.6 on the preceding
page.

Notice that if A is commutative, then each primitive quotient A/P is isomor-
phic to the complex numbers and each fibre is actually Morita equivalent to the
group C∗-algebra C∗(GP ) of a stability group. Since the irreducible representa-
tions of a C0(X)-algebra come from the fibres, it follows that in set-ups like that of
Proposition 8.7, the irreducible representations are determined by the irreducible
representations of the stability groups. We want to look at this process in greater
detail.

We get representations of A ⋊α G from representations associated to the sta-
bility groups via induction. Fix P ∈ PrimA. Rather than start with an arbitrary
representation L of A⋊α|GP

GP , we want to assume that

Res(kerL) ⊃ P. (8.5)
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Then if L = π⋊W , this implies kerπ ⊃ P and that L factors through A/P⋊αP GP .
That is, L = L′ ◦ q ⋊ id where q : A → A/P is the natural map, q ⋊ id : A ⋊α|GP

GP → A/P ⋊αP GP is the induced map (Proposition 3.19 on page 93) and L′ is
a representation of A/P ⋊αP GP . Notice that if A is abelian, then A/P is the
complex numbers, so that the representations satisfying (8.5) correspond exactly
to representations of the stability group GP . In any event, we can form

IndGGP
(L)

as defined in Definition 5.1 on page 152, which is the representation on X⊗A⋊GP HL

given by

IndGGP
(L)(f)(g ⊗ h) = N ⋊ v(f)(g) ⊗ h = f ∗ g ⊗ h.

We can also induce L′ to a representation of IndGGP
(A/P, αP ) ⋊lt G via the im-

primitivity bimodule Z of Corollary 4.17 on page 129. If (A,G, α) is regular and
G\PrimA is Hausdorff, then we get a representation RGGP

(L) of A⋊αG by compos-
ing this induced representation with the quotient map q̄⋊ id from A⋊αG to A(G ·
P )⋊αG·P G with the isomorphism Φ⋊id : A(G·P )⋊αG·P G→ IndGGP

(A/P, αP )⋊ltG

induced by the covariant isomorphism Φ : A(G · P ) → IndGGP
(A/P, αP ) of Propo-

sition 3.53 on page 105 (where we have identified A(G · P )/I with A/P as above).
Thus RGGP

(L) acts on Z ⊗A/P⋊αP GP
HL′ by

RGGP
(L)(f)(z ⊗ h) = (Φ ◦ q̄) ⋊ id(f) · z ⊗ h, (8.6)

where (Φ ◦ q̄) ⋊ id(f) · z is given by (4.46). A little untangling shows that Φ ◦
q̄(a)(r) = q

(
α−1
r (a)

)
, where q : A → A/P is the natural map. Note that RGGP

(L)
is essentially the representation of A(G ·P ) ⋊αG·P G corresponding to L′ under the
Morita equivalence of Corollary 4.18 on page 130.

Lemma 8.8. Suppose that (A,G, α) is a regular dynamical system with G\PrimA
Hausdorff. Let P ∈ PrimA. If L is a nondegenerate representation of A⋊α|GP

GP

with Res(kerL) ⊃ P . Then IndGGP
L and RGGP

L are equivalent representations of
A⋊α G.

Proof. Let X0 = Cc(G,A) and Z0 = Cc(G,A/P ) be dense subspaces of the imprim-
itivity bimodules X and Z, respectively. Define

u : X0 → Z0 by u(f)(s) = ∆G(s)
1
2 q

(
α−1
s

(
f(s)

))
,

where q : A → A/P is the natural map. Define U : X0 ⊙ HL → Z0 ⊙ HL by
U(f ⊗ h) = u(f) ⊗ h. To keep the notation from becoming distracting, let B1 :=
A/P ⋊αP GP and B2 := A⋊α|GP

GP . Let L = π⋊W = L′◦q⋊ id with L′ = π′ ⋊W
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and π = π′ ◦ q. Therefore
(
U(f ⊗ h) | U(g ⊗ k)

)
Z⊗B1HL

=
(
L′

(
〈u(g) , u(f)〉

B1

)
h | k

)

=

∫

GP

(
π′

(
〈u(g) , u(f)〉

B1

(s)
)
Ws(h) | k

)
dµGP (s)

=

∫

GP

∫

G

γ(s)∆G(t−1)
(
π′

(
q
(
αt

(
g(t−1)

))∗

αPs
(
q
(
αs−1t

(
f(t−1s)

))))
Ws(h) | k

)
dµG(t) dµGP (s)

which, after sending t 7→ t−1 and recalling that π = π′ ◦ q while αPs ◦ q = q ◦ αs, is

=

∫

GP

(
π
(
γ(s)

∫

G

α−1
t

(
g(t)∗f(ts)

)
dµG(t)

)
Ws(h)

∣∣ k
)
dµGP (s)

=

∫

GP

(
π
(
〈g , f〉

B2

(s)
)
Ws(h) | k

)
dµGP (s)

=
(
f ⊗ h | g ⊗ k

)
X⊗B2HL

.

Since 1⊗ q : Cc(G,A) → Cc(G,A/P ) is surjective by Lemma 3.18 on page 93, so is
u. It follows that U extends to a unitary from X ⊗B2 HL onto Z ⊗B1 HL.

Now we compute that

(Φ ◦ q̄) ⋊ id(f) · z(r) =

∫

G

(Φ ◦ q̄) ⋊ id(f)(t, r)z(t−1r)∆G(t)
1
2 dµG(t)

=

∫

G

q
(
α−1
r

(
f(t)

))
)z(t−1r)∆G(t)

1
2 dµG(t).

While

u
(
N ⋊ v(f)(g)

)
(r) = u(f ∗ g)(r)

= ∆G(r)
1
2 q

(
α−1
r

(
f ∗ g(r)

))

= ∆G(r)
1
2 q ◦ α−1

r

(∫

G

f(t)αt
(
g(t−1r)

)
dµG(t)

)

=

∫

G

q
(
α−1
r

(
f(t)

))
∆G(r)

1
2 q

(
αr−1t

(
g(t−1r)

))
dµG(t)

=

∫

G

q
(
α−1
r

(
f(t)

))
∆G(t−1r)

1
2 q

(
α−1
t−1r

(
g(t−1r)

))
∆G(t)

1
2 dµG(t)

= (Φ ◦ q̄) ⋊ id(f) · u(g)(r).

Thus U intertwines IndGGP
L and RGGP

L.

We can summarize much of the preceding as follows.

Corollary 8.9. Suppose that (A,G, α) is a regular dynamical system with
G\PrimA Hausdorff. Then every irreducible representation of A⋊αG is equivalent
to one of the form IndGGP

L where L is an irreducible representation of A⋊α|GP
GP

with Res(kerL) ⊃ P .
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Proof. Proposition 8.7 on page 232 implies that A⋊αG is the section algebra of an
upper semicontinuous C∗-bundle with fibres A(G · P ) ⋊αG·P G Morita equivalent
to A/P ⋊αP GP . Therefore every irreducible representation is lifted from a fibre
(cf., Proposition C.5 on page 355 and Theorem C.26 on page 367). The Morita
equivalence of A(G · P ) ⋊αG·P G with A/P ⋊αP GP implies that any irreducible
representation of A⋊α G must be form RGGP

L as in (8.6). The result follows from
Lemma 8.8 on page 233.

The previous lemma and the preceding discussion motivates the following ter-
minology.

Definition 8.10. Suppose that (A,G, α) is a dynamical system. A representation
R of A⋊αG is induced from a stability group if there is a primitive ideal P ∈ PrimA
and a representation L of A⋊α|GP

GP satisfying Res(kerL) ⊃ P such that IndGGP
L

is equivalent to R. We say that a primitive ideal J ∈ Prim(A⋊αG) is induced from
a stability group if there is a P ∈ PrimA and a K ∈ Prim(A ⋊α|GP

GP ) such that

ResK = P and IndGGP
K = J .

We want to generalize Corollary 8.9 on the facing page to deal with regular
crossed products where the orbit space G\PrimA is only almost Hausdorff. Al-
though the extension to this case is actually fairly straightforward, the argument
is obscured by a number of unfortunate technicalities. Nevertheless, the result,
and especially some of its special cases, make it worth expending the effort to sort
through the constructions. The first tool we have to recall is the notion of a com-
position series in a C∗-algebra A.1 Although the idea is rather simple, the general
statement is a bit much to take at one sitting. Since the finite case is what usually
occurs in practice, we can start there. Let

I1 ( I2 ( · · · ( In−1

be nested proper ideals in a C∗-algebra A with I0 = { 0 } and In = A. Then we call
{ Ik }nk=0 a finite composition series for A. The philosophy is that the subquotients

Ik+1/Ik for k = 0, 1, . . . , n− 1

carry lots of information about A. For example, if n = 2, then A is simply an
extension of I = I1 by A/I. Notice that if I ( J are ideals in A and if ρ is an
irreducible representation of the subquotient J/I and if q : J → J/I is the quotient
map, then the canonical extension π of ρ◦ q to A is an irreducible representation of
A which is said to live on J/I. Now if π is any irreducible representation of A and
if { Ik } is a finite composition series, then there is a k < n such that π(Ik) = { 0 }
and π(Ik+1) 6= { 0 }. That is, π must live on some subquotient Ik+1/Ik and we can
recover the spectrum Â of A from the spectra of the subquotients.

In what follows, it will be necessary to look at possibly infinite composition
series. That is, we want to allow for a possibly infinite increasing family of ideals

1Composition series usually arise in the classification of GCR or type I C∗-algebras. For
example, see Theorems 6.2.6 and 6.8.7 in [126], or [28, Proposition 4.3.4]
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inside our algebra A. It will be necessary to index this family a bit more subtly
than by nonnegative integers. In fancy terms, our index set Λ will be a segment
0 ≤ α ≤ α0 of ordinals.2

Definition 8.11. A composition series in a C∗-algebra A is a family { Iα }α∈Λ if
ideals Iα ∈ I(A) indexed by a segment Λ of ordinals 0 ≤ α ≤ α0 such that

(a) I0 = { 0 } and Iα0 = A,

(b) α < γ implies Iα ( Iγ , and if

(c) γ is a limit ordinal, then

Iγ =
⋃

α<γ

Iα.

We say that the composition series if finite or countable, respectively, if α0 is finite
or countable, respectively.

Remark 8.12. Although any composition series that arises in practice is likely to
be finite, the general theory requires that we put up with the possibility of infinite
ones. Fortunately, if A is separable, then any composition series { Iα }α∈Λ for A
can be at most countable. To see this, note that if α < α0, then Jα+1/Jα 6= { 0 }
and there is a aα ∈ Jα+1 such that ‖aα+1 − a‖ ≥ 1 for all a ∈ Jα. Since β 6= α
implies either α < β or β < α, we must have ‖aα− aβ‖ ≥ 1. Therefore { aα } must
be countable, and α0 must be countable. (However, we can still have limit ordinals
λ < α0.)

Lemma 8.13. Suppose that { Iα }α∈Λ is a composition series for a C∗-algebra A.
Then every irreducible representation of A lives on a subquotient Iα+1/Iα for some
α ∈ Λ.

Proof. Let π be an irreducible representation of A. Let S be the set of α ∈ Λ such
that π(Iα) 6= { 0 }. If β = minS is a limit ordinal, then it follows from part (c) of
Definition 8.11 that π(Iβ) = { 0 }. But this contradicts that fact that β ∈ S. Thus
β has an immediate predecessor α and π clearly lives on Iα+1/Iα.

A subset F ⊂ PrimA is locally closed if F is open in its closure F (Lemma 1.25
on page 6). Therefore F r F is closed and as in Section 7.5 we can form the ideals
corresponding to the complements of F and F r F :

J := ker(F ) =
⋂

{P ∈ PrimA : P ∈ F } and

I := ker(F r F ) =
⋂

{P ∈ PrimA : P ∈ F r F }.

Then the subquotient I/J has primitive ideal space naturally identified with F as
in (7.33) on page 223. As in Section 7.5, it will be convenient to denote I/J by
A(F ). Note that if G\PrimA is Hausdorff — as in Corollary 8.9 on page 234, for
example — then we can think of G · P as either an element of G\PrimA or as a

2There is a brief description of the properties of ordinals needed here preceding Lemma 6.3 on
page 173.
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closed subset of PrimA. Thus in the first case, A(G·P ) is the fibre of the associated
upper semicontinuous C∗-bundle, and in the second, A(G · P ) is the quotient of A
by the ideal IG·P corresponding to the complement of G · P in PrimA. Thus both
interpretations for A(G · P ) coincide in this case, so our notation should not be
misleading.

More generally, if G ·P is locally closed as a subset of PrimA — or equivalently,
as a point in G\PrimA — then A(G · P ) is the quotient by a G-invariant ideal
and admits a strongly continuous G-action which we denote by αG·P . Let QP
be the primitive ideal in A(G · P ) corresponding to P under the identification of
PrimA(G ·P ) with G ·P . Then A(G ·P )/QP corresponds to an ideal in A/P which
can be proper when A/P is not simple.

Example 8.14. Suppose that A = C0(X) and that F ⊂ X is locally closed. Then
using the notation above, J = ker(F ) is the ideal of functions vanishing on F and
I = ker(F rF ) is the ideal of functions vanishing on F rF . The map g 7→ g|F is a
surjection of I onto C0(F ) with kernel J . Thus A(F ) = I/J is naturally identified
with C0(F ) in this case.

Remark 8.15. Suppose the C and F are locally closed subsets of PrimA with
F ⊂ C. Then A(C)(F ) ∼= A(F ). To see this, suppose that A(C) = I/J . Then the
image F ′ of F in PrimA(C) ∼= C is a locally closed subset and

A(C)(F ) = I ′/J ′

where I ′ and J ′ are ideals in A(C) given by

J ′ =
⋂

{Q ∈ PrimA(C) : Q ∈ F ′ } and

I ′ =
⋂

{Q ∈ PrimA(C) : Q ∈ F ′ r F ′ }.

Thus I ′ = I ′′/J and J ′ = J ′′/J where A(F ) = I ′′/J ′′. But then

A(C)(F ) = I ′/J ′ =
I ′′/J

J ′′/J
∼= I ′′/J ′′ = A(F ).

With the terminology and notation developed above, we can now state a ba-
sic decomposition result, and also verify that in the regular case, all irreducible
representations of A⋊α G are induced from stability groups.

Theorem 8.16. Suppose that (A,G, α) is a dynamical system with G\PrimA
almost Hausdorff. Then each orbit is locally closed and A ⋊α G has a compo-
sition series { Iλ }λ∈Λ such that each subquotient Iλ+1/Iλ is the section algebra
of an upper semicontinuous C∗-bundle with fibres equal to A(G · P ) ⋊αG·P G for
G ·P ∈ G\PrimA. If, in addition, (A,G, α) is regular, then let QP be the primitive
ideal in A(G ·P ) corresponding to P under the identification of PrimA(G ·P ) with
G ·P . Then A(G ·P ) ⋊αG·P G is Morita equivalent to A(G ·P )/QP ⋊αQP GP , and
every irreducible representation of A⋊α G is induced from a stability group.

Proof. Since G\PrimA is almost Hausdorff, part (d) of Lemma 6.3 on page 173
implies that there are open sets {Uλ }λ∈Λ satisfying properties (i)–(iv) on page 173.
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It follows that points in G\PrimA are locally closed. Thus each orbit is locally
closed and the subquotients A(G · P ) are defined for each P . Let q : PrimA →
G\PrimA be the orbit map, and let Jλ be the ideal in A corresponding to q−1(Uλ) ⊂
PrimA. Since q−1(Uλ) is G-invariant, so is Jλ and we can form

Iλ := Jλ ⋊α G.

Clearly, { Iλ } satisfies axioms (a) & (b) of Definition 8.11 on page 236. Thus we
need to see that ⋃

λ<β

Jλ ⋊α G is dense in Jβ ⋊α G (8.7)

for all limit ordinals 0 < β ≤ α0. Since the Jλ are totally ordered by inclusion,

⋃

λ<β

Jλ

is a G-invariant ideal in A. Since a primitive ideal P contains Jλ if and only if
P /∈ q−1(Uλ) and since

q−1(Uβ) =
⋃

λ<β

q−1(Uλ),

it follows that

Jβ =
⋃

λ<β

Jλ.

Thus
⋃
Jλ is dense in Jβ , and

span{ z ⊗ a ∈ Cc(G, Jβ) : a ∈
⋃
Jλ and z ∈ Cc(G) } (8.8)

is dense in Jβ ⋊α G by Lemma 1.87 on page 29. But (8.8) is contained in the
left-hand side of (8.7). This proves that { Iλ } is a composition series as claimed.

Clearly, Jλ is a G-invariant ideal in Jλ+1, and Proposition 3.19 on page 93
implies that

Iλ+1/Iλ =
Jλ+1 ⋊α G

Jλ ⋊α G
∼= (Jλ+1/Jλ) ⋊αJλ G. (8.9)

We can identify PrimJλ+1/Jλ with q−1(Uλ+1rUλ) and G\Prim(Jλ+1/Jλ) with the
Hausdorff space Uλ+1 rUλ (using Lemma 7.32 on page 223). Thus Proposition 8.7
on page 232 implies that (8.9) is the section algebra of an upper semicontinuous
C∗-bundle over Uλ+1 r Uλ with fibres

(Iλ+1/Iλ)(G · P ) ∼= A(G · P ) ⋊αG·P G for G · P ∈ Uλ+1 r Uλ

(see Remark 8.15 on the previous page).
Now suppose that (A,G, α) is regular, and that ρ is a irreducible representation

of A ⋊α G. Then Lemma 8.13 on page 236 implies that ρ lives on some Iλ+1/Iλ.
Thus ρ is the natural extension R′ for an irreducible representation R′ on Iλ+1

lifted from an irreducible representation R of Iλ+1/Iλ. If (A,G, α) is regular, then



8.2 EH-Regularity and the GRS-Theorem 239

so is (Jλ+1/Jλ) ⋊αJλ G (the orbit space is Hausdorff, so quasi-regularity follows).
As in Proposition 8.7 on page 232 and Corollary 8.9 on page 234, A(G ·P )⋊αG·P G
is Morita equivalent to A(G · P )/QP ⋊αQP GP , and R must be equivalent to

X
′–IndGGK

L

where K ∈ PrimJλ+1/Jλ, L is an irreducible representation of (Jλ+1/Jλ) ⋊αJλ

GK with Res(kerL) ⊃ K. Here, X
′ is Green’s imprimitivity bimodule between

EGGK
(Jλ+1/Jλ) and (Jλ+1/Jλ) ⋊αJλ GK .

Of course, K corresponds to a Q ∈ PrimJλ+1 and Lemma 7.32 on page 223
implies GK coincides with the stability group GQ for the G-action on PrimJλ+1

∼=
q−1(Uλ+1). If L′ is the lift of L to Jλ+1 ⋊α GQ, then Res(kerL′) ⊃ Q and Propo-

sition 5.23 on page 169 implies that R′ is equivalent to X
′′–IndGGQ

L′ where X
′′ is

Green’s imprimitivity bimodule corresponding to EGGQ
(Jλ+1). Furthermore, Q cor-

responds to a P ∈ q−1(Uλ+1 r Uλ) ⊂ PrimA such that P ∩ Jλ+1 = Q. Again,
Lemma 7.32 implies that GP and GQ coincide and Proposition 5.21 on page 167
implies that R′ is equivalent to

X–IndGGP
L′

where L′ is the extension of L′ to A⋊αGP , and X is Green’s imprimitivity bimodule
corresponding to EGGP

(A). Since Res(kerL′) ⊃ P , we’re done.

Remark 8.17. The statement of Theorem 8.16 on page 237 simplifies significantly
with some additional assumptions. The most significant is that we want A be
type I or GCR. Secondly, we want A to be separable and G second countable. The
type I hypothesis allows us to identify PrimA with Â [110, Theorem 5.6.4]. Thus
if (A,G, α) is regular and G\PrimA is almost Hausdorff, then A(G · P ) is type I
with Hausdorff spectrum and each primitive quotient A(G ·P )/QP is an elementary
C∗-algebra. Thus each fibre A(G · P ) ⋊αG·P G is actually Morita equivalent to a
crossed product of the form K(H) ⋊GP for some complex Hilbert space H. It can
be shown that the irreducible representations of K(H) ⋊GP correspond exactly to
certain irreducible projective representations of GP (cf. Section 7.3). Furthermore,
since every quotient of A is also type I, every closed subset of PrimA has an
open dense Hausdorff subset (cf., [126, Theorem 6.2.11] or [28, Theorem 4.4.5]).
Thus PrimA is almost Hausdorff and we can apply the Mackey-Glimm dichotomy
(Theorem 6.2 on page 173) to (G,PrimA). Thus (A,G, α) is regular with G\PrimA
almost Hausdorff if and only if G\PrimA is a T0 topological space (or any of the
other conditions (a)–(e) of Theorem 6.2 on page 173 are satisfied). See [171] for
more details.

8.2 EH-Regularity and the GRS-Theorem

In the previous section, we showed that in the case of separable, regular dynamical
systems, every irreducible representation is induced from a stability group (Theo-
rem 8.16 on page 237). Of course this means that every primitive ideal is induced,
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and we are well on our way to one of our main goals: describing the ideal structure
of a crossed product. However, in the non-regular case it is reasonable to expect
non type I behavior. Therefore, we do not expect to be able to describe all irre-
ducible representations in a coherent manner. However, it still may be possible to
describe the primitive ideals. Consequently, we make the following definition. (The
terminology will be justified shortly.)

Definition 8.18. A dynamical system (A,G, α) is EH-regular if given
K ∈ Prim(A ⋊α G), then there is a P ∈ PrimA and a J ∈ Prim(A ⋊α GP ) such
that Res J = P and such that IndGGP

J = K. That is, (A,G, α) is EH-regular if
every primitive ideal in A⋊α G is induced from a stability group.

Of course, Theorem 8.16 on page 237 shows that if the G action on PrimA is
nice — in particular, if (A,G, α) is a separable regular dynamical system — then
(A,G, α) is EH-regular. A few examples should suffice to show that EH-regular
systems are the ones were “Mackey-Machine”-type methods are likely to uncover
significant information about the structure of the corresponding crossed products.
The following observation is due to Echterhoff.

Theorem 8.19. Suppose that (A,G, α) is EH-regular, and that the stability group
GP for the action of G on PrimA is amenable for all P ∈ PrimA. Then the reduced
norm ‖ · ‖r on Cc(G,A) coincides with the universal norm ‖ · ‖ and A ⋊α,r G =

A⋊αG. In particular, IndGe π is a faithful representation of A⋊αG for any faithful
representation π of A.

Proof. Let ρ⋊V be an irreducible representation of A⋊αG and let π be a faithful
representation of A. By assumption (A,G, α) is EH-regular so we have

ker(ρ⋊ V ) = IndGGP
J

for some P ∈ PrimA and some J ∈ Prim(A⋊αGP ). Since GP is amenable we have

J ⊃ { 0 } = ker
(
IndGP

e π
)
.

Therefore

ker(ρ⋊ V ) ⊃ IndGGP

(
ker IndGP

e π
)

= ker
(
IndGGP

IndGP
e π

)

which, by induction in stages (Theorem 5.9 on page 157), is

= ker
(
IndGe π

)
.

Since this holds for any irreducible representation ρ⋊ V , we have ker
(
IndGP

e π
)

=
{ 0 }, and the result follows.

As another example, consider the most basic of ideal structure questions: when
is A ⋊α G simple? This question was the inspiration for a significant amount of
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work [114–116] — even before the interest in simple C∗-algebras inspired by the
work of Kirchberg and Phillips on the classification of separable purely infinite
nuclear simple C∗-algebras by their K-theory [89,90,128]. However, the simplicity
of crossed products is extremely subtle, and we won’t be able to do more than
consider special cases here.

Note that if I is a non-trivial G-invariant ideal in A, then I ⋊α G a non-trivial
ideal in A⋊α G, and A⋊α G is certainly not simple. Therefore if we want A⋊α G
to be simple, a necessary condition is that A be G-simple; that is, we assume that
A has no non-trivial G-invariant ideals. Assume also that the G-action on PrimA
is free. If A is G-simple, for each P ∈ PrimA we must have

⋂

s∈G

s · P = { 0 }. (8.10)

Note that (8.10) is equivalent to saying that the G-orbit of each P ∈ PrimA is
dense in PrimA. Thus if P and Q are primitive ideals in PrimA, then there are
si ∈ G such that si · P → Q in PrimA. Since IndGe is continuous (Lemma 5.16
on page 164), IndGe si · P → IndGe Q. On the other hand, IndGe s · P is equivalent

to IndGe P by Lemma 5.8 on page 157, and it follows that IndGe Q ∈ { IndGe P }; or
more simply, IndGe P ⊂ IndGe Q. By symmetry, IndGe P = IndGe Q. Since (A,G, α) is
presumed to be EH-regular, every primitive ideal is induced; thus, Prim(A⋊αG) is
a single point and A⋊αG must be simple. We can summarize the above discussion
as follows. (Recall that a transformation group is called minimal if each orbit is
dense.)

Theorem 8.20. Suppose that (A,G, α) is a EH-regular dynamical system such
that the induced action on PrimA is free. Then A⋊αG is simple if and only if the
G-action on PrimA is minimal.

If (G,X) is a second countable locally compact transformation group and if the
G-action is minimal, then either the action is transitive or the action fails to be
regular (Theorem 6.2 on page 173). Therefore in the latter case, the results in the
previous section do not apply. Naturally, we want to see what can be said in the
non-regular case.

In their 1967 Memoir [49], Effros and Hahn conjectured that if (G,X) was a
second countable locally compact transformation group withG amenable, C0(X)⋊lt

G should be EH-regular. In Chapter 9, we give the proof that their conjecture,
and its natural generalization to dynamical systems (the generalized Effros-Hahn
conjecture), is true:

Theorem 8.21 (Gootman-Rosenberg-Sauvageot). Suppose that (A,G, α) is a sep-
arable dynamical system with G amenable. Then (A,G, α) is EH-regular.

Then a fundamental corollary of Theorem 8.20 and Theorem 8.21 is the follow-
ing.

Corollary 8.22. Suppose that (G,X) is a second countable locally compact trans-
formation group with G amenable and freely acting. Then C0(X) ⋊ltG is simple if
and only if G acts minimally on X.
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Remark 8.23. A direct proof of Corollary 8.22 on the preceding page in the case
where G = Z is given in [21, Theorem VIII.3.9].

As a particularly poignant application of EH-regularity, we can generalize Corol-
lary 8.22 on the previous page for abelian G, and give a tidy description of the
primitive ideal space of C0(X) ⋊lt G for any second countable locally compact
transformation group (G,X). The proof of this result requires a bit of technology
of its own, and is given in Section 8.3.

8.3 The Ideal Structure of C0(X) ⋊lt G

It is clear from Sections 7.5, 8.1 and 8.2 that the stability groups GP for the action
of G on PrimA play a significant role in the theory of crossed products. Naturally,
the way the GP vary with P is often an important consideration. Fortunately, there
is a natural compact Hausdorff topology, called the Fell topology, on the set Σ of
closed subgroups of a locally compact group G. We give a detailed discussion of
the Fell topology in Appendix H.1. For now, it suffices to have just an intuitive
notion of what it means for a net {Hi } ⊂ Σ to converge to H . If Hi → H and if
ti ∈ Hi is such that ti → t, then we must have t ∈ H . Furthermore, if t ∈ H , then
after passing to a subnet and relabeling, we can assume that there are ti ∈ Hi such
that ti → t. These two properties actually characterize convergence (Lemma H.2
on page 454). By looking at simple examples, it quickly becomes evident that
the map P 7→ GP is often not continuous — even in situations where the action
is otherwise extremely well behaved. Proposition H.41 on page 477 implies that
P 7→ GP is always a Borel map, and this will be important in our proof of the
Gootman-Rosenberg-Sauvageot result in Chapter 9. In this section we want to say
something significant about the ideal structure of transformation group C∗-algebras
C0(X) ⋊lt G with G abelian. A key idea is to see that the stability map x 7→ Gx is
“continuous enough” for our purposes.

Throughout this discussion, (G,X) will be a locally compact transformation
group, and

(
C0(X), G, lt

)
the associated dynamical system. We will shortly restrict

to the situation where G is abelian, but for the moment, we allow G to be arbitrary.
Fix x ∈ X . Let H be a subgroup of the stability group Gx = { s ∈ G : s · x =

x }. Using Green’s Imprimitivity Theorem (page 132), we can make Cc(G) into a
C0(G/H) ⋊lt G –C∗(H)-pre-imprimitivity bimodule. Let X = X

G
H

(
C0(G/H)

)
be

the completion. Let ω be a representation of H on Hω. (As usual, we use the
same letter to denote a unitary representation or its integrated form on Cc(H) or
C∗(H).) The induced representation R = X–IndGH ω, or simply X–Indω, acts on
the the completion HR of the algebraic tensor product Cc(G)⊙Hω with respect to
the inner product

(ϕ⊗ h | ψ ⊗ k) :=
(
ω
(
〈ψ , ϕ〉

C∗(H)

)
h | k

)

=

∫

H

〈ψ , ϕ〉
C∗(H)

(t)
(
ω(t)h | k

)
dµH(t)

=

∫

H

∫

G

γH(t)ψ(r)ϕ(rt)
(
ω(t)h | k

)
dµG(r) dµH (t).
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Then X–Indω is the integrated form of (κ, U) where

κ(ξ)[ϕ⊗ h] = [M(ξ)ϕ⊗ h] with M(ξ)ϕ(s) = ξ(sH)ϕ(s), and (8.11)

U(r)[ϕ ⊗ h] = [ltr(ϕ) ⊗ h].

After identifying C∗(G) with C ⋊ G, the representation of G induced from H ,
IndGH ω, is given by the unitary part, U , of X–Indω; that is IndGH(ω)(s)[ϕ ⊗ h] =
[lts(ϕ) ⊗ h] and IndGH(ω)(ψ)[ϕ ⊗ h] = [ψ ∗ ϕ⊗ h].

Let evx be “evaluation at x” on C0(X): evx(ξ) := ξ(x). Let ρx = evx⊗1 be the
corresponding representation on Hω: ρx(ξ)h := ξ(x)h. Then (ρx, ω) is a covariant
representation of

(
C0(X), H, lt

)
, and we can form the induced representation L :=

IndGH(ρx ⋊ ω) on HL which is the completion of Cc(G ×X) ⊙Hω with respect to
the inner product3

(f ⊗ h | g ⊗ k) =

∫

H

evx
(
〈g , f〉

C0(X)⋊ltH
(t)

)(
ω(t)h | k

)
dµH(t)

=

∫

H

∫

G

γH(t)g(r, r · x)f(rt, r · x)
(
ω(t)h | k

)
dµG(r) dµH(t).

Then L = πL ⋊ UL where, by definition,

πL(ξ)[f ⊗ h] = [iC0(X)(ξ)f ⊗ h] and UL(r)[f ⊗ h] = [iG(r)f ⊗ h].

(Recall that iC0(X)(ξ)f(s, x) = ξ(x)f(s, x) and iG(r)f(s, x) = f(r−1s, r−1 · x).)
We can define U : Cc(G ×X) ⊙ Hω → Cc(G) ⊙ Hω by U(f ⊗ h) = ψ(f) ⊗ h,

where ψ(f)(s) := f(s, s · x). Then

(
U(f ⊗ h) | U(g ⊗ k)

)
HR

=

∫

H

∫

G

γH(t)ψ(g)(r)ψ(f)(rt)
(
ω(t)h | k

)
dµG(r) dµH (t)

= (f ⊗ h | g ⊗ k)HL .

Therefore U is isometric, and since U clearly has dense range, it extends to a unitary
of HL and HR. Therefore IndGH(ρx ⋊ ω) is equivalent to a representation LGH(x, ω)

on the space of IndGH ω. We can summarize this discussion as follows.

Proposition 8.24. Suppose that (G,X) is a locally compact transformation group,
that H ⊂ Gx and that ω is a representation of H. Then IndGH(ρx ⋊ω) is equivalent
to a representation LGH(x, ω) = π ⋊ IndGH ω where

π(ξ)[ϕ ⊗ h] = [M̃(ξ)ϕ⊗ h],

with M̃(ξ)ϕ(s) := ξ(s · x)ϕ(s).

Remark 8.25. If j(x,H) : C0(X) → Cb(G/H) is given by j(x,H)(ξ)(sH) := ξ(s · x),
then M̃ = M̄ ◦ j(x,H) where M is given in (8.11).

3Formally, HL is the completion of Cc(G,C0(X)) ⊙Hω , but it is not hard to see that Cc(G×
X) ⊙Hω is dense in Cc(G,C0(X)) ⊙Hω .
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Proof of Proposition 8.24. Since ψ
(
iC0(X)(ξ)(f)

)
(s) = iC0(X)(ξ)f(s, s · x) =

ξ(s · x)ψ(f)(s), U clearly intertwines πL and π. Similarly, we compute that
ψ

(
iG(r)f

)
(s) = ltr

(
ψ(f)

)
(s), and U intertwines UL with IndGH ω.

Let (jC0(G/H), jG) be the natural covariant homomorphism of
(
C0(G/H), G, lt

)

into M
(
C0(G/H)⋊ltG

)
. Let k = ̄C0(G/H) ◦ j(x,H) : C0(X) →M

(
C0(G/H)⋊ltG

)
;

that is, k(ξ)f(s, tH) = ξ(t · x)f(s, tH). Then it is easy to check that (k, jG) is a
covariant homomorphism of

(
C0(X), G, lt

)
into M

(
C0(G/H) ⋊lt G

)
.

Lemma 8.26. Suppose that (G,X) is a locally compact transformation group, and
that ω is a representation of H ⊂ Gx for some x ∈ X. Then the diagram

C0(X) ⋊lt G
k⋊jG //

LG
H(x,ω) &&MMMMMMMMMMM

M
(
C0(G/H) ⋊lt G

)

X–Indωvvnnnnnnnnnnnn

B(HR)

commutes. In particular, if kerω ⊂ ker τ (as representations of C∗(H)), then

ker
(
IndGH(ρx ⋊ ω)

)
⊂ ker

(
IndGH(ρx ⋊ τ)

)
.

Proof. On the one hand, LGH(x, ω) = π ⋊ IndGH ω. On the other hand, L′ :=
(X–Indω) ◦ (k ⋊ jG) = πL′ ⋊ UL′ . Then

πL′(ξ) = L̄′
(
iC0(X)(ξ)

)

= X–Ind¯
(
̄C0(G/H)

(
j(x,H)(ξ)

))

= π(ξ),

where checking the last equality is facilitated by Remark 8.25 on the preceding
page. Similarly, UL′(s) = L′

(
iG(s)

)
= X–Ind

(
jG(s)

)
= IndGH ω(s). Therefore L′ =

LGH(x, ω) as claimed.
Since X is an imprimitivity bimodule, X–Ind preserves containment ([139, The-

orem 3.22]). Thus kerω ⊂ ker τ implies the kernel of LGH(x, ω) = (X–Indω) ◦
(k ⋊ jG) is contained in the kernel of LGH(x, τ) = (X–Ind τ) ◦ (k ⋊ jG). There-
fore kerLGH(x, ω) ⊂ kerLGH(x, τ), and the last assertion now follows from Proposi-
tion 8.24 on the previous page.

Proposition 8.27. Let (G,X) be a locally compact transformation group. Suppose
that ω is an irreducible representation of Gx. Then IndGGx

(ρx ⋊ω) is an irreducible
representation of C0(X) ⋊lt G.

Proof. It will suffice to see that LGGx
(x, ω) = π⋊ IndGGx

ω is irreducible. For this, it
suffices to see that any operator that commutes with π(ξ) for each ξ ∈ C0(X) and
that also commutes with IndGGx

(ω)(s) for each s ∈ G must be a scalar operator.

However, since X is an imprimitivity bimodule, X–Indω = κ⋊IndGGx
ω is irreducible

([139, Corollary 3.32]). Therefore any operator commuting with each κ(ζ) and each
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IndGGx
(ω)(s) is a scalar operator. Hence it will suffice to show that each κ(ζ), with

ζ ∈ C0(G/Gx), can be approximated in the weak operator topology by operators
of the form π(ξ), with ξ ∈ C0(X).

Let C ⊂ G/Gx be a compact set. Since sGx 7→ s · x is a continuous injection
of G/Gx onto G · x, it restricts to a homeomorphism of C onto a compact set
(since X is Hausdorff). The Tietze Extension Theorem implies that there is a
ξC ∈ Cc(X) whose image (under j(x,Gx)) in Cb(G/Gx) agrees with ζ on C. Then
{ π(ξC) } is a net in B(HR), and it suffices to see that π(ξC) → κ(ζ) in the weak
operator topology. Since { π(ξC) } is bounded, it suffices to show convergence on
a dense subset of HR. In particular, we can look at elements of the form ϕ ⊗ h
in Cc(G) ⊙ Hω . If ϕ ⊗ h and ϕ′ ⊗ h′ are in Cc(G) ⊙ Hω with suppϕ′ ⊂ K, then
provided C ⊃ K,

(
π(ξC)(ϕ ⊗ h) | (ϕ′ ⊗ h′)) −

(
κ(ζ)(ϕ ⊗ h) | (ϕ′ ⊗ h′)

)

=

∫

Gx

∫

G

γGx(t)ϕ′(r)
(
M̃(ξC)ϕ(rt) −M(ζ)ϕ(rt)

)(
ω(t)h | h′

)
dµG(r) dµGx(t)

=

∫

Gx

∫

G

γGx(t)ϕ′(r)
(
ξC(r · x) − ζ(rGx)

)
ϕ(rt)

(
ω(t)h | h′

)
dµG(r) dµGx(t),

which equals zero since ξC(r · x) = ζ(rGx) on the support of ϕ′. This completes
the proof.

Using Proposition 8.27 on the facing page, we aim to prove the following.

Proposition 8.28. Let (X,G) be a locally compact transformation group with G

abelian. Define Φ : X × Ĝ→ Prim
(
C0(X) ⋊lt G

)
by

Φ(x, τ) := ker
(
IndGGx

(ρx ⋊ τ |Gx)
)
.

Then Φ is continuous.

We’ll need a bit of machinery to prove Proposition 8.28. In particular, if we
let Σ be the compact Hausdorff space of closed subgroups of G endowed with the
Fell topology (Corollary H.4 on page 455), then we have to cope with the fact that
the stability map x 7→ Gx is rarely continuous. The following simple observation is
sometimes a useful substitute for this lack of continuity.4

Lemma 8.29. If (G,X) is a locally compact transformation group, then

P = { (x,H) ∈ X × Σ : H ⊂ Gx }

is closed in X × Σ.

4The proof of this result, and a number of others in the sequel, require that convergent nets in
X have unique limits. Of course, this is true since X is Hausdorff. But in the case of dynamical
systems (A,G,α) where A is not commutative, and A fails to have Hausdorff spectrum or primitive
ideal space, then these techniques fail. This is just one of many reasons that the ideal structure
of general crossed products is considerably more mysterious than that of transformation group
C∗-algebras.
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Proof. Suppose that (xi, Hi) is in P for all i, and that (xi, Hi) → (x,H). If t ∈ H ,
then we can pass to subnet, relabel, and assume that there are ti ∈ Hi such that
ti → t (Lemma H.2 on page 454). Then xi = ti · xi → t · x. Since X is Hausdorff,
t · x = x, and t ∈ Gx. Then H ⊂ Gx, and P is closed.

We begin by defining Ψ : P × Ĝ→ I
(
C0(X) ⋊lt G

)
by

Ψ(x,H, τ) := ker
(
IndGH(ρx ⋊ τ |H)

)
.

Recall that a subbasis for the topology on I
(
C0(X)⋊ltG

)
is given by sets OJ where

J is an ideal in C0(X) ⋊lt G, and

OJ := { I ∈ I
(
C0(X) ⋊lt G

)
: I 6⊃ J }.

Lemma 8.30. Ψ is continuous.

Remark 8.31. It seems natural that IndGH should depend continuously on H (see
Remark 8.58 on page 260). To work out the details the tool needed is a continuous
choice of Haar measures on Σ as defined in Lemma H.8 on page 458. If f0 ∈ C+

c (G)
is such that f0(e) > 0, then we can fix a Haar measure µH on H such that

∫

H

f0(s) dµH(s) = 1.

Then Lemma H.8 on page 458 implies that

H 7→
∫

H

f(s) dµH(s)

is continuous for all f ∈ Cc(G).

Proof. Let { (xi, Hi, τi) } be a net in P × Ĝ converging to (x,H, τ). It will suffice to
see that if Ψ(xi, Hi, τi) ⊃ J for all i, then Ψ(x,H, τ) ⊃ J . Fix a continuous choice
of Haar measures µH on Σ as in Lemma H.8 on page 458. By Proposition 8.24
on page 243, IndGHi

(ρxi ⋊ τi|Hi) is equivalent to LGHi
(xi, τi|Hi) which acts on the

completion of Cc(G) with respect to the inner product5

(ϕ | ψ)i =

∫

Hi

ψ∗ ∗ ϕ(t)τi(t) dµHi (t). (8.12)

(Let (· | ·)0 be the inner product for LGH(x, τ |H) ∼= IndGH(ρx ⋊ τ |H).) Furthermore,

LGHi
(xi, τi|Hi) = πi ⋊ Vi, where Vi = IndGHi

(τi|Hi) and πi is given by πi(ξ)ϕ(s) =

ξ(s · xi)ϕ(s). By definition of the topology on Ĝ, τi converges to τ uniformly on
compact subsets of G. Therefore part (b) of Lemma H.9 on page 460 implies that
(ϕ | ψ)i → (ϕ | ψ)0 for all ϕ and ψ in Cc(G).

5Since we’re assuming G is abelian, there are no modular functions to worry about. In partic-
ular, γHi

is identically one and has been omitted from our formulas.
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Claim. Let A ⊂ C0(X) ⋊lt G be dense. Then it will suffice to show that

(
LGHi

(xi, τi|Hi)(F )ϕ | ψ
)
i
→

(
LGH(x, τ |H)(F )ϕ | ψ

)
0

(8.13)

for all F ∈ A and all ϕ, ψ ∈ Cc(G).

Proof of Claim. Let F ′ ∈ J . Since IndGH(ρx ⋊ τ |H) is equivalent to LGH(x, τ |H)
and since Cc(G) is dense in the space of LGH(x, τ |H ), it suffices to see that(
LGH(x, τ |H)(F ′)ϕ | ψ

)
0

= 0 for all ϕ and ψ in Cc(G). Fix ǫ > 0. Since

J ⊂ ker
(
IndGHi

(ρxi ⋊ τi|Hi)
)

and since IndGHi
(ρxi ⋊ τi|Hi) is equivalent to

LGHi
(xi, τi|Hi), we have

(
LGHi

(xi, τi|Hi)(F
′)ϕ | ψ

)
i

= 0 for all i. Since

(ϕ | ψ)i → (ϕ | ψ)0 implies that ‖ϕ‖i = (ϕ | ϕ)
1
2

i converges to ‖ϕ‖0 for all
ϕ ∈ Cc(G), we can find F ∈ A such that

∣∣(LGHi
(xi, τi|Hi)(F )ϕ | ψ

)
i

∣∣ < ǫ

2
for large i, and such that

∣∣(LGH(x, τ |H)(F )ϕ | ψ
)
0
−

(
LGH(x, τ |H)(F ′)ϕ | ψ

)
0

∣∣ < ǫ

2
.

It follows from (8.13) that
∣∣(LGH(x, τ |H)(F ′)ϕ | ψ

)
0

∣∣ < ǫ. Since ǫ was arbitrary, the
claim follows.

Let A = span{ϕ⊗ξ : ϕ ∈ Cc(G) and ξ ∈ C0(X) }, where ϕ⊗ξ(s, x) := ϕ(s)ξ(x).
Then A is dense in C0(X) ⋊lt G (Lemma 1.87 on page 29). Note that

(
LGHi

(xi, τi|Hi)(ϕ ⊗ ξ)ϕ′ | ψ
)
i
=

(
πi(ξ)Vi(ϕ)ϕ′ | ψ

)
i
=

(
πi(ξ)ϕ ∗ ϕ′ | ψ

)
i
.

Therefore it will be enough to show that

(
πi(ξ)ϕ | ψ

)
i
→

(
π(ξ)ϕ | ψ

)
0
,

where LGH(x, τ |H ) = π ⋊ V .
Recall that

(
πi(ξ)ϕ | ψ

)
i
=

∫

Hi

τi(t)ψ
∗ ∗ πi(ξ)ϕ(t) dµHi (t).

Since, by definition of the topology on Ĝ, τi → τ uniformly on compact sets,
it will suffice, by Lemma H.9 on page 460, to see that ψ ∗ πi(ξ)ϕ converges to
ψ ∗ π(ξ)ϕ in the inductive limit topology on Cc(G). Clearly, we just need to see
that πi(ξ)ϕ → π(ξ)ϕ in the inductive limit topology. Since the supports are all
contained in suppϕ, it will suffice to see that the convergence is uniform. If not,
then after passing to subnet and relabeling, there are si ∈ suppϕ and an ǫ > 0 such
that ∣∣ξ(si · xi)ϕ(si) − ξ(si · x)ϕ(si)

∣∣ ≥ ǫ > 0 for all i.

Since we can pass to another subnet, relabel, and assume that si → s, we arrive at
a contradiction. Thus, Ψ must be continuous as claimed.
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Proof of Proposition 8.28 on page 245. Suppose that (xi, τi) → (x, τ) in X × Ĝ,
and that J is an ideal in C0(X) ⋊lt G such that Φ(xi, τi) ⊃ J for all i. Then as in
Lemma 8.30 on page 246, it will suffice to see that Φ(x, τ) ⊃ J . Since Σ is compact,
we can pass to a subnet, relabel, and assume that Gxi → H ∈ Σ. If t ∈ H , then
(possibly after passing to another subnet and relabeling) there are ti ∈ Gxi such
that ti → t. Then xi = ti · xi → t · x. Since X is Hausdorff, x = t · x and t ∈ Gx.
Therefore H ⊂ Gx and (x,H) ∈ P . Since Φ(xi, τi) = Ψ(xi, Gxi , τi) and since Ψ is
continuous, we have

Ψ(x,H, τ) ⊃ J.

However, using “Induction by Stages” (Theorem 5.9 on page 157), we have

IndGH(ρx ⋊ τ |H) ∼= IndGGx

(
IndGx

H (ρx ⋊ τ |H)
)
.

Using Proposition 8.24 on page 243 (with G = Gx), we have

IndGx

H (ρx ⋊ τ |H) ∼= ρx ⋊
(
IndGx

H τ |H
)
.

Therefore

IndGH(ρx ⋊ τ |H) ∼= IndGGx

(
ρx ⋊

(
IndGx

H τ |H
))
.

On the other hand, Corollary 5.15 on page 162 implies that ker
(
IndGx

H τ |H
)
⊂

ker τ |Gx . Therefore the last part of Lemma 8.26 on page 244 implies that

Φ(x, τ) = ker
(
IndGGx

(ρx ⋊ τ |Gx)
)
⊃ ker

(
IndGGx

(
ρx ⋊ IndGx

H τ |H
))

= ker
(
IndGH(ρx ⋊ τ |H)

)

= Ψ(x,H, τ) ⊃ J.

Therefore, Φ(x, τ) ⊃ J , and we’re done.

Lemma 8.32. Suppose that (G,X) is a locally compact transformation group with

G abelian, that H ⊂ Gx and that τ ∈ Ĝ. Then IndGH(ρx ⋊ τ |H) is equivalent to
IndGH(ρs·x ⋊ τ |H).

Remark 8.33. Lemma 8.32 is a special case of Lemma 5.8 on page 157, but it seems
reasonable to give a separate proof in this special case.

Proof. In view of Proposition 8.24 on page 243, it suffices to show that LGH(x, τ |H)
is equivalent to LGH(s ·x, τ |H). Both these representations act on the completion of
Cc(G) with respect to the inner product

(ϕ | ψ) =

∫

H

ψ∗ ∗ ϕ(t)τ(t) dµH (t) =

∫

H

∫

G

ψ(r)ϕ(rt)τ(t) dµG(r) dµH (t).

Furthermore, LGH(x, τ |H)(f)ϕ(r) =
∫
G
f(v, r · x)ϕ(v−1r) dµG(v). Define
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U : Cc(G) → Cc(G) by U(ϕ)(r) = ϕ(sr). Then, recalling that G is abelian,

U
(
LGH(x, τ |H )(f)ϕ

)
(r) = LGH(x, τ |H)(f)ϕ(sr)

=

∫

G

f(v, sr · x)ϕ(v−1sr) dµG(v)

=

∫

G

f(v, rs · x)U(ϕ)(v−1r) dµG(v)

= LGH(s · x, τ |H)U(ϕ)(r).

It follows immediately from Lemma 8.32 that Φ(x, τ) = Φ(s ·x, τ) for all s ∈ G.
The continuity of Φ implies a bit more.

Lemma 8.34. Suppose that (G,X) is a locally compact transformation group with

G abelian, and that G · x = G · y. Then Gx = Gy, and if τ and σ are in Ĝ and are
such that τσ ∈ G⊥

x , then Φ(x, τ) = Φ(y, σ).

Proof. Since y ∈ G · x, there are si ∈ G such that si · x → y. But if t ∈ Gx, then
since G is abelian, si · x = tsi · x→ t · y. Since X is Hausdorff, t · y = y and t ∈ Gy.
This shows that Gx ⊂ Gy. By symmetry, Gy ⊂ Gx and the first assertion follows.

Let si · x → y, as above. By Lemma 8.34, Φ(si · x, τ) = Φ(x, τ). Since Φ
is continuous, we have Φ(y, τ) ∈ Φ(x, τ). Thus, by definition of the hull-kernel
topology, Φ(x, τ) ⊂ Φ(y, τ). By symmetry, we must have Φ(x, τ) = Φ(y, τ), and a
moments reflection shows that Φ(y, τ) = Φ(y, σ).

The continuity assertions in Corollary 6.15 on page 182 and Lemma 5.16 on
page 164 are also a consequence of the following general observation from [66,
Proposition 9].

Lemma 8.35. Let B and D be C∗-algebras and let ϕ : B → M(D) be a homomor-
phism. Define ϕ∗ : I(D) → I(B) by

ϕ∗(J) = { b ∈ B : ϕ(b)d ∈ J for all d ∈ D }.

Then ϕ∗ is continuous.

Proof. Since D and J are an ideals in M(D), we clearly have ϕ∗(J) ∈ I(B).
Suppose K ∈ I(B) and let OK = { I ∈ I(B) : I 6⊃ K }. We need to see that
(ϕ∗)−1(OK) is open.

If ϕ∗(J) 6⊃ K, then there is a b ∈ K and a d ∈ D such that ϕ(b)d /∈ J . Therefore
ϕ(K)D 6⊂ J . Let K ′ be the ideal in D generated by ϕ(K)D. Then K ′ 6⊂ J . On
the other hand, if K ′ 6⊂ J , then as J is an ideal, it follows that ϕ(K)D 6⊂ J , and
hence ϕ∗(J) 6⊃ K. Summarizing,

(ϕ∗)−1(OK) = { J ∈ I(D) : ϕ∗(J) 6⊃ K }
= { J ∈ I(D) : ϕ(K)D 6⊂ J }
= OK′ .

Therefore ϕ∗ is continuous.
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Lemma 8.36. Suppose that (A,G, α) is a dynamical system. There is a continuous
map i∗G : I(A ⋊α G) → I

(
C∗(G)

)
such that given a representation L = π ⋊ u of

A⋊α G, i∗G(kerL) = keru (where u is viewed as a representation of C∗(G)).

Proof. Let iG : C∗(G) → M(A ⋊α G) be the integrated form of the natural map.
Then i∗G is continuous by Lemma 8.35. Moreover,

i∗G(kerL) = { f ∈ C∗(G) : iG(f)d ∈ kerL for all d ∈ A⋊α G }.

Since L
(
iG(f)d

)
= u(f)L(d) and since L is nondegenerate, u(f) = 0 if and only if

f ∈ i∗G(kerL).

Lemma 8.37. Suppose that (G,X) is a locally compact transformation group, and
that J(F ) is the ideal in C0(X)corresponding to the closed set F ⊂ X. Let (G\X)∼

be the T0-ization of G\X (see Definition 6.9 on page 180). Define π : (G\X)∼ →
I
(
C0(X)

)
by π(G · x) := J(G · x). Then π is a homeomorphism onto its range.

Proof. Define π̄ : X → I
(
C0(X)

)
by π̄(x) = π

(
G · x

)
Since Lemma 6.19 on page 183

implies that π̄(x) = Res
(
Φ(x, 1)

)
, π̄ is continuous by Proposition 8.28 on page 245.

Since π̄ is clearly injective, it will suffice to see that π̄ is open as a map onto its
range.

Let U be open in X , and let K := J(X rG · U). Then if x ∈ U ,

J(G · x) =
⋂

s∈G

J(s · x) 6⊃ K.

Thus, π̄(x) ∈ OK = { I ∈ I
(
C0(X)

)
: I 6⊃ K }.

On the other hand, suppose that π̄(x) ∈ OK . If s · x /∈ U for all s ∈ G, then
x /∈ G · U , and since G · U is open, G · x ∩G · U = ∅. This would imply that

⋂

s∈G

J(s · x) = J(G · x) ⊃ K,

which contradicts our assumption that π̄(x) ∈ OK . Therefore there must be a s
such that s · x ∈ U . Since π̄(x) = π̄(s · x), we have π̄(x) ∈ π̄(U). In other words,
π̄(U) = OK ∩ π̄(X). Since OK is a subbasic open set in I

(
C0(X)

)
, this proves that

π̄ is open onto its range. The result is proved.

There is a one-to-one correspondence between closed subsets F ⊂ PrimA and
ideals I ∈ I(A):

I(F ) :=
⋂

P∈F

P

for a closed set F ⊂ PrimA [139, Proposition A.27]. The following lemma is helpful
when using the topology on I(A).6

6It is possible to describe the topology on I(A) as a topology on the closed subsets of PrimA.
However, this is definitely not Fell’s compact Hausdorff topology discussed in Appendix H, and it
seemed best not to introduce a second topology on the closed subsets of PrimA. In any event, it
is interesting to contrast Lemma 8.38 with Lemma H.2 on page 454.
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Lemma 8.38. Suppose that A is a C∗-algebra. For each closed set F ⊂ PrimA,
let I(F ) be the corresponding ideal in I(A). Then a net { I(Fj) } converges to I(F )
in I(A) if and only if given P ∈ F , there is a subnet { I(Fjk) } and Pk ∈ Fjk such
that Pk → P in PrimA.

Proof. Suppose that I(Fj) → I(F ) in I(A) and that P ∈ F . Let U be a neigh-
borhood of P in PrimA, and let J = I(U c) be the ideal corresponding to the
complement of U . Then I(F ) 6⊃ J . Therefore

OJ = { I ∈ I(A) : I 6⊃ J }

is a neighborhood of I(F ). Thus there is a j0 such that j ≥ j0 implies that
I(Fj) ∈ OJ . In particular, if j ≥ j0, then U ∩ Fj 6= ∅. Then if we let

M := { (U, j) : U is a neighborhood of P and U ∩ Fj 6= ∅ },

then M is directed by decreasing U and increasing j. Let F(U,j) = Fj . For each
m = (U, j) ∈M , we can pick Pm ∈ Fj∩U . Then {Pm } converges to P as required.

For the converse, suppose that { I(Fj) } has the property given in the lemma,
and that I(Fj) 6→ I(F ). After passing to a subnet, and relabeling, we can assume
that there is an open set U ⊂ PrimA such that U ∩F 6= ∅ and such that Fj ∩U = ∅
for all j. But if P ∈ F ∩U , then we can pass to a subnet, relabel, and find Pj ∈ Fj
such that Pj → P . Then Pj must eventually be in U , which is a contradiction.
This completes the proof.

We can form the quotient space

X × Ĝ/∼,

where (x, τ) ∼ (y, σ) if G · x = G · y and τσ ∈ G⊥
x . We give X × Ĝ/∼ the quotient

topology.

Theorem 8.39. Let (G,X) be a locally compact transformation group with G

abelian. Then Φ : X × Ĝ → Prim
(
C0(X) ⋊lt G

)
is open as a map onto its

range, and factors through X × Ĝ/∼. Furthermore, Φ defines a homeomorphism

of X × Ĝ/∼ onto its range. If
(
C0(X), G, lt

)
is EH-regular, which is automatic

if (G,X) is second countable, then Φ defines a homeomorphism of X × Ĝ/∼ onto
Prim

(
C0(X) ⋊lt G

)
.

Remark 8.40. The openness of Φ is very important. It implies that the quotient
map of X × Ĝ onto X × Ĝ/∼ is open, and as a result, it is very easy to describe
the quotient topology. For example, the forward image of a basis for the topology
in X × Ĝ is a basis for the quotient topology in X × Ĝ/∼.

Remark 8.41. We are working with the primitive ideal space because we are not
assuming that C0(X) ⋊lt G is GCR, so that there is little hope of describing the
spectrum in any meaningful way. However, since the topology on the spectrum is
pulled back from the topology on the primitive ideal space, the map

Φ̂(x, τ) := IndGGx
(ρx ⋊ τ |Gx)
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is always a continuous map into the spectrum (C0(X) ⋊lt G)∧. If the orbit space is
T0, then Proposition 7.30 on page 222 implies that C0(X) ⋊lt G is GCR,7 and the
primitive ideal space is homeomorphic to the spectrum. In this case, we actually
get a complete description of the spectrum, and every irreducible representation is
equivalent to one of the form Φ̂(x, τ).

Proof of Theorem 8.39. If
(
C0(X), G, lt

)
is EH-regular, every primitive ideal in

Prim
(
C0(X)⋊ltG

)
is of the form ker

(
IndGGx

(ρ⋊ω
)

for an irreducible representation
ρ⋊ ω of C0(X) ⋊lt Gx, where ker ρ is the ideal in C0(X) of functions vanishing at
x. In particular, ρ = ρx and ω must be an irreducible representation of Gx. But
every irreducible representation of Gx is a character, and every character of Gx is
the restriction of a character on G [56, Corollary 4.41]. Therefore Φ is surjective
when

(
C0(X), G, lt

)
is EH-regular.

If (G,X) is second countable, then
(
C0(X), G, lt

)
is a separable dynamical sys-

tem with G amenable. Therefore,
(
C0(X), G, lt

)
is EH-regular by Theorem 8.21 on

page 241. Also, Φ factors through X × Ĝ/∼ in view of Lemma 8.34 on page 249.
Thus it suffices to see that Φ is an open map onto its range, and that it is injective
on X × Ĝ/∼.

If F is a closed subset of X , let J(F ) be the corresponding ideal in C0(X).
Lemma 6.19 on page 183 implies that Res

(
Φ(x, τ)

)
=

⋂
s∈G J(s · x) = J

(
G · x

)
.

Similarly, if I(C) is the ideal in C0(Ĝ) corresponding to a closed subset C ⊂ Ĝ, then
Lemma 8.36 on page 250 and Proposition 5.14 on page 162 imply that i∗G

(
Φ(x, τ)

)
=

I(τG⊥
x ). It follows that if Φ(x, τ) = Φ(y, σ), then G · x = G · y and τG⊥

x = σG⊥
y .

Since Lemma 8.34 on page 249 implies Gx = Gy, Φ is injective on X × Ĝ/∼.
To show that Φ is open, we will use Proposition 1.15 on page 4. Thus if

{Φ(xi, τi) } is a net converging to Φ(x, τ), then it will suffice to see that, after
possibly passing to a subnet and relabeling, that there is a net { (yi, σi) } converg-

ing to (x, τ) (in X × Ĝ) such that G · xi = G · yi and such that τiσi ∈ G⊥
xi

. Since

Res is continuous (Corollary 6.15 on page 182), J(G · xi) → J(G · x) in I
(
C0(X)

)
.

Lemma 8.37 on page 250 implies that G · xi → G · x in (G\X)∼. Since the nat-
ural map of X onto (G\X)∼ is open (Lemma 6.12 on page 180), we can pass to
a subnet, relabel, and assume that there is a net yi → x such that G · yi = G · xi
(Proposition 1.15 on page 4).

At the same time, the continuity of i∗G (Lemma 8.36 on page 250) implies that
I(τiG

⊥
xi

) → I(τG⊥
x ). Then, after possibly passing to another subnet and relabeling,

Lemma 8.38 on the preceding page implies there are σi ∈ G⊥
xi

such that τiσi → τ

in Ĝ. Then (yi, σiτi) → (x, τ), and this shows that Φ is open onto its range which
completes the proof.

Remark 8.42 (Alternate description of Prim
(
C0(X) ⋊lt G

)
). Let (G\X)∼ be the

“T0-ization” of the orbit space G\X (Definition 6.9 on page 180). We will abuse
notation slightly and use G · x for both the closure of G · x in X , and for the class
of G · x in (G\X)∼. (Since G · x and G · y define the same class in (G\X)∼ if

7Also see Theorem 8.43 on the next page.
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and only if they have the same closure, this should cause little harm.) In view of
Lemma 8.34 on page 249, we can also define the quotient space

(G\X)∼ × Ĝ/∼,

where (G · x, τ) ∼ (G · y, σ) if G · x = G · y and τσ ∈ G⊥
x . Of course there is a

bijection θ on X × Ĝ/∼ onto (G\X)∼ × Ĝ/∼. We want to observe that θ : X ×
Ĝ/∼→ (G\X)∼×Ĝ/∼ is a homeomorphism for the respective quotient topologies.8

Consider the commutative diagram

X × Ĝ
q×id //

q1

�� ''

(G\X)∼ × Ĝ

q2

��
X × Ĝ/∼ θ // (G\X)∼ × Ĝ/∼,

where q, q1 and q2 are the natural quotient maps. Since q and q2 are continuous,
the dotted diagonal arrow is continuous which shows that θ is continuous. Suppose
that V ⊂ X × Ĝ/∼ is open. Since θ is a bijection, q × id

(
q−1
1 (V )

)
= q−1

2

(
θ(V )

)
.

Therefore it will suffice to see that q×id
(
q−1
1 (V )

)
is open. However, q−1

1 (V ) is open,
and therefore is the union of basic open rectangles. Since q is open (Lemma 6.12
on page 180), it follows that q × id

(
q−1
1 (V )

)
is open, and the assertion follows.

Therefore, when convenient, and when
(
C0(X), G, lt

)
is EH-regular, we can identify

Prim
(
C0(X) ⋊lt G

)
with (G\X)∼ × Ĝ/∼.

With Theorem 8.39 on page 251 in hand, we can provide the promised converses
to Proposition 7.30 on page 222 and Proposition 7.31 on page 223.

Theorem 8.43. Suppose that (G,X) is a locally compact transformation group with
G abelian. If C0(X) ⋊lt G is GCR, then the orbit space G\X is T0. In particular,
if (G,X) is second countable, then C0(X) ⋊lt G is GCR if and only if G\X is T0.

Proof. Suppose that C0(X) ⋊lt G is GCR, and that G · x = G · y. We want to see
that G · x = G · y. Let H = Gx = Gy, and let ι denote the trivial character. The
continuity of Φ (Lemma 8.34 on page 249) implies that

ker
(
IndGH(ρx ⋊ ι)

)
= ker

(
IndGH(ρy ⋊ ι)

)
.

Since C0(X) ⋊lt G is GCR, this implies that IndGH(ρx ⋊ ι) and IndGH(ρy ⋊ ι) are

equivalent. Using Proposition 5.4 on page 153, we can realize IndGH(ρx⋊ι) = Mx⋊U
on L2

1(G,µG/H ;C) ∼= L2(G/H) where

Mx(ξ)h(ṡ) = ξ(s · x)h(ṡ).

Of course, we must have Mx equivalent to My. If G ·x 6= G ·y, then G ·x∩G ·y = ∅.
Let Y = Z = G/H , and define i : Y → X by i(sH) = s · x and j : Z → X by

8Since Theorem 8.39 on page 251 implies that latter quotient embeds into a primitive ideal
space, this description helps to explain the reason that the quasi-orbit space (G\X)∼ plays a key
role in the proof of Theorem 8.39 on page 251
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j(sH) = s · y. Since i and j have disjoint images, Lemma I.42 on page 505 implies
that Mx is not equivalent to My. This is a contradiction and completes the proof of
the first assertion. The second assertion follows from the first and Proposition 7.30
on page 222 (together with the observation that, since G is abelian, Gx is CCR for
all x).

Theorem 8.44. Suppose that (G,X) is a locally compact transformation group
with G abelian. If C0(X) ⋊lt G is CCR, then the G-orbits in X are closed. In
particular, if (G,X) is second countable, then C0(X) ⋊lt G is CCR if and only if
the G-orbits in X are closed.

Proof. Suppose that C0(X) ⋊lt G is CCR. Then Theorem 8.43 on the previous
page implies that G\X is T0. Thus (G\X)∼ = G\X . Then Theorem 8.39 on
page 251 (together with Remark 8.42 on page 252) implies that x 7→ Φ(x, ι) =
ker

(
IndGGx

(ρx ⋊ ι)
)

defines a continuous injection of G\X into Prim(C0(X) ⋊lt G).
Since C0(X)⋊ltG is CCR, points in Prim(C0(X)⋊ltG) are closed. Therefore points
in G\X are closed; that is, each G-orbit in X must be closed as required.

The last statement now follows from Proposition 7.31 on page 223.

Example 8.45 (Irrational Rotation Algebras). Let Aθ be the rotation algebra
C(T) ⋊α Z where α is determined by rotation through the angle 2πθ with θ
irrational. Then the action of Z on T is free. Thus Theorem 8.39 on page 251
implies that PrimAθ is homeomorphic to the T0-ization (Z\T)∼ of the orbit space.
However, by Lemma 3.29 on page 96, each Z-orbit is dense. Therefore Z\T is not
a T0-space, and (Z\T)∼ is reduced to a point. It follows that Aθ is simple.9 By
Theorem 8.43 on the preceding page, Aθ is not GCR. Therefore if θ is irrational,
then the irrational rotation C∗-algebra Aθ is a simple NGCR algebra.10

Example 8.46 (Rational Rotation Algebras). Let Aθ be the rotation algebra
C(T) ⋊α Z where α is determined by rotation through the angle 2πθ with θ
rational. Say θ = p/q with p and q relatively prime. Then the stability group at
each point of T is qZ. The orbits are finite, and hence closed. Furthermore,

Z\T ∼= (
p

q
Z)\(R/Z) ∼= R/

1

q
Z ∼= T.

Therefore Theorem 8.39 on page 251 implies that

PrimAθ ∼= T × (Ẑ/(qZ)⊥) ∼= T × q̂Z ∼= T2.

Since the orbits are closed, Aθ is CCR by Proposition 7.31 on page 223 (or The-
orem 8.44). Furthermore, every irreducible representation of Aθ is of the form
IndGGx

(ρz ⋊ω) for some z ∈ T and ω ∈ (qZ)
∧

(Remark 8.41 on page 251). Since we

can realize IndGGx
(ρz ⋊ ω) on the q-dimensional Hilbert space L2(Z/qZ), it follows

9It is interesting to compare this “short” proof of the simplicity of Aθ with our earlier proof in
Proposition 2.56 on page 68. Of course, this proof is only “short” because we are able to invoke
the machinery of this section — which includes the GRS-Theorem.

10A C∗-algebra is called NGCR if it has no nonzero CCR ideals.
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that when θ is rational, Aθ is a q-homogeneous C∗-algebra with spectrum T2. (As
we pointed out in Remark 2.60 on page 71, the rational rotation algebras are even
Morita equivalent to C(T2).11

Example 8.47. Let R+
× be the group of positive real numbers under multiplication.

Let R+
× act on R2 by

s · (a, b) := (a/s, b/s).

The origin is a fixed points and all other orbits are rays originating at the origin.
The action is free except at the origin. Since the orbits are all locally closed, but
not all closed, C0(R

2)⋊αR+
× is GCR, but not CCR (Theorems 8.43 and 8.44 on the

facing page). Thus the primitive ideal space can be identified with the spectrum,
and the induced representations are (up to equivalence) given by inducing from
stability groups. The spectrum can be identified with the the set T ∪ R+. Since
the natural map of R+

× × R2 onto T ∪ R+ is open, the open sets in T ∪ R+ are
given by

{U ⊂ T : U is open in T } ∪ {T ∪ V : V is open in R+ }.

In particular, T is open and corresponds to the ideal I := C0(R
2r{ (0, 0) })⋊αR+

×,
and R+ is closed and corresponds to the quotient C0(R

2) ⋊α R+
×/I

∼= C∗(R+
×).

Example 8.48. The situation in Example 8.47 changes dramatically if we alter the
action so that

s · (a, b) := (a/s, sb).

We described the orbit space F in Example 3.32 on page 96. Since the R+
×-action is

free everywhere except at the origin, we may identify the spectrum of C0(R
2)⋊βR

+
×

with a set identical to F except that the origin has been replaced by R+. The open
sets in the spectrum are given by

{U : U ⊂ F r { (0, 0) } and U open in F } ∪
{U ∪ V : U is a open neighborhood of (0, 0) in F with (0, 0) deleted,

and V is open in R+ }.

Example 8.49 (Semidirect Products of Abelian Groups). Suppose that G = N⋊ϕH
is the semidirect product of two locally compact abelian groups N and K. As in
Example 3.16 on page 91, C∗(G) is isomorphic to the transformation group C∗-

algebra C0(N̂) ⋊ H , where h · ω(·) := ω(h−1 · h). By Theorem 8.39 on page 251,
the primitive ideal space of C∗(G) is homeomorphic to

(H\N̂)∼ × Ĥ/∼

as described above.

11Since q-homogeneous C∗-algebras are always locally trivial [50], Aθ must have continuous
trace. Since its spectrum is T

2 and since H3(T2) = { 0 }, it follows that Aθ has trivial Dixmier-
Douady class. Therefore Aθ is Morita equivalent to C(T2) by [139, Proposition 5.33].
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Example 8.50 (The ax + b group). To continue with the previous example, we
consider the specific case of the ax+b group. Then, as in Example 3.15 on page 91,
C∗(G) is isomorphic to the transformation group C∗-algebra C0(R) ⋊τ R+

× where
the action of R+

× on R is given by

s · a = a/s.

There are just three orbits: the origin, and the two half lines p−1 := R+
× · (−1)

and p2 := R+
× · 1. The orbits are all locally closed, but not all closed. Hence

C∗(G) is GCR (but not CCR). The action is free except at the origin — which
is a fixed point. Therefore we can identify the spectrum of C∗(G) with the set
{ p−1 }∪R+ ∪{ p1 }. The sets { pi } are open (for i = −1, 1) as are sets of the form
U ∪ { p−1, p1 }, when U is open in R+. Since the irreducible representations are
all equivalent to an induced representation, it is a straightforward matter to write
down representatives for the infinite-dimensional representations corresponding to
each pi, as well as the complex homomorphisms corresponding to each point in R+.

8.4 The Fell Subgroup Crossed Product

If (A,G, α) is a dynamical system and if Σ is the compact Hausdorff space of closed
subgroups of G, then for each H ∈ Σ, we have a crossed product A ⋊α|H H . Our
study of EH-regular systems, and regular systems in particular, suggests that a good
deal of the ideal structure of the crossed product A⋊αG is contained in the crossed
products by subgroups. One way to encode this information is in an analogue of
Fell’s Subgroup Algebra [52], which we call Fell’s subgroup crossed product. Fell
used the subgroup algebra to study the continuity of the induction process, and the
subgroup crossed product can be used similarly (cf., for example, [170]). However,
we introduce its construction here primarily so that we can use it in the proof of
the Gootman-Rosenberg-Sauvageot Theorem on page 241 in Chapter 9.

Let {µH } be a continuous choice of Haar measures on Σ (Lemma H.8 on
page 458), and let

G ∗ Σ = { (s,H) ∈ G× Σ : s ∈ H }.
Using Lemma H.2 on page 454, it is easy to see that G ∗ Σ is closed in G× Σ, and
therefore it is locally compact.

Proposition 8.51. Suppose that (A,G, α) is a dynamical system. Then Cc(G ∗
Σ, A) is a ∗-algebra with respect to the operations defined by

f ∗ g(s,H) :=

∫

H

f(r,H)αr
(
g(r−1s,H)

)
dµH(r) and

f∗(s,H) := ∆H(s−1)αs
(
f(s−1, H)∗

)
.

Most of the proof of Proposition 8.51 are routine; after all, for H ∈ Σ, the
“fibre” over H is Cc(H,A) with the ∗-algebra structure coming from A⋊α|H H . We
do have to work a bit to see that the above formulas define elements in Cc(G∗Σ, A).
For this, the following lemma is useful.
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Lemma 8.52. Let G ∗G ∗Σ = { (s, r,H) ∈ G×G×Σ : s, r ∈ H }. Then G ∗G ∗Σ
is locally compact and if f ∈ Cc(G ∗G ∗ Σ, A), then

Ff (s,H) :=

∫

H

f(s, r,H) dµH(r)

defines an element Ff ∈ Cc(G ∗ Σ, A).

Proof. Clearly, G ∗G ∗ Σ is closed in G×G× Σ. Hence it is locally compact, and
given f as above, there is a compact set K ⊂ G such that f(s, r,H) = 0 if s /∈ K or
r /∈ K. Let n(K) ∈ R+ be such that µH(K∩H) ≤ n(K) for all H ∈ Σ (Lemma H.9
on page 460). Then Ff (s,H) is a well-defined element of A and

‖Ff (s,H)‖ ≤ ‖f‖∞n(K).

It follows that if fi → f in the inductive limit topology on Cc(G ∗G ∗ Σ, A), then
Ffi → Ff uniformly. If ϕ ∈ Cc(G ∗ G ∗ Σ) and if a ∈ A, then we can define
ϕ⊗ a ∈ Cc(G ∗G ∗ Σ, A) by ϕ⊗ a(s, r,H) = ϕ(s, r,H)a. Since G ∗G ∗ Σ is closed
in G×G× Σ, there is a Φ ∈ Cc(G×G× Σ) extending ϕ. Since

Fϕ⊗a(s,H) =

∫

H

Φ(s, r,H) dµH(r)a,

Fϕ⊗a ∈ Cc(G ∗Σ, A) by Lemma H.9 on page 460. Since the span of elements of the
form ϕ ⊗ a is dense in Cc(G ∗ Σ, A) in the inductive limit topology (Lemma 1.87
on page 29), this suffices.

Proof of Proposition 8.51 on the preceding page. The continuity of f∗ follows im-
mediately from the continuity of (s,H) 7→ ∆H(s) which is proved in Lemma H.9
on page 460. On the other hand,

(s, r,H) 7→ f(r,H)αr
(
g(r−1s,H)

)

is in Cc(G ∗G ∗ Σ, A). Therefore the continuity of f ∗ g follows from Lemma 8.52.
The rest is routine.

We can define a norm ‖ · ‖Σ on Cc(G ∗ Σ, A) by

‖f‖Σ := sup
H∈Σ

∫

H

‖f(s,H)‖ dµH(s).

A nondegenerate ∗-homomorphism L : Cc(G ∗ Σ, A) → B(HL) is called a ‖ · ‖Σ-
decreasing representation if ‖L(f)‖ ≤ ‖f‖Σ for all f ∈ Cc(G ∗Σ, A). The universal
norm on Cc(G ∗ Σ, A) is given by

‖f‖ := sup{ ‖L(f)‖ : L is a ‖ · ‖Σ-decreasing representation }.
Remark 8.53. As usual in this sort of construction, the class of ‖·‖Σ-representations
is not necessarily a set. But the values ‖L(f)‖ form a subclass of the set R of real
numbers. The separation axioms of set theory imply that a subclass of a set is a
set. Hence the supremum is well-defined [84, §1.1]. Alternatively, we could restrict
to the set of cyclic representations on a Hilbert space of suitably large dimension,
but this hardly seems to clarify anything.
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The completion of Cc(G∗Σ, A) in the universal norm is denoted by A⋊αΣ and
is called Fell’s subgroup crossed product.

Lemma 8.54. Suppose that A is a C∗-algebra and that F is a closed subset of
a locally compact space X. Then the restriction map r : C0(X,A) → C0(F,A) is
surjective. In particular, if g ∈ Cc(F,A), then there is a f ∈ Cc(X,A) such that
r(f) = g.

Proof. To see that r is surjective, it suffices to see that it has dense range (since r
is a homomorphism between C∗-algebras). However, Cc(F,A) is dense in C0(F,A),
and the span of functions of the form ϕ ⊗ a(s) := ϕ(s)a, with ϕ ∈ Cc(F ) and
a ∈ A, are dense in Cc(F,A) in the inductive limit topology (and hence in the
‖ · ‖∞-norm) by Lemma 1.87 on page 29. If ϕ ∈ Cc(F ), then the Tietze extension
theorem implies that there is a ψ ∈ Cc(X) which extends ϕ. Since r(ψ⊗a) = ϕ⊗a,
it follows that r has dense range.

If g ∈ Cc(F,A), then by the above, there is a f ∈ C0(X,A) such that r(f) = g.
If ψ ∈ Cc(X) is such that ψ(x) = 1 for all x ∈ supp g, then r(ψ · f) = g and
ψ · f ∈ Cc(X,A) as required.

Lemma 8.54 implies that the restriction map

κH : Cc(G ∗ Σ, A) → Cc(H,A)

is surjective for each H ∈ Σ. If R is a representation of A⋊α|H H , then R ◦ κH is
a ‖ · ‖Σ-decreasing representation of Cc(G ∗Σ, A). Thus κH extends to a surjective
homomorphism, also called κH , of A⋊α Σ onto A⋊α|H H .

Proposition 8.55. Suppose that (A,G, α) is a dynamical system and that Σ is the
compact Hausdorff space of closed subgroups of G. Then A⋊αΣ is a C(Σ)-algebra.
The C(Σ)-action on f ∈ Cc(G ∗ Σ, A) is given by ϕ · f(s,H) = ϕ(H)f(s,H).
The fibre A ⋊α Σ(H) over H is (isomorphic to) A ⋊α|H H, and every irreducible
representation of A ⋊α Σ is (equivalent to one) of the form R ◦ κH , where H ∈ Σ
and R is an irreducible representation of A⋊α|H H.

Proof. In view of Lemma 8.3 on page 230, to see that A⋊α Σ is a C(Σ)-algebra it
suffices to see that ‖ϕ · f‖ ≤ ‖ϕ‖∞‖f‖ for ϕ ∈ C(Σ) and f ∈ Cc(G ∗ Σ, A). Let

ψ :=
(
‖ϕ‖2

∞1Σ − |ϕ|2
) 1

2 . Then ψ ∈ C(Σ), and

(ϕ · f)∗ ∗ (ϕ · f) = |ϕ|2 · f∗ ∗ f
= ‖ϕ‖2

∞f
∗ ∗ f −

(
‖ϕ‖2

∞1Σ − |ϕ|2
)
· f∗ ∗ f

= ‖ϕ‖2
∞f

∗ ∗ f − (ψ · f)∗ ∗ (ψ · f).

Therefore (ϕ · f)∗ ∗ (ϕ · f) ≤ ‖ϕ‖2
∞f

∗ ∗ f in A⋊α Σ, and

‖ϕ · f‖2 = ‖(ϕ · f)∗ ∗ (ϕ · f)‖ ≤ ‖ϕ‖2
∞‖f ∗ f‖ = ‖ϕ‖2

∞‖f‖2.

It follows that A⋊α Σ is a C(Σ)-algebra as claimed.
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Let IH be the ideal of A⋊α Σ spanned by C0,H(Σ) · Cc(G ∗ Σ, A). Then A ⋊α

Σ(H) = A⋊αΣ/IH . Clearly IH ⊂ kerκH . To see that A⋊αΣ(H) is isomorphic to
A ⋊α|H H , it will suffice to prove that IH = kerκH . Let L be a representation of
A ⋊α Σ with IH ⊂ kerL. It follows that if ϕ ∈ C(Σ) is such that ϕ(H) = 1, then
L(f) = L(ϕ · f) for all f ∈ Cc(G ∗ Σ, A). On the other hand,

H 7→
∫

H

‖f(s,H)‖ dµH(s) = ‖κH(f)‖1

is continuous on Σ (since {µH } is a continuous choice of Haar measures). Therefore,
given f ∈ Cc(G ∗ Σ, A) and ǫ > 0, there is a ϕ ∈ C(Σ) such that ϕ(H) = 1 and
such that

‖ϕ · f‖Σ ≤ ‖κH(f)‖1 + ǫ.

Since ǫ is arbitrary, it follows that

‖L(f)‖ ≤ ‖κH(f)‖1.

Since κH
(
Cc(G ∗Σ, A)

)
= Cc(H,A), L defines a ‖ · ‖1-decreasing representation L′

on Cc(H,A) by
L′

(
κH(f)

)
= L(f).

Therefore, ‖L(f)‖ ≤ ‖κH(f)‖1. Since L is any representation with IH in its kernel,
we must have IH = kerκH as required.

The last assertion follows as every irreducible representation of a C(Σ)-algebra
must factor through a fibre (Proposition C.5 on page 355).

Remark 8.56. If r = (π, u) is a representation of A⋊α|H H , then there is a natural
representation r′ := r ◦κH of A⋊αΣ. Often, we will not distinguish between r and
r′ and trust that the meaning will be clear from context.

The following observations will be needed in Chapter 9. Suppose that (π, u) is
a covariant representation of (A,H, α|H). If s ∈ G, let s · π and s · u be defined by

s · π(s) := π
(
α−1
s (a)

)
for a ∈ A and s · u(t) := u(s−1ts) for t ∈ s ·H .

Then a short computation shows that (s · π, s · u) is a covariant representation of
(A, s ·H,α|s·H). Let L := (π, u) and s · L := (s · π, s · u). If Φ ∈ Cc(G ∗ Σ) and if
we define

s · Φ(t,H) := ω(s, s−1 ·H)αs
(
Φ(s−1ts, s−1 ·H)

)
, (8.14)

where ω is as in Lemma H.10 on page 461, then

L(s−1 · Φ) =

∫

H

π
(
s−1 · Φ(t,H)

)
u(t) dµH(t)

= ω(s−1, s ·H)

∫

H

π
(
α−1
s

(
Φ(s−1ts, s−1 ·H)

))
u(t) dµH(t)

=

∫

s·H

s · π
(
Φ(t, s ·H)

)
s · u(t) dµs·H(t)

= s · L(Φ).
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Lemma 8.57. Suppose that (A,G, α) is a dynamical system and that A ⋊α Σ is
Fell’s subgroup algebra. Then there is a dynamical system

β : G→ AutA⋊α Σ (8.15)

such that βs(Φ) = s · Φ for all Φ ∈ Cc(G ∗ Σ, A).

Proof. The preceding discussion shows that βs is isometric on Cc(G ∗Σ, A) so that
(8.15) is a homomorphism. However, if si → e, then it is not hard to check that
si · Φ → Φ in the inductive limit topology. It now follows easily that β is strongly
continuous and therefore a dynamical system.

Remark 8.58. As mentioned at the beginning of this section, we have introduced
A ⋊α Σ primarily because it is needed in the proof of the Gootman-Rosenberg-
Sauvageot Theorem in Chapter 9. Unfortunately, there isn’t space to develop some
of its other applications to crossed products. Nevertheless, we want to at least
describe Fell’s original motivation for introducing the subgroup algebra C∗

Σ(G) :=
C ⋊id Σ in [52]. Let

S (G) = { (H,π) : H ∈ Σ and π is a representation of C∗(H) }.

We can, and do, view S (G) as a collection of representation of C∗
Σ(G), and topol-

ogize it by pulling back the topology from I
(
C∗

Σ(G)
)
. Therefore (Hi, πi) → (H,π)

in S (G) if ker(πi ◦ κHi) → ker(π ◦ κH) in I
(
C∗

Σ(G)
)
. We already know that

π 7→ IndGH π is continuous in this sense; that is, if kerπi → kerπ in I
(
C∗(H)

)
, then

Lemma 5.16 on page 164 implies that ker
(
IndGH π

)
→ ker

(
IndGH π

)
in I

(
C∗(G)

)
.

More generally, let

X := { (K,H, π) ∈ Σ × S (G) : K ⊃ H },

and give X the relative topology as a subset of Σ × S (G). Then we get a map of
X into S (G) defined by

(K,H, π) 7→ IndKH π.

Fell shows that this map is continuous [52, Theorem 4.2]. More colloquially, IndKH π
is continuous in all three variables H , K and π. Naturally, these sorts of considera-
tions extend to Fell’s subgroup crossed product, but we leave the details for another
day.

Notes and Remarks

Theorem 8.16 is a “C0(X)-algebra” version of the main result in [171] (as is Corol-
lary 8.6 and much of the material in Section 8.1). Theorem 8.19 was shown to me
by Echterhoff. Of course, Theorem 8.21 is due to Gootman & Rosenberg [64], but
the contribution of Sauvageot should not be underestimated [159,160]. Section 8.3
is taken primarily from [169] (although Theorem 8.43 is a special case of Gootman’s
[62] with a different proof). Section 8.4 is a straightforward variation on Fell’s [52].



Chapter 9

The Proof of the Gootman-
Rosenberg-Sauvageot
Theorem

The proof of the Gootman-Rosenberg-Sauvageot Theorem (on page 241) was the fo-
cus of intense work in the 1970s. The method of attack was developed by Sauvageot
in [159] and [160]. The complete solution was given by Gootman and Rosenberg in
[64]. The proof given here follows these ground breaking papers and also borrows
heavily from Renault’s proof of the analogue of the GRS-Theorem for groupoids
[144]. The proof is involved and necessitates the introduction of sophisticated tech-
nology such as direct integrals and the theory of standard Borel spaces. This will
force us to up the difficulty level a fair bit. However, as EH-regularity and the proof
of the validity of the generalized Effros-Hahn conjecture is so important, it seems
worth the effort to present the argument here at a level of detail comparable with
that in the previous chapters. Much of the additional technology alluded to above
has been relegated to appendices. While this allows us to get right to the matter
at hand, those unfamiliar with topics such as direct integrals, homogeneous repre-
sentations of C∗-algebras and Borel structures will have to make frequent detours
to the appropriate appendices.

Summary of the Proof

We have to show that given K ∈ Prim(A ⋊α G) there is a P ∈ PrimA and a
J ∈ PrimA⋊α GP such that ResJ = P and such that IndGGP

J = K.

Step I: We would like to show that if J ∈ Prim(A⋊αGP ) with Res J = P , then
IndGGP

J is a primitive ideal in A⋊α G. Unfortunately, this seems to be difficult to
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prove.1 Instead, we follow Sauvageot and work with homogeneous representations.
(Homogeneous representations are treated in Appendix G.1.) Suppose that J =
kerL, and that we also assume that L = (π, u) is a homogeneous representation
of A ⋊α GP such that π is homogeneous (with kernel P ). The “extra” hypothesis
on the “π part” of L allows us to show that IndGGP

L is homogeneous. Since we’re

assuming (A,G, α) is separable throughout, it follows that IndGGP
J = ker

(
IndGGP

L
)

is primitive. This is Proposition 9.5 on page 268.

Step II: Fix K ∈ PrimA ⋊α G. We need to produce an induced primitive
ideal which is related to K. Let R = (π, V ) be a factorial representation of A⋊αG
with kernel K. Sauvageot’s idea was to employ Effros’s ideal center decomposition
(treated in Appendix G). Although it might seem peculiar not be simply take R
irreducible, we want to assume that R has infinite multiplicity (cf., Remark 9.6
on page 271), then as in Remark G.23 on page 444, we can form an ideal center
decomposition of π, say

π =

∫ ⊕

PrimA

πP dµ(P )

where the associated Borel Hilbert bundle PrimA ∗ H is trivial. This allows us to
assume that π acts on L2(PrimA, µ,H), and thus to remove one layer of direct
integrals. This will reduce, but unfortunately not eliminate, some of the technical
detail of direct integrals in the sequel. (This simplification will be especially useful
in Step III below.) Then, by decomposing V , we obtain for µ-almost every P a
covariant representation (πP , σP ) of (A,GP , α) which determines a representation
rP of the subgroup crossed product algebra A ⋊α Σ. (Fell’s subgroup crossed
product, A ⋊α Σ, is defined in Section 8.4.) Then it is possible to construct a
representation of A⋊α Σ,

r :=

∫ ⊕

PrimA

rP dµ(P ),

which is called the restriction of R to the stability groups. Once we have r properly
defined, we need to examine an ideal center decomposition

r̃ :=

∫ ⊕

Prim(A⋊αΣ)

r̃Q dν(Q)

for r. There are a number of technicalities to worry about. For example, we want to
see that ν is quasi-invariant and ergodic2 for the natural G-action on PrimA⋊α Σ
(Proposition 9.8 on page 274). Also, we show that the ideal center IC(π) of π
is contained in the ideal center IC(r) of r (Lemma 9.7 on page 272). This gives
an inclusion of L∞(PrimA, µ) in L∞

(
Prim(A ⋊α Σ), ν

)
, and it is well-known that

such inclusions are given by a map τ : Prim(A ⋊α Σ) → PrimA of the underlying

1If A is type I, then the above statement can be proved as written. In fact, more is true. If
L = (π, u) is an irreducible representation of A ⋊α GP such that ker π = P and if A is type I,
then IndG

GP
L is irreducible [44].

2We say that ν is ergodic if every G-invariant Borel set is either null or conull.



263

spaces (Lemma I.11). Using this, we find that r̃ decomposes as a direct integral
over PrimA in a useful way. In particular, it follows that, up to a null set of course,
each r̃Q is determined by a covariant representation (π̃Q, ũQ) of (A,Gτ(Q), α) with
π̃Q homogeneous with kernel τ(Q).

Step III: In this step, we form a representation ind r of A⋊αG which we view
as being induced from r. We take advantage of having π act on L2(PrimA, µ,H)
to explicitly realize ind r on a space of equivalence classes of H-valued functions on
PrimA. After making the above precise, there is still hard work to do in order to
show that K ′ := ker(ind r) is an induced primitive ideal as in Step I. This is proved
in Proposition 9.14 on page 283.

Step IV: If G is amenable, then we show in Proposition 9.22 on page 292 that

ker(ind r) = K ′ ⊂ K := kerR.

Step V: Steps I, II, III and IV are contained in Sauvageot’s [160], and the
proof here is taken from his work. The final, and most technical, piece of the proof
was accomplished by Gootman and Rosenberg in [64], where it is shown that we
always have

kerR ⊂ ker(ind r).

Since ker(ind r) is induced, this completes the proof. Our proof is strongly
influenced by Renault’s generalization of the GRS-Theorem to locally compact
groupoids in [144]. Our result is Proposition 9.24 on page 298.

Preliminaries

In this chapter, (A,G, α) will be a separable dynamical system. We write Σ for
the compact Hausdorff space of closed subgroups of G (equipped with the Fell
topology as in Corollary H.4 on page 455), and we fix a continuous choice of Haar
measures µH on Σ (as in Lemma H.8 on page 458). Since G is second countable,
Proposition H.17 on page 466 implies that there is a continuous function b : G×Σ →
[0,∞), called a generalized Bruhat approximate cross section, such that

(a)

∫

H

b(st,H) dµH(t) = 1 for all H ∈ Σ and s ∈ G, and

(b) if K ⊂ G is compact, then

supp b ∩ { (st,H) ∈ G× Σ : s ∈ K and t ∈ H }

is compact.

We let ω : G × Σ → (0,∞) be as defined in Lemma H.10 on page 461, and we
define ρ : G × Σ → (0,∞) as in Equation (H.4) on page 461. Then we let βGP

be the quasi-invariant measure on G/GP corresponding to s 7→ ρ(s,GP ) as in
Equation (H.5) on page 462. We almost always write βP in place of βGP . Since
A is separable, PrimA is a standard Borel space (Theorem H.40 on page 477). In
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fact, we can equip PrimA with its regularized topology, which is a Polish topology
finer than the hull-kernel topology, and which generates the same (standard) Borel
structure. In its Polish topology, (G,PrimA) is still a topological transformation
group (Theorem H.39 on page 476).

If µ is a finite quasi-invariant measure on PrimA, then we let d : G×PrimA→
(0,∞) be a Borel choice of Radon-Nikodym derivatives as in Corollary D.34 on
page 389. In particular, if f is a bounded Borel function on PrimA, then

∫

PrimA

f(P )d(s, P ) dµ(P ) =

∫

PrimA

f(s · P ) dµ(P ).

Recall that if τ : X → Y is a Borel map and if ν is a measure on X , then the
push-forward of ν by τ is the measure τ∗ν on Y given by τ∗(E) := ν

(
τ−1(E)

)
(see

Lemma H.13 on page 463).

Lemma 9.1. Let µ be a finite quasi-invariant measure on PrimA. For all non-
negative Borel functions f on PrimA× PrimA, the function

P 7→
∫

G/GP

f(P, s · P ) dβP (ṡ)

is Borel, and there is a σ-finite Borel measure γ on PrimA× PrimA such that

γ(f) =

∫

PrimA

∫

G/GP

f(P, s · P ) dβP (ṡ) dµ(P ). (9.1)

(a) If σ : PrimA × PrimA → PrimA × PrimA is the flip, σ(P,Q) = (Q,P ),
then σ∗γ is equivalent to γ. In particular, there is a Borel function D :
PrimA×PrimA→ (0,∞) such that D(P,Q)−1 = D(Q,P ) for all (P,Q) and
such that for all nonnegative Borel functions f on PrimA× PrimA we have

∫

PrimA

∫

G/GP

f(P, s · P )D(P, s · P ) dβP (ṡ) dµ(P )

=

∫

PrimA

∫

G/GP

f(s · P, P ) dβP (ṡ) dµ(P ). (9.2)

(b) Let d : G×PrimA be a Borel choice of Radon-Nikodym derivatives as above.
Then

D(P, s · P ) = ρ(s,GP )−1d(s−1, P ) (9.3)

for µ× µG-almost all (P, s) ∈ (PrimA) ×G.

Proof. Since the stabilizer map P 7→ GP is Borel by Proposition H.41 on page 477,
(P, s) 7→ b(s,GP )ρ(s,GP ) is a Borel function F on (PrimA)×G, and ν := F ·d(µ×
µG) is a Borel measure on (PrimA) ×G such that

ν(g) =

∫∫

(PrimA)×G

g(P, s)b(s,GP )ρ(s,GP ) d(µ× µG)(P, s).
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Let τ : PrimA×G→ PrimA×PrimA be given by τ(P, s) := (P, s ·P ), and define
γ := τ∗ν. By Lemma H.13 on page 463, if f is a nonnegative Borel function on
PrimA× PrimA, then

γ(f) =

∫

PrimA

∫

G

f(P, s · P )b(s,GP )ρ(s,GP ) dµG(s) dµ(P )

which, by Proposition H.11 on page 462, is

=

∫

PrimA

∫

G/GP

f(P, s · P )

∫

GP

b(st,GP ) dµGP (t) dβP (ṡ) dµ(P )

=

∫

PrimA

∫

G/GP

f(P, s · P ) dβP (ṡ) dµ(P ).

Note that

P 7→
∫

G

f(P, s · P )b(s,GP )ρ(s,GP ) dµG(s) =

∫

G/GP

f(P, s · P ) dβP (ṡ).

is Borel by Fubini’s Theorem.
To see that γ is σ-finite we note that it suffices to show that γ is equivalent to

a finite measure on PrimA× PrimA. But ν is σ-finite and therefore equivalent to
a finite measure ν̃. Then τ∗ν̃ is finite and equivalent to τ∗ν = γ.

Lemma H.10 on page 461 implies that ρ(sr,H) = ρ(r,H)ρ(s, r·H). In particular,
ρ(s,GP )−1 = ρ(s−1, s ·GP ) = ρ(s−1, Gs·P ). Let ν′ be the measure on PrimA ×G
given by

ν′(g) :=

∫∫

(PrimA)×G

g(P, s)d(s−1, P )b(s,GP ) d(µ× µG)(P, s).

Since d and ρ are everywhere nonzero, ν′ is equivalent to ν. Furthermore,

τ∗ν
′(f) =

∫

G

∫

PrimA

f(P, s · P )d(s−1, P )b(s,GP ) dµ(P ) dµG(s)

which, since P 7→ d(s−1, P ) is a Radon-Nikodym derivative, and after using Fubini’s
Theorem again, is

=

∫

PrimA

∫

G

f(s−1 · P, P )b(s,Gs−1·P ) dµG(s) dµ(P )

=

∫

PrimA

∫

G

f(s · P, P )b(s−1, Gs·P )∆G(s−1) dµG(s) dµ(P )

which, since ρ(s,GP )−1∆G(s−1) = ρ(s−1, Gs·P )∆G(s−1) = ω(s−1, Gs·P ) (where ω
is defined in Lemma H.10), is

=

∫

PrimA

∫

G/GP

f(s · P, P )

∫

GP

ω(t−1s−1, Gs·P )b(t−1s−1, Gs·P )

dµGP (t) dβP (ṡ) dµ(P )
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which, since ω(t−1s−1, Gs·P ) = ω(st,GP )−1 = ∆GP (t−1)ω(s,GP )−1, is

=

∫

PrimA

∫

G/GP

f(s · P, P )ω(s,GP )−1

∫

GP

b(ts−1, Gs·P )

dµGP (t) dβP (ṡ) dµ(P )

=

∫

PrimA

∫

G/GP

f(s · P, P )

∫

Gs·P

b(s−1t, Gs·P ) dµGs·P (t) dβP (ṡ) dµ(P )

=

∫

PrimA

∫

G/GP

f(s · P, P ) dβP (ṡ) dµ(P )

= σ∗γ(f).

Thus γ and σ∗γ are equivalent as claimed. Let D̃ : PrimA × PrimA → (0,∞) be

a Radon-Nikodym derivative for σ so that (9.2) holds for D̃ in place of D. Then

D̃(P,Q)−1 = D̃(Q,P ) for γ-almost all (P,Q). Therefore

D(P,Q) := D̃(P,Q)
1
2 D̃(Q,P )−

1
2

is also a Radon-Nikodym derivative and satisfies all the requirements of part (a).
To establish part (b), let f ∈ Cc(G), and define

H(P, s · P ) :=

∫

GP

f(st)ρ(st,GP )−1 dµGP (t).

(As usual, we can define H(P,Q) to be zero if Q 6= s · P for some s.) Then we can
calculate as above that

∫∫

(PrimA)×G

f(s)D(s · P, P )ρ(s,GP )−1d(s−1, P ) d(µ× µG)(P, s)

=

∫

PrimA

∫

G

f(s−1)∆G(s−1)D(P, s · P )ρ(s,GP )

dµG(s) dµ(P )

=

∫

PrimA

∫

G/GP

D(P, s · P )

∫

GP

f(t−1s−1)∆G(t−1s−1)

dµGP (t) dβP (ṡ) dµ(P )

=

∫

PrimA

∫

G/GP

D(P, s · P )

ω(s,GP )

∫

s·GP

f(s−1t−1)∆G(s−1t−1)

dµs·GP (t) dβP (ṡ) dµ(P )

=

∫

PrimA

∫

G/GP

D(P, s · P )

∫

Gs·P

f(s−1t)ρ(s−1t, Gs·P )−1

dµGs·P (t) dβP (ṡ) dµ(P )
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which, since H(s · P, P ) = H(s · P, s−1s · P ), is

=

∫

PrimA

∫

G/GP

D(P, s · P )H(s · P, P ) dβP (ṡ) dµ(P )

=

∫

PrimA

∫

G/GP

H(P, s · P ) dβP (ṡ) dµ(P )

=

∫∫

(PrimA)×G

f(s) d(µ× µG)(P, s).

Since this holds for all f ∈ Cc(G), the assertion in part (b) follows.

Recall if H ∈ Σ, then the homomorphism γH : H → R+
× is given by

γH(t) =
(∆G(t)

∆H(t)

) 1
2

.

Thus, for example, ρ(st,GP ) = γGP (t)−2ρ(s,GP ) for all s ∈ G and t ∈ GP .

Lemma 9.2. Suppose that µ is a finite quasi-invariant measure on PrimA and
that d : G×PrimA→ (0,∞) is a Borel choice of Radon-Nikodym derivatives as in
Corollary D.34 on page 389. Then for µ-almost all P ∈ PrimA,

d(t, P ) = γGP (t)2 for all t ∈ GP .

The proof of Lemma 9.2 seems as if it should be a simple consequence of (9.3)
(together with D(P, P ) = 1 for all P ). But (9.3) holds only almost everywhere. To
make matters worse, usually GP will have measure zero in G. Fortunately, there
are selection results, due to Ramsay, that allow us to give a proper proof. Since this
material is only used in the proof of Lemma 9.11 on page 279, we have exiled the
proof of Lemma 9.2 to Appendix G.2.1 on page 452 where the necessary technology
is discussed.

We will also need the following observation concerning the βP ’s.

Lemma 9.3. Suppose that ϕ is a nonnegative Borel function on PrimA. Then for
all r ∈ G, ∫

G/GP

ϕ(s · P ) dβP (ṡ) =

∫

G/Gr·P

ϕ(sr · P ) dβr·P (ṡ).

Remark 9.4. This result has a more elegant formulation in terms of the measure
βP which we define to be the measure on G · P equal to the push-forward of βP

via the natural continuous bijection sGP 7→ s · P of G/GP onto G · P . Thus βP is
given by ∫

G·P

ϕ(Q) dβP (Q) =

∫

G/GP

ϕ(s · P ) dβP (ṡ)

for all nonnegative Borel functions on G · P (see Lemma H.13 on page 463). Using
this formalism, the Lemma states that βP = βr·P for all r. Since G is σ-compact
and since K · P is closed in PrimA for K ⊂ G compact, G · P is Borel in PrimA.
Thus there is no harm is considering βP to be a Borel measure on all of PrimA.
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Proof. Suppose that ϕ is nonnegative and that b is a Bruhat approximate cross-
section forG overG/GP . Then, using the properties of ρ, ω and the βP as developed
on pages 461–462,

∫

G/GP

ϕ(s · P ) dβP (ṡ) =

∫

G

ϕ(s · P )b(s)ρ(s,GP ) dµG(s)

=

∫

G

ϕ(sr · P )b(sr)ρ(sr,GP )∆G(r) dµG(s)

=

∫

G

ϕ(sr · P )b(sr)ω(r,GP )ρ(s,Gr·P ) dµG(s)

=

∫

G/Gr·P

ϕ(sr · P )ω(r,GP )

∫

Gr·P

b(str) dµGr·P (t) dβr·P (ṡ)

=

∫

G/Gr·P

ϕ(sr · P )

∫

GP

b(srt) dµGP (t) dβr·P (ṡ)

=

∫

G/Gr·P

ϕ(sr · P ) dβr·P (ṡ).

9.1 Step I: Induced Primitive Ideals

As outlined above, our goal in this section is to prove the following.

Proposition 9.5 ([160, Proposition 2.1]). Let (A,G, α) be a separable dynamical
system. Suppose that L = π ⋊ u is a homogeneous representation of A ⋊α|GP

GP

on H, and that π is homogeneous with kernel P . Then IndGGP
L is homogeneous.

In particular, the kernel of IndGGP
L is primitive.

To begin with, suppose that L = (π, u) is a covariant representation of (A,H, α).
As in Proposition 5.4 on page 153, we’ll realize IndGH L on the space L2

u(G, β
H ,H).

We want to view IndGH L as a direct integral. This will allow us to use the technology
from Appendices F and G; in particular, we want to invoke Proposition G.20 on
page 441 which will imply that any operator in the commutant of the induced
representation is decomposable. To accomplish this, it will be convenient to realize
L2
u(G, β

H ,H) as equivalence classes of functions on G. Recall that L2
u(G, β

H ,H)
was defined as the completion of the set Vc of h ∈ Cb(G,H) such that

h(rt) = u−1
t

(
h(r)

)
for all t ∈ H and ∈ G (9.4)

and such that r 7→ ‖h(r)‖ is in Cc(G/H). Let L2
u(G, β

H ,H) be the set of Borel
functions h : G→ H satisfying (9.4) and such that

∫

G/H

‖h(r)‖ dβH(ṙ) <∞.

If h, k ∈ L2
u(G, β

H ,H), then r 7→
(
h(r) | k(r

)
) is constant on H-cosets and belongs

to L1(G/H, βH). Therefore we can define a sesquilinear form on L2
u(G, β

H ,H) by

(h | k) :=

∫

G/H

(
h(r) | k(r

)
) dβH(ṙ). (9.5)
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Since saturated sets in G are µG-null if and only if their image in G/H is βH -
null (Lemma H.14 on page 463), (9.5) induces a bona fide inner product on the
µG-equivalence classes L2

u(G, β
H ,H)/∼ in L2

u(G, β
H ,H). It is not hard to see

that L2
u(G, β

H ,H)/∼ is complete and therefore a Hilbert space. Inclusion gives an
isometric injection of Vc into L2

u(G, β
H ,H)/∼. It is not hard to see that the image

is dense. Therefore we can, and do, identify L2
u(G, β

H ,H) with L2
u(G, β

H ,H)/∼.3

Since G is second countable, there is a Borel cross section c : G/H → G for
the quotient map q : G → G/H . Let b : G → H be the Borel map determined by
s = c(ṡ)b(s) for all s ∈ G. Note that b(st) = b(s)t for all s ∈ G and t ∈ H . If
f ∈ L2(G/H, βH ,H), then

Hf (s) := u−1
b(s)

(
f(ṡ)

)

belongs to L2
u(G, β

H ,H) and ‖Hf‖2 = ‖f‖L2(G/H).
Conversely, if h ∈ L2

u(G, β
H ,H), then

Fh(ṡ) := h
(
c(ṡ)

)

is in L2(G/H, βH ,H). The maps f 7→ Hf and h 7→ Fh are inverses, and we
obtain unitaries between L2

u(G, β
H ,H) and L2(G/H, βH ,H). Thus we can view

L2
u(G, β

H ,H) as the L2-sections of the trivial Borel Hilbert bundle G/H ×H. The
diagonal operators ∆(G/H ×H, βH) are naturally identified with L∞(G/H), and
the decomposable operators can be identified with equivalence classes of bounded
weak-operator Borel functions F : G/H → B(H) via

TF (h)(s) := u−1
b(s)F (ṡ)ub(s)

(
h(s)

)
= F̃ (s)

(
h(s)

)
,

where F̃ (s) := u−1
b(s)F (ṡ)ub(s). Note that F̃ satisfies

F̃ (st) = u−1
t F̃ (s)ut for all s ∈ G and t ∈ H . (9.6)

If F̃ : G→ B(H) is any weak-operator Borel function satisfying (9.6), then F (ṡ) :=

F̃ (c(ṡ)) is a weak-operator Borel function on G/H such that

TFh(s) = F̃ (s)
(
h(s)

)
.

Thus we can identify the decomposable operators on L2
u(G, β

H ,H) with the weak-
operator Borel functions F : G→ B(H) such that transform as in (9.6).

Proof of Proposition 9.5. We realize IndGGP
L = π̃ ⋊ ũ on L2

u(G, β
P ,H), where

π̃(a)h(s) = π
(
α−1
s (a)

)(
h(s)

)
and

ũ(r)h(s) =
(ρ(r−1s,GP )

ρ(s,GP )

) 1
2

h(r−1s) = ρ(r−1, Gs·P )
1
2h(r−1s).

3See Remark 9.21 on page 292.
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Notice that
π
(
α−1
st (a)

)
= u−1

t π
(
α−1
s (a)

)
ut.

Therefore we can express π̃ as a direct integral

π̃ =

∫ ⊕

G/GP

πṡ dβ
P (ṡ),

where
πṡ(a)h(s) = π

(
α−1
s (a)

)(
h(s)

)
. (9.7)

Clearly, each πṡ is homogeneous with kernel s · P . Thus if ṡ 6= ṙ, then kerπṡ 6=
kerπṙ. Thus (9.7) is essentially an ideal center decomposition, and IC(π) coincides
with the diagonal operators ∆(G/GP , β

P ) by Proposition G.20 on page 441. Since
∆(G/GP , β

P ) = IC(π̃) ⊂ π̃(A)′′ ∩ π̃(A)′, any operator in π̃(A)′ commutes with
∆(G/GP , β

P ) and is decomposable (Theorem F.21 on page 418).
Let E be a nonzero projection in the commutant of IndGGP

L. Then E ∈ π̃(A)′

and there is a weak-operator Borel function E : G → B(H) such that Eh(s) =
E(s)

(
h(s)

)
and such that E(st) = u−1

t E(s)ut for all s ∈ G and t ∈ GP . Since A is
separable and since the set of s for which E(s) is a projection is saturated, we can
change E on a null set and assume that E(s) is a projection in the commutant of
π for each s. Since E ∈ ũ(G)′, for each r ∈ G,

E(s)h(r−1s) = E(r−1s)h(r−1s) for µG-almost all s.

Equivalently,
E(rs)h(s) = E(s)h(s) for µG-almost all s.

Thus
N(h) = { (s, r) : E(rs)h(s) 6= E(s)h(s) }

is a µG×µG-null set. Let { hi } be a fundamental sequence for L2
u(G, β

P ,H). Then
{ hi(s) } is total in H for all s ∈ G. Let N =

⋃
N(hi). Then N is a µG × µG-null

set such that (s, r) /∈ N implies that E(rs) = E(s). Thus there is a s0 ∈ G such
that e := E(s0) 6= 0 and such that e = E(s0) = E(rs0) for µG-almost all r ∈ G.
Notice that e ∈ π(A)′ ∩u(G)′. Thus e ∈ L(A⋊α|GP

GP )′. Since L is homogeneous,
kerL = kerLe. It is not hard to check that

IndGGP
Le =

(
IndGGP

L
)E
.

Thus

ker
(
IndGGP

L
)E

= ker
(
IndGGP

Le
)

= IndGGP

(
kerLe

)

= IndGGP
(kerL)

= ker
(
IndGGP

L
)
.

Since E was arbitrary, IndGGP
L is homogeneous. The last statement follows from

Corollary G.9 on page 434.
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9.2 Step II: Restricting to the Stability Groups

Remark 9.6. In our proof of the Effros-Hahn conjecture, we want to work with
a factor representation R = (π, V ) of A ⋊α G with a particular primitive kernel
P0. Note that n · R is a factor representation for any 1 ≤ n ≤ ℵ0. This follows,
for example, from [28, Proposition 5.3.4 and Definition 5.3.1(iv)]. Alternatively,
we can recall that n · π is equivalent to π ⊗ 1Hn where Hn is a fixed Hilbert
space of dimension n (cf., [139, §B.4]). But π ⊗ 1Hn(A)′ = π(A)′ ⊗ B(Hn) and
π ⊗ 1Hn(A)′′ = π(A)′′ ⊗ 1Hn by [29, I.2.4 Proposition 4]. Thus n · R is factorial if
R is. Furthermore, n · R still has kernel P0. Thus for our purposes we can assume
that R has infinite multiplicity.

Let R = (π, V ) be a separable covariant representation with infinite multiplic-
ity of a separable dynamical system (A,G, α). Since π has infinite multiplicity,
Remark G.23 on page 444 implies that π has an ideal center decomposition (The-
orem G.22 on page 444) on L2(PrimA, µ,H) for a finite Borel measure µ on the
standard Borel space PrimA. Therefore, we can replace R by an equivalent repre-
sentation acting on L2(PrimA, µ,H) such that

π =

∫ ⊕

PrimA

πP dµ(P ) (9.8)

with each πP homogeneous with kernel P . We apply Proposition G.24 on page 445
to R = (π, V ), taking advantage of the simplification that PrimA∗H = PrimA×H
is trivial. Therefore µ is quasi-invariant, and if d : G × PrimA → (0,∞) is a
Borel choice of Radon-Nikodym derivatives as in Corollary D.34 on page 389, then
W (s)f(P ) := d(s, P )

1
2 f(s−1 ·P ) is a unitary on L2(PrimA, µ,H) such that U(s) :=

V (s)W (s−1) is decomposable for all s. Let X ⊂ PrimA be a Borel µ-conull set and

E := { (s, P ) ∈ G× PrimA : P ∈ X and s−1 · P ∈ X }

be as in Proposition G.24. Thus if U(H) is the unitary group of H (with the weak
operator topology), then there is a Borel map (s, P ) 7→ U(s, P ) from E into U(H)
such that the following statements hold.

(A) For all s ∈ G,

U(s) =

∫ ⊕

PrimA

U(s, P ) dµ(P ).

(B) For all s, r ∈ G and all P ∈ X such that s−1 · P ∈ X and r−1s−1 · P ∈ X , we
have

U(sr, P ) = U(s, P )U(r, s−1 · P ).

(C) If (s, P ) ∈ E, then

πP (a) = U(s, P )πs−1·P

(
α−1
s (a)

)
U(s, P )∗ for all a ∈ A.

(D) If P ∈ X , then σP (t) := U(t, P ) defines a unitary representation of GP and
rP := (πP , σP ) is a covariant representation of (A,GP , α).



272 The Proof of the GRS-Theorem

We will treat rP as a representation of A⋊αΣ on H. Since P 7→ GP is Borel by
Proposition H.41 on page 477, for each Φ ∈ Cc(G∗Σ, A) and h, k ∈ L2(PrimA, µ,H)

(s, P ) 7→
(
πP

(
Φ(s,GP )

)
σP (s)h(P ) | k(P )

)

is Borel.4 Thus Lemma H.30 on page 473 implies that

P 7→
(
rP (Φ)h(P ) | k(P )

)
=

∫

GP

(
πP

(
Φ(s,GP )

)
σP (s)h(P ) | k(P )

)
dµGP (s)

is Borel, and hence { rP } is a Borel field of representations on L2(PrimA, µ,H).
Thus we can form the direct integral

r :=

∫ ⊕

PrimA

rP dµ(P ) (9.9)

on L2(PrimA, µ,H). We call r the restriction of R to the stability groups. (In
groupoid language, r is the restriction of R to the isotropy group bundle.)

Since (9.8) is an ideal center decomposition, Lemma G.19 on page 441 implies
that the ideal center IC(π) of π is the algebra of diagonal operators ∆(PrimA ×
H, µ), which is isomorphic to L∞(PrimA, µ). If ϕ is a bounded Borel function on
PrimA, then the corresponding diagonal operator is denoted by Tϕ. Since r acts
on L2(PrimA, µ,H), its ideal center IC(r) is also a von Neumann subalgebra of
B

(
L2(PrimA, µ,H)

)
.

Lemma 9.7. Let R = (π, V ) be a factorial representation with infinite multiplicity
of A⋊αG on L2(PrimA, µ,H) such that π has an ideal center decomposition given
in (9.8). Let r be the restriction of R to the stability groups. Then IC(π) ⊂ IC(r).

Proof. Let e(I) be the projection onto the essential subspace of π|I . Then, almost
by definition,

IC(π) = { e(I) : I ∈ I(A) }′′.
Now if I ∈ I(A), then we let Ĩ be the ideal of A⋊α Σ which is the closure of

Ĩ0 := {Φ ∈ Cc(G ∗ Σ, A) : Φ(s,H) ∈ I ∩ αs(I) for all (s,H) ∈ G ∗ Σ }.

Notice that if Φ ∈ Cc(G ∗ Σ, A), then

r(Φ)h(P ) =

∫

GP

πP
(
Φ(s,GP )

)
σP (s)h(P ) dµGP (s)

=

∫

GP

σP (s)πP
(
α−1
s

(
Φ(s,GP )

))
h(P ) dµGP (s). (9.10)

4We will prove a considerably stronger statement in Lemma 9.9 on page 277. Using an orthonor-
mal basis for H and Parseval’s identity, it suffices to see that FΦ(s,H, P ) :=

`

πP

`

Φ(s,H)
´

h(P ) |
k(P )

´

is Borel on G ∗ Σ × PrimA. However, this is clear if Φ is an elementary tensor
(s,H) 7→ ϕ(s,H)a. On the other hand, the span of elementary tensors is dense in the induc-
tive limit topology, and if Φi → Φ in the inductive limit topology, then FΦi

→ FΦ pointwise. This
justifies the assertion.
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Lemma G.10 on page 434 implies that

e(I) =

∫ ⊕

PrimA

eπP (I) dµ(P )

where eπP (I) is the projection onto the essential subspace of πP |I . Since IC(π)
is the collection of diagonal operators on L2(PrimA, µ,H), there is a Borel set
Y ⊂ PrimA such that e(I) = T1Y . Thus eπP (I) is zero µ-almost everywhere off
Y , and the identity µ-almost everywhere on Y . Thus if a ∈ I, then πP (a) = 0 for
µ-almost every P /∈ Y . If h ∈ ker e(I), then h(P ) = 0 µ-almost everywhere on Y .
Thus it follows from (9.10) that r(Φ)h = 0 for all Φ ∈ Ĩ0. Thus h ∈ ker er(Ĩ) and
we have

e(I) ≥ er(Ĩ). (9.11)

On the other hand, let ϕ ∈ Cc(G ∗ Σ) and let a, b ∈ I. Define

Φ(s,H) = ϕ(s,H)aαs(b).

Then Φ ∈ Ĩ0 and

rP (Φ) =

∫

GP

ϕ(s,GP )πP
(
aαs(b)

)
σP (s) dµGP (s)

= πP (a)

∫

GP

ϕ(s,GP )σP (s) dµGP (s)πP (b)

= πP (a)σP
(
ϕ(·, GP )

)
πP (b).

If h ∈ ker er(Ĩ), then there is a µ-null set N(a, b, ϕ) such that for all P /∈ N(a, b, ϕ)
we have

πP (a)σP
(
ϕ(·, GP )

)
πP (b)h(P ) = 0. (9.12)

Since I and Cc(G ∗ Σ) have countable dense subsets, there is a µ-null set N such
that (9.12) holds for all a, b ∈ I and ϕ ∈ Cc(G ∗ Σ) provided P /∈ N . However, if
a ∈ I and if πP (a)h(P ) 6= 0 then, using an approximate identity for Cc(G ∗ Σ), we
can find ϕ ∈ Cc(G ∗ Σ) such that πP (a)σP

(
ϕ(·, GP )

)
h(P ) 6= 0. Similarly, using an

approximate identity for I and the fact that we must have eπP (I) 6= 0, we can find
b ∈ I such that

πP (a)σP
(
ϕ(·, GP )

)
πP (b)h(P ) 6= 0. (9.13)

Thus P ∈ N . It follows that π(a)h = 0 for all a ∈ I. Thus e(I)h = 0. It follows from
this and (9.11) that er(Ĩ) = e(I). Since I was arbitrary, the lemma is proved.

Let

r̃ :=

∫ ⊕

Prim(A⋊αΣ)

r̃Q dν(Q) (9.14)

be an ideal center decomposition for r on L2
(
Prim(A⋊αΣ) ∗H, ν

)
. Therefore each

r̃Q is homogeneous with kernel Q, and there is a unitary M r from L2(PrimA, µ,H)
onto L2

(
Prim(A⋊α Σ) ∗ H, ν

)
intertwining r and r̃.
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Proposition 9.8. Suppose that R = π ⋊ V is a factor representation of A ⋊α G
with infinite multiplicity. Let r be the restriction of R = (π, V ) to A⋊αΣ as above.
Then the measure ν in the ideal center decomposition (9.14) of r is quasi-invariant
and ergodic for the natural action of G on Prim(A ⋊α Σ) induced by the action
β : G → Aut(A ⋊α Σ) defined in Lemma 8.57 on page 260. In particular, r̃s·Q is
equivalent to s · r̃Q for all s ∈ G and Q ∈ PrimA⋊α Σ.

Since the proof of the proposition will require some technical gyrations, we
will break it up into two bits; first, we’ll consider the quasi-invariance. Then af-
ter developing some additional structure, we’ll turn to the proof of ergodicity on
page 281. We retain the notation and set-up described in and before items (A)–(D)
on page 271.

Proof of quasi-invariance. Suppose that Φ ∈ Cc(G ∗ Σ, A), that s ∈ G and that
h ∈ L2(PrimA, µ,H). Let P ∈ X ∩ s · X . Then (s, P ) ∈ E, and item (A) im-
plies that we can also find a null sets N1 and N2 such that P /∈ N1 implies that
V (s)W (s−1)

(
W (s)r(Φ)h

)
(P ) = U(s, P )

(
W (s)r(Φ)h(P )

)
, and that P /∈ N2 implies

that V (s)W (s−1)
(
W (s)h

)
(P ) = U(s, P )

(
W (s)h(P )

)
. Then, if P ∈ (X ∩ s · X) r

(N1 ∪N2), we compute that

V (s)r(Φ)h(P ) = V (s)W (s−1)W (s)r(Φ)h(P )

= d(s, P )
1
2U(s, P )r(Φ)h(s−1 · P )

= d(s, P )
1
2U(s, P )

∫

Gs−1·P

πs−1·P

(
Φ(t, Gs−1·P )

)
σs−1·P (t)h(s−1 · P )

dµGs−1·P
(t)

which, since Gs−1·P = s−1 · GP , and since (s, P ) ∈ E implies that
U(s, P )πs−1·P (a) = πP

(
αs(a)

)
U(s, P ), is

=

∫

s−1·GP

πP
(
αs

(
Φ(t, s−1 ·GP )

))
U(s, P )U(t, s−1 · P )W (s)h(P )

dµs−1·GP
(t)

which, since P and s−1 · P are in X , is

=

∫

s−1·GP

πP
(
αs

(
Φ(t, s−1 ·GP )

))
U(st, P )W (s)h(P ) dµs−1·GP

(t)

=

∫

GP

ω(s, s−1 ·GP )πP
(
αs

(
Φ(s−1ts, s−1 ·GP )

))
U(ts, P )W (s)h(P )

dµGP (t)

=

∫

GP

πP
(
βs(Φ)(t, GP )

)
U(t, P )U(s, P )W (s)h(P ) dµGP (t)

which, since P /∈ N2 is

= r
(
βs(Φ)

)
V (s)h(P ).
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Since the set of P such that P ∈ X , s−1 · P ∈ X and P /∈ N1 ∪N2 is conull, the
above computation shows that

s · r(Φ) := r
(
β−1
s (Φ)

)
= V (s)∗r(Φ)V (s) (9.15)

for all Φ ∈ A⋊α Σ and s ∈ G. In particular, r and s · r are equivalent.
To see that ν and s · ν are equivalent measures, we proceed as in the proof

of Proposition G.24 on page 445 using (9.15). In particular, M r implements an
equivalence between s · r on L2(PrimA, µ,H) and

∫ ⊕

Prim(A⋊αΣ)

s · r̃Q dν(Q)

on L2
(
Prim(A ⋊α Σ) ∗ H, ν

)
. Then L(s)h(P ) := h(s−1 · P ) defines a unitary from

L2
(
Prim(A⋊α Σ) ∗H, ν

)
onto L2

(
Prim(A⋊α Σ) ∗H, s · ν

)
intertwining (9.15) with

∫ ⊕

Prim(A⋊αΣ)

r̃′Q d(s · ν)(Q), (9.16)

where r̃′Q := r̃s−1·Q◦β−1
s . Since r̃′Q is homogeneous with kernelQ, the direct integral

decomposition in (9.16) is an ideal center decomposition, and then our uniqueness
result (Proposition G.21 on page 443) implies that ν and s · ν are equivalent.5

Since s is arbitrary, we have shown that ν is quasi-invariant. Proposition G.21 also
implies that r̃′Q and r̃Q are equivalent. Therefore r̃s·Q and s · r̃s·Q are equivalent
for all s. This completes the proof of the proposition with the exception of the
ergodicity of ν.

To see that ν is also ergodic requires that we look a bit more closely at the op-
erator M rV (s)M r∗L(s)∗ : L2

(
Prim(A⋊α Σ) ∗H, s · ν

)
→ L2

(
Prim(A⋊α Σ) ∗H, ν

)

which implements an equivalence between the ideal center decompositions given
by (9.14) and by (9.16). The uniqueness of ideal center decompositions (Proposi-
tion G.21 on page 443) implies that M rV (s)M r∗L(s)∗ commutes with the diagonal
operators. More precisely, if ϕ is a bounded Borel function on Prim(A ⋊α Σ) and
if Tϕ and T sϕ are the corresponding diagonal operators on L2

(
Prim(A⋊αΣ) ∗H, ν

)

and L2
(
Prim(A⋊α Σ) ∗ H, s · ν

)
, respectively, then

M rV (s)M r∗L(s)∗T sϕ = TϕM
rV (s)M r∗L(s)∗.

Therefore,

M rV (s)M r∗TϕL(s)∗ = M rV (s)M r∗L(s)∗T ss·ϕ = Ts·ϕM
rV (s)M r∗L(s)∗,

where s · ϕ(P ) = lts(ϕ)(P ) := ϕ(s−1 · P ). Thus,

M rV (s)M r∗Tϕ = Ts·ϕM
rV (s)M r∗. (9.17)

5It is worth noting that the special uniqueness of the ideal center decomposition is used here.
Normally, one has to worry about the algebras of diagonal operators when making statements
about direct integrals. See for example, Proposition F.33 on page 423. This will also be important
in the proof of ergodicity to follow.
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Therefore if ϕ = 1B for a G-invariant Borel set B ⊂ Prim(A⋊α Σ), then E := Tϕ
commutes with Ṽ (s) := M rV (s)M r∗. Of course, E also commutes with r̃(A⋊αΣ).
If jA : A→M(A⋊α Σ) is the natural map, then

r
(
jA(a)Φ)

)
= π(a)r(Φ).

Thus E also commutes with π̃(A) where π̃(a) = M rπ(a)M r∗. Therefore E ∈
R̃(A⋊α G)′ where R̃ = (π̃, Ṽ ). If R were irreducible, this would force E to be 0 or
I and ν would be ergodic. Unfortunately, we are assuming only that R is factorial
(so that we can make some of the initial constructions a little less technical). Here
we have to pay for that assumption. Since we have E ∈ IC(r̃) ⊂ r̃(A⋊α Σ)′′, if we
can show that

r̃(A⋊α Σ)′′ ⊂ R̃(A⋊α G)′′, or equivalently r(A⋊α Σ)′′ ⊂ R(A⋊α G)′′,

then E belongs to the center of R̃(A⋊αG)′′. Since R̃(A⋊αG)′′ is a von Neumann
factor by assumption, its center is trivial and this will prove that ν is ergodic and
finish the proof of Proposition 9.8 on page 274. Showing this requires some involved
constructions. Fortunately, these constructions will be of use later on, so we will
work out the details here.

Observe that if f ∈ Cc(G,A) and h, k ∈ L2(PrimA, µ,H), then

(
R(f)h | k

)
=

∫

G

(
π
(
f(s)

)
V (s)h | k

)
dµG(s)

=

∫

G

∫

PrimA

(
π
(
f(s)

)
V (s)W (s−1)W (s)(h)(P ) | k(P )

)
dµ(P ) dµG(s)

which, since V (s)W (s−1) =
∫ ⊕

PrimA
U(s, P ) dµ(P ) and π =

∫ ⊕

PrimA
πP dµ(P ), is

=

∫

G

∫

PrimA

(
πP

(
f(s)

)
U(s, P )h(s−1 · P ) | k(P )

)
d(s, P )

1
2 dµ(P ) dµG(s). (9.18)

To take advantage of (9.18), we want to consider the collection
Bb
cc(G × PrimA,A) of bounded Borel functions F : G × PrimA → A

such that there is compact set K ⊂ G, depending on F , such that F (s, P ) = 0 if
s /∈ K. If F ∈ Bb

cc(G× PrimA,A), then we define

‖F‖I,r := sup
P

∫

G

‖F (s, P )‖ dµG(s),

‖F‖I,s = sup
P

∫

G

‖F (s, s · P )‖ dµG(s) and

‖F‖I = max
{
‖F‖I,r, ‖F‖I,s

}
.

Notice that if K is such that F (s, P ) = 0 if s /∈ K, then all the above quantities
are bounded by ‖F‖∞µG(K).6 It is also worth remarking that ‖F‖I,s = ‖F ∗‖I,r,

6These norms, and the notation, come from treating G×PrimA as a groupoid. Good references
for the theory of groupoids and their C∗-algebras are [143] or [108].
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where F ∗(s, P ) := ∆G(s−1)F (s−1, s−1 · P )∗. Moreover, we want to observe that
Bb
cc(G × PrimA,A) is a ∗-algebra. Suppose that F, F ′ ∈ Bb

cc(G × PrimA,A).
Clearly, r 7→ F (r, P )αr

(
F ′(r−1s, r−1 · P )

)
is Borel. Making use of vector-valued

integrals such as defined in Appendix B, we can use Proposition B.34 on page 343
to define F ∗ F ′(s, P ) ∈ A by

F ∗ F ′(s, P ) :=

∫

G

F (r, P )αr
(
F ′(r−1s, r−1 · P )

)
dµG(s).

Let ϕ ∈ A∗. Then

ϕ
(
F ∗ F ′(s, P )

)
=

∫

G

ϕ
(
F (r, P )αr

(
F ′(r−1s, r−1 · P )

))
dµG(s). (9.19)

Since (s, r, P ) 7→ F (r, P )αr
(
F ′(r−1s, r−1 · P )

)
is Borel, Fubini’s Theorem implies

that the left-hand side of (9.19) is a Borel function of (s, P ). Thus, (s, P ) 7→
F ∗ F ′(s, P ) is weakly Borel, and hence Borel by Lemma H.32 on page 474. Thus
F ∗ F ′ ∈ Bb

cc(G×PrimA,A). The other required properties, such as associativity,
follow from similar considerations.

Lemma 9.9. If F ∈ Bb
cc(G× PrimA,A), then

(s, P ) 7→
(
πP

(
F (s, P )

)
U(s, P )h(s−1 · P ) | k(P )

)

is a Borel function on G × PrimA for all h, k ∈ L2(PrimA, µ,H). In particular,
there is a bounded operator R′(F ) on L2(PrimA, µ,H) such that ‖R′(F )‖ ≤ ‖F‖I
given by

(
R′(F )h | k

)
:=
∫

G

∫

PrimA

(
πP

(
F (s, P )

)
U(s, P )h(s−1 · P ) | k(P )

)

d(s, P )
1
2 dµ(P ) dµG(s). (9.20)

In fact, R′ defines a ∗-homomorphism of Bb
cc(G × PrimA,A) into the bounded

operators on L2(PrimA, µ,H).

Proof. Let { ek } be a countable orthonormal basis for H. Then

(
πP

(
F (s, P )

)
U(s, P )h(s−1 · P ) | k(P )

)

=
∑

k

(
U(s, P )h(s−1 · P ) | ek

)(
πP

(
F (s, P )

)
ek | k(P )

)
.

=
∑

km

(
U(s, P )h(s−1 · P ) | ek

)(
πP

(
F (s, P )

)
ek | em

)(
em | k(P )

)

Thus it suffices to see that

(s, P ) 7→
(
πP

(
F (s, P )

)
ek | em

)
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is Borel for all k and m. Since A is separable, given ǫ > 0, there is a countable
partition {Bi } of A by nonempty Borel sets of diameter at most ǫ. Let E′

i :=
F−1(Bi) and fix ai ∈ Bi. If K ⊂ G is a compact set such that F (s, P ) = 0 if s /∈ K,
then let Ei := E′

i ∩ (K × PrimA). Define

Fǫ(s, P ) :=
∑

i

ai1Ei(s, P ).

Then Fǫ ∈ Bb
cc(G× PrimA,A) and ‖F − Fǫ‖∞ ≤ ǫ. Moreover

(s, P ) 7→
(
πP

(
Fǫ(s, P )

)
ek | em

)
=

∑

i

1Ei(s, P )
(
πP (ai)ek | em

)

is Borel. Since F 1
n
→ F pointwise, the first assertion follows.

Now we can use the Cauchy-Schwarz inequality on L2(µ×µG) to calculate that

∣∣(R′(F )h | k
)∣∣

≤
∫∫

(PrimA)×G

‖F (s, P )‖‖h(s−1 · P )‖‖k(P )‖d(s, P )
1
2 d(µG × µ)(s, P )

≤
(∫∫

(PrimA)×G

‖F (s, P )‖‖k(P )‖2 d(µG × µ)(s, P )
) 1

2

(∫∫

(PrimA)×G

‖F (s, s · P )‖‖h(P )‖2 d(µG × µ)(s, P )
) 1

2

≤ ‖F‖
1
2

I,r‖k‖2‖F‖
1
2

I,s‖h‖2

≤ ‖F‖I‖h‖2‖k‖2

Therefore R′(F ) is a bounded operator with ‖R′(F )‖ ≤ ‖F‖I .

Notice that each f ∈ Cc(G,A) defines an element Ff of Bb
cc(G × PrimA,A),

given by Ff (s, P ) = f(s); of course, R′(Ff ) = R(f). Thus we should view R′ as an
extension of R to a larger class of functions.

Lemma 9.10. Let R and R′ be as above.

(a) If T ∈ R(A⋊α G)′, then T is decomposable. If

T =

∫ ⊕

PrimA

T (P ) dµ(P ), (9.21)

then for all s ∈ G,

T (P )U(s, P ) = U(s, P )T (s−1 · P ) for µ-almost all P .

(b) If F ∈ Bb
cc(G× PrimA,A), then R′(F ) ∈ R(A⋊α G)′′.
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Proof. If T ∈ R(A ⋊α G)′, then T commutes with both π(A) and V (G). Since
IC(π) is in the center of π(A)′, T ∈ IC(π)′ = ∆(PrimA ×H, µ)′, and hence, T is
decomposable. If T is given by (9.21), then for almost all P ,

TV (s)f(P ) = d(s, P )
1
2T (P )V (s)W (s−1)f(s−1 · P ),

= d(s, p)
1
2T (P )U(s, P )f(s−1 · P ).

On the other hand, since T commutes with V (s), we have, for almost all P ,

TV (s)f(P ) = V (s)Tf(P )

= V (s)W (s−1)W (s)Tf(P )

= d(s, P )
1
2U(s, P )T (s−1 · P )f(s−1 · P ).

If { em } is an orthonormal basis for H and fm(P ) := em for all P , then applying
the above to fm shows that there is a µ-null set Nm such that

U(s, P )T (s−1 · P )em = T (P )U(s, P )em if P /∈ Nm.

If we let N =
⋃
Nm, then T (P )U(s, P ) = U(s, P )T (s−1 · P ) for all P /∈ N . This

proves part (a).
Using part (a) and (9.20), it is not hard to see that if T ∈ R(A⋊αG)′ and F ∈

Bb
cc(G× PrimA,A), then T and R′(F ) commute. Therefore R′(F ) ∈ R(A⋊α G)′′

as required.

Lemma 9.11. If F ∈ Bb
cc(G× PrimA,A) and Φ ∈ Cc(G ∗ Σ, A), then

Φ · F (s, P ) :=

∫

GP

Φ(t, GP )αt
(
F (t−1s, P )

)
γGP (t)−1 dµGP (t) (9.22)

defines an element of Bb
cc(G × PrimA,A) such that R′(Φ · F ) = r(Φ)R′(F ). In

particular, if f ∈ Cc(G,A), then R′(Φ · Ff ) = r(Φ)R(f).

Proof. Suppose F (s, P ) vanishes if s /∈ K and that Φ(s,H) vanishes if s /∈ K ′.
Then Φ · F (s, P ) vanishes for s /∈ K ′K. Furthermore,

‖Φ · F (s, P )‖ ≤ ‖Φ‖∞‖F‖∞‖ϕ‖∞,

where

ϕ(H) :=

∫

H

ψ(s)|γGP (s)−1| dµH(s),

and ψ ∈ C+
c (G) is such that ψ(s) = 1 for all s ∈ K ′K. Thus to see that Φ · F ∈

Bb
cc(G× PrimA,A), we just have to see that it is a Borel function. But

F̃ (P, s, t,H) := Φ(t,H)αt
(
F (t−1s,H)

)
γH(t)−1

is Borel on PrimA×G×G ∗Σ, and it vanishes if s /∈ K ′K. Thus Lemma H.30 on
page 473 (with X = PrimA×G) implies that

ϕ̃(P, s,H) =

∫

H

F̃ (P, s, t,H) dµH(t)
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is weakly Borel, and therefore Borel by Lemma H.32 on page 474. Now

(s, P ) 7→ Φ · F (s, P ) = ϕ̃(P, s,GP )

is Borel because P 7→ GP is (Proposition H.41 on page 477).
Using (9.20), we have7

(
R′(Φ · F )h | k

)
=

∫

G

∫

PrimA

(
πP

(
Φ · F (s, P )

)
U(s, P )h(s−1 · P ) | k(P )

)

d(s, P )
1
2 dµ(P ) dµG(s)

which, since each πP is a representation of A, is

=

∫

G

∫

PrimA

∫

GP

(
πP

(
Φ(t, GP )αt

(
F (t−1s, P )

))
U(s, P )h(s−1 · P ) | k(P )

)

γGP (t)−1d(s, P )
1
2 dµGP (t) dµ(P ) dµG(s)

which, since d(ts, P ) = d(t, P )d(s, P ) = γGP (t)2d(s, P ), is

=

∫

PrimA

∫

GP

∫

G

(
πP

(
Φ(t, GP )αt

(
F (s, P )

))
U(ts, P )h(s−1 · P ) | k(P )

)

d(s, P )
1
2 dµG(s) dµGP (t) dµ(P )

which, since for all s ∈ G and t ∈ GP , U(ts, P ) = U(t, P )U(s, P ) = σP (t)U(s, P )
for µ-almost all P , is

=

∫

G

∫

PrimA

∫

GP

(
πP

(
Φ(t, GP )αt

(
F (s, P )

))
σP (t)U(s, P )h(s−1 · P ) | k(P )

)

d(s, P )
1
2 dµGP (t) dµ(P ) dµG(s)

which, since (πP , σP ) is covariant, is

=

∫

G

∫

PrimA

∫

GP

(
σP (t)πP

(
α−1
t

(
Φ(t, GP )

)
F (s, P )

)
U(s, P )h(s−1 · P ) | k(P )

)

d(s, P )
1
2 dµGP (t) dµ(P ) dµG(s)

=

∫

G

∫

PrimA

∫

GP

(
πP

(
F (s, P )

)
U(s, P )h(s−1 · P ) |

7This computation can be simplified by realizing that we can define R′(F ) pointwise via a
vector-valued integral:

R′(F )h(P ) =

Z

G
πP

`

F (s, P )
´

U(s, P )h(s−1 · P )d(s, P )
1
2 dµG(s).

We’ve given the proof as above simply to reduce the use of vector-valued integrals of Borel func-
tions.
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πP
(
αt−1

(
Φ(t, GP )∗

))
σP (t−1)k(P )

)
d(s, P )

1
2 dµGP (t) dµ(P ) dµG(s)

=

∫

G

∫

PrimA

(
πP

(
F (s, P )

)
U(s, P )h(s−1 · P ) | r(Φ∗)k(P )

)
d(s, P )

1
2 dµ(P ) dµG(s)

=
(
R′(F )h | r(Φ∗)k

)

=
(
r(Φ)R′(F )h | k

)
.

Thus R′(Φ · F ) = r(Φ)R′(F ) and the final statement is an easy consequence of
this.

Proof of Proposition 9.8 on page 274 continued. We still need to see that ν is er-
godic. But it suffices to see that r(A⋊αΣ) ⊂ R(A⋊αG)′′. Let { fi } be an approxi-
mate identity for A⋊αG. Then R(fi) → I in the strong operator topology. There-
fore if Φ ∈ A⋊αΣ, then r(Φ) is the strong operator limit of r(Φ)R(fi) = R′(Φ ·Ffi ).
Since each of the latter is in R(A⋊αG)′′ by Lemma 9.10 on page 278, so is r(Φ).

Since (9.14) is an ideal center decomposition for r, IC(r) ∼= ∆(Prim(A⋊α Σ) ∗
H, ν), and L∞(Prim(A ⋊α Σ), ν) is isomorphic to the latter via ψ 7→ TΣ

ψ . Since

IC(π) ⊂ IC(r) (Lemma 9.7 on page 272), M r : L2(PrimA, µ,H) → L2
(
Prim(A⋊α

Σ) ∗ H, ν
)

maps IC(π) = ∆(PrimA×H, µ) onto a von Neumann subalgebra L of
∆(Prim(A⋊αΣ)∗H, ν). Let ϕ 7→ Tϕ be the natural isomorphism of L∞(Prim(A), µ)
onto the diagonal operators ∆(Prim(A) ×H, µ). Lemma I.11 on page 489 implies
that there is a Borel map τ : Prim(A ⋊α Σ) → PrimA which implements the
induced isomorphism of L∞(PrimA, µ) onto its range in L∞(Prim(A ⋊α Σ), ν).
Thus M rTϕ = TΣ

ϕ◦τM
r.

Remark 9.12. Notice that if ϕs(P ) := ϕ(s · P ), then since

U(s) := V (s)W (s−1) =

∫ ⊕

PrimA

U(s, P ) dµ(P )

commutes with the diagonal operators,

V (s)Tϕ = V (s)W (s−1)W (s)Tϕ

= V (s)W (s−1)Ts·ϕW (s)

= Ts·ϕV (s)W (s−1)W (s)

= Ts·ϕV (s).

As we showed in deriving (9.17) on page 275, if Ṽ (s) := M rV (s)M r∗, then we have

Ṽ (s)TΣ
ψ = TΣ

s·ψṼ (s),

where ψs(Q) = ψ(s ·Q). Now, on the one hand,

M rV (s)Tϕ = M rTs·ϕ(s)

= TΣ
(s·ϕ)◦τM

rV (s).
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On the other hand,

M rV (s)Tϕ = Ṽ (s)M rTϕ

= Ṽ (s)TΣ
ϕ◦τM

r

= TΣ
s·(ϕ◦τ)Ṽ (s)M r

= TΣ
s·(ϕ◦τ)M

rV (s).

Thus for all s ∈ G and all ϕ ∈ L∞(PrimA, µ), ϕ
(
τ(s ·Q)

)
and ϕ

(
s ·τ(Q)

)
define the

same element of L∞(Prim(A⋊αΣ), ν). Therefore for each s ∈ G, τ(s ·Q) = s ·τ(Q)
for ν-almost all Q. Thus τ is essentially equivariant. Since we can replace τ by any
τ ′ which agrees with τ almost everywhere, Theorem D.46 on page 397 implies that
we may assume that there is a G-invariant Borel ν-conull set Y0 ⊂ Prim(A ⋊α Σ)
such that τ(s ·Q) = s · τ(Q) for all Q ∈ Y0 and all s ∈ G.

Since τ implements an injection of L∞(PrimA, µ) into L∞(Prim(A ⋊α Σ), ν),
it follows that τ∗ν ≪ µ. Therefore, we can apply Corollary I.9 on page 487 to
disintegrate ν with respect to µ. This means that there are finite measures νP on
Prim(A⋊α Σ) such that if ϕ is a bounded Borel function on Prim(A⋊α Σ), then

∫

Prim(A⋊αΣ)

ϕ(Q) dν(Q) =

∫

PrimA

∫

Prim(A⋊αΣ)

ϕ(Q) dνP (Q) dµ(P ). (9.23)

Since Q 7→ r̃Q is a Borel field of representations, we can form the direct integral
representation

r̂P :=

∫ ⊕

Prim(A⋊αΣ)

r̃Q dνP (Q) (9.24)

on VP := L2(Prim(A ⋊α Σ) ∗ H, νP ). Let PrimA ∗ V be the Borel Hilbert bundle
induced from L2

(
Prim(A ⋊α Σ) ∗ H, ν

)
via the disintegration of ν with respect to

µ (see Example F.19 on page 416). Since we can identify L2
(
Prim(A⋊α Σ) ∗H, ν

)

with L2(PrimA ∗ V , µ) we have r̃ equivalent to

r̂ =

∫ ⊕

PrimA

r̂P dµ(P ).

If ϕ is a bounded Borel function on PrimA and if T ′
ϕ is the corresponding diagonal

operator on L2(PrimA ∗ V , µ), then

M rTϕ = T ′
ϕM

r.

Thus Corollary F.34 on page 426 implies rP and r̂P are equivalent for µ-almost all
P .

Since ker r̂P is separable, a simple argument applied to (9.24) shows that there
is a νP -null set N(P ) such that

ker r̂P ⊂ ker r̃Q if Q /∈ N(P ). (9.25)
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Since supp νP ⊂ τ−1(P ), we can rewrite (9.25) as

ker r̂τ(Q) ⊂ ker r̃Q. (9.26)

Since (9.26) holds for νP -almost all Q and for all P , it follows that (9.26) holds for
ν-almost all Q. Thus off a ν-null set N , r̃Q factors through A⋊αGτ(Q). Therefore
r̃Q = (π̃Q, ũQ) is a covariant representation of (A,Gτ(Q), α) for all Q /∈ N . If

j : A→M(A⋊α Σ) is the natural map, then π̃Q(a) = r̃Q¯
(
j(a)

)
. Thus if {Φi } is

a countable approximate identity for A⋊α Σ, then off N ,
(
π̃Q(a)h(P ) | k(P )

)
= lim

i

(
r̃Q

(
j(a)Φi

)
h(P ) | k(P )

)
.

Therefore Q 7→ π̃Q is a Borel field of representations.8 Since r̂P is equivalent to rP
for µ-almost all P , we have r̂P = (π̂P , σ̂P ) with π̂P homogeneous with kernel P (for
almost all P ). Since r̂P is the direct integral of the the r̃Q’s (see (9.24)), it follows
that

π̂P =

∫ ⊕

Prim(A⋊αΣ)

π̃Q dνP (Q).

Since π̂P is homogeneous with kernel P , Corollary G.17 on page 440 implies that
π̃Q is homogeneous with kernel P for νP -almost all Q. Thus π̃Q is homogeneous
with kernel τ(Q) for ν-almost all Q. To summarize, we have the following lemma.

Lemma 9.13. Let r be the restriction of R to the stability groups, and let (9.14) be
the ideal center decomposition of r on L2

(
Prim(A⋊αΣ)∗H, ν

)
. Then there is a G-

invariant Borel set Y0 ⊂ Prim(A⋊αΣ) and a Borel map τ : Prim(A⋊αΣ) → PrimA
such that τ(s · Q) = s · τ(Q) for all s ∈ G and all Q ∈ Y0. Furthermore, for ν-
almost all Q, r̃Q is given by a homogeneous covariant representation (π̃Q, ũQ) of
(A,Gτ(Q), α), where π̃Q is homogeneous with kernel τ(Q).

9.3 Step III: Sauvageot’s Induced Representation

In this step, we want to “induce” the restriction r to a representation ind r of
A ⋊α G, and then to see that the kernel of ind r is an induced primitive ideal.
We will define ind r in an ad hoc manner (explaining the quotations marks above)
in order to avoid the overhead of developing a general theory for induction from
A⋊α Σ to A⋊α G.

Proposition 9.14. The kernel of the representation ind r induced from the restric-
tion to the stability groups of a factorial representation R of A ⋊α G with infinite
multiplicity is an induced primitive ideal of A⋊α G.

We’ll need a very tidy description of the space of the induced representation.
(This will also be helpful when we get around to defining ind r in Lemma 9.19 on
page 286.) Let V1 be the set of Borel functions ξ : PrimA×G→ H such that

ξ(P, st) = σP (t)−1
(
ξ(P, s)

)
for all s ∈ G and t ∈ GP .

8We can let πQ be the zero representation off N .
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Let L2
σ(PrimA×G,µ,H) be the set of ξ ∈ V1 such that

∫

PrimA

∫

G/GP

‖ξ(P, s)‖2 dβP (ṡ) dµ(P ) <∞.

We let L2
σ(PrimA × G,µ,H) be the quotient of L2

σ(PrimA × G,µ,H) where we
identify two functions which agree µ× µG-almost everywhere.

Example 9.15. Suppose that H = C so that σP (t) = 1 for all t ∈ GP . Then
L 2
σ (PrimA×G,µ,C) is the set of Borel functions h : PrimA ×G → C such that

ξ(P, st) = ξ(P, s) for all s ∈ G and t ∈ GP , and such that
∫

PrimA

∫

G/GP

|ξ(P, s)| dβP (ṡ) dµ(P ) <∞.

Suppose that γ is the measure on PrimA×PrimA given in Lemma 9.1 on page 264.
Then in this case, the map ϕ sending f ∈ L2(PrimA×PrimA, γ) to ϕ(f)(P, s) :=
f(P, s · P ) defines an isomorphism of L2(PrimA × PrimA, γ) onto L2

σ(PrimA ×
G,µ,C).

Lemma 9.16. If ξ, η ∈ L2
σ(PrimA×G,µ,H), then

P 7→
∫

G/GP

(
ξ(P, s) | η(P, s)

)
dβP (ṡ)

is in L1(PrimA, µ), and

(ξ | η) :=

∫

PrimA

∫

G/GP

(
ξ(P, s) | η(P, s)

)
dβP (ṡ) dµ(P ) (9.27)

defines an inner product on L2
σ(PrimA×G,µ,H).

Proof. Let γ be the measure on PrimA × PrimA described in Lemma 9.1 on
page 264. Let

ξ̂(P, s · P ) := ‖ξ(P, s)‖ and η̂(P, s · P ) = ‖η(P, s)‖,

and extend ξ̂ and η̂ to all of PrimA× PrimA by setting them to zero elsewhere.9

Then ξ̂ and η̂ are in L2(γ), and their pointwise product is in L1(γ). Thus
∫

PrimA

∫

G/GP

‖ξ(P, s)‖‖η(P, s)‖ dβP (ṡ) dµ(P ) <∞.

It follows that the inner integral in (9.27), as a function of P , is in L1(µ) and the
first assertion follows.

Suppose ξ ∈ L2
σ(PrimA × G,µ,H). Let D = { (P, s) : ξ(P, s) 6= 0 } and DP =

{ s : (s, P ) ∈ D }. Then (ξ | ξ) = 0 if and only if for µ-almost all P , the image of
DP in G/GP is a βP -null set. Since DP is saturated, the image of DP is βP null
if and only if it is µG-null (Lemma H.14 on page 463). Thus (ξ | ξ) = 0 if and only
if D is µ× µG-null. The rest is straightforward.

9Naturally, we want ξ̂ and η̂ to be Borel functions. But S = { (P, s · P ) : s ∈ G } is σ-compact

in the product Jacobson topology on PrimA× PrimA. Thus S is Borel and ξ̂ and η̂ are Borel.



9.3 Step III: Sauvageot’s Induced Representation 285

In order to show that L2
σ(PrimA×G,µ,H) is nontrivial, we will extend the key

construct in the proof of Proposition 5.4 on page 153. We aim to define a map W
on the algebraic tensor product Cc(G,A) ⊙L2(PrimA, µ,H) which takes values in
L2
σ(PrimA×G,µ,H). Therefore we define

W(f ⊗ h)(P, s)

:=

∫

GP

ρ(st,GP )−
1
2 πP

(
α−1
s

(
f(st)

))
σP (t)

(
h(P )

)
dµGP (t). (9.28)

The map (P, s) 7→ W(f ⊗ h)(P, s) is Borel by Lemma H.30 on page 473, and a
calculation shows that it transforms correctly. To see that W(f⊗h) is appropriately
square integrable, and therefore belongs to L2

σ(PrimA×G,µ,H), requires a bit of
work. However, it follows from the next observation which we will need later.

Lemma 9.17. Define P : Cc(G,A) → Cc(G ∗ Σ, A) by

P(f)(s,H) = γH(s)f(s).

Then for all f, g ∈ Cc(G,A) and h, k ∈ L2(PrimA, µ,H) we have

(
W(f ⊗ h) | W(g ⊗ k)

)
=

(
r
(
P(g∗ ∗ f)

)
h | k

)
.

In particular, W(f ⊗ h) ∈ L2
σ(PrimA×G,µ,H) and f 7→ W(f ⊗ h) is continuous

from Cc(G,A) with the inductive limit topology into L2
σ(PrimA×G,µ,H).

Proof. To prove the first assertion, we compute as follows:

(
W(f ⊗ h) | W(g ⊗ k)

)

=

∫

PrimA

∫

G/GP

(
W (f ⊗ h)(P, s) | W (g ⊗ k)(P, s)

)
dṡ dP

=

∫

PrimA

∫

G/GP

∫

GP

∫

GP

(
πP

(
α−1
s

(
f(st)

))
σP (t)h(P ) |

πP
(
α−1
s

(
g(sv)

))
σP (v)k(P )

)
ρ(st,GP )−

1
2 ρ(sv,GP )−

1
2 dt dv dṡ dP

which, since (πP , σP ) is covariant µ-almost everywhere, is

=

∫

PrimA

∫

G/GP

∫

GP

∫

GP

(
πP

(
α−1
sv

(
g(sv)∗f(st)

))
σP (v−1t)h(P )|k(P )

)

ρ(st,GP )−
1
2 ρ(sv,GP )−

1
2 dt dv dṡ dP

=

∫

PrimA

∫

G/GP

∫

GP

∫

GP

(
πP

(
α−1
sv

(
g(sv)∗f(svt)

))
σP (t)h(P )|k(P )

)

γGP (t)ρ(sv,GP )−1 dt dv dṡ dP

=

∫

PrimA

∫

G

∫

GP

(
πP

(
α−1
s

(
g(s)∗f(st)

))
σP (t)h(P )|k(P )

)

γGP (t) dt ds dP
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=

∫

PrimA

∫

GP

(
πP

(
g∗ ∗ f(t)

)
γGP (t)σP (t)h(P ) | k(P )

)
dt dP

=
(
r
(
P(g∗ ∗ f)

)
h | k

)
.

The second assertion follows since ‖W(f ⊗ h)‖2 =
(
W(f ⊗ h) | W(f ⊗ h)

)
.

For the final assertion, note that if gi → 0 in the inductive limit topology, then
P(g∗i ∗ gi) → 0 in the inductive limit topology on Cc(G ∗ Σ, A), and therefore in
the C∗-norm in A ⋊α Σ. The result follows from this, the first assertion and the
observation that W(fi ⊗ h) −W(f ⊗ h) = W(fi − f ⊗ h).

In Proposition 5.4, we showed that we could realize IndGGP
rP on K(P ) :=

L2
σP

(G, βP ,H) as ΠP ⋊WP where

ΠP (a)h(s) = πP
(
α−1
s (a)

)(
h(s)

)
, and

WP (r)h(s) =
(ρ(r−1s,GP )

ρ(s,GP )

) 1
2

h(r−1s) = ρ(r−1, Gs·P )
1
2 h(r−1s).

Moreover if v̄ denotes the constant function P 7→ v for each v ∈ H, then the proof
of Proposition 5.4 shows that

{W(f ⊗ v̄)(P, ·) : f ∈ Cc(G,A) and v ∈ H}
spans a dense subspace of K(P ). Let K = {K(P ) }P∈PrimA. Notice that each
ξ ∈ L2

σ(PrimA × G,µ,H) defines a section of PrimA ∗ K in the obvious way:10

ξ̌(P )(s) := ξ(P, s).

Proposition 9.18. There is a unique Borel structure on PrimA ∗K such that it is
an analytic Borel Hilbert bundle over PrimA, and such that ξ̌ ∈ B(PrimA ∗K) for
all ξ ∈ L2

σ(PrimA × G,µ,H). Furthermore, L2
σ(PrimA × G,µ,H) is a separable

Hilbert space, and ξ 7→ ξ̌ is a unitary isomorphism of L2
σ(PrimA × G,µ,H) onto

L2(PrimA ∗ K, µ).

In order to concentrate on the task at hand, we will postpone the proof of
Proposition 9.18 to the end of this section (on page 290).

When convenient, we will identify L2
σ(PrimA×G,µ,H) and L2(PrimA ∗K, µ).

In particular, we will usually not distinguish between ξ and ξ̌.

Lemma 9.19 (The Definition of ind r). The formulas

Π(a)ξ(P, s) := πP
(
α−1
s (a)

)(
ξ(P, s)

)
, and (9.29)

W (r)ξ(P, s) := ρ(r−1, Gs·P )
1
2 ξ(P, r−1s) (9.30)

define a covariant representation ind r := (Π,W ) of (A,G, α) on L2
σ(PrimA ×

G,µ,H). After identifying L2
σ(PrimA×G,µ,H) with L2(PrimA ∗ K, µ), we have

ind r =

∫ ⊕

PrimA

IndGGP
rP dµ(P ). (9.31)

10Since s 7→ ‖ξ(P, s)‖ can fail to be square integrable off a µ-null set, we can let ξ̌(P ) = 0 in
those cases.
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Proof. Algebraically, the final statement simply amounts to untangling definitions.
The primary issues are to see that the right-hand side of (9.29) defines a Borel
function, and that r 7→ W (r)ξ is continuous for all ξ ∈ L2

σ(PrimA×G,µ,H). For
the first of these, it suffices to see that

(P, s) 7→
(
πP

(
α−1
s (a)

)(
ξ(P, s)

)
| v

)

is Borel (Lemma D.43 on page 395). But if { ei } is a countable orthonormal basis
for H, then

(
πP

(
α−1
s (a)

)
ξ
(
P, s)

)
| v

)
=

∑

i

(
ξ(P, s) | ek

)(
πP

(
α−1
s (a)

)
ek | v

)
.

Thus, it suffices to see that

(P, s) 7→
(
πP

(
α−1
s (a)

)
v | w

)

is Borel. Since G is second countable, there is a countably-valued Borel function
bǫ : G → A such that ‖bǫ(s) − α−1

s (a)‖ < ǫ for all s ∈ G. Since bǫ is a countable
sum of characteristic functions,

(P, s) 7→
(
πP

(
bǫ(s)

)
v | w

)

is Borel. Since (
πP

(
b 1

n
(s)

)
v | w

)
→

(
πP

(
α−1
s (a)

)
v | w

)
,

the right-hand side of (9.29) is Borel and Π is a representation of A.
To show that W is strongly continuous, it suffices to see that s 7→ W (s)ξ is

continuous for a dense set of ξ. In the proof of Proposition 9.18, we will show that
vectors of the form W(f ⊗ h) for f ∈ Cc(G,A) and k ∈ L2(PrimA, µ,H) span
a dense subspace of L2

σ(PrimA × G,µ,H). Hence, it suffices to consider ξ of the
form W(f ⊗ h). Note that W (s)W(f ⊗ h) = W(iG(s)(f) ⊗ h). Since s 7→ iG(s)f
is continuous from G into Cc(G,A) with the inductive limit topology, the strong
continuity of W follows from Lemma 9.17 on page 285.

We showed in Section 9.2 that r has an ideal center decomposition

r̃ =

∫ ⊕

Prim(A⋊αΣ)

r̃Q dν,

where for ν-almost allQ, r̃Q = π̃Q⋊ũQ is a covariant representation of (A,Gτ(Q), α).
Equation (9.31) suggests that ind r ought to be equivalent to a representation ind r̃
which is a direct integral of representations of the form IndGGτ(Q)

r̃Q. Since we have

only an ad hoc means of inducing from A ⋊α Σ to A ⋊α G, making sense of this
requires a bit of fussing.

Let K̃(Q) be the “usual” space for IndGGτ(Q)
r̃Q as defined in Section 5.1. Thus

K̃(Q) is the completion of the algebraic tensor product Cc(G,A)⊙H(Q) with respect
to the pre-inner product

(f ⊗ v | g ⊗ w) =
(
r̃Q

(
〈g , f〉

A⋊Gτ(Q)

)
v | w

)
.
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Each f⊗h̃ in Cc(G,A)⊙L2(Prim(A⋊αΣ)∗H, ν) defines a section of Prim(A⋊αΣ)∗K̃

is an obvious way: (f ⊗ h̃)(Q) := f ⊗ h̃(Q). Clearly

Q 7→
(
(f ⊗ h̃)(Q) | (g ⊗ k̃)(Q)

)

is Borel, and it is not hard to see that Prim(A⋊αΣ)∗K̃ has a unique Borel structure
making it into an analytic Borel Hilbert bundle such that each f⊗ h̃ defines a Borel
section.11 If we define P : Cc(G,A) → Cc(G∗Σ, A) as in Lemma 9.17 on page 285,
then

〈f , g〉
A⋊Gτ(Q)

(s) = γGτ(Q)
(s)g∗ ∗ f(s).

It follows that the inner product in L2(Prim(A⋊α Σ) ∗ K̃, ν) is given by

(f ⊗ h̃ | g ⊗ k̃) =
(
r̃
(
P(g∗ ∗ f)

)
h̃ | k̃

)
.

Since (
IndGGτ(Q)

r̃Q
)
(g)(f ⊗ h̃(Q)) = g ∗ f ⊗ h̃(Q),

it is clear that { IndGGτ(Q)
r̃Q } is a Borel field of representations of A ⋊α G and we

can define the desired direct integral:

ind r̃ :=

∫ ⊕

Prim(A⋊αΣ)

IndGGτ(Q)
r̃Q dν(Q). (9.32)

Proposition 9.20. The representations ind r defined in Lemma 9.19 on page 286,
and ind r̃ defined in (9.32) above are equivalent representations of A⋊α G.

Proof. Just as above, we can view Cc(G,A)⊙L2(PrimA, µ,H) as a dense subspace

of square integrable Borel sections of an analytic Borel Hilbert bundle PrimA ∗ H̃

where H̃(P ) is the completion of Cc(G,A) ⊙H with respect to the inner product

(f ⊗ h | g ⊗ k) =
(
rP

(
〈g , f〉

A⋊GP

)
h | k

)
.

The inner product on L2(PrimA ∗ H̃, µ) is given by

(f ⊗ h | g ⊗ k) =
(
r
(
P(g∗ ∗ f)

)
h | k

)
.

Recall that r and r̃ are equivalent via a unitary M r : L2(PrimA, µ,H) →
L2(Prim(A⋊α Σ) ∗ H, ν). Then we can compute that

(
f ⊗M r(h) | g ⊗M r(k)

)
=

(
r̃
(
P(g∗ ∗ f)

)
M r(h) |M r(k)

)

=
(
M r

(
r
(
P(g∗ ∗ f)

)
h
)
|M r(k)

)

11For example, if { fi } is dense in the inductive limit topology on Cc(G,A) and if { ṽi } is a
special orthogonal fundamental sequence for Prim(A⋊α Σ) ∗H, then { fi ⊗ ṽj } is a set of sections
which satisfy properties (ii) and (iii) of part (b) of Proposition F.8 on page 412.
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which, since M r is unitary, is

=
(
r
(
P(g∗ ∗ f)

)
h | k

)

= (f ⊗ h | g ⊗ k).

Thus, we obtain a well-defined unitary M : L2(PrimA ∗ H̃, µ) → L2(Prim(A ⋊α

Σ) ∗ K̃, ν) characterized by M(f ⊗ h) = f ⊗M r(h).
In view of Lemma 9.17 on page 285, W : Cc(G,A) ⊙ L2(PrimA, µ,H) →

L2
σ(PrimA × G,µ,H) defined by (9.28) defines an isometry of L2(PrimA ∗ H̃, µ)

into L2
σ(PrimA × G,µ,H). Moreover, if we use Proposition 9.18 on page 286 to

identify L2
σ(PrimA × G,µ,H) with L2(PrimA ∗ K, µ), then W is implemented

by a id-isomorphism {W(P ) } where W(P ) is the isomorphism of H̃(P ) onto
K(P ) = L2

σP
(G, βP ,H) given by

W(P )(f ⊗ h(P ))(s) = W(f ⊗ h)(P, s).

(We proved that W(P ) is a unitary in Proposition 5.4 on page 153.) In partic-
ular, W is surjective (see Lemma F.32 on page 422), and defines a unitary from

L2(PrimA ∗ H̃, µ) onto L2
σ(PrimA×G,µ,H).

If ind r = Π ⋊ W , as in Lemma 9.19 on page 286, then it is routine to check
that

Π(a)W(f ⊗ h) = W(iA(a)(f) ⊗ h) and

W (r)W(f ⊗ h) = W(iG(r)(f) ⊗ h).

Therefore (ind r)(g)W(f ⊗ h) = W(g ∗ f ⊗ h). Then WM−1 is a unitary and

WM−1(ind r̃)(g)(f ⊗ h̃) = WM−1(g ∗ f ⊗ h)

= W
(
g ∗ f ⊗ (M r)−1(h̃)

)

= (ind r)(g)WM−1(f ⊗ h̃).

Thus ind r and ind r̃ are equivalent as claimed.

In view of the previous result, we can compute the kernel of ind r by examining
the kernel of (9.32). Lemma 9.13 on page 283 implies that each r̃Q = π̃Q ⋊ ũQ is
homogeneous with π̃Q also homogeneous and having kernel τ(Q). Proposition 9.5
on page 268 implies that

IQ := ker IndGGτ(Q)
(π̃Q ⋊ ũQ)

is an induced primitive ideal of the form IndGGτ(Q)
JQ with Res JQ = τ(Q).

Lemma F.28 on page 420 implies that Q 7→ IQ is a Borel map of Prim(A ⋊α Σ)
to PrimA, and Lemma 9.13 on page 283 implies that there is a ν-conull set
Y0 ⊂ Prim(A ⋊α Σ) such that τ(s · Q) = s · τ(Q) for all Q ∈ Y0 and all s ∈ G.
Recall that

ker
(
IndGGτ(Q)

r̃Q
)

= IndGGτ(Q)

(
ker r̃Q

)
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by Lemma 5.16 on page 164, and that r̃s·Q is equivalent to ker s · r̃Q by Proposi-
tion 9.8 on page 274. Thus for all Q ∈ Y0 we have

Is·Q := ker
(
IndGGτ(s·Q)

r̃s·Q
)

= ker
(
IndGGs·τ(Q)

s · r̃Q
)

= ker
(
IndGs·Gτ(Q)

s · r̃Q
)

which, since IndGs·Gτ(Q)
s · r̃Q is equivalent to IndGGτ(Q)

r̃Q by Lemma 5.8 on page 157,
is

= ker
(
IndGGτ(Q)

r̃Q
)

= IQ.

Thus Q 7→ IQ is G-invariant from Y0 ⊂ Prim(A⋊α Σ) → PrimA. Thus Q 7→ IQ is
essentially constant by Lemma D.47 on page 398, and there is a P0 := τ(Q0) such
that ker

(
ind r

)
= IQ0 is an induced ideal of the form IndGGP0

J with ResJ = P0.
This completes the proof of Proposition 9.14 except for proving Proposition 9.18

on page 286.

Proof of Proposition 9.18. Suppose that ξ and η are in L2
σ(PrimA×G,µ,H). If b

is a generalized Bruhat approximate cross section, then

∫

G/GP

(
ξ(P, s) | η(P, s)

)
dβP (ṡ) =

∫

G

(
ξ(P, s) | η(P, s)

)
b(s,GP )ρ(s,GP ) dµG(s).

It follows that P 7→
(
ξ̌(P ) | η̌(P )

)
is Borel for all ξ and η. In particular, let { fi } be

dense in Cc(G,A) in the inductive limit topology, and let { ei } be an orthonormal
basis for H. If ēi is the corresponding constant function on PrimA, then

{W(fi ⊗ ēj)(P, ·) }

spans a dense subspace of K(P ) for each P (by the proof of Proposition 5.4 on
page 153). It follows from Proposition F.8 on page 412, that there is a unique
Borel structure on PrimA ∗ K making the latter into an analytic Borel Hilbert
bundle such that { W̌(fi ⊗ ēj) } is a fundamental sequence. Furthermore, each ξ̌ is
in B(PrimA ∗ K).

Since that map ξ 7→ ξ̌ is isometric and since (9.27) on page 284 defines a definite
inner-product on L2

σ(PrimA × G,µ,H), once we show that L2
σ(PrimA × G,µ,H)

is complete, it will follow that L2
σ(PrimA × G,µ,H) and L2(PrimA ∗ K, µ) are

isomorphic. Since the latter is separable by Lemma F.17 on page 415, this will
suffice to prove the proposition.

Let { ξn } be a Cauchy sequence in L2
σ(PrimA × G,µ,H). We can pass to a

subsequence, relabel, and assume that

‖ξn+1 − ξn‖2 ≤ 1

2n
for all n.
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Define extended real-valued functions zn and z on PrimA× PrimA by

zn(P, s · P ) =

n∑

k=1

‖ξk+1(P, s) − ξk(P, s)‖, and

z(P, s · P ) =

∞∑

k=1

‖ξk+1(P, s) − ξk(P, s)‖.

(We let z and zn be zero at (P,Q) if Q 6= s ·P for some s ∈ G — see footnote 9 on
page 284.) Using the triangle inequality for ‖ · ‖γ = ‖ · ‖L2(γ), and the observation

that ‖ξ̂‖γ = ‖ξ‖2 (where ξ̂(P, s · P ) = ‖ξ(P, s)‖), we have

‖zn‖γ ≤
n∑

k=1

‖ξk+1 − ξk‖2 ≤ 1.

Since

‖zn‖2
γ =

∫∫

PrimA×PrimA

zn(P,Q)2 dγ(P,Q),

the Monotone Convergence Theorem implies that

‖z‖2
γ =

∫∫

PrimA×PrimA

z(P,Q)2 dγ(P,Q) ≤ 1.

Therefore there is a γ-null set N such that (P, s · P ) /∈ N implies

∞∑

k=1

ξk+1(P, s) − ξ(P, s)

is absolutely convergent in H. Thus the series converges to some ξ′(P, s) ∈ H.
Furthermore,

ξ′(P, s) = lim
n→∞

n∑

k=1

ξk+1(P, s) − ξk(P, s)

= lim
n→∞

ξn+1(P, s) − ξ1(P, s).

Thus ξ(P, s) := ξ′(P, s) + ξ1(P, s) satisfies

ξ(P, s) = lim
n→∞

ξn(P, s) for all (P, s · P ) /∈ N .

If we define ξ(P, s) = 0 if (P, s · P ) /∈ N , then, since (P, s · P ) ∈ N if and only if
(P, st · P ) ∈ N for all t ∈ GP ,

ξ(P, st) = σP (t)−1
(
ξ(P, s)

)
for all s ∈ G and t ∈ GP .

Furthermore,
{ (P, s) : (P, s · P ) ∈ N }
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is a µ× µG-null set. Thus ξn → ξ almost everywhere.
Given ǫ > 0, there is a N such that n,m ≥ N implies that

‖ξn − ξm‖2 < ǫ.

If (P, s · P ) /∈ N ,

‖ξ(P, s) − ξk(P, s)‖ = lim
n

‖ξn(P, s) − ξk(P, s)‖.

Thus, if k ≥ N , Fatou’s Lemma implies that

‖ξ − ξk‖2
2 ≤ lim inf

n
‖ξn − ξk‖2

2 ≤ ǫ2.

Also,

‖ξ(P, s)‖2 ≤
(
‖ξ(P, s) − ξk(P, s)‖ + ‖ξk(P, s)‖

)2

≤ 4‖ξ(P, s) − ξk(P, s)‖2 + 4‖ξk(P, s)‖2.

Thus ξ ∈ L2
σ(PrimA×G,µ,H) and ξk → ξ in L2

σ(PrimA×G,µ,H). This completes
the proof of completeness.

Remark 9.21. If in the preceding discussion we replace A by C (and therefore
PrimA by a point) and σ by a unitary representation of a subgroup H on H. Then
we get a Hilbert space V whose elements are µG-almost everywhere equivalence
classes of Borel functions h : G → H which satisfy h(st) = u(t)−1

(
h(s)

)
for all

s ∈ G and t ∈ H for which
∫

G/H

‖h(s)‖2 dβH(ṡ) <∞.

Since the functions

h(s) := W(f ⊗ v̄)(s) :=

∫

H

ρ(st,H)−
1
2ϕ(st)u(t)(v) dµH (t) (9.33)

span a dense subset and also lie in the space Vc defined prior to Proposition 5.4 on
page 153, we see that the space L2

u(G, β
H ,H) in that Proposition can be identified

with V .

9.4 Step IV: G Amenable

Proposition 9.22 (Sauvageot). Suppose that G is amenable and that R is a factor
representation of A⋊α G with infinite multiplicity. If ind r is the representation of
A⋊α G induced from Sauvageot’s restriction of R to the stability groups, then

ker(ind r) ⊂ kerR.
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Let θ : PrimA× PrimA→ [0,∞) be a Borel function such that

∫

G/GP

θ(P, s · P )2 dβP (ṡ) = 1 for all P ∈ PrimA. (9.34)

(We will produce such a function in Lemma 9.23 on page 295.)

We are still using the notation and set up described in the beginning of Sec-
tion 9.2. In particular, let X ⊂ PrimA be as specified there. Thus if P ∈ X ,
s · P ∈ X and t ∈ GP , then

U(t−1s−1, P ) = U(t−1, P )U(s−1, P ) = σP (t)−1U(s−1, P ).

Let N := PrimArX and set

N ′ := { (P, s) : s · P ∈ N }.

Since µ is quasi-invariant, for each s ∈ G we have

µ
(
{P : s · P ∈ N }

)
= µ(s−1 ·N) = 0.

It follows that N ′ is µ × µG-null. Let h ∈ L2(PrimA, µ,H) with ‖h‖2 = 1, and
define ξγ,h(P, s) to be

D(P, s · P )
1
2 θ(s · P, P )U(s−1, P )

(
h(s · P )

)
if (P, s) /∈ N ′, (9.35)

and zero otherwise. Note that if (P, s) /∈ N ′ and t ∈ GP then (P, st) /∈ N ′, and we
have

ξγ,h(P, st) = D(P, s · P )
1
2 θ(s · P, P )U(t−1s−1, P )

(
h(s · P )

)

= D(P, s · P )
1
2 θ(s · P, P )U(t−1, P )U(s−1, P )

(
h(s · P )

)

= σP (t)−1
(
ξγ,h(P, s)

)
.

Thus ξγ,h transforms properly for all (P, s). Furthermore,

‖ξγ,h‖2
2 =

∫∫

PrimA×PrimA

D(P,Q)θ(Q,P )2‖h(Q)‖2 dγ(P,Q)

=

∫∫

PrimA×PrimA

θ(P,Q)2‖h(P )‖2 dγ(P,Q)

=

∫

PrimA

‖h(P )‖2

∫

G/GP

θ(P, s · P )2 dβP (ṡ) dµ(P )

= 1.

Thus ξγ,h ∈ L2
σ(PrimA×G,µ,H) with norm one.
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If ϕ ∈ Cc(G,A), then we compute as follows:

(
ind r(ϕ)ξγ,h | ξγ,h

)
=

∫

PrimA

∫

G/GP

(
ind r(ϕ)ξγ,h(P, s) | ξγ,h(P, s)

)

dβP (ṡ) dµ(P )

=

∫

PrimA

∫

G/GP

∫

G

ρ(r−1, Gs·P )
1
2

(
πP

(
α−1
s

(
ϕ(r)

))(
ξγ,h(P, r−1s)

)
| ξγ,h(P, s)

)

dµG(r) dβP (ṡ) dµ(P )

which, since (9.35) holds µ× µG-almost everywhere, is

=

∫∫

PrimA×PrimA

∫

G

n(P,Q, r)Θ(P,Q, r)I(P,Q, r) dµG(r) dγ(P,Q), (9.36)

where n, Θ and I are defined by

n(P, s · P, r) := ρ(r−1, Gs·P )
1
2D(P, r−1s · P )

1
2D(P, s · P )

1
2

Θ(P, s · P, r) := θ(r−1s · P, P )θ(s · P, P ) and

I(P, s · P, r) :=
(
πP

(
α−1
s

(
ϕ(r)

))
U(s−1r, P )

(
h(r−1s · P )

)
|

U(s−1, P )
(
h(s · P )

))
.

Using (9.3) of Lemma 9.1 on page 264, we have, µ× µG × µG-almost everywhere,

D(P, r−1s · P ) = ρ(r−1s,GP )−1d(s−1r, P )

= ρ(s,GP )−1ρ(r−1, Gs·P )−1d(s−1, P )d(r, s · P )

= D(P, s · P )D(s · P, r−1s · P ).

Therefore we have, µ× µG × µG-almost everywhere,

n(P, s · P, r) = ρ(r−1, Gs·P )
1
2D(s · P, r−1s · P )

1
2D(P, s · P )

= ρ(r−1, Gs·P )
1
2

(
ρ(r−1, Gs·P )−1d(r, s · P )

) 1
2D(P, s · P )

= d(r, s · P )
1
2D(P, s · P ).

(9.37)

Thus (9.36) equals
∫∫

PrimA×PrimA

∫

G

d(r,Q)
1
2 Θ(P,Q, r)I(P,Q, r) dµG(r)D(P,Q) dγ(P,Q)

Furthermore, for each s, r ∈ G, the following hold µ-almost everywhere:

πP
(
α−1
s

(
ϕ(r)

))
= U(s−1, P )πs·P

(
ϕ(r)

)
U(s−1, P )−1

U(s−1, P )−1 = U(s, s · P )

U(r, s · P ) = U(s, s · P )U(s−1r, P ).



9.4 Step IV: G Amenable 295

Therefore, γ × µG-almost everywhere,

I(P,Q, r) =
(
πQ

(
ϕ(r)

)
U(r,Q)

(
h(r−1 ·Q)

)
| h(Q)

)
. (9.38)

Now the definition of D and equations (9.36) and (9.38) show that (9.36) is equal
to

∫∫

PrimA×PrimA

∫

G

d(r, P )
1
2 θ(r−1 · P,Q)θ(P,Q)

(
πP

(
ϕ(r)

)
U(r, P )

(
h(r−1 · P )

)
| h(P )

)
dµG(r) dγ(P,Q). (9.39)

On the other hand, Equation (9.18) implies that

(
R(ϕ)h | h

)
=

∫

PrimA

∫

G

d(r, P )
1
2

(
πP

(
ϕ(r)

)
U(r, P )h(r−1 · P ) | h(P )

)
dµG(r) dµ(P ). (9.40)

Lemma 9.23. If G is amenable, then, given ǫ > 0, we can choose a Borel function
θ : PrimA× PrimA→ [0,∞) satisfying (9.34), and such that

∣∣∣
∫

G/GP

θ(r−1 · P, s · P )θ(P, s · P ) dβP (ṡ) − 1
∣∣∣ < ǫ (9.41)

for all r ∈ suppϕ and all P ∈ PrimA.

Proof. For the moment, assume that g ∈ C+
c (G) with ‖g‖2 = 1. Then, if we define

θ(P, s · P ) =
(∫

GP

ρ(st,GP )−1g(st)2 dµGP (t)
) 1

2

, (9.42)

we have
∫

G/GP

θ(P, s · P )2 dβP (ṡ) =

∫

G/GP

∫

GP

ρ(st,GP )−1g(st)2 dµGP (t) dβP (ṡ)

= ‖g‖2
2 = 1,

and θ satisfies (9.34). Furthermore

θ(r−1 · P, s · P )2 = θ(r−1 · P, sr(r−1 · P ))2

=

∫

Gr−1·P

ρ(srt,Gr−1·P )−1g(srt)2 dµGr−1·P
(t)

= ω(r,Gr−1·P )

∫

GP

ρ(str,Gr−1·P )−1g(str)2 dµGP (t)

= ω(r,Gr−1·P )ρ(r,Gr−1·P )−1

∫

GP

ρ(st,GP )−1g(str)2 dµGP (t)
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which, since ρ(r,Gr−1·P ) = ∆G(r−1)ω(r,Gr−1·P ), is

=

∫

GP

∆G(r)ρ(st,GP )−1g(str)2 dµGP (t).

Notice that θ(P, s ·P ) = ‖a‖L2(GP ) where a(t) := ρ(st,GP )−
1
2 g(st) and θ(r−1 ·P, s ·

P ) = ‖b‖L2(GP ) where b(t) := ∆G(r)
1
2 ρ(st,GP )−

1
2 g(str). Since

(
‖a‖2 − ‖b‖2

)2 ≤
‖a− b‖2

2, we conclude that

∣∣θ(r−1 · P, s · P ) − θ(P, s · P )
∣∣2

≤
∫

GP

ρ(st,GP )−1
∣∣∆G(r)

1
2 g(str) − g(st)

∣∣2 dµGP (t).

Therefore

∫

G/GP

∣∣θ(r−1 · P, s · P ) − θ(P, s · P )
∣∣2 dβP (ṡ)

≤
∫

G/GP

∫

GP

ρ(st,GP )−1
∣∣∆G(r)

1
2 g(str) − g(st)

∣∣2 dµGP (t) dβP (ṡ). (9.43)

It follows that the right-hand side of (9.43) is

∫

G

∣∣∆G(r)
1
2 g(sr) − g(s)

∣∣2 dµG(s) = ‖gr − g‖2
L2(G),

where gr(s) := ∆(r)
1
2 g(sr).12 Since ‖gr‖L2(G) = 1, we have

‖gr − g‖2
L2(G) = 2 − 2 Re

(
gr | g

)
L2(G)

= 2 − 2 Re

∫

G

∆G(r)
1
2 g(sr)g(s) dµG(s)

which, since g ∈ C+
c (G), is

= 2
(
1 −

∫

G

∆G(r)
1
2 g(sr)g(s) dµG(s)

)
.

Furthermore, we have

∣∣∣
∫

G/GP

θ(r−1 · P, s · P )θ(P, s · P ) dβP (ṡ) − 1
∣∣∣
2

=
∣∣∣
∫

G/GP

θ(P, s · P )
(
θ(r−1 · P, s · P ) − θ(P, s · P )

)
dβP (ṡ)

∣∣∣
2

12Usually ρ(g) = gr is called the right-regular representation of G on L2(G). But ‘ρ’ is already
employed here, so we have not used this “standard notation”.
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which, using the Cauchy-Schwarz inequality, is

≤
(∫

G/GP

θ(P, s · P )2 dβP (ṡ)
)
·

(∫

G/GP

∣∣θ(r−1 · P, s · P ) − θ(P, s · P )
∣∣2 dβP (ṡ)

)

≤ 2
(
1 −

∫

G

∆(r)
1
2 g(sr)g(s) dµG(s)

)
. (9.44)

If G is amenable, then Proposition A.17 on page 325 and its proof show that
given a compact set K := suppϕ, and ǫ > 0, there is a f ∈ C+

c (G) such that
‖f‖L2(G) = 1 and such that

∣∣1 − f ∗ f̃(r)
∣∣ < ǫ/2 for all r ∈ K,

where f̃(r) = f(r−1) = f(r−1). But

f ∗ f̃(r) =

∫

G

f(s)f̃(s−1r) dµG(s)

=

∫

G

f(s)f(r−1s) dµG(s)

=

∫

G

f(rs)f(s) dµG(s).

Now let g(s) := ∆G(s)−
1
2 f(s−1). Then g ∈ C+

c (G) and ‖g‖L2(G) = 1. Furthermore,
∫

G

∆(r)
1
2 g(sr)g(s) dµG(s) =

∫

G

∆G(s)−1f(r−1s−1)f(s−1) dµG(s)

=

∫

G

f(r−1s)f(s) dµG(s)

=

∫

G

f(s)f(rs) dµG(s).

Using this g to define θ gives (9.41).

Proof of Proposition 9.22 on page 292. Choose θ as in Lemma 9.23 on page 295.
Then the above gymnastics imply that

∣∣∣
(
ind r(ϕ)ξγ,h | ξγ,h

)
−

(
R(ϕ)h | h

)∣∣

=
∣∣∣
∫

G

∫

PrimA

d(r, P )
1
2

(
πP

(
ϕ(r)

)
U(r, P )

(
h(r−1 · P )

)
| h(P )

)

(∫

G/GP

θ(r−1 · P, s · P )θ(P, s · P ) dβP (ṡ) − 1
)
dµ(P ) dµG(r)

∣∣∣

≤ ǫ

∫

G

∫

PrimA

d(r, P )
1
2 ‖ϕ(r)‖‖h(r−1 · P )‖‖h(P )‖ dµ(P ) dµG(r)

≤ ǫ

∫

G

‖ϕ(r)‖
∫

PrimA

d(r, P )
1
2 ‖h(r−1 · P )‖‖h(P )‖ dµ(P ) dµG(r)
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which, by Hölder’s inequality, is

≤ ǫ‖d(r, ·) 1
2h(r−1·)‖2‖h‖2

∫

G

‖ϕ(r)‖ dµG(r)

= ǫ‖ϕ‖1.

Thus we can find states ωn of the form ωξγ,h,ξγ,h associated to ind r such that for
all ϕ ∈ Cc(G,A), ωn(ϕ) → ω(ϕ), where ω = ωh,h is the state associated to R.
Therefore ωn → ω weakly. But if a ∈ ker(ind r), then ωn(a) = 0 for all n. Thus
ω(a) = 0. Since h was arbitrary, with conclude that a ∈ kerR. This completes the
proof.

9.5 Step V: Gootman-Rosenberg a la Renault

Proposition 9.24 (Gootman-Rosenberg). If R is a factor representation of A⋊αG
with infinite multiplicity and if ind r is the representation of A⋊α G induced from
Sauvageot’s restriction of R to the stability groups, then

kerR ⊂ ker(ind r).

The two key difficulties to surmount in proving the reverse containment to
Proposition 9.22 on page 292 is the lack of continuity of the map P → GP from
PrimA to Σ, and the possibility that the orbit structure of PrimA/G may be
pathological. To overcome the first problem, we use a version of Lusin’s Theorem
that applies to Polish spaces. (Recall that in our set-up, where (A,G, α) is sepa-
rable, both PrimA and Σ are Polish spaces in the regularized and Fell topologies,
respectively. See Theorem H.39 on page 476 and Theorem H.5 on page 455.).

Theorem 9.25 (Lusin’s Theorem). Suppose that X and Y are Polish spaces and
that µ is a probability measure on X. If f : X → Y is Borel, then given ǫ > 0,
there is a compact subset L ⊂ X such that µ(X r L) < ǫ and the restriction of f
to L is continuous.13

This result is proved, for example, in [124, Corollary 24.22], and is a consequence
of the fact that finite measures on Polish spaces are tight (Lemma D.38 on page 392).

To deal with badly behaved orbits, we need to see that the orbits are at least lo-
cally well-behaved. To do this, Gootman and Rosenberg used a “local cross-section”
result ([64, Theorem 1.4]) based on some clever selection theorems. Instead, we fol-
low Renault who used a result about equivalence relations [144, Proposition 1.11]
which is based on techniques due to P. Forrest. In both cases, the local compactness
of G is crucial. As always in this chapter, we give PrimA its regularized topology
so that PrimA is a Polish G-space (Theorem H.39 on page 476).

13Notice that the result definitely does not say that f is continuous at each point of L. The
characteristic function of the rationals is nowhere continuous, but its restriction to the irrationals
is constant and therefore continuous.
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Proposition 9.26 (Renault). Let K be a compact symmetric neighborhood of e in
G, let M be a neighborhood of the diagonal ∆ ⊂ PrimA×PrimA and let L ⊂ PrimA
be such that the restriction of P 7→ GP to L is continuous. If P,Q ∈ PrimA, then
define P ∼K Q if there is a s ∈ K such that Q = s · P . Then each P0 ∈ L has
a neighborhood V in L with the property that ∼K is an equivalence relation on V
such that P ∼K Q implies (P,Q) ∈ M . Furthermore, if U ⊂ V is open, then its
∼K-saturation [U ] := {R ∈ V : R ∼K P with P ∈ U } is open in V . (That is, ∼K
is an open equivalence relation on V .)

Proof. Let

G(P0) := { (t, P0) : t ∈ GP0 }.
For clarity, we’ll break the proof up into a number of steps.

Claim 1. Let

K ′ := { (ts, P ) ∈ G× L : s ∈ K and t ∈ GP }.
Then K ′ is a neighborhood of G(P0) in G× L.

Proof of Claim 1. Let (t, P0) ∈ G(P0) and suppose that (ri, Pi) is a sequence in
G×L converging to (t, P0). It will suffice to prove that { (ri, Pi) } has a subsequence
which is eventually in K ′. Since {Pi } ⊂ L, by assumption, GPi → GP0 in Σ. Thus
we can pass to a subsequence, relabel, and find ti ∈ GPi such that ti → t. Then
si := t−1

i ri → e, and si is eventually in K. Thus (ri, Pi) = (tisi, Pi) is eventually
in K ′.

Claim 2. There is a neighborhood M0 of ∆ such that (P,Q) and (Q, J) in M0

imply that (P, J) belongs to M .

Proof of Claim 2. Let d be a metric on PrimA which is compatible with its Polish
topology. Let

Dǫ(P ) := { (Q,Q′) ∈ PrimA× PrimA : d(P,Q) < ǫ and d(P,Q′) < ǫ }.

For each P ∈ PrimA, choose ǫP such that D3ǫP (P ) ⊂M , and define

M0 :=
⋃

P∈PrimA

DǫP (P ).

If (P,Q), (Q, J) ∈M0, then there are Pi ∈ PrimA such that (P,Q) ∈ DǫP1
(P1) and

(Q, J) ∈ DǫP2
(P2). We can assume that ǫP2 ≤ ǫP1 . Then

d(P1, J) ≤ d(P1, Q) + d(Q, J)

≤ d(P1, Q) + d(Q,P2) + d(P2, J)

< ǫP1 + ǫP2 + ǫP2

≤ 3ǫP1

Thus (P, J) ∈ D3ǫP1
(P1) ⊂M . This proves claim 2.



300 The Proof of the GRS-Theorem

Let π : G × L → PrimA × PrimA be the continuous map given by π(s, P ) :=
(P, s−1 · P ). Thus V := π−1(M) is a neighborhood of G(P0).

Claim 3. There is a neighborhood N of G(P0) in G × L such that (s, P ) and
(r, s−1 · P ) in N implies that (sr, P ) belongs to K ′ ∩ V .

Proof of Claim 3. Let M0 be as in Claim 2. Let V0 := π−1(M0) and pick a compact
neighborhood K0 of e in G such that K2

0 ⊂ K. If K ′
0 is as in claim 1, then

N := K ′
0 ∩ V0 is a neighborhood of G(P0). If (s, P ) and (r, s−1 · P ) both belong

to N , then s = ts′ and r = v′r′ with s′, r′ ∈ K0, t ∈ GP and v′ ∈ Gs−1·P . Since
s−1 ·P = (s′)−1 ·P , v′ = (s′)−1vs′ with v ∈ GP . Thus sr = tvs′r′ and (sr, P ) ∈ K ′.
On the other hand, we have (P, s−1 · P ) ∈ M0 and (s−1 · P, r−1s−1 · P ) ∈M0. By
Claim 2, (sr, P ) ∈ V as well. This proves the claim.

Claim 4. There is a neighborhood V of P0 in L such that s ∈ K, P ∈ V and
s−1 · P ∈ V implies that (s, P ) ∈ N .

Proof of claim 4. Let {Vi } be a neighborhood basis at P0 with Vi+1 ⊂ Vi for all
i. If the claim where false, then for each i there is a si ∈ K and Pi ∈ Vi such that
s−1
i · Pi ∈ V and (si, Pi) /∈ N . Since K is compact, we can pass to a subsequence,

relabel, and assume that si → s. Since Pi → P0, s
−1
i Pi → s−1 · P0 = P0. Thus

s ∈ GP0 and (s, P0) ∈ G(P0). Thus (si, Pi) is eventually in N . This contradicts our
assumptions and proves the claim.

Fix P0 and V as in Claim 4. Consider ∼K restricted to V . Since K is symmetric
and e ∈ K, ∼K is always reflexive and and symmetric. To see that ∼K is an
equivalence relation on V , we need to see that it is transitive. Suppose that P,Q, J ∈
V , that P ∼K Q and that Q ∼K J . Then there are s, r ∈ K such that Q = s−1 ·P
and J = r−1 ·Q = r−1s−1 ·P . Claim 4 implies that (s, P ) and (r, s−1 ·P ) belong to
N . Thus claim 3 implies (sr, P ) ∈ K ′ ∩ V . Thus sr = tk with k ∈ K and t ∈ GP .
Thus J = k−1 · P and P ∼K J . This proves that ∼K is an equivalence relation on
V .

If P,Q ∈ V and P ∼K Q, then Q = s−1 ·P with s ∈ K. Furthermore, (s, P ) ∈ N
(by claim 4). Thus (P,Q) = (P, s−1 · P ) ∈M .

If U ⊂ V is open, then

[U ] =
( ⋃

s∈K

s−1 · U
)
∩ V

is open as each s−1 · U is open. This completes the proof of the proposition.

Next we require a technical lemma which will be used to guarantee that certain
integrals are nonzero. Here and in the sequel, we’ll adopt notation so that if V is a
subset of G, then V/GP will denotes the image of V in G/GP via the natural map.
Also recall that if µ is a Radon measure on a locally compact space X , then the
support of µ, suppµ, is the closed set which is the complement of

N :=
⋃

{U ⊂ X : U is open and µ(U) = 0 }.
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Since µ is regular, we have µ(N) = 0. Moreover, x0 ∈ suppµ if and only if

∫

X

f(x) dµ(x) > 0

for every f ∈ C+
c (X) with f(x0) > 0.

Lemma 9.27. Suppose that L ⊂ PrimA is compact. Then there is a Borel set
L′ ⊂ L such that µ(LrL′) = 0 and such that if P ∈ L′ and V is a neighborhood of
e in G, then ∫

V/GP

ψ(s · P ) dβP (ṡ) > 0

provided ψ ∈ C+(L) and ψ(P ) > 0. (We view ψ as a Borel function on PrimA
which vanishes off L.)

Proof. The map sGP 7→ s ·P is a continuous bijection of G/GP onto G ·P . Thus we
can give G · P the locally compact topology coming from the homogeneous space
G/GP . We’ll call this the quotient topology to distinguish it from the relative
topology coming from PrimA (which is often coarser than than the quotient topol-
ogy). Let βP be the measure on G · P given by the push-forward of βP . Then we
define C(P ) to be the support, with respect to the quotient topology on G · P , of
the measure βP restricted to L ∩G · P . Define

L′ := {P ∈ L : P ∈ C(P ) }.

To see that L′ is Borel, let {Ki } be a neighborhood basis at e of compact sets in
G. Let Mi := { (P, s · P ) : s ∈ Ki and s · P ∈ L }. Then Mi is closed in L×L, and1Mi is Borel. Let b be a generalized Bruhat approximate cross section. Since

∫

V/GP

1Mi(P, s · P ) dβP (ṡ) =

∫

G

1V GP (s)1Mi(P, s · P )b(s,GP )ρ(s,GP ) dµG(s)

is a Borel function of P by Fubini’s Theorem,

Bi :=
{
P ∈ L :

∫

V/GP

1Mi(P, s · P ) dβP (ṡ) > 0
}

is Borel. Since Ki ·P is a neighborhood of P in the quotient topology on G ·P , we
clearly have L′ ⊂ Bi.

On the other hand, if P ∈ L r L′, then there is a neighborhood U of e in G
such that βP (U · P ∩ L) = 0. If i is such that Ki ⊂ U , then P /∈ Bi. Thus

L′ =
⋂
Bi

is Borel.
Let

A = { (P, s · P ) ∈ L× L : s · P ∈ C(P ) }.
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Since βP = βr·P for all r ∈ G (Remark 9.4 on page 267), we must have C(P ) =
C(r · P ) for all r. Thus

A = { (P, s · P ) ∈ L× L : s · P ∈ L′ }. (9.45)

Let γ be the measure on PrimA×PrimA defined in Lemma 9.1 on page 264. Then

γ
(
PrimA× (L r L′)

)
=

∫

PrimA

∫

G/GP

1LrL′(Q) dβP (Q) dµ(P )

which, in view of (9.45), is

=

∫

PrimA

βP (Lr C(P )) dµ(P ),

which vanishes since βP (Lr C(P )) = 0 by the definition of C(P ).

Lemma 9.1 on page 264 implies that the flip preserves γ-null sets, so

0 = γ
(
(Lr L′) × PrimA

)

=

∫

LrL′

βP (G/GP ) dµ(P ).

Thus µ(Lr L′) = 0.

Now suppose that ψ ∈ C+(L) and that P ∈ L′. Then U := {Q ∈ L : ψ(Q) > 0 }
is a neighborhood of P in L. Since P ∈ C(P ), βP (U) > 0. The final assertion
follows.

Fix a compact symmetric neighborhood K of e in G, a neighborhood M of
the diagonal ∆ in PrimA × PrimA and a compact set L ⊂ PrimA such that the
restriction of P → GP to L is continuous on L. For each such triple, we will define
a linear map

Q = Q(K,M,L) : Cc(G,A) → B
b
cc(G× PrimA,A).

We proceed as follows. Using Proposition 9.26 on page 299, let {V1, . . . , Vn }
be a cover of L by open sets such that ∼K is an open equivalence relation on each
Vi and such that P ∼K Q in Vi implies that (P,Q) ∈ M . Let {ψ1, . . . , ψn } be
a partition of unity in C(L) subordinate to the Vi. We’ll view each ψi as a Borel
function on PrimA which vanishes off L. Using Lemma 9.27 on the preceding page,
there is a Borel set L′ ⊂ L such that µ(Lr L′) = 0 and such that

ϕi(P ) :=

∫

K/GP

ψi(s · P ) dβP (ṡ) > 0 if P ∈ L′ and ψi(P ) > 0.

The special properties of the Vi and L′ now allow us to perform the following
construction.
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Lemma 9.28. Given K, M , L, L′, {Vi } and {ψi } as above, there are Borel
functions e1, . . . , en on PrimA such that each ei vanishes off Vi and such that for
all P ∈ L′

1 =

n∑

i=1

ei(P )

∫

K/GP

ei(s · P ) dβP (ṡ). (9.46)

Proof. We claim that if r ∈ K, P ∈ Vi and r · P ∈ Vi, then

K · P ∩ Vi = Kr · P ∩ Vi. (9.47)

If s ∈ K and if s · P ∈ Vi, then r · P ∼K P and s · P ∼K P , thus r · P ∼K s · P
in Vi and s · P ∈ Kr · P . Thus the left-hand side of (9.47) is contained in the
right-hand side. For the other containment, suppose that sr · P ∈ Vi with s ∈ K.
Then r · P ∼K sr · P , and since r · P ∼K P , we have sr · P ∈ K · P . This proves
the claim. Thus if P ∈ Vi, r · P ∈ Vi and r ∈ K, then, since suppψi ⊂ Vi,

ϕi(P ) =

∫

K/GP

ψi(s · P ) dβP (ṡ)

=

∫

K·P∩Vi

ψi(Q) dβP (Q)

which, by Remark 9.4 on page 267 and (9.47), is

=

∫

Kr·P∩Vi

ψi(Q) dβr·P (Q)

= ϕi(r · P ).

Using a generalized bruhat approximate cross section, as in the proof of Lemma 9.27
on page 301, it is not hard to see that ϕi is Borel. Therefore {P ∈ PrimA : ϕi(P ) >
0 } is Borel, and we can define Borel functions by

ei(P ) :=

{
ψi(P )ϕi(P )−

1
2 if ϕi(P ) > 0, and

0 otherwise.

If s ∈ K, P ∈ L′ and ψi(P ) > 0, then we must have P ∈ Vi and ϕi(P ) > 0. Then
we claim that

ei(s · P ) = ϕi(P )−
1
2ψi(s · P ). (9.48)

The claim is clearly true if ψi(s ·P ) = 0. Otherwise, s ·P ∈ Vi and (9.48) follows as
we just observed that ϕi(P ) = ϕi(s ·P ) in this case. Thus if ψi(P ) > 0 and P ∈ L′,
then

ei(P )

∫

K/GP

ei(s · P ) dβP (ṡ) = ψi(P )ϕi(P )−1

∫

K/GP

ψi(s · P ) dβP (ṡ)

= ψi(P ).

This equality is clear if ψi(P ) = 0. The result follows as
∑
i ψi(P ) = 1 for all P ∈ L

by assumption.
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We define Q = Q(K,M,L) by

Q(f)(r, P ) :=

n∑

i=1

ei(P )f(r)ei(r
−1 · P ). (9.49)

Of course, each Q also depends on our choices of the Vi and ψi, but this will not be
an issue in the sequel: we only require that the ei are as constructed in Lemma 9.28
on the previous page.

If ϕ ∈ Cc(G), then we can define a function Φ on G× Σ by

Φ(s,H) :=

∫

s·H

ϕ(s−1t) dµs·H(t).

If h ∈ H , then (sh)−1 = s−1(sh−1s−1) and sh−1s−1 ∈ s · H . Thus Φ(sh,H) =
Φ(s,H) for all s ∈ G and h ∈ H . Let C = suppϕ. If Φ were not bounded,
then there would be a sequence { (si, Hi) } ⊂ C × Σ such that limiΦ(si, Hi) = ∞.
Since C × Σ is compact, we may as well assume that (si, Hi) → (s,H). But Φ
is continuous (Lemma H.9 on page 460), so this leads to a contradiction. Thus if
f ∈ Cc(G,A) and M is a neighborhood of the diagonal in PrimA × PrimA, then
we can define a finite constant

C(f,M) := sup
{∫

Gs·P

‖f(s−1t)‖ dµGs·P (t) : (P, s · P ) ∈M
}
.

When M is all of PrimA× PrimA, we’ll write simply C(f).

Lemma 9.29. Let Q = Q(K,M,L) be as above. Then if f ∈ Cc(G,A) and if
supp f ⊂ K, we have

‖Q(f)‖I ≤ max
{
C(f,M), C(f∗,M)

}
,

where ‖ · ‖I is the norm on Bb
cc(G× PrimA,A) defined on page 276.

Proof. We compute

‖Q(f)‖I,r = sup
P∈PrimA

∫

G

‖Q(f)(s, P )‖ dµG(s)

≤ sup
P

n∑

i=1

ei(P )

∫

G

ei(s
−1 · P )‖f(s)‖ dµG(t)

= sup
P

n∑

i=1

ei(P )

∫

G

ei(s · P )‖f(s−1)‖∆G(s−1)ρ(s,GP )−1

ρ(s,GP ) dµG(s)

which, since K is symmetric and supp f ⊂ K, is

= sup
P

n∑

i=1

ei(P )

∫

K/GP

ei(s · P )

∫

GP

‖f(t−1s−1)‖

∆G(t−1s−1)ρ(t−1s−1, Gs·P ) dµGP (t) dβP (ṡ)
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which, since we have ρ(t−1s−1, Gs·P ) equal to ∆G(ts)ω(t−1s−1, Gs·P ) and since
ω(t−1s−1, Gs·P ) is the same as ∆GP (t)−1ω(s,GP )−1, is

= sup
P

n∑

i=1

ei(P )

∫

K/GP

ei(s · P )

ω(s,GP )−1

∫

GP

‖f(ts−1)‖ dµGP (t) dβP (ṡ)

= sup
P

n∑

i=1

ei(P )

∫

K/GP

ei(s · P )

∫

Gs·P

‖f(s−1t)‖ dµGs·P (t) dβP (ṡ)

which, since s ∈ K, ei(P ) > 0 and ei(s · P ) > 0 imply that (P, s · P ) ∈M , is

≤ C(f,M) sup
P

n∑

i=1

ei(P )

∫

K/GP

ei(s · P ) dβP (ṡ)

≤ C(f,M).

Since a straightforward computation shows that ‖Q(f∗)‖I,s = ‖Q(f)‖I,r, the above
shows that ‖Q(f)‖I,s ≤ C(f∗,M). This completes the proof.

The next result uses the intricate properties of Proposition 9.26 on page 299,
and it is the key to Renault’s approach. Recall that R′ is defined in Lemma 9.9 on
page 277.

Lemma 9.30. Suppose that f ∈ Cc(G,A) and that we define P(f) ∈ Cc(G∗Σ, A)
by

P(f)(s,H) := γH(s)f(s).

Let Q be the set of maps Q = Q(K,M,L) constructed as in (9.49), where K is a
symmetric compact neighborhood of e in G containing supp f , M is a neighborhood
of the diagonal ∆ in PrimA×PrimA and L is compact subset of PrimA such that
the restriction of the stability map P 7→ GP is continuous as a function from L to
Σ. Then r

(
P(f)

)
is in the weak operator closure of {R′

(
Q(f)

)
: Q ∈ Q }.

Proof. Let h′1, h
′
2, . . . , h

′
m and k1, k2, . . . , km be vectors in L2(PrimA, µ,H) and fix

ǫ′ > 0. It will suffice to produce Q ∈ Q such that

∣∣(R′
(
Q(f)

)
h′i | ki

)
−

(
r
(
P(f)

)
h′i | ki

)∣∣ < ǫ′ for i = 1, 2, . . . ,m. (9.50)

Since R is nondegenerate and since {R′
(
Q(f)

)
: Q ∈ Q } is bounded (Lemma 9.29

on the preceding page), we can assume that h′i = R(gi)hi for gi ∈ Cc(G,A) and
hi ∈ L2(PrimA, µ,H). Then Lemmas 9.9 on page 277 and 9.11 on page 279 imply
that if we view gi as an element of Bb

cc(G × PrimA,A), then

R′
(
Q(f)

)
h′i = R′

(
Q(f) ∗ gi

)
hi and r

(
P(f)

)
h′i = R′

(
P(f) · gi

)
hi.
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Fix an ǫ > 0. Use Lusin’s Theorem 9.25 on page 298 to find a compact subset
L ⊂ PrimA such that P 7→ GP is continuous when restricted to L, and such that

∫

PrimArL

‖ki(P )‖2 dµ(P ) < ǫ2 for all i.

Define

ξ̃i(P, r, s) :=

∫

Gr·P

f(r−1t)αr−1t

(
gi(t

−1rs)
)
dµGr·P (t)

= ω(r,GP )−1

∫

GP

f(tr−1)αtr−1

(
gi(rt

−1s)
)
dµGP (t).

Our choice of L, Lemma H.9 on page 460 and Lemma H.10 on page 461 imply that
ξ̃ is continuous on L × G × G. Furthermore, ξ̃i(P, rt, s) = ξ̃i(P, r, s) if t ∈ GP .
Thus we can define ξ(P, r · P, s) := ξ̃(P, r, s). If we let K be a compact symmetric
neighborhood of e containing supp f and (supp f)(supp gi) for all i, then ξ(P, rP, s)
vanishes if s /∈ K or if r /∈ KGP . We claim that there is a neighborhood M of the
diagonal such that P ∈ L, (P, r · P ) ∈M and r ∈ K imply that

‖ξi(P, r · P, s) − ξi(P, P, s)‖ < ǫ for all i. (9.51)

If the claim fails, then for some i we can find a neighborhood basis {Mj } of the
diagonal and (Pj , rj , sj) ∈ L×K ×K such that

‖ξi(Pj , rj · Pj , sj) − ξi(Pj , Pj , sj)‖ ≥ ǫ. (9.52)

But, passing to a subsequence and relabeling, we may as well assume that Pi → P ,
ri → r ∈ GP and si → s. This, and the continuity of ξ̃i eventually contradicts
(9.52).

Now we let Q = Q(K,M,L). Then we observe that

(
R′

(
Q(f)

)
h′i | ki

)
−

(
r
(
P(f)

)
h′i | ki

)
=

(
R′

(
Q(f) ∗ gi − P(f) · gi

)
hi | ki

)

=

∫

PrimA

(
R′

(
Q(f) ∗ gi − P(f) · gi

)
hi(P ) | ki(P )

)
dµ(P )

This last expression is the sum of the value A of the integral over PrimArL, and
the value B of the integral over L. It is not hard to check that

‖Q(f) ∗ gi‖I ≤ ‖Q(f)‖I‖gi‖I ≤ C(f,M)‖gi‖1, (9.53)

and similarly that

‖P(f) · gi‖I ≤ sup
P

‖f |GP ‖L1(A⋊GP )‖gi‖1. (9.54)

Therefore

|A| ≤ ‖R′
(
Q(f) ∗ gi − P(f) · gi

)
‖‖hi‖

(∫

PrimArL

‖ki(P )‖2 dµ(P )
) 1

2



9.5 Step V: Gootman-Rosenberg a la Renault 307

which, by our choice of L, is

≤ ‖Q(f) ∗ gi − P(f) · gi‖I‖hi‖ǫ

and, in view of (9.53) and (9.54), there is a constant C, depending only on f and
the gi, such that the above is

≤ C‖hi‖ǫ.

On the other hand, since µ(Lr L′) = 0,

|B| ≤ ‖1L′×G

(
Q(f) ∗ gi − P(f) · gi

)
‖I‖hi‖‖ki‖.

Since 1L′×G

(
Q(f) ∗ gi − P(f) · gi

)
has support in L′ ×K,

‖1L′×G

(
Q(f) ∗ gi − P(f) · gi

)
‖I

≤ µG(K) sup{ ‖Q(f) ∗ gi(s, P ) − P(f) · gi(s, P )‖ : (s, P ) ∈ K × L′ }

Thus it will suffice to show that the supremum is small. But calculations show that

Q(f) ∗ gi(s, P ) =

n∑

j=1

ej(P )

∫

K/GP

ej(r · P )ξi(P, r · P, s) dβP (ṙ),

while

P(f) · gi(s, P ) = ξi(P, P, s).

Combining these with the fundamental property enjoyed by the ej ’s (Lemma 9.28
on page 303), we get

‖Q(f) ∗ gi(s, P ) − P(f) · gi(s, P )‖

≤
n∑

j=1

ej(P )

∫

K/GP

ej(r · P )‖ξi(P, r · P, s) − ξi(P, P, s)‖ dβP (ṙ). (9.55)

But if ej(P ) > 0 and ej(r ·P ) > 0, then our choice of Vj guarantees that (P, r ·P ) ∈
M . Thus (9.55) is less than ǫ. Thus we can choose ǫ sufficiently small so that (9.50)
holds. This completes the proof.

To complete Renault’s proof, we want to realize ind r as an induced representa-
tion acting on the completion of Cc(G,A) ⊙ L2(PrimA, µ,H) with respect to the
pre-inner product given on elementary tensors by

(f ⊗ h | g ⊗ k) :=
(
r
(
P(g∗ ∗ f)

)
h | k

)
, (9.56)

as we did for ind r̃ in the proof of Proposition 9.20 on page 288. Thought of in this
way, (ind r)(g) sends the class of f ⊗ ξ to the class of g ∗ f ⊗ ξ.
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Recall that if f ∈ Cc(G,A) and if h ∈ L2(PrimA, µ,H), then we defined W(f ⊗
h) ∈ L2

σ(PrimA×G,µ,H) by (9.28). We also saw that

(ind r)(g)W(f ⊗ h) = W(g ∗ f ⊗ h), and (9.57)
(
W(f ⊗ h) | W(g ⊗ k)

)
=

(
r
(
P(g∗ ∗ f)

)
h | k

)
. (9.58)

Combining (9.57) and (9.58), we see that

(
(ind r)(f)W(g1 ⊗ h) | W(g2 ⊗ k)

)
=

(
r
(
P(g∗2 ∗ f ∗ g1)

)
h | k

)
. (9.59)

If a ∈ A⋊α G and if ǫ > 0, then we can find f ∈ Cc(G,A) such that

∣∣∣
(
(ind r)(a)W(g1 ⊗ h) | W(g2 ⊗ k)

)
−

(
(ind r)(f)W(g1 ⊗ h) | W(g2 ⊗ k)

)∣∣∣ < ǫ

3

and such that

C(g∗1 ∗ g1)
1
2C(g∗2 ∗ g2)

1
2 ‖f − a‖‖h‖‖k‖ < ǫ

3
,

where C(·) is the constant defined prior to Lemma 9.29 on page 304. Lemma 9.30
on page 305 allows us to approximate (9.59) by terms of the form

(
R′

(
Q(g∗2 ∗ f ∗ g1)

)
h | k

)
. (9.60)

Recall that if e is a bounded Borel function on PrimA, then the corresponding
diagonal operator Te is given by Teh(P ) = e(P )h(P ) for h ∈ L2(PrimA, µ,H).
Thus (9.60) is given by

∫

G

∫

PrimA

(
πP

(
Q(g∗2 ∗ f ∗ g1)

)
(s, P )U(s, P )h(s−1 · P ) | k(P )

)
d(s, P )

1
2 dP ds

=

n∑

i=1

∫

G

∫

PrimA

ei(P )ei(s
−1 · P )

(
πP

(
g∗2 ∗ f ∗ g1(s)

)
U(s, P )h(s−1 · P ) | k(P )

)
d(s, P )

1
2 dP ds

=

n∑

i=1

∫

G

∫

PrimA

(
πP

(
g∗2 ∗ f ∗ g1(s)

)
U(s, P )Teih(s

−1 · P ) |

Teik(P )
)
d(s, P )

1
2 dP ds

=

n∑

i=1

(
R(g∗2 ∗ f ∗ g1)Teih | Teik

)

=

n∑

i=1

(
R(f)hi | ki

)
,

where

hi := R(g1)Teih and ki := R(g2)Teik.
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Note that

n∑

i=1

‖hi‖2 =
(
R′

(
Q(g∗1 ∗ g1)

)
h | h

)

≤ C(g∗1 ∗ g1)‖h‖2,

where the inequality follows from Lemma 9.29 on page 304. Similarly,
∑

i ‖ki‖2 ≤
C(g∗2 ∗ g2)‖k‖2. Thus if a ∈ A⋊α G, then

∣∣∣
n∑

i=1

(
R(a)hi | ki

)∣∣∣ ≤ ‖a‖
n∑

i=1

‖hi‖‖ki‖

≤ ‖a‖
(∑

‖hi‖2
) 1

2
(∑

‖ki‖2
) 1

2

≤ ‖a‖C(g∗1 ∗ g1)
1
2C(g∗2 ∗ g2)

1
2 ‖h‖‖k‖.

Thus, with f ∈ Cc(G,A) as above,

∣∣∣
n∑

i=1

(
R(a)hi | ki

)
−

n∑

i=1

(
R(f)hi | ki

)∣∣∣ < ǫ

3
.

Thus for any a ∈ A⋊α G and any ǫ > 0, there are vectors hi and ki such that

∣∣∣
(
(ind r)(a)W(g1 ⊗ h) | W(g2 ⊗ k)

)
−

n∑

i=1

(
R(a)hi | ki

)∣∣∣ < ǫ.

Thus if a ∈ kerR, (ind r)(a) is zero on the span S of the W(f ⊗ h). We showed in
the proof of Proposition 9.20 on page 288 that S is dense. Therefore (ind r)(a) is
zero. This completes the proof of Proposition 9.24 on page 298.

This result together with Proposition 9.22 on page 292 gives the Sauvageot-
Gootman-Rosenberg-Renault proof of the Effros-Hahn conjecture (Theorem 8.21
on page 241).

Notes and Remarks

Lemma 9.7 and Propositions 9.5, 9.8, 9.14 and 9.22 are all due to Sauvageot [160].
Proposition 9.24 is due to Gootman & Rosenberg [64]; however, the proof given
here is modeled on Renault’s proof in [144]. In particular, Proposition 9.26 is due
to Renault [144].





Appendix A

Amenable Groups

In this chapter we want to collect a few basic results concerning amenable groups.
In particular, we want to arrive at the classical result stating that a group G is
amenable if and only if the left-regular representation is a faithful representation
of C∗(G) [82]. This result could serve as a definition of amenability were it not
for the fact that we want to apply some of the details of the argument to the
theory of crossed products. Furthermore, we prefer to have a definition that easily
leads to results that allows us to recognize an amenable group when we see one. For
example, we’d like to know that closed subgroups and quotients of amenable groups
are amenable, etc. (see Remark A.15 on page 322). I have tried to pare down the
results reproduced here to a bare minimum. Much more complete treatments are
available elsewhere. Most of the ideas here were stolen from [126, §§7.1–7.2]. Other
good sources are [68], [125] and [72].

A.1 States and Positive Definite Functions

If ϕ is a state on C∗(G), then the usual GNS-construction ([139, Proposition A.6])
gives us a nondegenerate representation πϕ and a cyclic vector hϕ such that

ϕ(f) =
(
πϕ(f)hϕ | hϕ

)
for all f ∈ Cc(G). (A.1)

Of course, πϕ is the integrated form of a unitary representation, also denoted πϕ,
and if we define Φ = Φϕ to be the bounded continuous function on G given by

Φ(s) := (πϕs hϕ | hϕ), (A.2)

then we have

ϕ(f) =
(
πϕ(f)hϕ | hϕ

)
=

∫

G

f(s)(πϕs hϕ | hϕ) dµ(s) =

∫

G

f(s)Φ(s) dµ(s).

One goal of this section is to characterize those functions on G having the form
given in (A.2). Then it is possible to study the states of C∗(G) in terms of these
functions. Specifically, we want to prove the following.

311
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Proposition A.1. Let Φ be a bounded continuous function on a locally compact
group G. Then the following statements are equivalent.

(a) There is a unitary representation π : G→ U(Hπ) such that

Φ(s) = (πsh | h)

for a vector h ∈ Hπ.

(b) For any finite set { s1, . . . , sn } ⊂ G, the matrix

(
Φ(s−1

i sj)
)

is positive in Mn.

(c) For all f ∈ Cc(G), ∫

G

f∗ ∗ f(r)Φ(r) dµ(r) ≥ 0. (A.3)

(d) There is a positive functional ϕ of norm ‖Φ‖∞ on C∗(G) such that

ϕ(f) =

∫

G

f(s)Φ(s) dµ(s) for all f ∈ Cc(G). (A.4)

Definition A.2. A function Φ, continuous or not, on a group G is called positive
definite if it satisfies the matrix condition in part (b) of Proposition A.1. The set
of continuous positive definite functions on G is denoted by P(G).

Example A.3. Of course, functions such as those defined in (A.2) are positive def-
inite. More generally, if V is any complex inner product space and s 7→ us is a
homomorphism of G into the group of unitary operators on V , then

Φ(s) := (usv | v)

is positive definite for any v ∈ V . To see this, let s1, . . . , sn be elements of G. We
need to show that for any (c1, . . . , cn) ∈ Cn we have

∑

i,j

c̄icjΦ(s−1
i sj) ≥ 0. (A.5)

However, the left-hand side is

∑

i,j

c̄icj(us−1
i sj

v | v) =
∑

i,j

(cjusjv | ciusiv)

=
(∑

i

ciuiv
∣∣∣
∑

i

ciuiv
)
,

which is certainly nonnegative.

In view of Example A.3, it is clear that a positive definite function need not be
continuous or even measurable. For example, any character on G, continuous or
not, is positive definite. But if a positive definite function is continuous at e, then
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it’s actually uniformly continuous [72, Theorem VIII §32.4]. (We won’t need this
fact as the functions we’ll want to consider will obviously be continuous.)

Positive definite functions are rather special, and enjoy lots of properties. A few
of these are summarized in the next lemma. It will be convenient to introduce the
following notation. If f is any function on G, then we define f̃ and f◦ by

f̃(s) := f(s−1) and f◦(s) := f(s−1). (A.6)

Lemma A.4. Suppose that Φ is a positive definite function on G. Then Φ is
bounded with ‖Φ‖∞ = Φ(e). We also have Φ(r−1) = Φ(r) so that Φ̃ = Φ. Fur-
thermore, Φ◦ is positive definite, and if Ψ is also positive definite, then so is the
pointwise product ΦΨ.

Proof. The matrix (
Φ(e) Φ(r)

Φ(r−1) Φ(e)

)

is positive by assumption. Thus Φ(e) ≥ 0, Φ(r) = Φ(r−1) and 0 ≤ Φ(e)2 −
Φ(r)Φ(r−1) = Φ(e)2 − |Φ(r)|2.

It is straightforward to check that Φ◦ is positive definite. For the last statement,
it suffices to check that the Schur product (aijbij) of two positive matrices (aij)
and (bij) is again positive. But since (bij) is positive, we can find cij such that
bij =

∑
k c̄kickj . Then for any scalars di,

∑

ij

d̄idjaijbij =
∑

ijk

d̄idjaij c̄kickj =
∑

k

∑

ij

(ckidi)(ckjdj)aij ,

which is positive since (aij) is positive.

Remark A.5. It follows from Lemma 1.72 on page 23 that Cc(G) has an approximate
identity for the inductive limit topology and therefore for the L1-norm or universal
norm. In fact, any net { uV } indexed by decreasing neighborhoods of the identity
in G of functions in C+

c (G) satisfying suppuV ⊂ V , u∗V = uV and having integral
one will do. In the sequel, we’ll refer to this sort of approximate identity as an
approximate identity for C∗(G) in Cc(G).

Proof of Proposition A.1 on the facing page. (a) =⇒ (b): This implication is
proved in Example A.3 on the preceding page.

(b) =⇒ (c): Suppose that f ∈ Cc(G) with K = supp f . Then F (s, r) :=
f(s)f(r)Φ(s−1r) is in Cc(G × G) with support in K × K. In particular, F is
uniformly continuous (Lemma 1.62 on page 19) and there is a neighborhood V of
e in G such that

|F (s, r) − F (s′, r′)| < ǫ

provided both (s, r) and (s′, r′) are in the same right translate V s0×V r0 of V ×V .
We can cover K by finitely many right translates of V and form a partition of K by



314 Amenable Groups

nonempty Borel sets E1, . . . , En such that each Ei is contained in a right translate
of V . Let si ∈ Ei. Then

∫

G

f∗ ∗ f(r)Φ(r) dµ(r) =

∫

G

∫

G

f∗(s)f(s−1r)Φ(r) dµ(s) dµ(r) (A.7)

=

∫

G

∫

G

f(s)f(r)Φ(s−1r) dµ(r) dµ(s)

=
∑

i,j

∫

Ei

∫

Ej

f(s)f(r)Φ(s−1r) dµ(r) dµ(s)

=
∑

i,j

f(si)µ(Ei)f(sj)µ(Ej)Φ(s−1
i sj) +R, (A.8)

where

R =
∑

i,j

∫

Ei

∫

Ej

(
F (s, r) − F (si, sj)

)
dµ(r) dµ(s).

Since the uniform continuity of F implies |R| ≤ ǫµ(K)2 and since the first term
of (A.8) is nonnegative by assumption, it follows that the left-hand side of (A.7)
is bounded below by −ǫµ(K)2. Since ǫ is arbitrary, the left-hand side of (A.7) is
nonnegative as claimed.

(c) =⇒ (d): If Φ satisfies (A.3), then (A.4) defines a positive linear functional
on Cc(G) with norm ‖Φ‖∞ with respect to the L1-norm on Cc(G). We can mimic
the usual GNS-construction (see Proposition A.19 on page 328 in Appendix A.3
at the end of this Chapter) and conclude that there is a L1-norm decreasing, non-
degenerate ∗-homomorphism πϕ : Cc(G) → B(Hϕ) and a cyclic vector hϕ such
that

ϕ(f) =
(
πϕ(f)hϕ | hϕ

)
.

Since πϕ is bounded with respect to the L1-norm, it is bounded with respect to the
universal norm (Lemma 2.45 and Example 2.44 on page 61). Thus ϕ extends to a
positive functional on C∗(G).

(d) =⇒ (a): If ϕ is a positive linear functional, then the argument at the
beginning of this section shows that ϕ is given by integration against Ψ(s) =

(
πϕs hϕ |

hϕ
)
, where (Hϕ, πϕ, hϕ) is the GNS representation associated to ϕ. But then Φ

and Ψ have to agree almost everywhere on every compact set K in G. Since both
Φ and Ψ are continuous, they must agree everywhere.

Remark A.6. Since ‖Φ‖∞ = Φ(e) if Φ is positive definite, it follows from Proposi-
tion A.1 on page 312 that (A.4) establishes a one-to-one correspondence between
states ϕ ∈ S

(
C∗(G)

)
on C∗(G) and continuous positive definite functions Φ satis-

fying Φ(e) = 1.

Example A.7. Although we have been at pains to avoid measure theory, there is
one crucial example of positive definite functions that requires we consider arbitrary
functions in L2(G). If f, g ∈ L2(G) and λ is the left-regular representation, then

Φf,g(r) := (f | λrg) (A.9)
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is a bounded continuous function on G. If f = g, then (A.9) is positive definite in
view of Proposition A.1 on page 312 and Lemma A.4 on page 313. Thus Φf,f is a
continuous positive definite function on G with ‖Φf,f‖∞ = Φf,f (e) = ‖f‖2

2 for all
f ∈ L2(G). Since

(f | λrg) =

∫

G

f(s)g(r−1s) dµ(s) =

∫

G

f(s)g̃(s−1r) dµ(s),

the more suggestive notation f ∗ g̃ is used in place of Φf,g. If f is in the unit ball
of L2(G), then we’ll write ωf,f for the state

ωf,f (g) :=
(
λ(g)f | f

)
.

If g ∈ Cc(G), then

ωf,f (g) =

∫

G

g(r)(λrf | f) dµ(r)

=

∫

G

g(r)f ∗ f̃(r−1) dµ(r).

Thus the state ωf,f corresponds to the positive definite function (f ∗ f̃)o.

Lemma A.8. Suppose that { ui } is an approximate identity for C∗(G) in Cc(G)
(as described in Remark A.5 on page 313). Then for any continuous function ϕ on
G, limi,j ui ∗ ϕ ∗ ũj(s) = ϕ(s).

Proof. Since each ui is non-negative with integral one,

ui ∗ ϕ ∗ ũj(s) − ϕ(s) =

∫

G

ui ∗ ϕ(r)ũj(r
−1s) dµ(r) − ϕ(s)

=

∫

G

∫

G

ui(t)ϕ(t−1r)uj(s
−1r) dµ(r) dµ(t) − ϕ(s)

=

∫

G

∫

G

ui(t)uj(r)
(
ϕ(t−1sr) − ϕ(s)

)
dµ(r) dµ(t).

Since ϕ is continuous at s, we can make the last term as small as we please by
choosing i and j large enough to make the supports of ui and uj sufficiently small.

Example A.7 shows that if f ∈ L2(G), then f ∗ f̃ ∈ P(G) with ‖f‖2
2 = f ∗ f̃(e).

The next result gives a partial converse.

Lemma A.9. If Φ is a continuous positive definite function with compact support
on a locally compact group G, then there is a f ∈ L2(G) such that Φ = f ∗ f̃ .
Proof. Define a map α(Φ) : Cc(G) → Cc(G) by α(Φ)(f) := f ∗ Φ. Notice that

α(Φ)(f)(s) =

∫

G

f(r)Φ(r−1s) dµ(r)

=

∫

G

Φ(r−1)f(sr) dµ(r)
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which, if we let ρ denote the right-regular representation and define Ψ(r) :=

Φ(r−1)∆(r)−
1
2 , is

=

∫

G

Ψ(r)ρ(r)f(s) dµ(r)

= ρ(Ψ)(f)(s).

It follows that α(Φ) is a bounded operator on Cc(G) ⊂ L2(G), and extends to an
element in B

(
L2(G)

)
. Moreover

(
α(Φ)f | f

)
=

∫

G

f ∗ Φ(s)f(s) dµ(s)

=

∫

G

∫

G

f(r)Φ(r−1s)f(s) dµ(r) dµ(s)

=

∫

G

∫

G

Φ(r−1)f(sr)f(s) dµ(r) dµ(s)

=

∫

G

Φ(r−1)

∫

G

f∗(s)f(s−1r) dµ(s) dµ(r)

=

∫

G

Φ◦(r)f∗ ∗ f(r) dµ(r), (A.10)

and (A.10) is nonnegative by Proposition A.1 on page 312 (since Φ◦ is positive
definite by Lemma A.4 on page 313). This shows that α(Φ) is a positive operator on

L2(G) and so has a positive square root α(Φ)
1
2 which commutes with any operator

commuting with α(Φ). Since λs(f ∗ Φ) = (λsf) ∗ Φ, λs commutes with α(Φ), and

therefore with α(Φ)
1
2 .

Let { ui } be an approximate identity for C∗(G) in Cc(G) (Remark A.5 on
page 313). Define

fi := α(Φ)
1
2ui.

Since

‖fi − fj‖2
2 =

(
α(Φ)(ui − uj) | ui − uj

)

=
(
(ui − uj) ∗ Φ | ui − uj

)

= ui ∗ Φ ∗ ũi(e) − ui ∗ Φ ∗ ũj(e) − uj ∗ Φ ∗ ũi(e) + uj ∗ Φ ∗ ũj(e),

it follows from Lemma A.8 on the preceding page that { fi } is Cauchy in L2(G).
Thus there must be a f ∈ L2(G) such that fi → f in L2(G). We have

f ∗ f̃(s) = (f | λsf)

= lim
i

(
α(Φ)

1
2 ui | λsα(Φ

) 1
2ui)

= lim
i

(ui ∗ Φ | λsui)

= lim
i
ui ∗ Φ ∗ ũi(s)

= Φ(s).
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Theorem A.10 ([126, Proposition 7.1.11]). Let P1(G) be the continuous positive
definite functions on G with Φ(e) = 1 equipped with the topology of uniform con-
vergence on compacta. Then P1(G) is closed in C(G) in the topology of uniform
convergence on compacta. If we give the state space S

(
C∗(G)

)
of C∗(G) the the

weak-∗ topology (coming from C∗(G)∗), then the bijection ϕ 7→ Φ of Remark A.6
on page 314 is a homeomorphism of S

(
C∗(G)

)
onto P1(G).

Remark A.11. If ϕ is a state on C∗(G), then we can use the GNS-construction to
realize ϕ as a vector state as in (A.1). Since πϕ is nondegenerate, it extends to all
of M

(
C∗(G)

)
, and we can extend ϕ to a state ϕ̃ on M

(
C∗(G)

)
by the formula

ϕ̃(m) =
(
π̄ϕ(m)hϕ | hϕ

)
.

Although we don’t need to use it here, ϕ̃ is the unique state extending ϕ by [126,
Proposition 3.1.6].

Proof of Theorem A.10. Let Φi be a net in P1(G) converging to Φ in the compact
open topology. Then Φ ∈ P1(G) by Proposition A.1 on page 312. Let ϕi and ϕ be
the states corresponding to Φi and Φ, respectively. If f ∈ Cc(G), then we certainly
have

ϕi(f) =

∫

G

f(s)Φi(s) dµ(s) →
∫

G

f(s)Φ(s) dµ(s) = ϕ(f).

Since Cc(G) is dense in C∗(G) and each ϕi has norm one, it follows that ϕi → ϕ
in the weak-∗ topology. Thus we have proved the first statement and half of the
second.

Now suppose ϕi → ϕ in the state space of C∗(G). Let Φi and Φ be the cor-
responding elements of P1(G). Fix ǫ > 0 and a compact set C ⊂ G. Let { ui }
be a approximate identity for C∗(G) in Cc(G) as in Remark A.5 on page 313.
Now ‖ϕ‖ = 1 = limi ϕ(ui) = limi ϕ(u∗i ui) by [139, Lemma A.7] and part (d) of
Lemma A.21 on page 328. Since

(1 − ui)
∗(1 − ui) = 1 − ui − ui + u∗i ui,

there is a u ∈ C+
c (G) such that

ϕ̃
(
(1 − u)∗(1 − u)

)
< ǫ2. (A.11)

Since ϕ̃i(1) = 1 for all i and since ϕi → ϕ in the weak-∗ topology, there is a i0 such
that i ≥ i0 implies that

ϕ̃i
(
(1 − u)∗(1 − u)

)
< ǫ2. (A.12)

If iG : G → M(C∗(G)) is the canonical homomorphism, then it follows from Re-
mark A.11 that ϕ̃

(
iG(r)

)
= Φ(r). Thus we have

|Φ(r) − Φ ∗ ũ(r)|2 =
∣∣∣Φ(r) −

∫

G

Φ(s)ũ(s−1r) dµ(s)
∣∣∣
2

=
∣∣∣Φ(r) −

∫

G

Φ(s)u(r−1s) dµ(s)
∣∣∣
2

=
∣∣ϕ̃

(
iG(r)

)
− ϕ

(
iG(r)u

)∣∣2

=
∣∣ϕ̃

(
iG(r)(1 − u)

)∣∣2
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which, using the Cauchy-Schwarz inequality for states, is

≤ ϕ̃(1)ϕ̃
(
(1 − u)∗(1 − u)

)
< ǫ2,

where the last inequality comes from (A.11). A similar calculation using (A.12)
shows that for all i ≥ i0 ∣∣Φi(r) − Φi ∗ ũ(r)

∣∣ < ǫ.

From the above calculation, we also see that

Φ ∗ ũ(r) − Φi ∗ ũ(r) = ϕ
(
iG(r)u

)
− ϕi

(
iG(r)u

)
.

Since r 7→ iG(r)u is continuous from G into C∗(G), since each ϕi has norm 1, and
since C is compact, there is an i1 ≥ i0 such that i ≥ i1 implies

∣∣Φ ∗ ũ(r) − Φi ∗ ũ(r)
∣∣ < ǫ for all r ∈ C.

But then i ≥ i1 implies that
∣∣Φ(r) − Φi(r)

∣∣ < 3ǫ for all r ∈ C,

and this completes the proof.

A.2 Amenability

If G is a locally compact group, then ℓ∞(G) is the set of all bounded functions on
G equipped with the supremum norm ‖ · ‖∞. Note that ℓ∞(G) = L∞(Gd), where
Gd denotes the group G equipped with the discrete topology.

Definition A.12. If X is a closed subspace of ℓ∞(G) containing the constant
functions and closed under complex conjugation, then a linear functional m : X →
C is called a mean on X if

(a) m(f̄) = m(f),

(b) m(1) = 1, and

(c) f ≥ 0 implies m(f) ≥ 0.

A mean is called left-invariant if

(d) m
(
λs(f)

)
= m(f) for all s ∈ G and f ∈ X .

The term mean is justified by the observation that conditions (b) and (c) are
equivalent to

(e) infs∈G f(s) ≤ m(f) ≤ sups∈G f(s) for all real-valued f ∈ X .

It follows from condition (a) that if f ∈ X , then

m(f) = m
(
Re f + i Im f

)
= Rem(f) + i Imm(f).

Then ‖f‖∞ = 1 implies 1 − (Re f)2 − (Im f)2 ≥ 0. Thus 1 −
(
Rem(f)

)2 −(
Imm(f)

)2 ≥ 0, which implies |m(f)| ≤ 1. Therefore if X is a C∗-subalgebra
of ℓ∞(G), then a mean is simply a state on X .
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A discrete group G is called amenable if there is a left-invariant mean on X =
ℓ∞(G). In [68, Theorem 1.2.1], Greenleaf shows that Gd is amenable if G is an
abelian group. He also shows that the free group on two generators F2 is not
amenable [68, Example 1.2.3]. Since subgroups of discrete amenable groups are
amenable [68, Theorem 1.2.5], any discrete group — such as Fn — containing F2 as
a subgroup cannot be amenable. It was an open question for many years whether
any nonamenable discrete group had to contain F2 as a subgroup. But there are
now known to be nonamenable groups which do not contain F2 as a subgroup [118].

When G is not discrete, then ℓ∞(G) is too big and must be replaced by a suitable
subspace X which is more closely tied to the underlying topology of G.1 One
candidate is the bounded continuous functions Cb(G) on G. A function f ∈ Cb(G)
is called left-uniformly continuous if for all ǫ > 0 there is a symmetric neighborhood
V of e in G such that

|f(r) − f(s)| < ǫ (A.13)

provided rs−1 ∈ V . We say that f is right-uniformly continuous if given ǫ > 0
there is a symmetric neighborhood V such that (A.13) holds whenever r−1s ∈ V .
Those f ∈ Cb(G) which are both right- and left-uniformly continuous are called
uniformly continuous, and form a sub-C∗-algebra Cbu(G) of ℓ∞(G). Then we have

Cbu(G) ⊂ Cb(G) ⊂ L∞(G), (A.14)

where L∞(G) is the usual Banach space of equivalence classes of essentially bounded
functions on G when G is σ-compact. In general, L∞(G) consists of equivalences
classes of bounded measurable functions L∞(G) on G which agree locally almost
everywhere with norm given by

‖ϕ‖∞ := inf{α ∈ R : { s ∈ G : |f(s)| > α } is locally null }

(see Appendix I.5). Then L∞(G) is a Banach space which is the dual of L1(G)
in the usual way (Proposition I.27 on page 497). Naturally, we say a state m on
L∞(G) is a left-invariant mean if m(λrϕ) = m(ϕ) for all r and ϕ ∈ L∞(G).

As we shall show, the existence of a left-invariant mean on any of the subalgebras
in (A.14) implies the existence of left-invariant means on the others (as well as a
stronger property we’ll need down the road). To show all this, we’ll have to take a
short detour into measure theory.

Now suppose that f ∈ Cc(G) and ϕ ∈ L∞(G). If s ∈ G, then r 7→ ϕ(r−1s) is
a bounded measurable function with ‖ · ‖∞-norm equal to ‖ϕ‖∞. Thus Hölder’s
inequality implies we can define a function on G by

f ∗ ϕ(s) :=

∫

G

f(r)ϕ(r−1s) dµ(r), (A.15)

and

‖f ∗ ϕ‖∞ ≤ ‖f‖1‖ϕ‖∞.
1As we shall see, compact groups must be amenable. But the real orthogonal group O(3)

contains F2 as a non-closed subgroup. Thus there can be no left-invariant mean on ℓ∞
`

O(3)
´

.
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Note that

|f ∗ ϕ(s) − f ∗ ϕ(r)| =
∣∣∣
∫

G

f(t)ϕ(t−1s) dµ(t) −
∫

G

f(t)ϕ(t−1r) dµ(t)
∣∣∣

=
∣∣∣
∫

G

(
f(st) − f(rt)

)
ϕ(t−1) dµ(t)

∣∣∣

which, since t 7→ ϕ(t−1) is bounded with ‖ · ‖∞-norm equal to ‖ϕ‖∞, is

≤ ‖λs−1f − λr−1f‖1‖ϕ‖∞ = ‖λrs−1f − f‖1‖ϕ‖∞.

Since translation is continuous in L1, it follows that f ∗ ϕ is left-uniformly contin-
uous.

On the other hand, r 7→ f̃(r−1s) = f(s−1r) has L1-norm ‖f‖1, and we can
define a function on G by

ϕ ∗ f̃(s) :=

∫

G

ϕ(r)f̃ (r−1s) dµ(r)

=

∫

G

ϕ(r)f(s−1r) dµ(r),

such that ‖ϕ∗f̃‖∞ ≤ ‖ϕ‖∞‖f‖1. This time we can show that ϕ∗f̃ is right-uniformly
continuous.2

If f, g ∈ Cc(G), ϕ ∈ L∞(G) and s ∈ G, then both

(r, t) 7→ f(rt)ϕ(t−1)g(s−1r) and (r, t) 7→ f(sr)ϕ(t)g(rt)

are measurable and vanish off a compact set in G×G. This will allow us to apply
Fubini’s Theorem in the following calculation:

(f ∗ ϕ) ∗ g̃(s) =

∫

G

f ∗ ϕ(r)g(s−1r) dµ(r)

=

∫

G

∫

G

f(rt)ϕ(t−1)g(s−1r) dµ(t) dµ(r)

=

∫

G

∫

G

f(rt)ϕ(t−1)g(s−1r) dµ(r) dµ(t)

=

∫

G

∫

G

f(r)ϕ(t−1)g(s−1rt−1)∆(t−1) dµ(r) dµ(t)

=

∫

G

∫

G

f(r)ϕ(t)g(s−1rt) dµ(r) dµ(t)

=

∫

G

∫

G

f(sr)ϕ(t)g(rt) dµ(r) dµ(t)

=

∫

G

∫

G

f(sr)ϕ(t)g̃(t−1r−1) dµ(t) dµ(r)

2It is more natural to write f̃ here as it is possible to make sense of these formulas when
f ∈ L1(G). Then f̃ may not be in L1(G) even though ‖ϕ ∗ f̃‖∞ ≤ ‖ϕ‖∞‖f‖1.
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=

∫

G

f(sr)ϕ ∗ g̃(r−1) dµ(r)

= f ∗ (ϕ ∗ g̃)(s).

Thus
f ∗ (ϕ ∗ g̃) = (f ∗ ϕ) ∗ g̃, (A.16)

and we can drop the parentheses from now on. Since the left-hand side of (A.16)
is left-uniformly continuous and the right-hand side is right-uniformly continuous,
we have

f ∗ ϕ ∗ g̃ ∈ Cbu(G) for all f, g ∈ Cc(G) and ϕ ∈ L∞(G).

Similar considerations imply that

(h ∗ f) ∗ ϕ ∗ g̃ = h ∗ (f ∗ ϕ ∗ g̃)

for h, f, g ∈ Cc(G) and ϕ ∈ L∞(G).
Now we’re ready to prove a result which will allow us to give a general defini-

tion of amenability. We’ve taken this from [68, Theorem 2.2.1] and [126, Propo-
sition 7.3.4]. It will prove convenient for this result and the next to introduce
the notation Sc(G) for the functions in C+

c (G) with integral one. (We’re thinking
of Sc(G) as a subset of the state space of L∞(G): f is associated to the state
ϕ 7→ (ϕ | f).)

Theorem A.13. Let G be a locally compact group. The restriction of a left-
invariant mean on ℓ∞(G) is a left-invariant mean on Cb(G). Moreover, the follow-
ing statements are equivalent.

(a) There is a left invariant mean on Cbu(G).

(b) There is a left invariant mean on Cb(G).

(c) There is a left invariant mean on L∞(G).

(d) There is a state m on L∞(G) such that

m(f ∗ ϕ) =

∫

G

f(s) dµ(s) ·m(ϕ) (A.17)

for all f ∈ Cc(G) and ϕ ∈ L∞(G).

Proof. The first statement is obvious, as is (c) =⇒ (b) and (b) =⇒ (a). If f ∈
Sc(G), then if (d) holds, m(ϕ) = m(f ∗ϕ) for all ϕ ∈ L∞(G). Since f ∗λsϕ = f1 ∗ϕ
where f1(r) := f(rs−1)∆(s−1) and since

∫
G f1(r) dµ(r) =

∫
G f(r) dµ(r) = 1, we

have m(λsϕ) = m(f ∗ λsϕ) = m(f1 ∗ ϕ) = m(ϕ) for all ϕ ∈ L∞(G). Thus we also
have (d) =⇒ (c).

So we need to prove that (a) =⇒ (d). Assume that m is a mean on Cbu(G).
Fix a nonnegative function ϕ in Cbu(G). If f ∈ Cc(G), then f ∗ ϕ is left-uniformly
continuous. But f ∗ ϕ(sr) = f ∗ ϕr(s), were ϕr(s) := ϕ(sr). Since |f ∗ ϕ(sr) −
f ∗ ϕ(s)| ≤ ‖f‖1‖ϕr − ϕ‖∞, it follows from the uniform continuity of ϕ that f ∗ ϕ
is also right-uniformly continuous. That is f ∗ ϕ is in Cbu(G) and we can define
J : Cc(G) → C by

J(f) := m(f ∗ ϕ).
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Since λsf ∗ ϕ = λs(f ∗ ϕ), J is a left-invariant positive functional on Cc(G). Thus
there is a scalar α such that

m(f ∗ ϕ) = α

∫

G

f(s) dµ(s).

But if { ui } is an approximate identity for C∗(G) in Cc(G), then, using the uniform
continuity of ϕ, it is easy to compute that

‖ui ∗ ϕ− ϕ‖∞ → 0.

Thus
α = J(ui) = m(ui ∗ ϕ) → m(ϕ).

Since each ϕ in Cbu(G) is a linear combination of four nonnegative functions in
Cbu(G),3 it follows that (A.17) holds for all f ∈ Cc(G) and ϕ ∈ Cbu(G).

Now fix f ∈ Sc(G). Then for each ϕ ∈ L∞(G), f ∗ ϕ ∗ f̃ ∈ Cbu(G) and we can
define

m̄(ϕ) := m(f ∗ ϕ ∗ f̃).

Clearly m̄ is a positive functional on L∞(G). Since ‖f ∗ϕ∗f̃‖∞ ≤ ‖f‖1‖ϕ‖∞‖f‖1 =
‖ϕ‖∞, m̄ defines a functional on L∞(G) of norm at most one, and since an easy
computation shows that m̄(1) = 1, m̄ is a state. We still have to show that m̄
satisfies (A.17). Let { ui } be an approximate unit in Cc(G) and h′ ∈ Cc(G). Note
that ‖h′ ∗ ϕ ∗ f̃‖∞ ≤ ‖h′‖1‖ϕ ∗ f̃‖∞. Since f ∗ h′ ∗ ui → f ∗ h′ in L1(G),

m̄(h ∗ ϕ) := m(f ∗ h ∗ ϕ ∗ f̃)

= lim
i
m(f ∗ h ∗ ui ∗ ϕ ∗ f̃)

=

∫

G

f ∗ h(s) dµ(s) lim
i
m(ui ∗ ϕ ∗ f̃)

=

∫

G

h(s) dµ(s) lim
i

∫

G

f(s) dµ(s)m(ui ∗ ϕ ∗ f̃)

=

∫

G

h(s) dµ(s) lim
i
m(f ∗ ui ∗ ϕ ∗ f̃)

=

∫

G

h(s) dµ(s)m(f ∗ ϕ ∗ f̃)

=

∫

G

h(s) dµ(s)m̄(ϕ).

Definition A.14. A locally compact group is amenable if any of the equivalent
conditions (a)–(d) in Theorem A.13 on the previous page are satisfied.

Remark A.15. As we noted, every abelian group has a left-invariant mean on ℓ∞(G),
and is amenable by the first part of Theorem A.13 on the preceding page. Since

3If ϕ ∈ Cb
u(G), then 2 Reϕ = ϕ + ϕ shows that Reϕ is still uniformly continuous. Similarly,

2ϕ+ = |f | + f and 2ϕ− = |f | − f show that Re f = (Re f)+ − (Re f)− with both (Re f)+ and
(Re f)− nonnegative and uniformly continuous.
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Haar measure gives a left invariant mean on Cb(G) for any compact group, compact
groups are amenable. Furthermore, closed subgroups and quotients (by closed
subgroups) of amenable groups are amenable by [68, Theorems 2.3.1 and 2.3.2]. If
H and G/H are amenable, then G is too [68, Theorem 2.3.3]. In particular, any
solvable or nilpotent group is amenable.

The next theorem is from [68, §2.4] and [126, Proposition 7.3.7]. For the state-
ment note that functions in Sc(G) can be viewed as a convex set of states on L∞(G)
which is closed under convolution. It follows from Lemma I.28 on page 497 that
Sc(G) is weak-∗ dense in the state space of L∞(G).

Proposition A.16. Suppose that G is a locally compact group. Then the following
statements are equivalent.

(a) G is amenable.

(b) There is net { gi } ⊂ Sc(G) such that h ∗ gi − gi converges to 0 in the weak-∗
topology on L∞(G)∗ for all h ∈ Sc(G).

(c) There is net { gi } ⊂ Sc(G) such that ‖h ∗ gi − gi‖1 → 0 for all h ∈ Sc(G).

(d) For each compact set C ⊂ G and each ǫ > 0, there is a g ∈ Sc(G) such that
‖λsg − g‖1 < ǫ for every s ∈ C.

(e) For each compact set C ⊂ G and each ǫ > 0, there is a g in the unit ball
of L1(G) with g ≥ 0 almost everywhere such that ‖λsg − g‖1 < ǫ for every
s ∈ C.

Proof. (a) =⇒ (b): Since G is amenable, there is a state m on L∞(G) satisfying
(A.17) in part (d) of Theorem A.13 on page 321. Since Sc(G) is weak-∗ dense, there
is net { gi } ⊂ Sc(G) such that (ϕ | gi) → m(ϕ) for all ϕ ∈ L∞(G). Since h and gi
each have compact support, there is no difficulty in applying Fubini’s Theorem in
the following computation:

(ϕ | h ∗ gi) =

∫

G

ϕ(s)h ∗ gi(s) dµ(s)

=

∫

G

∫

G

ϕ(s)h(sr)gi(r−1) dµ(r) dµ(s)

=

∫

G

∫

G

h∗(rs)ϕ(s−1)gi(r) dµ(s) dµ(r)

=

∫

G

h∗ ∗ ϕ(r)gi(r) dµ(r)

= (h∗ ∗ ϕ | gi).

Since m satisfies (A.17) and h∗ has integral one, we have

(ϕ | h ∗ gi) = (h∗ ∗ ϕ | gi) → m(h∗ ∗ ϕ) = m(ϕ).

It follows that h ∗ gi − gi → 0 in the weak-∗ topology.
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(b) =⇒ (c): Equipped with the L1-norm, Cc(G) is a normed vector space with
dual Cc(G)∗ = L1(G)∗ ∼= L∞(G).4 Fix h1, . . . , hn ∈ Sc(G) and let

C := { (h1 ∗ g − g, . . . , hn ∗ g − g) ∈
n⊕

k=1

Cc(G) : g ∈ Sc(G) }.

Then C is a convex subset of
⊕n

k=1 Cc(G). Since the dual of
⊕n

k=1 Cc(G) can be
identified with

⊕n
k=1 L

∞(G), part (b) implies that there is a net { gi } in Sc(G) such
that (hk∗gi−gi) converges weakly to (0, . . . , 0). Since C is convex, the Hahn-Banach
Separation Theorem [126, Theorem 2.4.7] implies the weak and norm closures of C
coincide. Thus, there is a g ∈ Sc(G) such that

‖hk ∗ g − g‖1 < ǫ for k = 1, 2, . . . , n.

Let J be the set of pairs (F, ǫ) where F is a finite subset of Sc(G) and ǫ > 0.
Then J is a directed set with (F, ǫ) ≥ (F ′, ǫ′) when F ⊃ F ′ and ǫ < ǫ′. For each
j = (F, ǫ) ∈ J , we just showed that there is a gj ∈ Sc(G) such that

‖h ∗ gj − gj‖ < ǫ for all h ∈ F .

Then { gj }j∈J is the required net.
(c) =⇒ (d): Let C ⊂ G be compact and ǫ > 0. Fix h ∈ Sc(G) and a net

{ gi } ⊂ Sc(G) satisfying (c). Then for all s ∈ G,

‖λs(h ∗ gi) − h ∗ gi‖1 ≤ ‖λs(h ∗ gi) − gi‖1 + ‖gi − h ∗ gi‖1

= ‖λsh ∗ gi − gi‖1 + ‖h ∗ gi − gi‖1. (A.18)

Since h and λsh are in Sc(G), it follows that (A.18) goes to 0 for large i. Since
s 7→ λsh is continuous from G to Cc(G) ⊂ L1(G), a compactness argument shows
that for large i

‖λs(h ∗ gi) − h ∗ gi‖1 < ǫ for all s ∈ C.

Thus we can let g = h ∗ gi for a suitably large i.
(d) =⇒ (e) is trivial.
(e) =⇒ (a): Let I = { (C, ǫ) : C ⊂ G is compact and ǫ > 0 } directed by (C, ǫ) ≥

(C′, ǫ′) if C ⊃ C′ and ǫ < ǫ′. For each i = (C, ǫ) ∈ I, we can choose gi in the unit
ball of L1(G) with gi ≥ 0 such that

‖λsgi − gi‖1 < ǫ for all s ∈ C.

For each i ∈ I, we can define a state mi on Cb(G) by

mi(ϕ) =

∫

G

ϕ(s)gi(s) dµ(s).

4If G is σ-compact, then it is straightforward to see that L1(G)∗ can be identified with L∞(G).
For the general case see Appendix I.5.



A.2 Amenability 325

If i = (C, ǫ) and s ∈ C, then

∣∣mi(λs−1ϕ− ϕ)
∣∣ =

∣∣∣
∫

G

(
ϕ(sr) − ϕ(r)

)
gi(r) dµ(r)

∣∣∣

=
∣∣∣
∫

G

ϕ(r)
(
gi(s

−1r) − gi(r)
)
dµ(r)

∣∣∣

≤ ‖ϕ‖∞‖λsgi − gi‖1

≤ ‖ϕ‖∞ǫ.

Since the state space of Cb(G) is compact in the weak-∗ topology, the net {mi }
must have a weak-∗ convergent subnet {mij } converging to a state m. Clearly, m
is a left-invariant mean on Cb(G), and G is amenable by definition.

The next result is the key which connects our basic characterizations of
amenability (Proposition A.16 on page 323) with positive definite functions on
G (recall Example A.7 on page 314). The proof is stolen from Pedersen’s book
[126, Proposition 7.3.8].

Proposition A.17. A locally compact group G is amenable if and only if there is
a net {Φi } of compactly supported positive definite functions in P1(G) converging
to the constant function 1 in P1(G).

Proof. Suppose that G is amenable. If f ∈ Cc(G), then Example A.7 on page 314
implies that f ∗ f̃ is a compactly supported positive definite function with f ∗ f̃(e) =
‖f‖2

2. Thus it will suffice to produce, for each compact set C and ǫ > 0, a function
f ∈ C+

c (G) with ‖f‖2 = 1 such that

|1 − f ∗ f̃(s)| < ǫ for all s ∈ C.

However, by part (d) of Proposition A.16 on page 323, there is a g ∈ Sc(G) such
that

‖λsg − g‖1 < ǫ2 for all s ∈ C. (A.19)

Define f by f(s) :=
√
g(s). Then ‖f‖2 = 1, and

∣∣1 − f ∗ f̃(s)
∣∣2 =

∣∣f ∗ f̃(e) − f ∗ f̃(s)
∣∣2

=
∣∣∣
∫

G

f(r)
(
f(r) − f(s−1r)

)
dµ(r)

∣∣∣
2

=
∣∣(f | f − λsf)

∣∣2

≤ 1‖f − λsf‖2
2

=

∫

G

∣∣√g(r) −
√
g(s−1r)

∣∣2 dµ(r)

≤
∫

G

∣∣√g(r) −
√
g(s−1r)

∣∣∣∣√g(r) +
√
g(s−1r)

∣∣ dµ(r)

=

∫

G

∣∣g(r) − g(s−1r)
∣∣ dµ(r)

= ‖g − λsg‖1 < ǫ2.
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This proves “only if” implication.
For the second implication, first consider any f ∈ L2(G) with ‖f‖2 = 1. Let

g = |f |2 and note that g is in the unit ball of L1(G) and that g ≥ 0. For each
s ∈ G, we have

‖g − λsg‖1 =

∫

G

∣∣|f(r)|2 − |f(s−1r)|2
∣∣ dµ(r)

=

∫

G

∣∣|f(r)2| − |f(s−1r)2|
∣∣ dµ(r)

≤
∫

G

|f(r)2 − f(s−1r)2| dµ(r)

=

∫

G

∣∣f(r) + f(s−1r)
∣∣∣∣f(r) − f(s−1r)

∣∣ dµ(r)

=
(
|f + λsf | | |f − λsf |

)

≤ ‖f + λsf‖2‖f − λsf‖2

≤ 2‖f − λsf‖2

= 2
(
2 − (f | λsf) − (λsf | f)

) 1
2

= 2
(
2 − 2 Re(f | λsf)

) 1
2

≤ 2
√

2
∣∣1 − (f | λsf)

∣∣ 1
2

= 2
√

2
∣∣1 − f ∗ f̃(s)

∣∣ 1
2 .

Therefore if {Φi } is net converging to 1, then given i = (C, ǫ) with C compact and
ǫ > 0, we can choose Φi such that

2
√

2
∣∣1 − Φi(s)

∣∣ 1
2 < ǫ for all s ∈ C.

By Lemma A.9 on page 315, there is a fi in the unit ball of L2(G) such that
Φi = fi ∗ f̃i. Therefore if gi := |fi|2, then

‖gi − λsgi‖1 < ǫ for all s ∈ C.

Since C and ǫ are arbitrary, G must be amenable by part (e) of Proposition A.16
on page 323.

And now for the main result. Let ι : G→ C be the trivial representation ιs = 1
for all s ∈ G.

Theorem A.18. Let G be a locally compact group. Then the following statements
are equivalent.

(a) G is amenable.

(b) The left-regular representation is faithful on C∗(G).

(c) The kernel of the left-regular representation is contained in the kernel of the
trivial representation ι (as representations of C∗(G)).
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Proof. (a) =⇒ (b): Since λ(b) = 0 implies λ(b∗b) = 0, it will suffice to show that
every positive element a in kerλ is zero. Let ω be a state on C∗(G) with

ω(a) = ‖a‖

(cf., e.g., [139, Lemma A.10]). Let Ψ be the positive definite function corresponding
to ω via Theorem A.10 on page 317. Let Φ = Ψ◦ which is positive definite by
Lemma A.4 on page 313. By Proposition A.17 on page 325, there are compactly
supported Φi in P1(G) such that Φi → 1 in P1(G). Since each Φi has compact
support, ΦiΦ is a positive definite function with compact support by Lemma A.4
on page 313, and ΦiΦ converges to Φ in P1(G). By Lemma A.9 on page 315,
there are { fi } in the unit ball of L2(G) such that ΦiΦ = fi ∗ f̃i. It follows that
(fi ∗ f̃i)◦ → Ψ. Example A.7 on page 314 shows that (fi ∗ f̃i)◦ corresponds to the
vector state g 7→

(
λ(g)fi | fi

)
, and Theorem A.10 on page 317 implies

(
λ(a)fi | fi

)
→ ω(a) = ‖a‖.

Since a ∈ kerλ by assumption, a = 0 and λ must be faithful.
The implication (b) =⇒ (c) is trivial.
(c) =⇒ (a): Since kerλ ⊂ ker ι, ι factors through λ and there is a state ι′ on

the concrete C∗-algebra λ
(
C∗(G)

)
such that ι′

(
λ(g)

)
= ι(g). It follows from [139,

Proposition B.5], for example, that ι′ is the weak-∗ limit of convex combinations ωi
of vector states of the form

ω′
f,f

(
λ(g)

)
=

(
λ(g)f | f

)
(f ∈ Cc(G)). (A.20)

But the positive definite function corresponding to ωf,f := ω′
f,f ◦λ is the compactly

supported function (f ∗ f̃)o (Example A.7 on page 314). Thus the positive definite
function Φi corresponding to ωi := ω′

i◦λ is a finite convex combination of compactly
supported functions and is therefore compactly supported itself. Since ωi → ι in
the weak-∗ topology and since the positive definite function corresponding to ι is
the constant function 1, Φi → 1 in P1(G) (Theorem A.10 on page 317). Thus G is
amenable by Proposition A.17 on page 325.

A.3 Another GNS Construction

In this section, a normed ∗-algebra B will mean a normed algebra with an involution
a 7→ a∗ satisfying ‖ab‖ ≤ ‖a‖‖b‖ and ‖a∗‖ = ‖a‖ for all a, b ∈ B. We say that B
has an approximate identity { ui } if ‖ui‖ ≤ 1 for all i and

lim
i
‖b− bui‖ = 0 = lim

i
‖b− uib‖ for all b ∈ B.

Since the involution is isometric, a similar statement holds for { u∗i }. In addition
to C∗-algebras, the sort of algebras we have in mind are Cc(G) and Cc(G,A) when
equipped with the L1-norm.

A linear functional ϕ : B → C is called positive if ϕ(b∗b) ≥ 0 for all b ∈ B. Of
course, ϕ is called bounded if its norm ‖ϕ‖ := sup‖b‖=1 |ϕ(b)| is finite.
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Proposition A.19. If ϕ is a positive linear functional of norm 1 on a normed
∗-algebra B with an approximate identity { ui }, then there is a Hilbert space Hϕ,
a norm decreasing ∗-homomorphism πϕ : B → B(Hϕ), and a unit vector hϕ ∈ Hϕ

such that
ϕ(b) =

(
πϕ(b)hϕ | hϕ

)
,

and { πϕ(b)hϕ : b ∈ B } is dense in Hϕ.

Remark A.20. The proof is based on the usual GNS-construction for states on
C∗-algebras as outlined in §A.1 of [139]. Some finesse is required to show that
left multiplication is bounded since we can’t assume B is even a pre-C∗-algebra.
Of course, we could pass to the Banach ∗-algebra completion of B, and there is a
good deal of literature on positive functionals on Banach algebras with approximate
identities (e.g., [28, §2.1] and [72, Chap. VIII §32]). However, we have chosen to
work directly with the potentially incomplete algebra B.

Lemma A.21. Let B be a normed ∗-algebra with approximate identity { ui } as
above. If ϕ is a bounded positive linear functional on B then the following hold for
all a, b ∈ B.

(a) ϕ(b∗) = ϕ(b).

(b) ϕ(b∗a) = ϕ(a∗b).

(c) (Cauchy-Schwarz inequality) |ϕ(b∗a)|2 ≤ ϕ(b∗b)ϕ(a∗a).

(d) ‖ϕ‖ = limi ϕ(u∗i ui).

(e) |ϕ(b∗ab)| ≤ ‖a‖ϕ(b∗b).

(f) |ϕ(b)|2 ≤ ‖ϕ‖ϕ(b∗b).

Proof. Parts (b) and (c) follow from [139, Lemma A.4] together with the observation
that the proof in [139] only uses that A is a ∗-algebra. Then (a) follows from

ϕ(b∗) = lim
i
ϕ(b∗ui) = lim

i
ϕ(u∗i b) = ϕ(b).

Let L := lim supi ϕ(u∗i ui). The Cauchy-Schwarz inequality implies that

|ϕ(b)|2 = lim
i
|ϕ(u∗i b)|2

≤ lim sup
i

ϕ(u∗i ui)ϕ(b∗b) (A.21)

≤ ‖ϕ‖‖b‖2L.

This forces L ≥ ‖ϕ‖. But the opposite inequality is obvious, and this proves
lim supi ϕ(u∗i ui) = ‖ϕ‖ and (f) follows from (A.21). Since any subnet of { ui } is
again an approximate identity, it follows that limi ϕ(u∗i ui) = ‖ϕ‖, and (d) is proved.

To prove part (e), notice that ϕb : B → C defined by ϕb(a) := ϕ(b∗ab) is again
a bounded positive linear functional on B. Thus

‖ϕb‖ = lim
i
ϕb(u

∗
i ui)

= lim
i
ϕ
(
(uib)

∗uib
)

= ϕ(b∗b).
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Proof of Proposition A.19. It follows from (b) and (c) of Lemma A.21 on the pre-
ceding page that

(a | b) := ϕ(b∗a)

is a sesquilinear form on B, and we can form the Hilbert space completion Hϕ. Let
q : B → Hϕ be the obvious map. Now part (e) of Lemma A.21 implies that

(ba | ba) = ϕ(a∗b∗ba)

≤ ‖b∗b‖ϕ(a∗a)

≤ ‖b‖2(a | a).
Therefore we can define a bounded operator πϕ(b) on Hϕ which satisfies
πϕ(b)

(
q(a)

)
= q(ba). It is not hard to see that πϕ is a norm-decreasing

∗-homomorphism.
If B has an identity, then hϕ := q(1B) is a cyclic vector for πϕ representing ϕ.

If B does not have an identity, then we proceed along the lines of [139, Proposi-
tion A.6]. We make B1 = B ⊕ C into a normed ∗-algebra by giving it the obvious
∗-algebra structure and norm ‖b + λ1‖ := ‖b‖ + |λ|. We can extend ϕ to a linear
functional τ on B1 by the formula

τ(b + λ1) := ϕ(b) + λ.

Since

|τ(b + λ1)| ≤ |ϕ(b)| + |λ|
≤ ‖b‖ + |λ|
= ‖b+ λ1‖,

τ has norm 1. Using Lemma A.21 on the facing page we have

τ
(
(b+ λ1)∗(b + λ1)

)
= τ(b∗b+ λb∗ + λ̄b+ |λ|21)

= ϕ(b∗b) + λϕ(b) + λ̄ϕ(b) + |λ|2

= ϕ(b∗b) + 2 Re
(
λ̄ϕ(b)

)
+ |λ|2

≥ ϕ(b)|2 − 2|λ||ϕ(b)| + |λ|2

=
(
|ϕ(b)| − |λ|

)2

≥ 0,

and it follows that τ is positive. Let (πτ ,Hτ ) be the representation corresponding
to τ as above. If q1 : B1 → Hτ is the natural map, then q(b) 7→ q1(b) induces an
isometry V of Hϕ into Hτ such that

V πϕ(b) = πτ (b)V for all b ∈ B.

Thus we can identify Hϕ with the subspace VHϕ of Hτ . Note that Hϕ is the
essential subspace span{ πτ (b)h : b ∈ B and h ∈ Hτ } of πτ |B, and πτ |B = πϕ ⊕ 0
on Hϕ ⊕H⊥

ϕ . If hϕ is the projection of q1(1) onto Hϕ, then

πϕ(b)hϕ = πτ (b)q
1(1) = q1(b).



330 Amenable Groups

Thus hϕ is cyclic for πϕ and

(
πϕ(b)hϕ | hϕ

)
=

(
πτ (b)q

1(1) | q1(1
)
) = τ(b) = ϕ(b).

Since

1 = ‖ϕ‖ = lim
i
ϕ(u∗i ui)

= lim
i
‖πϕ(ui)hϕ‖2

= ‖hϕ‖2,

hϕ is a unit vector as required.



Appendix B

The Banach ∗-Algebra
L1(G, A)

In classical treatments of the crossed product — such as [30, 66, 162] — A ⋊α G
is defined to be the enveloping C∗-algebra of the Banach ∗-algebra L1(G,A). The
latter is usually quickly disposed of with the phrase “L1(G,A) is the collection of
Bochner integrable functions from G to A equipped with the convolution product
. . . .” I have avoided this approach, and there are a number of good reasons for
this. Certainly not the least of which is that I find the theory of vector-valued
integration a bit formidable. Nevertheless, in this section, we make an attempt at
sketching some of the necessary background for those interested in persevering.

For vector-valued integration, there are a number of references available. Among
these are Dunford and Schwarz [32, Chap. III], Bourbaki [11], Fell and Doran
[54, Chap. II] and Hille and Phillips [73, Part I, §III.1]. It is hardly clear at first
glance that these four references are talking about theories which have a nontrivial
intersection. In fact, Bourbaki has chosen to focus only on Radon measures on
locally compact spaces (as defined below), and has presented the theory in what has
fortunately become a completely nonstandard order. Nevertheless, the presentation
here is closest in spirit to Bourbaki’s as it treats the density of Cc(G,A) in L1(G,A)
as the central feature. Thus, one could avoid measure theory altogether by defining
L1(G,A) as the completion of Cc(G,A) in the L1-norm where it not that one of
the primary reasons to pass to the L1-algebra is to be able to use functions which
are not necessarily continuous or compactly supported.

B.1 Vector-Valued Integration

In the discussion here, X will be a locally compact Hausdorff space and µ a Radon
measure on a measurable space (X,M ). A Radon measure is a measure associated
to a positive linear functional I : Cc(X) → C via the Riesz Representation Theo-
rem. More precisely, µ is the unique measure defined on a σ-algebra M containing
the Borel sets of X such that

331
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(a) I(f) =

∫

X

f(x) dµ(x) for all f ∈ Cc(X),

(b) for each open set V ⊂ X , µ(V ) = sup{µ(K) : K ⊂ V is compact }, and

(c) For all E ∈ M , µ(E) = inf{µ(V ) : E ⊂ V is open }.
Measures satisfying (b) and (c) are called regular . As shown in [156, Theorem 2.14]
or [71, Theorem 11.32], any regular measure must also satisfy

µ(E) = sup{µ(C) : C ⊂ E is compact } if µ(E) <∞. (B.1)

Remark B.1. A measure which satisfies (B.1) without also requiring that µ(E) <∞
is called inner regular. A measure satisfying (c) is called outer regular. As Arveson
points out in [3], one can require measures arising from linear functionals to be
either outer regular, as in [156], or inner regular, as in [3]. As we shall see, it is not
possible to have both conditions hold in general.

Although any σ-algebra M containing the Borel sets in X would do, our choice
for a σ-algebra will coincide with that in [156, Theorem 2.14]. One important
consequence of this choice is that our measures are complete in that every subset of
a null1 set is measurable. Another more subtle consequence is that µ is saturated
in that locally measurable sets are measurable. That is,

A ∈ M ⇐⇒ A ∩K ∈ M for all K ⊂ X compact. (B.2)

Remark B.2. Saturation and local measurability are annoyances that arise only
because we have not insisted that our space X be σ-compact or second countable.
Normally, nonseparable examples such as these don’t play a particularly important
role, but it seems silly to make blanket assumptions that can be avoided with just
a bit more effort. This is especially true when X is a locally compact group G, and
Folland describes the situation there rather succinctly in [56, §2.3]. There he also
gives a classic example that shows exactly the sort of pathology we have to beware
of if we’re going to allow large spaces such as X = R×Rd; that is, X is the locally
compact group which is the product of R with its usual second countable topology
with R equipped with the discrete topology. Then R × Rd is far from σ-compact.
Now let µ be a Haar measure on R × Rd. Thus µ is (a multiple of) the product
of Lebesgue measure and counting measure. Consider S = { 0 } ⋊ Rd. Then S is
closed and hence measurable. Furthermore, any compact subset of S is finite and
has measure zero. On the other hand, any open set containing S is the uncountable
disjoint union of nonempty open sets. Since any nonempty open set has strictly
positive Haar measure, regularity forces µ(S) = ∞. Thus S is an example of a set
which is locally null, but not null. In particular, Haar measure on R × Rd fails to
be inner regular.

The first task here is to define what it means for a function f : X → B to be
measurable if B is a Banach space (which need not be separable). The definition
has to be finessed so that the image of a measurable function is not too large. For

1Unless we’re dealing with more than one measure, we’ll just write “null set” in place of “µ-null
set”.
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example, if f is to be the limit of a sequence of simple functions, then the range of
f has to be contained in the closure of the images of these simple functions which
is a separable subspace of B.

Definition B.3. Let B be a Banach space. A function f : X → B is essentially
separately-valued on a set S if there is a countable set D ⊂ B and a null set N ⊂ S
such that f(x) ∈ D for all x ∈ S rN .

Since will often be convenient to deal with separable subspaces rather than
separable subsets, the next lemma will often be invoked without comment.

Lemma B.4. Let D be a countable set in a Banach space B. Let BD be the closed
subspace of B generated by D. Then BD is separable. In particular, we can replace
the countable set D in Definition B.3 with a separable subspace.

Proof. Note that BD is the closure of the linear span S(D) of D in B. But the
countable set SQ(D) of rational linear combinations of elements of D is certainly
countable and dense in S(D). Thus SQ(D) is also dense in BD.

Another apparent complication is that there are at least two reasonable notions
of measurability.

Definition B.5. Let B be a Banach space and f : X → B a function. Then f is
strongly measurable if

(a) f−1(V ) is measurable for all open sets V ∈ B, and

(b) f is essentially separately valued on every compact subset of X .

Definition B.6. Let B be a Banach space and f : X → B a function. Then f is
weakly measurable if

(a) ϕ ◦ f is a measurable function from X to C for all ϕ ∈ B∗, and

(b) f is essentially separately-valued on each compact subset of X .

This complication is not a complication at all as the two notions coincide.

Lemma B.7. Let B be a Banach space. A function f : X → B is weakly measurable
if and only if it is strongly measurable.

For the proof, it will be convenient to record the following standard result.

Lemma B.8. Suppose that B0 is a separable subspace of a Banach space B. Then
there is a countable set F of linear functionals in the unit ball of B∗ such that

‖b‖ = sup
ϕ∈F

|ϕ(b)| for all b ∈ B0.

Proof. Let D be a countable dense subset of B0. Using the Hahn-Banach Theorem,
for each d ∈ D, there is a norm one linear functional ϕd ∈ B∗ such that ϕd(d) = ‖d‖.
Now for any b ∈ B0 and d ∈ D,

‖b‖ ≥ |ϕd(b)| = |ϕd(d) − ϕd(d− b)| ≥ |ϕd(d)| − |ϕd(d− b)|
≥ ‖d‖ − ‖d− b‖.
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Given ǫ > 0, we can choose d ∈ D such that ‖d− b‖ < ǫ
2 . Then ‖d‖ ≥ ‖b‖ − ǫ

2 and

‖b‖ ≥ sup
d∈D

|ϕd(b)| ≥ ‖b‖ − ǫ.

Since ǫ is arbitrary, the result follows.

Proof of Lemma B.7. Since each ϕ ∈ B∗ is continuous, it is straightforward to
check that strong measurability implies weak measurability.

So, suppose that f is weakly measurable. Clearly, it suffices only to check that
f−1(V ) is measurable for all open sets V ⊂ B. Since µ is saturated, it will then
suffice to check that f−1(V ) ∩ K is measurable for all K ⊂ X compact. Since f
is essentially separately-valued on K, there is a null set N ⊂ K and a separable
subspace B0 such that f(x) ∈ B0 for all x ∈ K rN (Lemma B.4 on the preceding
page). Define f0 : X → B by

f0(x) :=

{
f(x) if x ∈ X rN , and

0 if x ∈ N .

Since µ is complete and

f−1(V ) ∩K =
(
f−1(V ) ∩N

)
∪

(
f−1
0 (V ) ∩ (K rN)

)
,

it will suffice to see that f−1
0 (V ) ∩K rN is measurable. But

f−1
0 (V ) ∩K rN = f−1

0 (V ∩B0) ∩K rN,

and since B0 is separable, there are countably many closed balls Bn := { b ∈ B0 :
‖b− bn‖ ≤ ǫn } with bn ∈ B0 such that

V ∩B0 =

∞⋃

n=1

Bn.

Thus

f−1
0 (V ) ∩K rN =

∞⋃

n=1

f−1
0 (Bn) ∩K rN,

and it will suffice to see that f−1
0 (Bn) is measurable. But Lemma B.8 on the

previous page implies there is a countable set {ϕm }∞m=1 in B∗ such that for all
b ∈ B0

‖b− bn‖ ≤ ǫn ⇐⇒ |ϕm(b − bn)| ≤ ǫn for all m ≥ 1.

Therefore

f−1
0 (Bn) =

∞⋂

m=1

{ x ∈ X : |ϕm
(
f(x) − bn

)
| ≤ ǫn },

which is measurable since each of the sets in the countable intersection on the
right-hand side is measurable by assumption.
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Remark B.9. In view of the above, we’ll normally just say a Banach space valued
function is measurable if it satisfies either of Definitions B.5 or B.6 on page 333.

Remark B.10. Since our measures are saturated, it follows, as in the proof of
Lemma B.7 on page 333, that f : X → B is measurable if and only if f |K is
measurable for all K ⊂ X compact.

Lemma B.11. A linear combination of measurable B-valued functions is measur-
able, and every element of Cc(X,B) is measurable. If f is a B-valued function on
X with the property that for each compact set K ⊂ X, there is a sequence { fn } of
measurable B-valued functions such that fn|K converges to f |K almost everywhere,
then f is measurable.

Proof. Each of the assertions is well-known for scalar-valued functions. Since it
suffices to check weak measurability, it only remains to verify that the functions in
question are essentially separately-valued on compact sets. However this is clear
for a linear combination, and any element of Cc(X,B) has compact image which is
necessarily separable. So suppose that fn(x) → f(x) for all x ∈ KrN0, where N0 is
a null set. If K is compact, then by assumption there are null sets Nn and separable
subspaces Bn such that fn(x) ∈ Bn provided x ∈ K rNn. Let N =

⋃∞
n=0Nn, and

let
∨
Bn be the subspace generated by the Bn. Thus for all x ∈ K rN ,

f(x) ∈
∨∞

n=1
Bn,

which is a separable subspace.

Lemma B.12 (Egoroff’s Theorem). Suppose that µ(E) < ∞ and that { fn } are
measurable functions on X such that fn(x) → f(x) for almost all x ∈ E. Then for
each ǫ > 0, there is a subset F ⊂ E such that µ(E r F ) < ǫ and fn → f uniformly
on F .

Proof. Let

S(n, k) :=
⋂

m≥n

{ x ∈ E : ‖fm(x) − f(s)‖ < 1

k
}.

Thus S(n + 1, k) ⊃ S(n, k) and µ
(⋃∞

n=1 S(n, k)
)

= µ(E). Therefore for each k ≥
1, we have limn µ

(
S(n, k)

)
= µ(E). Since µ(E) < ∞, this implies limn µ

(
E r

S(n, k)
)

= 0. Thus we can inductively choose an increasing sequence nk such that

µ
(
E r S(nk, k)

)
<

ǫ

2k
.

Let F :=
⋂∞
k=1 S(nk, k). Then µ(E r F ) < ǫ and if x ∈ F , then x ∈ S(nk, k) so

that n ≥ nk implies that ‖fn(x) − f(x)‖ < 1
k .

Now we want to give another criterion for measurability which is very convenient
and also helps to connect with the treatment in Bourbaki, where a number of the
arguments below can be found. The term “C-measurable” will only be used until
we can prove it is equivalent to (weak and strong) measurability.
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Definition B.13. A B-valued function is called C-measurable if given any compact
set K ⊂ X and ǫ > 0, there is a compact set K ′ ⊂ K such that µ(K rK ′) < ǫ and
such that the restriction f |K′ of f to K ′ is continuous.

Remark B.14. It is important to keep in mind that the assertion in the above
definition is that f |K′ is continuous on K ′, not that f is continuous on K ′. For
example, the characteristic function of the irrationals restricts to a constant function
on the irrationals, but it is not continuous at even single point.

Lemma B.15. If f is C-measurable and K ⊂ X is compact, then there are disjoint
compact sets K1,K2, · · · ⊂ K such that µ

(
Kr

⋃∞
n=1Kn

)
= 0 and f |Kn is continuous

for all n. (Some of the Kn can be empty.)

Proof. By definition, we can choose K1 ⊂ K such that µ(K r K1) < 1 and f |K1

is continuous. Since K r K1 has finite measure, there is, by (B.1), a compact set
K ′

2 ⊂ K r K1 such that µ(K r K1 r K ′
2) <

1
2 . By assumption, there must be

a K2 ⊂ K ′
2 such that f |K2 is continuous and µ(K r K1 r K2) <

1
2 . Continuing,

we get pairwise disjoint compact sets K1,K2, . . . such that µ
(
K r

⋃n
i=1Ki

)
< 1

n .

Thus µ
(
K r

⋃∞
i=1Ki

)
= 0.

Lemma B.16. If f is C-measurable, then f is measurable.

Proof. We’ll use Definition B.5 on page 333. To verify part (a), it will suffice to
see that f−1(A) is measurable for all closed sets A ⊂ B. Since µ is saturated, it
will suffice to show that f−1(A) ∩ K is measurable for any compact set K. By
Lemma B.15, we can partition K = N ∪ ⋃∞

n=1Kn with each Kn compact, N null,
and f |Kn continuous. Then

f−1(A) ∩K = f−1(A) ∩N ∪
∞⋃

n=1

f−1(A) ∩Kn.

Since f |Kn is continuous, f−1(A) ∩ Kn is closed, and f−1(A) ∩ N is null. This
suffices.

To establish part (b) of Definition B.5 on page 333, let K = N ∪⋃
Kn as above.

Then each f(Kn) is compact and therefore separable. Thus the subspace generated
by

⋃
f(Kn) is separable. This suffices as N is null.

Lemma B.17. Suppose that each fn is a B-valued C-measurable function and that
fn(x) → f(x) for almost all x. Then f is C-measurable.

Proof. Let K ⊂ X be compact and ǫ > 0. Choose Kn ⊂ K such that µ(KrKn) <
ǫ

2n+1 and such that fn|Kn is continuous. Egoroff’s Theorem and (B.1) imply there
is a compact set K0 ⊂ K such that µ(K rK0) <

ǫ
2 and fn → f uniformly on K0.

Notice that the restriction of each fn to K ′ :=
⋂∞
n=0Kn is continuous and that

µ(K rK ′) < ǫ. Since fn → f uniformly on K ′, f |K′ is continuous.

Even though we want to work with continuous compactly supported functions
whenever possible, the fundamental tool of measure theory is the simple function.
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We will have to do some work to fully integrate continuous functions and measurable
functions. It should be noted that our definition of simple function is a bit restrictive
— we insist that they be measurable and take nonzero values only on sets of finite
measure.

Definition B.18. A measurable function s : X → B is called simple if it takes
only finitely many values b1, . . . , bn and µ

(
{ x ∈ X : f(x) = bi }

)
<∞ if bi 6= 0.

Lemma B.19. Every simple function is C-measurable.

Proof. It suffice to see that 1E⊗b is C-measurable for every measurable set E with
finite measure and every b ∈ B. Suppose that K is compact. Using regularity and
(B.1), there is a compact set K1 and an open set U such that

K1 ⊂ K ∩ E ⊂ U and µ(U rK1) <
ǫ

3
.

Also there is a compact set K2 such that K2 ⊂ KrU with µ
(
(KrU)rK2

)
< ǫ/3.

Let K ′ := K1 ∪K2. Then

µ(K rK ′) ≤ µ
(
K ∩E) rK1

)
+ µ

(
(U r E) ∩K

)
+ µ

(
(K r U) rK2

)

< ǫ.

Furthermore, 1E⊗b is constant on each Ki. Since K1 and K2 are disjoint, 1E⊗b|K′

is continuous as required.

Proposition B.20. A B-valued function is C-measurable if and only if it is
(strongly) measurable.

Proof. In view of Lemma B.16 on the preceding page, it suffices to show that strong
measurability implies C-measurability. So suppose that f is strongly measurable
and that K ⊂ X . There is null set N ⊂ K and a separable subspace B0 such that
f(x) ∈ B0 if x ∈ K rN . Let { dn } be a countable dense subset of B0, and define

Bn(dm) := { b ∈ B : ‖b− dm‖ < 1

2n
}.

By assumption each
Xn,m := f−1

(
Bn(dm)

)

is measurable. For each n,

K rN ⊂
∞⋃

m=1

Xn,m.

Let { Yi } be a measurable partition of K rN (some of which may be empty) such
that Yi ⊂ Xn,i. If Yi is empty, let xi be any point in K, otherwise choose xi ∈ Yi.
Then for each k,

sk :=

k∑

i=1

f(xi)1Yi
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is a simple function. Thus

pn :=

∞∑

i=1

f(xi)1Yi

is the pointwise limit of the sk and is C-measurable by Lemmas B.19 on the pre-
ceding page and B.17 on page 336. Furthermore,

‖pn(x) − f(x)‖ ≤ 1

n
for all x ∈ K rN .

Thus pn(x) → f(x) for all x ∈ KrN . Thus f is C-measurable by Lemma B.17.

Corollary B.21. Suppose that B is a Banach algebra and that f and g are B-
valued measurable functions on X. Then the pointwise product h(x) := f(x)g(x) is
measurable from X to B.

Remark B.22. This result is not as “obvious” as it might seem at first blush.
The usual proof in the scalar case takes advantage of the fact that open sets in
C × C are the countable union on open rectangles. This need not be the case in
B ×B and the usual proof would have to be modified to make use of the fact that
measurable functions are essentially separately valued on compact sets. Another
straightforward proof of this corollary can be made using the characterization of
measurability to be given in Proposition B.24 on the facing page.

Proof. This follows immediately from Proposition B.20 on the previous page since
the product of continuous functions is continuous.

Lemma B.23. Suppose that the restriction of f : X → B to a compact set K is
continuous. Then for all ǫ > 0 there is a simple function s vanishing outside K
such that for all x ∈ K,

‖s(x)‖ ≤ ‖f(x)‖ and ‖s(x) − f(x)‖ < ǫ.

Proof. Since K is compact, f |K is uniformly continuous. Thus there are open sets
U1, . . . , Un such that K ⊂ ⋃

Ui and x, y ∈ Ui ∩K implies ‖f(x)− f(y)‖ < ǫ
2 . Thus

there is a measurable partition E1, . . . , Em of K by nonempty sets such that each
Ei is contained in some Uj . Let xi ∈ Ei and define

bi :=





0 if ‖f(xi)‖ ≤ ǫ
2 , and

f(xi)
(
1 − ǫ

2‖f(xi)‖
)

if ‖f(xi)‖ > ǫ
2 .

Let s :=
∑m
i=1 bi1Ei . Then if x ∈ K, it belongs to exactly one Ei. Assume

‖f(xi)‖ > ǫ
2 . Then

‖f(x) − s(x)‖ = ‖f(x) − bi‖ =
∥∥∥f(x) − f(xi)

(
1 − ǫ

2‖f(xi)‖
)∥∥∥

≤ ‖f(x) − f(xi)‖ +
ǫ

2
< ǫ.
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On the other hand,

‖f(x)‖ − ‖s(x)‖ = ‖f(x)‖ − ‖f(xi)‖
(
1 − ǫ

2‖f(xi)‖
)

= ‖f(x)‖ − ‖f(xi)‖ +
ǫ

2
≥ 0,

since
∣∣‖f(x)‖ − ‖f(xi)‖

∣∣ ≤ ‖f(x) − f(xi)‖ < ǫ
2 .

The case where ‖f(xi)‖ ≤ ǫ
2 is even easier.

Now we can give another characterization of a measurable function.

Proposition B.24. A B-valued function f is measurable if and only if for each
compact set K ⊂ X, there is a sequence of simple functions { sn } such that for
almost all x ∈ K

‖sn(x)‖ ≤ ‖f(x)‖ and sn(x) → f(x).

Proof. The “if” direction follows from Lemma B.11 on page 335. For the “only
if” direction, we can invoke Lemma B.15 on page 336 (and Proposition B.20 on
page 337) to partition a compact set K as N ∪ ⋃

Kn where N is null and f |Kn is
continuous. Using Lemma B.23 on the preceding page, for each n we can find a
sequence of simple functions { tnm } supported in Kn such that ‖tnm(s)‖ ≤ ‖f(x)‖
and limm t

n
m(x) = f(x) for all x ∈ Kn. Define sm = t1m+ t2m + · · ·+ tmm. Then sm is

a simple function, and since sm(x) = tnm(x) if x ∈ Kn and m ≥ n, the { sm } have
the required properties.

Lemma B.25. If E is a σ-finite subset of X, then there is a σ-compact subset
F ⊂ E such that µ(E r F ) = 0.

Proof. Since the countable union of null sets is null, it clearly suffices to prove
the assertion when µ(E) < ∞. But then the assertion follows immediately from
(B.1).

Lemma B.26. If f is a B-valued measurable function which vanishes off a σ-finite
subset, then there are simple functions sn and a null set N such that ‖sn(x)‖ ≤
‖f(x)‖ and sn(x) → f(x) for all x ∈ X rN .

Proof. Using Lemma B.26 and repeated application of Lemma B.15 on page 336,
we can partition X as Z ∪N0 ∪

⋃
Kn such that f(x) = 0 if x ∈ Z, N0 is null, Kn

is compact and f |Kn is continuous. Lemma B.23 on the facing page implies that
for each n, there is a sequence { tnm } of simple functions and a null set Nn ⊂ Kn

such that ‖tnm(x)‖ ≤ ‖f(x)‖ and limm t
n
m(x) = f(x) for x ∈ Kn rNn. Now define

sm = t1m + · · · + tmm and N =
⋃∞
n=0Nn. Then { sm } is the required sequence.

The next result is [54, Theorem II.14.8], and is a vector-valued version of the
usual Tietze Extension Theorem. Unlike the scalar case, there is no assertion that
the extension preserves the sup-norm of the original function.
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Proposition B.27 (Tietze Extension Theorem). Suppose that K ⊂ X is compact
and that g ∈ C(K,B). Then there is a f ∈ Cc(X,B) such that f |K = g.

Proof. Fix ǫ > 0 and cover K by precompact open sets V1, . . . , Vn such that x, y ∈
Vi ∩ K implies ‖g(x) − g(y)‖ < ǫ. We can assume that Vi ∩ K 6= ∅ and choose
xi ∈ V ∩ K. By Lemma 1.43 on page 12, there are {ϕi }ni=1 ⊂ C+

c (X) such that
suppϕi ⊂ Vi and such that

n∑

i=1

ϕi(x)

{
= 1 if x ∈ K, and

≤ 1 if x /∈ K.

Then f :=
∑n
i=1 g(xi)ϕi satisfies

‖f(x) − g(x)‖ =
∥∥∥
n∑

i=1

ϕi(x)
(
g(xi) − g(x)

)∥∥∥ ≤ ǫ for all x ∈ K.

Therefore there are fi ∈ Cc(X,B) such that fi|K → g uniformly on K. Passing to
a subsequence and relabeling, we can assume that for all n ≥ 2,

‖fn(x) − fn−1(x)‖ <
1

2n
for all x ∈ K.

For n ≥ 2 let h′n := fn − fn−1 and define

hn(x) :=





h′n(x) if ‖h′n(x)‖ ≤ 1
2n , and

h′n(x)

2n‖h′n(x)‖
otherwise.

Notice that each hn is continuous on X , vanishes off U :=
⋃
Vi, and satisfies

‖hn(x)‖ ≤ 1
2n . Thus

f1(x) +

∞∑

n=2

hn(x)

converges absolutely and uniformly to a continuous function f with support in U .
Thus f ∈ Cc(X,B), and since hn(x) = fn(x) − fn−1(x) if x ∈ K, f(x) = g(x) for
all x ∈ K.

Corollary B.28 (Lusin’s Theorem). Let f be a B-valued measurable function and
K a compact subset of X. If ǫ > 0 then there is a g ∈ Cc(X,B) such that

µ
(
{ x ∈ K : g(x) 6= f(x) }

)
< ǫ.

Lemma B.29. If f : X → B is measurable, then x 7→ ‖f(x)‖ is measurable.

Proof. This follows easily from the definition of strong measurability and the con-
tinuity of b 7→ ‖b‖.
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Definition B.30. A measurable function f : X → B is integrable if

‖f‖1 :=

∫

X

‖f(x)‖ dµ(x) <∞.

We call ‖ · ‖1 the L1-norm. The collection of all B-valued integrable functions on
X is denoted L1(X,B), and the set of equivalence classes of functions in L1(X,B)
where two functions which agree almost everywhere are identified is denoted by
L1(X,B).

With the scalar-valued case as a guide, it is routine to check that both L1(X,B)
and L1(X,B) are vector spaces, and that ‖ · ‖1 is a seminorm on L1(X,B) which
defines a norm on L1(X,B). Thus to obtain the expected result that L1(X,B) is
a Banach space, we only need to prove completeness.

Proposition B.31. Suppose that µ is a Radon measure on a locally compact space
X, and that B is a Banach space. Then L1(X,B) is a Banach space. In particular,
if { fn } is a Cauchy sequence in L1(X,B), then there is a f ∈ L1(X,B) and a
subsequence { fnk

} such that fnk
→ f in L1(X,B) and such that fnk

(x) → f(x)
for almost all x ∈ X.

Proof. Since a Cauchy sequence with convergent subsequence is convergent, it suf-
fice to prove the last statement. Therefore we can pass to a subsequence, relabel,
and assume that

‖fn+1 − fn‖1 ≤ 1

2n
for n ≥ 1.

Now define

zn(x) :=

n∑

k=1

‖fk+1(x) − fk(x)‖ and z(x) :=

∞∑

k=1

‖fk+1(x) − fk(x)‖,

with z taking values in [0,∞]. Then

‖zn‖1 =

n∑

k=1

‖fk+1 − fk‖1 ≤ 1.

In other words,

‖zn‖1 =

∫

X

zn(x) dµ(x) ≤ 1 for all n,

and the Monotone Convergence Theorem implies

∫

X

z(x) dµ(x) ≤ 1 <∞.

Therefore z is finite almost everywhere, and there is null set N ⊂ X such
that

∑∞
k=1 fk+1(x) − fk(x) is absolutely convergent in B for all x ∈ X r N .

Since B is complete, the series converges and there is a f ′(x) such that



342 The Banach ∗-Algebra L1(G, A)

f ′(x) = limn→∞
∑n
k=1 fk+1(x) − fk(x) =

(
limn→∞ fn+1(x)

)
− f1(x). Thus we can

define f on X rN by

f(x) := lim
n
fn(x) = f ′(x) + f1(x).

We can define f to be identically 0 on N , and then f is measurable by Lemma B.11
on page 335.

We still have to see that f ∈ L1(X,B) and that fn → f in L1(X,B). Let ǫ > 0.
By assumption, we can choose N so that n,m ≥ N implies

‖fn − fm‖1 < ǫ.

For all s ∈ XrN , we have ‖f(x)−fm(x)‖ = limn ‖fn(x)−fm(x)‖. Thus if m ≥ N ,
Fatou’s Lemma implies

‖f − fm‖1 ≤ lim inf
n

‖fn − fm‖1 ≤ ǫ. (B.3)

Since
‖f(x)‖ ≤

(
‖f(x) − fm(x)‖ + ‖fm(x)‖

)
,

it follows from (B.3) that f ∈ L1(X,B) and that fn → f in L1(X,B).

Proposition B.32 (Dominated Convergence Theorem). Let (X,µ) be a Radon
Measure and B a Banach space. Suppose that { fn } is a sequence of measurable B-
valued functions on X such that there is nonnegative integrable function g ∈ L1(X)
such that ‖fn(x)‖ ≤ g(x) for almost all x and such that fn(x) → f(x) for almost
all x. Then fn → f in L1(X,B).

Proof. For almost all x, ‖fn(x)− f(x)‖ ≤ 2g(x). Since ‖fn(x)− f(x)‖ converges to
0 for almost all x and 2g is integrable, the scalar-valued Dominated Convergence
Theorem implies

‖fn − f‖1 =

∫

X

‖fn(x) − f(x)‖ dµ(x) → 0 as n→ ∞.

Proposition B.33. Both the collection of simple functions and the set Cc(X,B)
are dense in L1(X,B).

Proof. If f ∈ L1(X,B), then f vanishes off a σ-finite set. Thus the density of simple
functions follows from Lemma B.26 on page 339 and the Dominated Convergence
Theorem. To see that Cc(X,B) is dense, it suffices to see that we can approximate1E ⊗ b by an element of Cc(X,B) provided E has finite measure and b ∈ B. Let
ǫ > 0. The regularity of µ implies there is an open set V and a compact set K
such that K ⊂ E ⊂ V and µ(V r K) < ǫ. Then Urysohn’s Lemma (Lemma 1.41
on page 11) implies there is a z ∈ Cc(X) such that 0 ≤ z(x) ≤ 1 for all x ∈ X ,
z(x) = 1 if x ∈ K, and z vanishes off V . Then z ⊗ b ∈ Cc(X,B) and

‖z ⊗ b− 1E ⊗ b‖1 < ǫ‖b‖.

Since ǫ is arbitrary, we’re done.
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Recall from Lemma 1.91 on page 32 that there is a linear map I : Cc(X,B) → B
given by

I(f) =

∫

X

f(x) dµ(x), (B.4)

and ‖I(f)‖ ≤ ‖f‖1. Since Cc(X,B) is dense in L1(X,B) and since L1(X,B) is
complete, we can extend I to all of L1(X,B) and continue to write I as an integral
as in (B.4) even when f is not in Cc(X,B). If f ∈ L1(X,B), then we can find
{ fi } ⊂ Cc(X,B) such that fi → f in L1(X,B). Then the definition of I implies
that ∫

X

fi(x) dµ(x) →
∫

X

f(x) dµ(x)

in B. Thus if ϕ ∈ B∗,

ϕ
(∫

X

fi(x) dµ(x)
)
→ ϕ

(∫

X

f(x) dµ(x)
)
.

Since it is easy to check that ϕ ◦ fi → ϕ ◦ f in L1(X), we conclude that

ϕ
(∫

X

f(x) dµ(x)
)

=

∫

X

ϕ
(
f(x)

)
dµ(x) for all f ∈ L1(X,B) and ϕ ∈ B∗.

Thus we’ve essentially proved the following (compare with Lemma 1.91 on page 32).

Proposition B.34. If µ is a Radon measure on X and if B is a Banach space,
then

f 7→
∫

X

f(x) dµ(x)

is a linear map satisfying
∥∥∥
∫

X

f(x) dµ(x)
∥∥∥ ≤ ‖f‖1 for all f ∈ L1(X,B).

The integral is characterized by

ϕ
(∫

X

f(x) dµ(x)
)

=

∫

X

ϕ
(
f(x)

)
dµ(x) for all ϕ ∈ B∗. (B.5)

More generally, if L is any bounded linear map from B to B1, then

L
(∫

X

f(x) dµ(x)
)

=

∫

X

L
(
f(x)

)
dµ(x).

Remark B.35. It follows from (B.5) that if z is a scalar-valued integrable function
on X , then ∫

X

(z ⊗ b)(x) dµ(x) =

∫

X

z(x) dµ(x)b. (B.6)

In particular, if s =
∑n
i=1 bi1Ei is a simple function with each Ei of finite measure,

then ∫

X

s(x) dµ(x) =

n∑

i=1

µ(Ei)bi. (B.7)

Remark B.36. If A is a C∗-algebra, it is now straightforward to extend Lemma 1.92
on page 32 to L1(G,A).
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B.1.1 The Literature

We should pause to see how the treatments and assumptions here intersect with the
standard treatments mentioned above. Using (B.1), it follows that A ∈ M if and
only if for all compact sets K, A∩K is the union of a σ-compact set and a null set.
Since every null set is a subset of a Gδ-null set, any two complete and saturated
Radon measures corresponding the the same functional have the same σ-algebra of
definition. Since the measures defined in [156, Theorem 2.14] and [71, §III.11] are
both complete and saturated, the notion of measurability in the two treatments
coincide — even though this might not be evident on the first read through. Since
the treatments in [32, 54, 73] are written for general measure spaces, we can only
expect agreement when we use Radon measures with the above σ-algebra. To make
contact with Bourbaki, we need to notice that there the σ-algebra of measurable
sets is specified in an indirect way. To see that it coincides with Rudin’s, and hence
with ours, there is a bit of work to do. Even to see that the collection of measurable
sets MB in Bourbaki is a σ-algebra requires looking up [11, VI §5 no. 1 Corollaire
to Proposition 3, IV §5 no. 3 Corollaire 4, and IV §5 no. 5 Corollaire 2]. To see that
MB = M , it suffices to consider A ⊂ K for K compact by [156, p. 42] and [11, IV
§5 no. 1 Proposition 3]. But A ∈ MB ⇐⇒ A ∈ M follows from [11, IV §4 no. 6
Théorème 4] together with the observation that Rudin’s and Bourbaki’s extensions
of µ coincide on integrable sets (which follows from [11, IV §1 no. 1 Definition 1,
IV §1 no. 4 Proposition 19, IV §4 no. 5 Definition 2, IV §4 no. 2 Proposition 1]).

Our definition of (strong) measurability is clearly consistent with the usage in
Dunford and Schwartz — see [32, Theorem III.6.10] and recall that locally measur-
able implies measurable for Radon measures — and with Bourbaki after consulting
[11, IV §5 no. 5 Proposition 8 and IV §5 no. 5 Théorème 4]. To see that this is the
same definition as used in Fell and Doran and Hill and Phillips, we need Lemma B.7
on page 333. In view of [54, Proposition II.5.12] and [73, Theorem I.3.5.3], we see
that all four authorities are in agreement.

B.2 Product Measures

Since iterated integrals play an important role in the theory, we should spend a
little time on product measures. In this section, µ and ν will be Radon measures
on locally compact spacesX and Y , respectively. We get a positive linear functional

J : Cc(X × Y ) → C

given by2

J(f) :=

∫

X

∫

Y

f(x, y) dν(y) dµ(x) =

∫

Y

∫

X

f(x, y) dµ(x) dν(y).

2It is not necessary to appeal to Fubini’s Theorem to see the two iterated integrals below are
equal. This can be accomplished by direct estimates such as [71, Theorem III.13.2]. Alternatively,
any version of Fubini gives us a product measure allowing us to define J .
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The Radon measure associated to J is what we’ll mean by the product of µ and
ν and it will be denoted by µ × ν. We will assume the basic results about prod-
uct measures and iterated integrals usually referred to as Fubini’s and Tonelli’s
Theorems as stated below. Good references for Fubini’s Theorem are [154, Theo-
rem 12.4.19] or [71, Theorem III.13.8]. Our version of Tonelli’s Theorem is proved
in [71, III.13.9], and also follows from [154, 12.4.20] together with the observation
that a function vanishing off a σ-finite subset of X × Y is equal almost everywhere
to a function vanishing of the product of two σ-compact sets.

Theorem B.37 (Fubini’s Theorem). Suppose that µ and ν are Radon measures on
locally compact spaces X and Y , respectively. If f ∈ L1(X ×Y ), then the following
statements hold.

(a) For almost all x, y 7→ f(x, y) belongs to L1(Y ).

(b) For almost all y, x 7→ f(x, y) belongs to L1(X).

(c) The function

x 7→
∫

Y

f(x, y) dν(y)

is defined almost everywhere and defines a class in L1(X).

(d) The function

y 7→
∫

X

f(x, y) dµ(x)

is defined almost everywhere and defines a class in L1(Y ).

(e) The iterated integrals
∫

X

∫

Y

f(x, y) dν(y) dµ(x) =

∫

Y

∫

X

f(x, y) dµ(x) dν(y)

are equal, and the common value is
∫

X×Y

f(x, y) dµ× ν(x, y).

Remark B.38. When dealing with functions

x 7→
∫

Y

f(x, y) dν(y), (B.8)

as in part (c) of Fubini’s Theorem above, it can be awkward not to have an every-
where defined function. Hence we’ll adopt the usual convention that (B.8) takes
the value 0 at x when y 7→ f(x, y) fails to be integrable. Of course so long as
y 7→ f(x, y) is integrable for almost all x, the class in L1(X) is unchanged.

In practice there are usually two obstacles to applying Fubini’s Theorem to a
function f on a product space. First one must verify that f is measurable with
respect to the product measure. Second, one has to check that f is integrable. The
first of these is the more formidable. Once measurability is established, integrability
can usually be handled with Tonelli’s Theorem and some care about the support
of the function.
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Theorem B.39 (Tonelli’s Theorem). Let µ and ν be Radon measures on locally
compact spaces X and Y , respectively. Suppose that f : X ×Y → [0,∞] is measur-
able with respect the product measure µ× ν, and that f vanishes off a σ-finite set.
Then the following statements hold.

(a) For almost all x, y 7→ f(x, y) is measurable.

(b) For almost all y, x 7→ f(x, y) is measurable.

(c) The function

x 7→
∫

Y

f(x, y) dν(y)

is defined almost everywhere and defines a measurable [0,∞]-valued function
on X.

(d) The function

y 7→
∫

X

f(x, y) dµ(x)

is defined almost everywhere and defines a measurable [0,∞]-valued function
on Y .

(e) The iterated integrals

∫

X

∫

Y

f(x, y) dν(y) dµ(x) =

∫

Y

∫

X

f(x, y) dµ(x) dν(y)

are equal, and the common value is
∫

X×Y

f(x, y) dµ× ν(x, y).

Having accepted these two results, we’d like to establish their vector-valued
counterparts. However the counterpart to Tonelli’s Theorem is an immediate con-
sequence of the scalar-valued version.

Lemma B.40. Suppose that f : X × Y → B is a measurable function which
vanishes off a σ-finite set. Then the iterated integrals

∫

X

∫

Y

‖f(x, y)‖ dν(y) dµ(x) =

∫

Y

∫

X

‖f(x, y)‖ dµ(x) dν(y)

coincide. The common value is finite if and only if f is integrable.

Proof. By definition, f is integrable if and only if the scalar valued function (x, y) 7→
‖f(x, y)‖ is integrable. Now we can apply Tonelli to the scalar-valued integral.

The proof of a vector-valued Fubini Theorem based on the scalar-valued case
is a bit more subtle. We’ve used the same approach as in [54, §II.16] and take
advantage of the density of Cc(X,B) in L1(X,B) (Proposition B.33 on page 342).

Theorem B.41 (Fubini’s Theorem). Suppose that µ and ν are Radon measures
on locally compact spaces X and Y , respectively. If f ∈ L1(X×Y,B) for a Banach
space B, then the following statements hold.
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(a) For almost all x, y 7→ f(x, y) belongs to L1(Y,B).

(b) For almost all y, x 7→ f(x, y) belongs to L1(X,B).

(c) The function

x 7→
∫

Y

f(x, y) dν(y)

is defined almost everywhere and defines a class in L1(X,B).

(d) The function

y 7→
∫

X

f(x, y) dµ(x)

is defined almost everywhere and defines a class in L1(Y,B).

(e) The iterated integrals
∫

X

∫

Y

f(x, y) dν(y) dµ(x) =

∫

Y

∫

X

f(x, y) dµ(x) dν(y)

are equal, and the common value is
∫

X×Y

f(x, y) dµ× ν(x, y).

Proof. Since Cc(X×Y,B) is dense in L1(X×Y,B), Lemma B.31 on page 341 implies
there is a sequence { fi } ⊂ Cc(X × Y,B) such that fi → f in L1(X × Y,B) and
such that there is a µ× ν-null set N such that fi(x, y) → f(x, y) for all (x, y) /∈ N .
The scalar-valued Fubini Theorem applied to 1N implies that there is a µ-null set
NX such that

Nx := { y : (x, y) ∈ N } (B.9)

is a ν-null set for all x ∈ X r NX . Therefore if x ∈ X r NX is fixed, then
fi(x, y) → f(x, y) for all y ∈ Y rNx. Thus if x ∈ X rNX then y 7→ f(x, y) is the
almost everywhere limit of continuous functions, and is therefore measurable. On
the other hand, (x, y) 7→ ‖f(x, y)‖ is in L1(X × Y ), the the scalar-valued Fubini
Theorem implies y 7→ ‖f(x, y)‖ is integrable for almost all x. Since, by definition,
y 7→ f(x, y) is integrable whenever it measurable and y 7→ ‖f(x, y)‖ is integrable,
part (a) follows. Part (b) is proved similarly.

To prove (c), we’ll apply the scalar-valued Fubini Theorem to the functions

ϕi(x, y) := ‖fi(x, y) − f(x, y)‖ and ψi(x) :=

∫

Y

ϕi(x, y) dν(y).

By our choice of { fi }, ϕi → 0 in L1(X × Y ). Since
∫

X

|ψi(x)| dµ(x) =

∫

X

ψi(x) dµ(x)

=

∫

X

∫

Y

ϕi(x, y) dν(y) dµ(x)

=

∫

X×Y

ϕi(x, y) dµ× ν(x, y)

=

∫

X×Y

|ϕi(x, y)| dµ× ν(x, y),
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we also have ψi → 0 in L1(X). Passing to a subsequence and relabeling, we can
assume that ψi(x) → 0 for almost all x in X . But if we let

gi(x) :=

∫

Y

fi(x, y) dν(y) and g(x) :=

∫

Y

f(x, y) dν(y),

then each gi ∈ Cc(X,B) by Lemma 1.102 on page 36. (We’re using the convention
established in Remark B.38 on page 345 to view g as a function on all of X .) Thus
each gi is certainly measurable, and

ψi(x) =

∫

Y

‖fi(x, y) − f(x, y)‖ dν(y)

≥
∥∥∥
∫

Y

fi(x, y) − f(x, y) dν(y)
∥∥∥

= ‖gi(x) − g(x)‖,

and it follows that gi(x) → g(x) for almost all x in X . Thus g is measurable. Since
∫

X

‖g(x)‖ dµ(x) ≤
∫

X

∫

Y

‖f(x, y)‖ dν(y) dµ(x) = ‖f‖1 <∞,

g ∈ L1(X) as claimed. This proves part (c) and part (d) is proved similarly.
To prove (e), it suffices, by symmetry, to see that one of the iterated integrals

coincides with the integral with respect to the product measure. However, this
follows by applying a state ϕ ∈ B∗ to both sides and applying the scalar-valued
version of the theorem.

B.2.1 The Convolution Product

In this section, we’ll replace the Banach space B with a C∗-algebra A, the space
X with a locally compact group G and µ will be a left-Haar measure on G. Let
(A,G, α) be a dynamical system. To turn L1(G,A) into a Banach ∗-algebra, we
have to extend the convolution product to L1(G,A). At one level, this is easy. If
f, g ∈ Cc(G,A), then f∗g as defined in (2.16) is inCc(G,A) and ‖f∗g‖1 ≤ ‖f‖1‖g‖1.
Similarly, ‖f∗‖1 = ‖f‖1. Since Cc(G,A) is dense in L1(G,A) by Lemma B.33 on
page 342, the product and involution on Cc(G,A) extend to all of L1(G,A) by
continuity. This solution is not very satisfactory as it leaves us with no decent
formula for a representative of either f ∗ g or f∗ in L1(G,A). Of course, we expect
these representatives to be given by the same formulas as for Cc(G,A): namely
(2.16) and (2.17) on page 48. We’ll give the proof for f ∗ g here. Showing that
f∗ represented by the L1(G,A) function s 7→ αs

(
f(s−1)

)∗
∆(s−1) is considerably

easier.

Proposition B.42. Suppose (A,G, α) is a dynamical system with f, g ∈ L1(G,A).
Then there is a null set M ⊂ G such that s /∈ M implies r 7→ f(r)αr

(
g(r−1s)

)
is

in L1(G,A). Furthermore, if we define

c(s) :=

∫

G

f(r)αr
(
g(r−1s)

)
dµ(r) if s /∈M , (B.10)
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and let c(s) := 0 if s ∈M , then c is an element of L1(G,A) representing the product
f ∗ g defined above.

The proof of Proposition B.42 on the facing page boils down to an application
of the vector-valued Fubini Theorem B.41 on page 346. However, as is often the
case when trying to apply a Fubini type theorem, the hard part is establishing
that the function of two variables in question is measurable and supported on a
reasonable set. Here measurability is a bit thorny since we’ve insisted that our
Radon measures, and therefore Haar measure, be defined on σ-algebras strictly
larger than the Borel sets and there is no a priori reason to suspect that (r, s) 7→
g(r−1s) is measurable if g is (however, see Lemma B.45 on page 351). One solution
is to prove that all elements of L1(G,A) are equivalent to a Borel function so that
(r, s) 7→ g(r−1s) is measurable, and then define the convolution only for Borel f
and g [71, Corollary 11.11.41]. Here we’ll prove the proposition as stated.

First, to deal with support issues, we’ll take advantage of the following obser-
vation which seems special to locally compact groups (compare with Lemma B.25
on page 339).

Lemma B.43. If U ⊂ G is open and µ(U) < ∞, then U is contained in a σ-
compact set. In particular, if C is a σ-finite subset of G, then C is contained in a
σ-compact set.

Proof. Since Haar measure is regular, every set of finite measure is contained in an
open set of finite measure. Thus, it suffices to prove the first assertion. However,
G is the disjoint union ⋃

i∈I

Gi

of clopen σ-compact sets (Lemma 1.38 on page 10). Thus U is the disjoint union
of open sets ⋃

i∈I

Gi ∩ U,

and since an open set is a Haar null set if and only if it is empty, Gi ∩U = ∅ if and
only if µ(Gi ∩ U) > 0. However, for each n, there can be at most finitely many i
such that µ(Gi ∩ U) > 1

n . Thus, at most countably many Gi ∩ U are nonempty.
The assertion follows.

Proof of Proposition B.42. Let h : G×G→ A be defined by

h(r, s) := f(r)αr
(
g(r−1s)

)
.

Since f and g are in L1(G,A), they vanish off a σ-finite set. In view of Lemma B.43,
there is a σ-compact set C such that f and g vanish off C. Since C2 is still σ-
compact, there is a σ-compact set S such that h vanishes off S × S.

We claim that to prove c as defined in (B.10) is in L1(G,A), it suffices to
see that h is measurable. For if h is measurable, then the scalar-valued Tonelli’s
Theorem B.39 on page 346 implies ‖h‖ ∈ L1(G×G). Thus h ∈ L1(G×G,A), and
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that (B.10) defines an element of L1(G,A) now follows our vector-valued Fubini
Theorem B.41 on page 346.

To prove measurability, we follow [55, Proposition VIII.5.4]. Choose { fn } and
{ gn } in Cc(G,A) such that fn → f and gn → g in L1(G,A). In view of Lemma B.31
on page 341, we can pass to a subsequence, relabel, and assume that off a Borel
null set N , we have

fn(s) → f(s) and gn(s) → g(s).

Define
hn(r, s) := fn(r)αr

(
gn(r

−1s)
)
.

Then hn ∈ Cc(G×G,A), and by enlarging S if necessary, we can assume that each
hn has support in S × S. Then

hn(r, s) → h(r, s)

for all (r, s) ∈ G×GrD where

D ⊂ N × S ∪ { (r, s) ∈ S × S : r−1s ∈ N }.

Since the almost everywhere limit of measurable functions is measurable, to see
that h is measurable, it will suffice to see that D is a µ × µ-null set. However,
N × S is certainly null, so it remains to see that

D′ := { (r, s) ∈ S × S : r−1s ∈ N }

is a null set. However, D′ is certainly measurable (Borel in fact) since we were
careful to pick N Borel. Thus 1D′ is a measurable function vanishing off a σ-
compact set. So Tonelli’s Theorem B.39 on page 346 implies that

µ× µ(D′) =

∫

G

µ(D′
r) dµ(r),

where

D′
r := { s ∈ G : (r, s) ∈ D′ }.

Since D′
r ⊂ rN , µ(D′

r) = 0 for all r, and we’ve shown D′ is a µ×µ-null set. Hence
h is measurable, and therefore belongs to L1(G×G).

We still want to see that the element of L1(G,A) defined by the function c
defined in the proposition is equal to the limit of fn ∗ gn. For this, it suffices to see
that

‖fn ∗ gn − c‖1 =

∫

G

‖fn ∗ gn(s) − c(s)‖ dµ(s)

≤
∫

G

∫

G

‖hn(r, s) − h(r, s)‖ dµ(r) dµ(s)

= ‖hn − h‖1
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tends to zero as n→ ∞. But this follows from

‖hn − h‖1 =

∫

G

∫

G

‖fn(r)αr
(
gn(r

−1s)
)
− f(r)αr

(
g(r−1s)

)
‖ dµ(r) dµ(s)

≤
∫

G

∫

G

‖fn(r) − f(r)‖‖gn(r−1s)‖ dµ(r) dµ(s)

+

∫

G

∫

G

‖f(r)‖‖gn(r−1s) − g(r−1s)‖ dµ(r) dµ(s)

= ‖fn − f‖1‖gn‖1 + ‖f‖1‖gn − g‖1,

where we have invoked Tonelli’s Theorem B.39 on page 346 in the first line and the
last.

Remark B.44. One advantage of the approach to defining the convolution product
via Cc(G,A) is that associativity in L1(G,A) follows from associativity of convo-
lution in Cc(G,A). However, it is still likely that it will be necessary to deal with
measurability issues such as the following. Suppose that that if f , g and h are in
L1(G,A), then we certainly expect that

(r, t, s) 7→ f(r)αr
(
g(r−1t)

)
αt

(
h(t−1s)

)
(B.11)

is a measurable function on G×G×G. To prove this, the following lemma suffices.

Lemma B.45. Let (A,G, α) be a dynamical system. Suppose that f ∈ L1(G,A)
and h(r, s) := αr

(
f(r−1s)

)
. Then h : G×G→ A is measurable.

Proof. Since Haar measure is saturated, it suffices to see that h|C is measurable
for each compact set C ⊂ G × G. Therefore it will suffice to show that h|K×K

is measurable for each compact set K ⊂ G. To do this, we’ll produce measurable
functions hn such that hn → h almost everywhere on K ×K. This will suffice in
view of Lemma B.11 on page 335.

Since f ∈ L1(G,A), there are fn ∈ Cc(G,A) such that fn → f in L1(G,A).
Passing to a subsequence and relabeling, we can assume that there is a Borel null
set N such that fn(s) → f(s) for all s /∈ N . Since fn is continuous, hn(r, s) :=
αr

(
fn(r

−1s)
)

certainly defines a measurable function (continuous in fact), and

hn(r, s) → h(r, s)

for all (r, s) ∈ K ×K rD, where

D = { (r, s) ∈ K ×K : r−1s ∈ N }.

Since N is Borel, D is a measurable subset of K ×K, and Tonelli’s Theorem B.39
on page 346 implies that

µ× µ(D) =

∫

G

µ(Dr) dµ(r),

where Dr := { s : (r, s) ∈ D }. Since Dr ⊂ rN , it follows that D is a null set. This
completes the proof.
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Remark B.46. Notice that once we know that (B.11) is measurable, it follows from
Tonelli’s Theorem that (B.11) is in L1(G × G × G,A). Then Fubini’s Theorem
implies for almost all s ∈ G,

(r, t) 7→ f(r)αr
(
g(r−1t)

)
αt

(
h(t−1s)

)
(B.12)

is in L1(G×G,A). It is interesting to note that the integrability of (B.12) for any
given s seems hard to prove directly when considered as a function of r and t alone.



Appendix C

Bundles of C∗-algebras

It is often repeated that a C∗-algebra should be thought of as a noncommutative
analogue of the space of continuous functions vanishing at infinity on a locally
compact Hausdorff space X . This analogy can be very powerful and underlies
much recent progress subsumed by the terms noncommutative algebraic topology
and noncommutative geometry. A very modest step in this direction is to try to
view a given C∗-algebra A as a set of sections of some sort of bundle. For example,
C0(X) is the family of sections of the trivial bundle over X , and C0(X,Mn) is the
family of sections of X×Mn viewed as a bundle over X . The natural candidate for
the base space X is the primitive ideal space PrimA of A. However, from the point
of view of bundle theory, PrimA is rarely sufficiently well behaved as a topological
space to be of much use. Instead, the usual thing to do is to find a locally compact
Hausdorff space X — which will turn out to be a continuous image of PrimA —
over which A fibres in a nice way. Such algebras now go by the name of C0(X)-
algebras, and were introduced by Kasparov in [87]. We prove here that they all
can be realized as section algebras of an upper semicontinuous C∗-bundle over X .
The adjective “upper semicontinuous” is used to distinguish these bundles from
the more classical C∗-bundles which have been studied extensively. C∗-bundles
were originally studied by Fell under the name “continuous fields of C∗-algebras”,
and there is an extensive literature starting with [34, 50, 53]. A up to date survey
can be found in [54, §II.13]. Upper semicontinuous C∗-bundles were introduced
by Hofmann and further references and a discussion of both sorts of bundles can
be found in [35]. Lee’s Theorem [99, Theorem 4], which characterizes which C∗-
algebras can be realized as section algebras of C∗-bundles is part of the main result
in this chapter where it is also proved that a C∗-algebra is a C0(X)-algebra if
and only if it is isomorphic to the section algebra of a upper semicontinuous C∗-
bundle over X (Theorem C.26 on page 367). Much of the material developed
here on C0(X)-algebras, and a good deal more, can be found in [9, 43, 113]. The
correspondence between C0(X)-algebras and bundles was explored in [113] but
without explicitly exhibiting a total space.

It is interesting to note that even though there are C0(X)-algebras which are
not the section algebras of C∗-bundles over X , the technology used here is nearly

353
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identical to that developed by Fell for C∗-bundles.

C.1 C0(X)-algebras

Definition C.1. Suppose that A is a C∗-algebra and that X is a locally compact
Hausdorff space. Then A is a C0(X)-algebra if there is a homomorphism ΦA from
C0(X) into the center ZM(A) of the multiplier algebra M(A) which is nondegen-
erate in that the ideal

ΦA
(
C0(X)

)
·A = span{ΦA(f)a : f ∈ C0(X) and a ∈ A } (C.1)

is dense in A.

One reason to study C0(X)-algebras is that they are fibred over X in a natural
way. Note that if J is an ideal in C0(X) (or even a subalgebra), then the closure
of ΦA(J) · A is an ideal in A. If Jx is the ideal of functions vanishing at x ∈ X ,
then we denote the ideal ΦA(Jx) ·A by Ix and think of the quotient A(x) := A/Ix
as the fibre of A over x. If a ∈ A, then we write a(x) for the image of a in A(x),
and we think of a as a function from X to

∐
x∈X A(x).

Example C.2. If D is any C∗-algebra, then A = C0(X,D) is a C0(X)-algebra in a
natural way:

ΦA(f)(a)(x) := f(x)a(x) for f ∈ C0(X) and a ∈ A.

In this case, each fibre A(x) is easily identified with D, and the identification of
elements of A with functions on X is the obvious one.

Example C.3. A degenerate example is the following. Let A be any C∗-algebra and
x0 any point in X . Then A becomes a C0(X)-algebra via

ΦA(f)(a) = f(x0)a.

Here A(x) is the zero C∗-algebra unless x = x0 in which case A(x0) = A.

To avoid pathological examples such as Example C.3, one could insist that ΦA
be injective. However, the general theory goes through smoothly enough without
this assumption. Of course, in most examples of interest, it will turn out that ΦA
will be injective.

Example C.4. Suppose that X and Y are locally compact spaces and that σ : Y →
X is continuous. Then C0(Y ) becomes a C0(X)-algebra with respect to the map
ΦC0(Y ) defined by

ΦC0(Y )(f)(g)(y) := f
(
σ(y)

)
g(y).

In this example, the fibres C0(Y )(x) are isomorphic to C0

(
σ−1(x)

)
. If f ∈ C0(Y ),

then f(x) is just the restriction of f to σ−1(x).

Proof. It is clear that ΦC0(Y )(f) ∈ ZM
(
C0(Y )

)
= M

(
C0(Y )

) ∼= Cb(Y ). The only
issue is nondegeneracy. But (C.1) is an ideal I in C0(Y ) without any common zeros.
It then follows from the Stone-Weierstrass Theorem ([127, Corollary 4.3.5]) that I
is dense in C0(Y ).
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In fact, Example C.4 on the preceding page is very instructive and is not nearly
as specialized as it might seem at first. To explain this comment, recall that the
Dauns-Hofmann Theorem ([139, Theorem A.34]) allows us to identify ZM(A) with
Cb(PrimA). More precisely, if a(P ) denotes the image of a ∈ A in the primitive
quotient A/P , then there is an isomorphism Ψ of Cb(PrimA) onto ZM(A) such
that

(
Ψ(f)(a)

)
(P ) = f(P )a(P ) for all f ∈ Cb(PrimA), a ∈ A and P ∈ PrimA.

Alternatively, we can also characterize Ψ in terms of irreducible representations. If
π ∈ Â, then

π
(
Ψ(f)a

)
= f(kerπ)π(a) for all f ∈ Cb(PrimA) and a ∈ A.

It is common practice to suppress the Ψ and write f · a in place of Ψ(f)(a). Thus
if σ : PrimA→ X is any continuous map, we get a homomorphism ΦA : C0(X) →
Cb(PrimA) ∼= ZM(A) by defining

ΦA(f) = f ◦ σ.

To see that ΦA is nondegenerate, recall that (C.1) is an ideal I. If π ∈ Â, then

π
(
ΦA(f)(a)

)
= f

(
σ(kerπ)

)
π(a),

and it follows that π(I) 6= { 0 }. Since π is arbitrary, I must be dense in A. Thus,
we have proved the first statement in the following proposition.

Proposition C.5. Suppose that A is a C∗-algebra and that X is a locally compact
space. If there is a continuous map σA : PrimA → X, then A is a C0(X)-algebra
with

ΦA(f) = f ◦ σA for all f ∈ C0(X). (C.2)

Conversely, if ΦA : C0(X) → Cb(PrimA) ∼= ZM(A) is a C0(X)-algebra, then there
is a continuous map σA : PrimA→ X such that (C.2) holds.

In particular, every irreducible representation of A is lifted from a fibre A(x)
for some x ∈ X. More precisely, if π ∈ Â, then the ideal IσA(kerπ) is contained in

kerπ, and π is lifted from an irreducible representation of A
(
σ(kerπ)

)
. Thus we

can identify Â with the disjoint union
∐
x∈X A(x)∧.

As we shall see in the proof of this result, it is often easier to work with the
spectrum Â ofA rather than the primitive ideal space PrimA. Because the topology
on Â is simply pulled back from that on PrimA, any continuous map f : PrimA→
Y has a continuous lift f̄ to Â. If points are closed in Y , then every continuous
map from Â to Y is a lift.

Lemma C.6. Suppose that Y is a topological space in which points are closed and
suppose that f̄ : Â → Y is continuous. Then f̄ factors through PrimA; that is,
there is continuous function f : PrimA → Y such that f(kerπ) = f̄(π) for all
π ∈ Â.
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Proof. It is easy to see that if such an f exists, then it is continuous. Thus it
suffices to see that if kerπ = ker ρ, then we must have f̄(π) = f̄(ρ). Since points
in Y are closed, f̄−1

(
f̄(π)

)
is closed and therefore contains { π }. If ker ρ = kerπ,

then ρ ∈ { π }.

Lemma C.7. Suppose that πi → π in Â and that πi(a) = 0 for all i. Then
π(a) = 0.

Proof. Let J =
⋂

kerπi. Then a ∈ J , and { ρ ∈ Â : ker ρ ⊂ J } is a closed subset
of Â containing each πi. Thus it must also contain π and kerπ ⊃ J . This implies
π(a) = 0 as required.

As with the Dauns-Hofmann Theorem, it is common practice to suppress men-
tion of the homomorphism ΦA and simply write f · a in place of ΦA(f)(a). Then
A becomes a nondegenerate C0(X)-bimodule satisfying

f · a = a · f and (f · a)∗ = a∗ · f̄ . (C.3)

In particular, it is a consequence of the Cohen Factorization Theorem that every
element in A is of the form f · a [139, Proposition 2.33].

Proof of Proposition C.5. The first assertion was proved above. Assume that ΦA :
C0(X) → Cb(PrimA) ∼= ZM(A) is a nondegenerate homomorphism. Let π ∈ Â.
Since ΦA(f) is in the center of M(A), π̄

(
ΦA(f)

)
commutes with every operator in

π(A). Since π is irreducible, π̄
(
ΦA(f)

)
is a scalar multiple ω(f) of the identity,

and ω : C0(X) → C is a complex homomorphism. Since ΦA is nondegenerate, ω
is nonzero and is given by ω(f) = f

(
σ̄(π)

)
for some point σ̄(π) ∈ X (cf. [127,

Example 4.2.5]). In view of Lemma C.6 on the preceding page, to prove the second
assertion it suffices to prove that σ̄ is continuous.

To that end, suppose πi → π, and suppose to the contrary that σ̄(πi) 6→ σ̄(π).
Then we can pass to a subnet, relabel, and assume there is an open neighborhood
V of σ̄(π) which is disjoint from each σ̄(πi). But then there is a f ∈ Cc(X) such
that f

(
σ̄(π)

)
= 1 while f

(
σ̄(πi)

)
= 0 for all i. Then there must be an a ∈ A such

that π(f · a) 6= 0 while πi(f · a) = 0 for all i. Together with Lemma C.7, this is a
contradiction.

If π ∈ Â, then the definition of σ̄ implies that

π(f · a) = f
(
σ̄(π)

)
π(a) for all f ∈ C0(X) and a ∈ A.

In particular, Iσ̄(π) := span{ f · a : f
(
σ̄(π)

)
= 0 } is contained in kerπ and π is

lifted from an irreducible representation of the quotient A(σ̄(π)). The remaining
assertions follow easily.
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It will be helpful to keep in mind a straightforward special case of Example C.4
on page 354.

2

2

0

x

3

3

10

1

Example C.8. Let Y be the subset of R2 consisting of
the line segments from (0, 0) to (2, 1) to (1, 2) to (3, 3).
Let X = [0, 3] ⊂ R and let p : Y → X be the projec-
tion onto the first factor. Then, as in Example C.4 on
page 354, A = C(Y ) is a C(X)-algebra. Note that

A(x) ∼=





C if x ∈ [0, 1) or x ∈ (2, 3],

C2 if x = 1 or x = 2,

C3 if x ∈ (1, 2).

Let f ∈ A be defined by

f(x, y) =





1 if y ≤ 3
2 ,

4 − 2y if 3
2 ≤ y ≤ 2, and

0 if y ≥ 2.

If we write f(x, ·) for the image of f in C(Y )(x), then x 7→ ‖f(x, ·)‖ is the indicator
function of the closed interval [0, 2] in [0, 3]. This is the prototypical example of an
upper semicontinuous function.

Definition C.9. If X is a topological space, then f : X → R is upper semicontin-
uous if

{ x ∈ X : f(x) < r }
is open for each r ∈ R.

Proposition C.10. Suppose that A is a C0(X)-algebra.

(a) For each a ∈ A, the function x 7→ ‖a(x)‖ is upper semicontinuous, and
vanishes at infinity on X in the sense that { x ∈ X : ‖a(x)‖ ≥ k } is compact
for each k > 0.

(b) The functions x 7→ ‖a(x)‖ are continuous for all a ∈ A if and only if the map
σA : PrimA→ X is open.

(c) For each a ∈ A,

‖a‖ = sup
x∈X

‖a(x)‖.

(d) If f ∈ C0(X) and a ∈ A, then (f · a)(x) = f(x)a(x).

Proof. Let σ̄A be the lift of σA to Â. Since the irreducible representations of A(x)
are all of the form a(x) 7→ π(a) for some π ∈ Â satisfying σ̄A(π) = x, and since
given a(x) ∈ A(x), there is an irreducible representation of A(x) preserving the
norm of a(x) ([139, Theorem A.14]), it follows that for all k > 0

{ x ∈ X : ‖a(x)‖ ≥ k } = σ̄A
(
{ π ∈ Â : ‖π(a)‖ ≥ k }

)
. (C.4)
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However, for any C∗-algebra A and any k > 0, { π ∈ Â : ‖π(a)‖ ≥ k } is compact
([139, Lemma A.30(b)]). Since σA, and hence σ̄A, is continuous, the left-hand side
of (C.4) is compact and therefore closed in the Hausdorff space X . It now follows
easily that { x ∈ X : ‖a(x)‖ < k } is open for all k. This proves (a).

Notice that

{ x ∈ X : ‖a(x)‖ > k } = σ̄A
(
{ π ∈ Â : ‖π(a)‖ > k }

)
. (C.5)

Suppose that σA is an open map. Then σ̄A is open, and since { π ∈ Â : ‖π(a)‖ >
k } is open in any C∗-algebra, it follows that the left-hand side of (C.5) is open.
Together with (a), this shows that x 7→ ‖a(x)‖ is continuous when σA is open.

For the converse, assume that x 7→ ‖a(x)‖ is continuous for all a ∈ A. To see
that σA is open, it suffices to check that σ̄A is open. For this it is enough to show
that σ̄A(OJ ) is open, where OJ = { ρ ∈ Â : ρ(J) 6= { 0 } } for some ideal J in A.
But

OJ =
⋃

a∈J

⋃

n∈N

{ ρ ∈ Â : ‖ρ(a)‖ > 1

n
}.

Using (C.5),

σ̄J (OJ ) =
⋃

a∈J

⋃

n∈N

{ x ∈ X : ‖a(x)‖ > 1

n
}.

Since the latter is open, this completes the proof of (b).
Part (c) is straightforward. To prove part (d), note that if a = g · b, then

f(x)a− f ·a =
(
f(x)g− fg)

)
·a ∈ Ix. Thus f(x)a(x) = (f ·a)(x) in this case. Since

every element of A is of this form by [139, Proposition 2.33],1 this completes the
proof.

Since any ideal I of A is also an ideal in M(A), a multiplier m ∈M(A) defines
a multiplier mI of A/I: mI(a+ I) := m(a)+ I. Thus if A is a C0(X)-algebra, then
each multiplier m ∈M(A) determines a map x 7→ m(x) with eachm(x) ∈M

(
A(x)

)

and m(a)(x) = m(x)
(
a(x)

)
. It is natural to ask when such a map determines a

multiplier.

Lemma C.11 (cf. [99, Lemma 2]). Suppose that A is a C0(X)-algebra and that for
each x ∈ X, mx is an element in M

(
A(x)

)
. If for each a ∈ A there are elements

b, c ∈ A such that for all x ∈ X,

b(x) = mxa(x) and c(x) = m∗
xa(x), (C.6)

then

(a) there is a m ∈M(A) such that m(x) = mx for all x ∈ X, and

(b) supx∈X ‖m(x)‖ = ‖m‖ <∞.

Remark C.12. Condition (C.6) is equivalent to requiring that for all a ∈ A there
are elements b, b′ ∈ A such that b(x) = mxa(x) and b′(x) = a(x)mx for all x ∈ X .

1Instead of invoking [139, Proposition 2.33], we could simply observe that elements of the form
g · b span a dense subspace.
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Proof. We define a map m : A → A by m(a)(x) := mxa(x). Then m is clearly
adjointable with m∗(a) = m∗

xa(x), and so defines an element m ∈ L(AA) := M(A).
This establishes (a).

Let L := supx ‖m(x)‖. Then Proposition C.10 implies that

‖m(a)‖ = sup
x

‖m(a)(x)‖

≤ sup
x

‖m(x)‖‖a(x)‖

≤ sup
x

‖m(x)‖‖a‖.

Thus ‖m‖ ≤ L. Fix ǫ > 0 and x ∈ X . We can find b ∈ A(x) of norm one such that
‖m(x)b(x)‖ ≥ ‖m(x)‖−ǫ. Since the norm on A(x) is the quotient norm, there is an
a ∈ A with a(x) = b and ‖a‖ ≤ 1+ ǫ. But then ‖m(a)‖ ≥ ‖m(a)(x)‖ ≥ ‖m(x)‖− ǫ.
It follows that

‖m‖ ≥ ‖m(x)‖ − ǫ

1 + ǫ
.

Since ǫ is arbitrary, ‖m‖ ≥ ‖m(x)‖ for all x ∈ X , and L ≤ ‖m‖.

Example C.13. It would be easy to speculate that, if in the statement of
Lemma C.11 on the facing page, we also require X to be compact (or more
generally, if we require x 7→ ‖m(x)‖ to vanish at infinity) and mx ∈ A for all
x, then the multiplier m should actually belong to A. However, this is not the
case. Consider X = { 0 } ∪ { 1

n : n ≥ 1 } with the relative topology from R.
Let A = C

(
X,K(H)

)
where H is an infinite-dimensional Hilbert space with

orthonormal basis { en }. Then M(A) is C(X,B(H)s) where B(H)s denotes B(H)
equipped with the ∗-strong topology ([139, Proposition 2.57]). In particular, if pn
is the rank-one projection onto the space spanned by en, then pn → 0 strongly
(and, since pn = p∗n, ∗-strongly), and

m(x) =

{
0 if x = 0, and

pn if x = 1
n

defines a multiplier of A which is not in A.

Remark C.14. Example C.13 also shows that x 7→ ‖m(x)‖ need not be upper
semicontinuous; the multiplierm defined there has the property that { x : ‖m(x)‖ <
1 } = { 0 } which is not open. At first glance, this might appear to be a little
surprising since M(A) misses being a C0(X)-algebra only because ΦA need not be
nondegenerate as a map into M(A).

Corollary C.15. Suppose that A is a C0(X)-algebra, that dx ∈ A(x) for all x ∈ X
and that for all a ∈ A there are b, c ∈ A such that for all x ∈ X

b(x) = dxa(x) and c(x) = d∗xa(x).

If for each k > 0, { x ∈ X : ‖dx‖ ≥ k } has compact closure, then the following are
equivalent.
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(a) There is a d ∈ A such that d(x) = dx for all x ∈ X.

(b) The functions x 7→ ‖dx − a(x)‖ are upper semicontinuous for all a ∈ A.

(c) For each x ∈ X and ǫ > 0 there is a neighborhood U of x and an element
a ∈ A such that ‖dy − a(y)‖ < ǫ for all y ∈ U .

Proof. That (a) =⇒ (b) follows immediately from Proposition C.10 on page 357.
Given x ∈ X there is an a ∈ A such that a(x) = dx. If (b) holds, then

y 7→ ‖dy − a(y)‖ is upper semicontinuous, and has the value zero at x. Thus
(b) =⇒ (c).

We still need to show that (c) =⇒ (a). However, a partition of unity argument
implies that for each n there is an an ∈ A such that

sup
x∈X

‖dx − an(x)‖ <
1

n
.

However, Lemma C.11 on page 358 implies that there is a d ∈ M(A) such that
d(x) = dx, and that ‖d− an‖ < 1

n . Thus an → d in norm, and d ∈ A.

C.2 Upper Semicontinuous C∗-bundles

In this section we introduce the notion of an upper semicontinuous C∗-bundle over
a locally compact space X . Our definition is a minor modification of what many
authors have called a C∗-bundle or a continuous C∗-bundle. It is a bit surprising
to see that the theory for upper semicontinuous C∗-bundles is so similar to that
for ordinary C∗-bundles. Many of the arguments and proofs here are virtually
identical to those for C∗-bundles as given in [54, §II.13]. These observations on
upper semicontinuous-bundles go back to work of Hofmann [75–77], and many of
the details can be found in [35].

Recall that in general, a bundle is simply a surjective map p from one set A
onto another, say X . Then X is the base space and A is called the total space.
The set p−1(x) is called the fibre over x. Various additional requirements are
added depending on what category one is working in. For topological bundles, it is
standard to require A and X to be topological spaces and to require p to be both
continuous and open. Often there are requirements for “local triviality”, but here
the bundles we are looking at will rarely be locally trivial or even have isomorphic
fibres. Although a bundle formally consists of the triple (A, p,X), it is standard to
refer to the bundle by either the map p or, if p is understood, by simply the total
space A.

Definition C.16. An upper semicontinuous C∗-bundle over X is a continuous,
open, surjection p : A → X together with operations and norms making each fibre
Ax = p−1(x) into a C∗-algebra such that the following axioms hold.

A1: The map a 7→ ‖a‖ is upper semicontinuous from A to R.

A2: The involution a 7→ a∗ is continuous from A to A.

A3: The maps (a, b) 7→ ab and (a, b) 7→ a+b are continuous from A(2) := { (a, b) ∈
A×A : p(a) = p(b) } to A.
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A4: For each λ ∈ C, the map a 7→ λa is continuous from A to A.

A5: If { ai } is a net in A such that ‖ai‖ → 0 and p(ai) → x in X , then ai → 0x,
where 0x is the zero element in Ax.

If “upper semicontinuous” is replaced by “continuous” in axiom A1, then p : A → X
is called a C∗-bundle over X .

The axioms in Definition C.16 on the facing page are more generous that one
might think at first glance. For example, we have the following strengthening of
axiom A4.

Proposition C.17 (cf. [54, Proposition II.13.10]). Suppose that p : A → X is an
upper semicontinuous C∗-bundle over X. Then scalar multiplication (λ, a) 7→ λa
is continuous from C×A to A.

For the proof we need another observation.

Lemma C.18. If ai → 0x in A, then ‖ai‖ → 0.

Proof. By axiom A1, the set { a ∈ A : ‖a‖ < ǫ } is open for all ǫ > 0. Thus we
eventually have ‖ai‖ < ǫ for all ǫ and the result is proved.

Proof of Proposition C.17. Suppose that λi → λ and ai → a. Notice that p(λiai −
λai) = p(ai) → p(a). Since ‖ai‖ ≤ ‖ai−a‖+‖a‖ and ‖ai−a‖ → 0 by Lemma C.18,
{ ‖ai‖ } is eventually bounded and ‖λiai − λai‖ = |λi − λ|‖ai‖ → 0. Thus λiai −
λai → 0p(a) by axiom A1. But λai → λa by axiom A4, and

λiai = λiai − λai + λai → 0p(a) + λa = λa.

Remark C.19. As we shall see (Example C.27 on page 368), the total space of an
upper semicontinuous C∗-bundle p : A → X need not be Hausdorff. However, if
p is a (continuous) C∗-bundle, then A is Hausdorff. To see this, suppose { ai }
converges to both b and c. Since X is Hausdorff, p(b) = p(c), and axiom A3 implies
that 0p(ai) = ai − ai → b − c. If a 7→ ‖a‖ is continuous, then ‖b − c‖ = 0 and
b = c. However, for any upper semicontinuous C∗-bundle p : A → X , we at least
know that the relative topology on each fibre Ax is just the norm topology. This
is proved exactly as in [54, Proposition II.13.11]: suppose that ai → a in A with
p(ai) = p(a) for all i. Then ai − a → 0p(a) by axiom A3, and ‖ai − a‖ → 0 by
Lemma C.18. Conversely, if ‖ai − a‖ → 0, then ai − a→ 0p(a) by axiom A5. Thus
ai → a in A by axiom A3.

Although the statement of the next result seems awkward, it is nevertheless
very valuable in practice as it allows us to pin down the topology on upper semi-
continuous C∗-bundles.

Proposition C.20 (cf. [54, Proposition II.13.12]). Suppose that p : A → X is
an upper semicontinuous C∗-bundle over X. Let { ai } be a net in A such that
p(ai) → p(a) for some a ∈ A. Suppose that for all ǫ > 0 there is net { ui } (indexed
by the same set) in A and u ∈ A such that

(a) ui → u in A,
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(b) p(ui) = p(ai),

(c) ‖a− u‖ < ǫ, and

(d) ‖ai − ui‖ < ǫ for large i.

Then ai → a.

Proof. Since X is Hausdorff, we must have p(u) = p(a) (and so (c) at least makes
sense). Since it suffices to show that every subnet of { ai } has a subnet converging
to a, we can pass to subnets at will. In particular, since p is open, we can pass to a
subnet, relabel, and find ci ∈ A such that ci → a and p(ci) = p(ai). Now fix ǫ > 0
and choose ui as above. Since addition is continuous, ci − ui → a− u in A. Since
‖a − u‖ < ǫ by assumption and since { b ∈ A : ‖b‖ < ǫ } is open, we eventually
have ‖ci − ui‖ < ǫ. The triangle inequality then implies that we eventually have
‖ai − ci‖ < 2ǫ. As ǫ is arbitrary, we’ve shown that ‖ai − ci‖ → 0. Then axiom A5
implies ai − ci → 0p(a). Therefore

ai = (ai − ci) + ci → 0p(a) + a = a.

Definition C.21. If p : A → X is any surjection, then f : X → A is called a
section if p

(
f(x)

)
= x for all x ∈ X . The set of continuous sections of an upper

semicontinuous C∗-bundle is denoted Γ(A). The collection of continuous sections
which vanish at infinity is denoted Γ0(A).2

It is not obvious that an upper semicontinuous C∗-bundle has any continuous
sections other than the zero section. In general a bundle p : A → X is said
to have enough sections if given any x ∈ X and any a ∈ Ax, then there is a
continuous section f such that f(x) = a. A result of Douady and dal Soglio-Hérault
implies that C∗-bundles over locally compact spaces X have enough sections [54,
Appendix C]. Hofmann has noted that the same is true for upper semicontinuous
C∗-bundles over locally compact spaces in [76, Proposition 3.4], but the details have
not been published [75]. In the examples we’re interested in — namely bundles
arising from C0(X)-algebras — it will be easy to see that there will always be
enough sections. Thus, in the sequel, we will assume that all our bundles do have
enough sections. The next lemma is an immediate consequence of the axioms and
Proposition C.17 on the previous page.

Lemma C.22. Suppose that p : A → X is an upper semicontinuous C∗-bundle
over X. Then Γ(A) is a ∗-algebra with respect to the natural pointwise operations.
Moreover, if ϕ : X → C is continuous and f ∈ Γ(A), then ϕ · f ∈ Γ(A) where
ϕ · f(x) := ϕ(x)f(x).

Proposition C.23. Suppose that p : A → X is an upper semicontinuous C∗-
bundle over X. Then Γ0(A) is a C0(X)-algebra with respect to the sup-norm and
the natural action of C0(X) on sections. For each x ∈ X, we have Γ0(A)(x) = Ax.

2If f ∈ Γ(A), then {x : ‖f‖ ≥ ǫ } is always closed in X. If it is compact for all ǫ > 0, then we
say that f vanishes at infinity.
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Proof. Since ‖f‖ := supx ‖f(x)‖ clearly defines a norm on Γ0(A), and in view of
Lemma C.22 on the facing page, in order to show that Γ0(A) is a C∗-algebra, we
just need to see that it is complete. Let { fn } be a Cauchy sequence in Γ0(A). Since
each Ax is a C∗-algebra, there is a (not necessarily continuous) section f : X → A
such that fn(x) → f(x) for all x ∈ X . Standard arguments imply that ‖fn−f‖ → 0.
It will suffice to see that f is continuous. Towards this end, let xi → x in X , and
we’ll show that f(xi) → f(x) using Proposition C.20. Fix ǫ > 0, and choose N so
that ‖fN − f‖ < ǫ. Since fN(xi) → fN(x), we can let ai = f(xi) and ui = fN (xi),
and then Proposition C.20 on page 361 implies that f(xi) → f(x).

We still have to see that ΦA(ϕ) is in ZM
(
Γ0(A)

)
where ΦA(ϕ)(f) = ϕ · f . But

ΦA(ϕ) is clearly an adjointable operator with adjoint ΦA(ϕ̄). Since f(ϕ·g) = ϕ·(fg),
it follows that ΦA(ϕ) ∈ ZM(A), and nondegeneracy is an easy exercise. Thus we
have established that Γ0(A) is a C0(X)-algebra.

It is not hard to check that Ix = { f ∈ Γ0(A) : f(x) = 0 }. Then f+Ix 7→ f(x) is
clearly an isomorphism of Γ0(A)(x) onto Ax. (Note that after identifying Γ0(A)(x)
with Ax, we can view f(x) as either the value of f at x or the image of f in
Γ0(A)(x).)

Proposition C.24. Suppose that p : A → X is an upper semicontinuous C∗-bundle
over X and that Γ is a subspace of Γ0(A) such that

(a) f ∈ Γ and ϕ ∈ C0(X) implies ϕ · f ∈ Γ, and

(b) for each x ∈ X, { f(x) : f ∈ Γ } is dense in Ax.

Then Γ is dense in Γ0(A).

Proof. Fix f ∈ Γ0(A) and ǫ > 0. We need to find g ∈ Γ such that supx∈X ‖f(x) −
g(x)‖ ≤ ǫ. Let K be the compact set { x ∈ X : ‖f(x)‖ ≥ ǫ

3 }. Given x ∈ K, there
is a g ∈ Γ such that ‖f(x) − g(x)‖ < ǫ

3 . Using upper semicontinuity, there is a
neighborhood U of x such that

‖f(y) − g(y)‖ < ǫ

3
if y ∈ U .

Since K is compact, there is a cover {Ui }ni=1 of K by open sets with compact
closure, and gi ∈ Γ such that

‖f(y) − gi(y)‖ <
ǫ

3
if y ∈ Ui.

Using a partition of unity as in Lemma 1.43 on page 12, there are functions {ϕi } ⊂
C+
c (X) such that suppϕi ⊂ Ui and

n∑

i=1

ϕi(x)

{
= 1 if x ∈ K, and

≤ 1 if x /∈ K.
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By assumption,
∑

i ϕi · gi ∈ Γ. On the other hand, if x ∈ K, then
∥∥∥f(x) −

∑

i

ϕi(x)gi(x)
∥∥∥ =

∥∥∥
∑

i

ϕi(x)
(
f(x) − gi(x)

)∥∥∥

≤
∑

i

ϕi(x)‖f(x) − gi(x)‖

≤ ǫ

3
< ǫ.

But if x ∈ Ui r K, then ‖gi(x)‖ < 2ǫ
3 . Since suppϕi ⊂ Ui, for any x in the

complement of K, ϕi(x)‖gi(x)‖ ≤ 2ǫ
3 ϕi(x). Thus if x /∈ K, we still have

∥∥∥f(x) −
∑

i

ϕi(x)gi(x)
∥∥∥ ≤ ‖f(x)‖ +

∑

i

ϕi(x)‖gi(x)‖

<
ǫ

3
+

2ǫ

3
= ǫ.

Therefore supx
∥∥f(x) −

(∑
i ϕi · gi

)
(x)

∥∥ ≤ ǫ as required.

Since it is not at all obvious how to find an upper semicontinuous C∗-bundle,
it is significant that the converse of Proposition C.23 on page 362 holds: every
C0(X)-algebra is the section algebra of an upper semicontinuous C∗-bundle. It is
worth repeating that ideas and proof are virtually unchanged from Fell’s proof for
C∗-bundles (cf. [54, Theorem II.13.18]).

Theorem C.25 (Fell). Suppose that A is a set and p : A → X is a surjection onto
a locally compact space X such that each Ax := p−1(x) is a C∗-algebra. Let Γ be a
∗-algebra of sections of A such that

(a) for each f ∈ Γ, x 7→ ‖f(x)‖ is upper semicontinuous, and

(b) for each x ∈ X, { f(x) : f ∈ Γ } is dense in Ax.

Then there is a unique topology on A such that p : A → X is an upper semicontin-
uous C∗-bundle over X with Γ ⊂ Γ(A).

If we replace “upper semicontinuous” by “continuous” in (a), then p : A → X
is a C∗-bundle over X.

Proof. If τ is any topology on A such that p : A → X is an upper semicontinuous
C∗-bundle with Γ consisting of continuous sections satisfying (a) and (b), then
Proposition C.20 on page 361 implies that ai → a in (A, τ) if and only if p(ai) →
p(a) and for each ǫ > 0 there is an f ∈ Γ such that

∥∥f
(
p(a)

)
− a

∥∥ < ǫ and we

eventually have
∥∥f

(
p(ai)

)
− ai

∥∥ < ǫ. Thus, τ , if it exists, is uniquely determined
by Γ.

To show that an appropriate topology exists, we’ll proceed in three steps. First,
we’ll nominate a family of sets and prove it constitutes a topology on A. Second,
we’ll show that p : A → X is an upper semicontinuous C∗-bundle with respect to
this topology. Thirdly, we’ll need to see that each f ∈ Γ is continuous.

Step I: Let τ be the collection of unions of sets of the form

W (f, U, ǫ) =
{
a ∈ A : p(a) ∈ U and

∥∥a− f
(
p(a)

)∥∥ < ǫ
}
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where f ∈ Γ, U is an open set in X and ǫ > 0. To see that τ is a topology, it will
suffice to see that it is closed under intersections. For this it will suffice to see that
if a ∈W (f, U, ǫ) ∩W (g, V, δ), then there is a triple (h, Z, σ) such that

a ∈ W (h, Z, σ) ⊂W (f, U, ǫ) ∩W (g, V, δ).

Note that
∥∥a− f

(
p(a)

)∥∥ < ǫ and
∥∥a− g

(
p(a)

)∥∥ < δ. Thus there is a σ > 0 so that

∥∥a− f
(
p(a)

)∥∥ < ǫ− 2σ and
∥∥a− g

(
p(a)

)∥∥ < δ − 2σ.

Choose h ∈ Γ such that
∥∥a− h

(
p(a)

)∥∥ < σ. Since h− f ∈ Γ, x 7→ ‖h(x)− f(x)‖ is
upper semicontinuous, as is x 7→ ‖h(x) − g(x)‖. Since

∥∥h
(
p(a)

)
− f

(
p(a)

)∥∥ ≤
∥∥h

(
p(a)

)
− a

∥∥ +
∥∥a− f

(
p(a)

)∥∥ < ǫ− σ and
∥∥h

(
p(a)

)
− g

(
p(a)

)∥∥ ≤
∥∥h

(
p(a)

)
− a

∥∥ +
∥∥a− g

(
p(a)

)∥∥ < δ − σ,

it follows that there is a neighborhood Z ⊂ U ∩ V of p(a) such that

‖h(y) − f(y)‖ < ǫ− σ and ‖h(y) − g(y)‖ < δ − σ

for all y ∈ Z.
Now by our choice of h, a ∈W (h, Z, σ) and if b ∈ W (h, Z, σ), then p(b) ∈ Z ⊂ U

and

∥∥b− f
(
p(b)

)∥∥ ≤
∥∥b− h

(
p(b)

)∥∥ +
∥∥h

(
p(b)

)
− f

(
p(b)

)∥∥
< σ + (ǫ− σ) = ǫ.

That is, W (h, Z, σ) ⊂ W (f, U, ǫ). Similarly, W (h, Z, σ) ⊂ W (g, V, δ) and we’ve
completed Step I.

Step II: We need to see that p : (A, τ) → X is an upper semicontinuous C∗-
bundle as in Definition C.16 on page 360. In particular, we have to check that
p is continuous and open. Suppose that U ⊂ X is open and that a ∈ p−1(U).
Choose f ∈ Γ such that ‖a− f

(
p(a)

)
‖ < 1. Then W (f, U, 1) is a neighborhood of

a contained in p−1(U), and p is continuous. Given W (g, V, δ) and x ∈ V , we have
g(x) ∈ W (g, V, δ). Thus p

(
W (g, V, δ)

)
= V and it follows that p is open. So it only

remains to verify axioms A1–A5.
Axiom A1: Suppose that ‖a‖ < α. Let δ > 0 be such that ‖a‖ < α − 2δ, and

choose f ∈ Γ such that
∥∥f

(
p(a)

)
− a

∥∥ < δ. Then
∥∥f

(
p(a)

)∥∥ < α− δ and the upper
semicontinuity of x 7→ ‖f(x)‖ implies that there is a neighborhood U of p(a) such
that ‖f(y)‖ < α− δ for all y ∈ U . Therefore if b ∈W (f, U, δ), then

‖b‖ ≤ ‖b− f
(
p(b)

)
‖ + ‖f

(
p(b)

)
‖ < α,

and it follows that { a ∈ A : ‖a‖ < α } is open. In other words, axiom A1 is
satisfied.

Axiom A2: Since a ∈ W (f, U, ǫ) if and only if a∗ ∈ W (f∗, U, ǫ), it follows that
a 7→ a∗ is continuous.
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Axiom A3: Let (a, b) ∈ A(2) with ab ∈ W (f, U, ǫ). For convenience, let x be
the common value of p(a) and p(b). Let δ > 0 be such that ‖ab− f(x)‖ < ǫ − 2δ.
Choose g and h in Γ such that

‖g(x) − a‖ < σa := min
{ δ

2(‖b‖ + 1)
,
1

2

}
and

‖h(x) − b‖ < σb := min
{ δ

2(‖a‖ + 1)
,
1

2

}
.

Note that ‖g(x)‖ < ‖a‖ + 1
2 and ‖h(x)‖ < ‖b‖ + 1

2 and consequently our choices
imply that

‖ab− g(x)h(x)‖ < δ. (C.7)

Therefore,

‖g(x)h(x) − f(x)‖ < ǫ− δ.

Since g, h and gh − f are in Γ, there is a neighborhood V ⊂ U of x such that for
all y ∈ V ,

‖g(y)‖ < ‖a‖ +
1

2
, ‖h(y)‖ < ‖b‖ +

1

2
and ‖g(y)h(y) − f(y)‖ < ǫ− δ.

Thus if c ∈ W (g, V, σa) and d ∈ W (h, V, σb) are such that p(c) = y = p(d), then
‖c‖ ≤ ‖c − g(y)‖ + ‖g(y)‖ ≤ ‖a‖ + 1 (similarly, ‖d‖ ≤ ‖b‖ + 1), and our choices
imply that

‖cd− f(y)‖ ≤ ‖cd− g(y)h(y)‖ + ‖g(y)h(y) − f(y)‖
< δ + (ǫ− δ) = ǫ.

Therefore W (g, V, σa)W (h, V, σb) ⊂ W (f, U, ǫ), and we proved that multiplication
is continuous.3 The proof that addition is continuous is similar, but easier.

Axiom A4: We just have to notice that if λ 6= 0, then a ∈ W ( 1
λf, U,

ǫ
|λ|) implies

that λa ∈W (f, U, ǫ).
Axiom A5: Suppose that ‖ai‖ → 0 and that p(ai) → x. We need to check

that ai → 0x. Let 0x ∈ W (f, U, ǫ) Then x ∈ U and there is a δ > 0 such that
‖f(x)‖ < ǫ − δ. Eventually, we have p(ai) ∈ U , ‖f

(
p(ai)

)
‖ < ǫ − δ and ‖ai‖ < δ.

But then

‖ai − f
(
p(ai)

)
‖ ≤ ‖ai‖ +

∥∥f
(
p(ai)

)∥∥ < ǫ.

Thus we eventually have ai ∈ W (f, U, ǫ), and since the W (f, U, ǫ)’s form a basis
for τ , ai → 0x as required. We’ve shown p : A → X is an upper semicontinuous
C∗-bundle over X .

Step III: We need to see that each f ∈ Γ is continuous from X to A. So suppose
that xi → x in X , and suppose, to the contrary, that f(xi) 6→ f(x). Passing
to a subnet and relabeling, we may as well assume that there is a neighborhood

3If C and D are subsets of a bundle A, then CD is defined to be { cd :
c ∈ C, d ∈ D and p(c) = p(d) }.
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W (g, U, ǫ) of f(x) which is disjoint from { f(xi) }. Since p
(
f(xi)

)
= xi, we must

eventually have
‖f(xi) − g(xi)‖ ≥ ǫ.

Since f − g ∈ Γ, y 7→ ‖f(y) − g(y)‖ is upper semicontinuous, and we must have

‖f(x) − g(x)‖ ≥ ǫ.

Therefore f(x) /∈ W (g, U, ǫ) which contradicts our choice of W (g, U, ǫ), and com-
pletes proof in the upper semicontinuous case.

To prove the final assertion, we just have to show that if x 7→ ‖f(x)‖ is contin-
uous for all f ∈ Γ, then a 7→ ‖a‖ is continuous from A to R. However, since we
already have shown a 7→ ‖a‖ is upper semicontinuous, it will suffice to show that
{ a ∈ A : ‖a‖ > α } is open. So let a be such that ‖a‖ > α. Let δ be such that
‖a‖ > α+2δ. Choose f ∈ Γ such that ‖f(p(a))− a‖ < δ. Then ‖f

(
p(a)

)
‖ > α+ δ.

Continuity implies there is a neighborhood U of p(a) such that y ∈ U implies that
‖f(y)‖ > α+ δ. Now if b ∈W (f, U, δ), we have

‖b‖ ≥
∥∥f

(
p(b)

)∥∥ −
∥∥f

(
p(b)

)
− b

∥∥ > (α+ δ) − δ = α,

and it follows that { a ∈ A : ‖a‖ > α } is open.

We can summarize much of this chapter in the following theorem. The final
assertion is often called Lee’s Theorem (cf. [99, Theorem 4]).

Theorem C.26. Suppose that A is a C∗-algebra. Then the following statements
are equivalent.

(a) A is a C0(X)-algebra.

(b) There is a continuous map σA : PrimA→ X.

(c) There is an upper semicontinuous C∗-bundle p : A → X over X and a C0(X)-
linear isomorphism of A onto Γ0(A).

Moreover, if A is a C0(X)-algebra, then σA : PrimA → X is open if and only if
p : A → X is actually a C∗-bundle over X.

Proof. Proposition C.5 on page 355 implies (a) and (b) are equivalent. Proposi-
tion C.23 on page 362 shows that (c) implies (a). Thus it will suffice to prove that
(a) =⇒ (c). Let A =

∐
x∈X A(x), let p : A → X be the canonical map and let

Γ = { x 7→ a(x) : a ∈ A }. Now Fell’s Theorem C.25 on page 364 implies that A has
a topology making p : A → X an upper semicontinuous C∗-bundle with Γ ⊂ Γ(A).
In view of Proposition C.10 on page 357, Γ ⊂ Γ0(A), and Γ is dense in Γ0(A) by
Proposition C.24 on page 363. Of course, the map from A to Γ is a C0(X)-linear
isomorphism in view of parts (c) and (d) of Proposition C.10. Therefore, Γ is closed
and equal to Γ0(A).

Now suppose A is a C0(X)-algebra. If σ : PrimA→ X is continuous and open,
then x 7→ ‖a(x)‖ is continuous for all a ∈ A all by Proposition C.10 on page 357,
and Theorem C.25 on page 364 implies the existence of A as required.

The converse follows from Proposition C.23 on page 362 and Proposition C.10
on page 357.
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It is a worthwhile, albeit tedious, exercise to work out the topology on the
total space corresponding to Example C.8 on page 357. In particular, we note the
following.

Example C.27. Let A be the total space for the upper semicontinuous C∗-bundle
corresponding overX so that C(Y ) ∼= Γ0(A) in Example C.8 on page 357. Consider
the section f(x, ·) defined there. We have f(x, ·) = 0x if x > 2. But as x ց 2, we
must have 0x = f(x, ·) → f(2, ·) 6= 0. Since 02 must also be a limit point, A is not
Hausdorff.



Appendix D

Groups

Locally compact groups and Polish groups have rich Borel structures that often have
important implications. One important example of this are results which imply that
Borel and/or measurable homomorphisms are necessarily continuous. We prove a
couple of these “automatic continuity” results in Appendix D.1. In Appendix D.2
we prove an old result of Mackey’s that if a Borel group has an invariant measure
and a suitably rich Borel structure, then it also has a locally compact topology
compatible with the given Borel structure. In Appendix D.3, we employ some of
the machinery developed here to discuss projective and multiplier representations
of locally compact groups. Appendices D.4 and D.5 record a number of technical
results needed elsewhere in this book.

D.1 Group homomorphisms

When working in the category of topological groups, it goes without saying that
the natural notion of morphisms are continuous group homomorphisms. Neverthe-
less there are situations, particularly when working with projective and multiplier
representations (cf. Appendix D.3), when the continuity of naturally arising homo-
morphisms is in doubt. The purpose of this section is to show that under reasonable
hypotheses on the groups involved, all but the most pathological homomorphisms
are continuous.

Example D.1 (Discontinuous homomorphism). In one sense, it’s easy to give exam-
ples of discontinuous homomorphisms; for example, the identity map from R with
its usual topology to itself with the discrete topology is not continuous. However if
the groups in question are second countable locally compact groups, then exhibiting
examples is harder. Nevertheless, such examples exist — even from R to R. To
produce such an example, note that R is a vector space over the field Q of rational
numbers. Therefore R has an uncountable vector space basis { rα }α∈A over Q.1

Then we can prescribe a Q-linear map ϕ : R → R by setting the ϕ(rα) to whatever

1Such a basis is sometimes called a Hamel basis, and its existence requires the Axiom of Choice
in the form of Zorn’s Lemma. If you’re bothered by that, you’re reading the wrong book.
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values we want. For example, let B = {αi }∞i=1 be a countable subset of A, and
choose qi ∈ Q so that ∣∣∣∣

rαi

qi

∣∣∣∣ ≤
1

i
.

Then we can define ϕ by

ϕ(rα) =

{
qi if α = αi ∈ B, and

0 if α /∈ B.

Now we have rαi/qi → 0 in R, but ϕ(rαi/qi) = 1 for all i. Thus ϕ is not continuous.

As we shall see, any discontinuous homomorphism from R to itself, such as the
one constructed in Example D.1, will fail to be measurable (cf. Theorem D.3 or
Theorem D.11 on page 372). Some hint of this dichotomy is given by the following
remark.

Remark D.2. If a homomorphism ϕ : G→ H between topological groups fails to be
continuous at a single point, then it fails to be continuous everywhere. If ϕ is not
continuous at s, then there is a net { sα } in G such that sα → s and ϕ(sα) 6→ ϕ(s).
But if r ∈ G, then rs−1sα → r. If ϕ(rs−1sα) → ϕ(r) = ϕ(rs−1)ϕ(s), then after
multiplying by ϕ(rs−1)−1, we would have a contradiction.

However, we still need some topological hypotheses to prove anything of sub-
stance. A case of particular interest occurs when all the groups in sight are locally
compact. Then measurability is enough to ensure continuity! (Of course, measur-
ability means with respect to the Haar measures on the groups involved.) The full
result [94] is bit too demanding to reproduce. However we can prove a nice result
which includes most cases of interest. Since any second countable locally compact
group is σ-compact, our result will hold for all second countable locally compact
groups.

Theorem D.3. Suppose that G and H are locally compact groups, and that H is
σ-compact. Then every measurable homomorphism ϕ : G→ H is continuous.

We need the following lemma which is of interest in its own right.

Lemma D.4. Suppose that G is a locally compact group with Haar measure µ, and
that A is a measurable subset with 0 < µ(A) < ∞. Then A−1A contains an open
neighborhood of the identity e of G.

Remark D.5. Of course the Lemma applies equally well to any measurable set
of nonzero measure provided it contains a non-null measurable subset of finite
measure. If G is σ-compact, then every set of infinite measure contains such a
subset. But in general, this can fail to be the case. For example, let Rd be the
reals with the discrete topology. Then S = Rd × { 0 } is a subgroup of Rd × R
with infinite measure, and yet it has no non-null subsets of finite measure (see
Remark B.2 on page 332). Clearly, S = S−1S contains no open subset. Thus S
is an example of a locally null set which is not null. (More importantly, S is also
an example of why many people restrict to second countable or at least σ-compact
groups.)
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Proof of Lemma D.4 on the facing page. Since Haar measure is regular on sets of
finite measure, we can find a compact set K ⊆ A with µ(K) > 0. Then the
characteristic function f of K is in L1(G) ∩ L∞(G). Let f∗(s) = f(s−1)∆(s−1).
Then it follows that f∗ ∗ f is continuous; for example, see the computations on
page 319. Certainly it is positive and compactly supported with supp f∗ ∗ f ⊂
K−1K. Since f∗ ∗ f(e) = µ(K), the result follows.

Proof of Theorem D.3 on the preceding page. Since it suffices to see that ϕ is con-
tinuous at e (Remark D.2 on the facing page), it suffices to show that ϕ−1(V ) is
open whenever V is an open neighborhood of e in H .

Next I claim that it suffices to show that ϕ−1(W ) contains interior for every open
neighborhood W of e in H . To see this, choose g ∈ ϕ−1(V ). Since ϕ(g) ∈ V , there
is a neighborhood W of e in H such that ϕ(g)W 2 ⊆ V and such that W = W−1.
By assumption, ϕ−1(W 2) ⊃ ϕ−1(W )ϕ−1(W )−1 contains a neighborhood of e in G.
Since gϕ−1(W 2) is a neighborhood of g contained in ϕ−1(V ), the claim follows.

Now let W be a neighborhood of e in H . Let U be a neighborhood of e in H such
that U2 ⊆W and U = U−1. Since H is σ-compact, there is a sequence { hn }∞n=1 ⊆
ϕ(G) ⊆ H such that

⋃∞
n=1 hnU covers ϕ(G). Choose gn ∈ G so that ϕ(gn) = hn.

Notice that ϕ−1(hnU) = gnϕ
−1(U). In particular,

⋃∞
n=1 gnϕ

−1(U) covers G. Since
Haar measure is left invariant, and since some gnϕ

−1(U) must contain a non-null
subset of finite measure, we conclude that ϕ−1(U) has the same property. But
then Lemma D.4 on the preceding page implies that ϕ−1(U2) = ϕ−1(U)ϕ−1(U)−1

contains interior. Since this last set is contained in ϕ−1(W ), we’re done.

Recall that a character on a group G is a homomorphism from G to the circle T.

Corollary D.6. Every measurable character on a locally compact group is contin-
uous.

Although Theorem D.3 on the facing page is striking, it is not quite what we
need to handle the sorts of questions arising from projective representations. To
study these, we have to consider homomorphisms into the unitary group U(H) of
a complex Hilbert space equipped with the strong operator topology. Note that
unless H is finite dimensional, U(H) is never locally compact. However, when H
is separable, U(H) admits a complete metric which is compatible with the strong
operator topology (Lemma D.42 on page 395).

Recall that a metric m on the underlying set of a topological space X is com-
patible with the topology on X if the topology induced by m coincides with the
given topology on X . If such a metric exists, X is called metrizable. If X admits a
compatible metric which is complete (that is, one in which every Cauchy sequence
is convergent in X), then X is called completely metrizable. It is important to keep
in mind that complete metrizabilty is a property of the underlying topology rather
than any other structure — even a metric — naturally presented with the space.

Example D.7. Let X be (0, 1) together with its natural topology as a subset of R.
Of course, (0, 1) is metrizable as the usual metric on R restricts to a compatible
metric. However, (0, 1) is homeomorphic with R and hence admits a complete
metric compatible with its topology. Thus (0, 1) is completely metrizable even
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thought the “natural” metric is not complete on (0, 1). More generally, a subset A
of a completely metrizable space X is completely metrizable if and only if A is a
Gδ subset of X [168, Theorem 24.12].

Recall that a topological space is called separable if it has a countable dense
subset. Note that any second countable space is separable, and that a separable
metrizable space is necessarily second countable. There are separable spaces which
are not second countable.

Definition D.8. A topological group is called (completely) metrizable if and only if
the underlying set admits a (complete) metric compatible with the given topology.
Such a group is called a metric group. A separable completely metrizable group is
called a Polish group.

Lemma D.9. Any second countable locally compact group is Polish.

Proof. This is a special case of Lemma 6.5 on page 175.

Remark D.10. Any metrizable space is first countable in that every point must have
a countable neighborhood basis. There are certainly first countable spaces that
are not metrizable, but every topological group with a first countable topology is
metrizable. In fact, the metric can be taken to be left-invariant [71, Theorem 8.3].

Theorem D.11. Suppose that G and H are separable metric groups with G polish.
Then any Borel homomorphism ϕ : G→ H is continuous.

In view of Remark D.2 on page 370, we just have to show that ϕ has a single
point of continuity. We’ll proceed by showing that the set of discontinuities in G
can’t be large enough to fill up all of G. To quantify “small” and “large” we’ll use
the classical notions of first and second category, respectively.

Definition D.12. A subset A in a topological space X is said to be meager or
of first category in X if it can be written as a countable union

⋃
Fn with each Fn

having empty interior. (One says that Fn is nowhere dense.) A set which is not of
first category is said to be of second category.

Remark D.13. Any Baire space is of second category in itself; that is, a Baire
space can’t be written as a countable union of nowhere dense subsets. Since a
complete metric space is a Baire space, every Polish group is of second category.
The hypothesis that G is Polish in Theorem D.11 is only used to guarantee that G
is of second category.

Definition D.14. A subset B in a topological space X has the Baire property if
there is an open set U in X such that the symmetric difference B△U := B rU ∪
U rB is of first category in X .

Lemma D.15. If X is a topological space, then every Borel set in X has the Baire
property.
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Proof. Since every open set trivially has the Baire property, it will suffice to see
that the collection S of subsets of X with the Baire property is a σ-algebra. Since
X ∈ S we have to see that S is closed under taking complements and countable
unions. But if S ∈ S then there is an open set U such that F := S △ U is of first
category. Let U c denote the complement X r U , and let int(U c) be its interior.
Since int(U c)c ⊂ U , a bit of fussing shows that

Sc △ int(U c) ⊂ F ∪ (U r U).

Since U rU is closed with empty interior, F ∪U rU is of first category. It follows
that Sc ∈ S.

Now suppose that {Ai }∞i=1 ⊂ S. Then there are open sets Ui such that Ai rUi
and Ui rAi are both of first category. But then

(⋃
Ai

)
△

(⋃
Ui

)
⊂

⋃
(Ai r Ui) ∪

⋃
(Ui rAi).

Thus
⋃
Ai ∈ S.

The next result explains all the attention to first and second category sets above.
Keep in mind that if f : X → Y is a function between topological spaces, then
saying that the restriction f |A of f to a subset A ⊂ X is continuous does not
imply that f is continuous on A. For example, the characteristic function of the
rationals in R is nowhere continuous, but the restriction of f to either the rationals
or irrationals is continuous.

Lemma D.16. If M and N are separable metrizable spaces and if f : M → N is
Borel, then there is a set P ⊂M of first category such that f |MrP is continuous.

Proof. Let {Oi } be a countable basis for the topology on N . Since f is Borel,
f−1(Oi) is Borel and has the Baire property by Lemma D.15 on the preceding
page. Thus there is an open set Ui such that Pi := f−1(Oi) △ Ui is first category
in M . Let P =

⋃
Pi. Then P is first category. Since

(
f |MrP

)−1
(Oi) = f−1(Oi) ∩ (M r P )

⊂ f−1(Oi) ∩ P ci
⊂ f−1(Oi) ∩ Ui
⊂ Ui,

we have
(
f |MrP

)−1
(Oi) ⊂ Ui ∩ (M r P ). On the other hand, a similar argument

shows that Ui ∩ (M r P ) ⊂ f−1(Oi) ∩ (M r P ). Thus

(
f |MrP

)−1
(Oi) = Ui ∩ (M r P )

which is open in M r P . Since every open set in N is a union of the Oi, we’ve
shown that f |MrP is continuous.
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Proof of Theorem D.11 on page 372. In view of Remark D.2 on page 370, it suffices
to see that ϕ is continuous at e. Since G is a metric group, it suffices to show that
given a sequence sn → e in G, then we have ϕ(sn) → e in H . By Lemma D.16
on the preceding page, there is a first category set P ⊂ G such that ϕ|GrP is
continuous. But

F := P ∪
∞⋃

n=1

s−1
n P

is still of first category. Since G is completely metrizable, it is not of first category
in itself ([168, Corollary 25.4]), and there must be a s ∈ G r F . But then for all
n ≥ 1, sns /∈ P . Thus sns→ s in Gr P . Since ϕ is continuous when restricted to
Gr P , ϕ(sns) → ϕ(s). Thus ϕ(sn) → e and we’re done.

D.2 Borel Groups and Invariant Measures

In certain circumstances, we may be presented with a group without a natural
topology. If we have an invariant measure on the group, it is natural to ask if
there is a locally compact topology on the group so that the measure is a Haar
measure for the group. This turns out to be possible in a very general setting.
Weil proved [167, Appendice I] that any such group G could be viewed as a dense
subgroup of a locally compact group G′. (A nice treatment of Weil’s theorem can
be found in [70, p. 266].) Later Mackey showed that under some weak measure
theoretic hypotheses, which we’ll state below, the two groups G and G′ coincide
[105, Theorem 7.1] so that Weil’s topology exactly what we’re looking for. (Another
proof appears in [142, Theorem 1.3].) In order to state and prove Mackey’s result
(Theorem D.23 on page 376), we need a brief primer on Borel structures. Although
much of this material Borel structure also had it origins in Mackey’s original work
[105], our basic reference is Chapter 3 of Arveson’s book [2]. Arveson’s treatment
is an excellent resource, and well worth a thorough reading.

If X is a set and C is a collection of subsets of X , then the smallest σ-algebra
containing C is called the σ-algebra generated by C . For example, if X is a topo-
logical space, then the field of Borel sets in X is the σ-algebra B(X) generated by
the open subsets of X , and a subset of X is called Borel if it belongs to B(X).
Following the terminology in [2, 105], we call a pair (X,B) consisting of a set X
and a σ-algebra B of subsets of X a Borel space. Many authors prefer the term
measurable space to emphasize that we definitely don’t want to assume that X has
a topology, or even if it does, that B has anything to do with Borel subsets of X .
When we do want to work with the Borel subsets of a topological space X , we’ll
retain the notation B(X) to emphasize the fact.

A Borel space (X,B) is said to be countably separated if there is a countable
subset D ⊂ B which separates points of X . This means that given distinct points
x, y ∈ X , there is a D ∈ D such that either x ∈ D and y /∈ D or y ∈ D and x /∈ D.
We say (X,B) is countably generated if there is a countable set D as above which
separates points and which generates B.
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Example D.17. If X is a separable metrizable space, then the topology on X is
second countable. Thus a countable basis for the topology will separate points and
generate B(X). Thus

(
X,B(X)

)
is a countably generated Borel space.

If (X,B) and (Y,M ) are Borel spaces, then a map f : X → Y is called Borel if
f−1(M) ∈ B for all M ∈ M . We say that f is a Borel isomorphism if f is bijective
and both f and f−1 are Borel maps. We say that (X,B) and (Y,M ) are Borel
isomorphic if there is a Borel isomorphism from X to Y .

A separable completely metrizable space is called a Polish space. Polish spaces,
or rather their Borel structures, play a central role in the theory.

Definition D.18. A Borel space (X,B) is called standard if it is Borel isomorphic
to a Borel subset of some Polish space P with the relative Borel structure.

A remarkable result, due to Kuratowski [96, p. 451 remark (i)], implies that
any uncountable standard Borel space is isomorphic to [0, 1] with the usual Borel
structure (Theorem I.40 on page 503). Thus standard Borel spaces are like Hilbert
spaces in the sense that once you’ve seen one, of a given dimension, you’ve seen
them all. Another important, and far more varied, class of Borel spaces arise from
analytic subsets of Polish spaces. Recall that a subset A in a Polish space P is
called analytic if there is a continuous map f of a Polish space Q into P such that
f(Q) = A. While every Borel subset is analytic [2, Theorem 3.2.1], the converse if
false [96, p. 479]. Nevertheless, given an analytic subset A, we can equip it with
the relative Borel structure coming from B(P ): M = {A ∩B : B ∈ B(P ) }.

Definition D.19. A Borel space (X,B) is called analytic if it is Borel isomorphic
to (A,M ) where A is an analytic subset of a Polish space and M is the relative
Borel structure on A.

We will need two fundamental results about analytic Borel spaces from [2,
Chap. 3] that we won’t reproduce here. The first is a generalized Souslin Theo-
rem which says that a Borel bijection f : X → Y between analytic Borel spaces is
necessarily a Borel isomorphism [2, Corollary 2 of Theorem 3.3.4]. The second is
the Unique Structure Theorem which says that if (X,B) is an analytic Borel space
and if B0 is a countably generated sub-σ-algebra of B which separates points of X ,
then B = B0 [2, Theorem 3.3.5]. As an example of the Unique Structure Theorem,
we give the following.

Lemma D.20. Suppose that (X,B) is an analytic Borel space and that { fn } is a
sequence of (complex-valued) Borel functions on X which separate points. Then B

is the smallest σ-algebra in X such that each fn is Borel. In particular, g : Y → X
is Borel if and only if fn ◦ g is Borel for all n

Proof. Let B0 be the smallest σ-algebra such that each fn is Borel. If Un is a
countable basis for C, then { f−1

m (Un) } is a countable family that generates B0

and which separates points. Thus B = B0 by the Unique Structure Theorem.
If fn ◦ g is Borel for all n, then g−1

(
f−1
m (Un)

)
is Borel for all n and m. Since

{ f−1
m (Un) } generate B, g is Borel.
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If (X,B) and (Y,M ) are Borel spaces, then the product Borel structure on
X×Y is the σ-algebra B×M generated by the measurable rectangles A×B with
A ∈ B and B ∈ M . If X and Y are topological spaces, then it is possible for
B(X) × B(Y ) to be a proper subset of B(X × Y ) even if X and Y are compact
groups [7, §2]. (However, if X and Y are second countable locally compact spaces
then equality holds — see Lemma 4.44 on page 141.)

Definition D.21. A Borel group is a group G together with a σ-algebra B of
subsets of G such that

(r, s) 7→ r−1s

is a Borel map from (G×G,B×B) to (G,B). We say that G is an analytic (resp.,
standard) if the underlying Borel structure is analytic (resp., standard).

Example D.22. Suppose that G is a second countable locally compact topological
group. Then every open set in G × G is a countable union of open rectangles
which are clearly in B(G)×B(G). Therefore

(
G,B(G)

)
is a standard Borel group

(Lemma D.9 on page 372).

If X is a topological space, then the natural Borel structure on X is given by the
Borel sets. However, if we start with a Borel space (X,B), there may or may not
be a topology on X such that B(X) = B. Such a topology is said to be compatible
with the Borel structure.

Theorem D.23 (Mackey). Suppose that G is an analytic Borel group with a
nonzero left-invariant σ-finite measure µ. Then there is a unique second count-
able locally compact topology on G which is compatible with the Borel structure on
G. With respect to this topology, µ is a Haar measure on G.

Proof. Suppose that τ is a second countable locally compact topology compatible
with the given Borel structure. Since G must have a σ-finite Haar measure ν, it
follows from Lemma D.40 on page 393, that µ is a multiple of ν. Therefore, µ is a
Haar measure on G.2 Suppose that τ ′ is another second countable locally compact
topology on G which is compatible with the given Borel structure. The identity
map from (G, τ) to (G, τ ′) is a Borel isomorphism, and it must be a homeomorphism
by Theorem D.3 on page 370. Thus τ = τ ′, and a compatible second countable
locally compact topology, once we show that it exists, is unique.

To show that such a topology exists, let H = L2(G,µ). Since G is analytic, G
is countably generated as a Borel space. Thus H is separable by Lemma D.41 on
page 394, and U(H) is a Polish group by Lemma D.42 on page 395. For each s ∈ G
and h ∈ H, define

Lsh(r) := h(s−1r) for all r ∈ G.

Since µ is left-invariant, Lsh ∈ H, and Ls is is a unitary operator with L∗
s = L−1

s =
Ls−1 . In fact, it is easy to check that s 7→ Ls is a homomorphism of G onto a
subgroup L(G) of the Polish group U(H).

2In order to conclude that µ is a Haar measure, we need to know that it is a Radon measure.
As this is not immediately clear, we appeal to Lemma D.40.
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We’ll proceed as follows. First we’ll show that L is an injective Borel map of G
onto L(G). The next, and hardest step, is to show that L(G) is closed in U(H).
Then we can pull-back the (necessarily second countable) Polish topology on L(G)
to G, and see that it generates the given Borel structure. Then we use a result
which implies that measures on Polish spaces are nearly supported on compact sets
to show that this topology is actually locally compact.

To see that L is a Borel map, notice that

(Lsh | k) =

∫

G

h(s−1r)k(r) dµ(r) for all s ∈ G and h, k ∈ H.

Since G is a Borel group, (s, r) 7→ h(s−1r)k(r) is Borel (with respect to the product
Borel structure B × B) and Fubini’s Theorem ([156, Theorem 8.8] or [57, Theo-
rem 2.37]) implies that s 7→ (Lsh | k) is Borel for all h, k ∈ H. Thus s 7→ Ls is
Borel in view of Lemma D.43 on page 395.

To see that L is one-to-one, it suffice to see that Ls = 1H implies that s =
e. Since G is countably separated, Lemma D.44 on page 395 implies there is an
injective Borel map ψ : G → [0, 1] which is square integrable. Thus if Ls = 1H,
then Lsψ = ψ and

ψ(r) = ψ(s−1r) for almost all r ∈ G.

Therefore there is some r0 ∈ G, such that ψ(r0) = ψ(s−1r0). Since ψ is one-to-one,
this implies s = e as desired.

Next we want to see that the range L(G) of L is closed in U(H). Suppose that
Lsn → U in U(H). If E and F are Borel sets in G of finite measure, then 1E , 1F
and 1E · 1F are all in L2(G). Since multiplication is continuous in U(H),

U(1E1F ) = lim
n
Lsn(1E)Lsn(1F ) = U(1E)U(1F ).

In particular, U(1E)2 = U(1E). Thus there is a Borel set F of finite measure such
that U(1E) = 1F in L2(G), and F is, up to a null set, uniquely determined by
U . Thus we obtain a map Φ from the Borel sets of G with finite measure into the
boolean σ-algebra B/N of Borel sets in G modulo µ-null sets. (See Appendix I.6
for a discussion of boolean σ-algebras and operations such as

∨
below.) If F ∈ B

is of finite measure and if F is the disjoint union
⋃∞
i=1 Fi, then1F =

∞∑

i=1

1Fi in L2(G), and U(1F ) =

∞∑

i=1

U(1Fi).

It follows that

Φ(F ) =

∞∨

i=1

Φ(Fi).

Since µ is σ-finite, any B ∈ B can be written as the countable disjoint union of
sets of finite measure. If

∞⋃

i=1

Fi = B =

∞⋃

i=1

Ei
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are two such decompositions, then for each i, Fi =
⋃∞
j=1 Fi∩Ej . Thus if K ∈ B/N

is such that K ≥ Φ(Fi ∩ Ej) for all i and j, then

K ≥
∞∨

i=1

∞∨

j=1

Φ(Fi ∩ Ej) =

∞∨

i=1

Φ(Fi).

Thus
∞∨

j=1

Φ(Ej) ≥
∞∨

i=1

Φ(Fi). (D.1)

By symmetry, we have equality in (D.1), and it follows that we can extend Φ to
a σ-homomorphism of B into B/N with the property that E △ F ∈ N implies
Φ(E) = Φ(F ). Lemma I.36 on page 501 implies that there is a Borel map ϕ : G→ G
such that

Φ(B) = [ϕ−1(B)],

where [ϕ−1(B)] denotes the class of ϕ−1(B) in B/N . In particular, if E has finite
measure, then

U(1E)(s) = 1ϕ−1(E)(s) = 1E(
ϕ(s)

)
for almost all s ∈ G.

It follows that for all h ∈ H = L2(G),

U(h)(s) = h
(
ϕ(s)

)
for almost all s ∈ G.

For each r ∈ G, let ρ(r) ∈ U(H) be given by

ρ(r)(h)(s) = ∆
1
2 (r)h(sr).

Then ρ(r) commutes with Ls for all s ∈ G. Therefore, ρ(r) must also commute
with U . Thus for all h ∈ H and r ∈ G, we have

h
(
ϕ(sr)

)
= h

(
ϕ(s)r

)
for almost all s ∈ G.

As above, let ψ : G → [0, 1] be injective and square integrable. Since ψ
(
ϕ(sr)

)
=

ψ
(
ϕ(s)r

)
for almost all s, we have

ϕ(sr) = ϕ(s)r for almost all s.

Using Fubini’s Theorem, there must be a s0 ∈ G and a null set N such that

ϕ(s0r) = ϕ(s0)r for r /∈ N .

Thus if s /∈ s0N , we have

ϕ(s) = ϕ(s0s
−1
0 s) = ϕ(s0)s

−1
0 s = (s0ϕ(s0)

−1)−1s.

Thus if r := s0ϕ(s0)
−1, then for almost all s,

U(h)(s) = h
(
ϕ(s)

)
= Lr(h)(s),
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and U = Lr. It follows that L(G) is a closed subgroup of the Polish group U(H).
Since G is analytic, the generalized Souslin Theorem ([2, Corollary 2 of The-

orem 3.3.4]) implies that L is a Borel isomorphism of G onto L(G) in its relative
Borel structure. Since the relative Borel structure on L(G) is that generated by
the relative topology on L(G), we can pull back the Polish topology on L(G) to G
and obtain a second countable Polish topology on G which is compatible with the
given Borel structure on G.

It only remains to show that the topology on L(G) is locally compact. To do
this, we’ll take advantage of the fact that the unit ball B(H)1 of B(H) is a compact
Polish space in the weak operator topology (Lemma D.37 on page 391). Therefore
the closure, C, of L(G) in B(H)1 is a second countable compact space. Thus it will
suffice to show that

L(G) = C r { 0 }.
Suppose that Lsn → T 6= 0 in the weak operator topology. Since T 6= 0, there must
be Borel sets E′ and F ′ of finite measure such that

(Lsn1E′ | 1F ′) → a := (T1E′ | 1F ′) > 0.

It follows that for large n,
µ(F ′ ∩ snE′) ≥ a/2.

It follows from Corollary D.39 on page 393 that there are compact sets E and F
such that

µ(F ′ r F ) < a/12 and µ(E′ r E) < a/12.

But then

µ(F ′ ∩ snE′) ≤ µ
(
(F ∪ F ′ r F ) ∩ sn(E ∪ E′ r E)

)

≤ µ(F ∩ snE) +
a

4
.

Thus for large n, we have µ(F ∩ snE) ≥ a/4 > 0. Thus we eventually have
F∩snE 6= ∅ and sn ∈ FE−1. Since FE−1 is compact, we can pass to a subsequence,
relabel, and assume that sn → s in G. But then Lsn → Ls in the weak operator
topology and we must have T = Ls. This completes the proof.

D.3 Projective Representations

Let H be a complex Hilbert space. Then the center of the unitary group U(H) is
easily seen to be the scalar operators and we have a homeomorphism i from the
circle T onto the center given by i(z) = z1H. The quotient P (H) = U(H)/i(T) is
called the projective unitary group. A projective representation of a group G is a
homomorphism α : G→ P (H) which is continuous when P (H) is given the quotient
topology coming from the strong operator topology on U(H). Of course each U ∈
U(H) determines an automorphism in AutK(H) given by AdU(T ) := UTU∗. As
discussed in [139, Chap. 1], Ad factors through P (H) and induces a homeomorphism
of P (H) with AutK(H) with the point norm topology [139, Proposition 1.6].
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Although much of what is being reproduced here holds in great generality (cf.
[5,93]), we’ll restrict to the case in which H is separable and G is second countable.
In particular, if H is separable, we have the following useful observation.

Lemma D.24. Suppose that H is separable complex Hilbert space and that α0 ∈
AutK(H) with AdU0 = α0. Then there is a Borel map c : AutK(H) → U(H)
and a neighborhood N of α0 such that Ad c(β) = β for all β ∈ AutK(H), c is
continuous on N and c(α0) = U0.

Proof. Since H is separable, AutK(H) is Polish (cf. [139, Lemma 7.18]) and there-
fore second countable. Lemma 1.6 of [139] implies that for each α ∈ AutK(H),
there is a neighborhood Nα of α and a continuous map cα : Nα → U(H) such
that Ad cα(β) = β for all β ∈ Nα. Since AutK(H) is second countable, we can
find a countable cover {Ni }∞i=1 of AutK(H) by open sets and continuous maps
ci : Ni → U(H) such that Ad ci(β) = β for all β ∈ Ni. We can assume that
α0 ∈ N1, and define Borel sets Bk such that

B1 := N1 and Bk := Nk r

k−1⋃

i=1

Bi for k ≥ 2.

Then we can define c′ by c′(β) = ci(β) if β ∈ Bi. Then c′ satisfies all the
requirements of the lemma with the possible exception of c′(α0) = U0. But
Ad c′(α0) = AdU0, so there is a z ∈ T such that c′(α0) = zU0. But then we
can define c := z̄c′.

If α : G → AutK(H) is a projective representation of G and if c is as in
Lemma D.24, then we get a Borel map

π : G→ U(H)

given by π(s) := c(αs). Since α is a homomorphism, there is a function ω : G×G→
T such that

π(s)π(r) = ω(s, r)π(sr) for all s, r ∈ G. (D.2)

If h ∈ H with ‖h‖ = 1, then

ω(s, r) =
(
π(s)π(r)π(sr)−1h | h

)
,

and the right-hand side is the composition of the maps

(a) (s, r) 7→ (s, r, sr) from G×G to G×G×G,

(b) (s, r, t) 7→ (π(s), π(r), π(t)) from G×G×G to U(H) × U(H) × U(H),

(c) (U, V,W ) 7→ UVW−1 from U(H) × U(H) × U(H) to U(H) and

(d) U 7→ (Uh | h) from U(H) → C.

Since (a), (c) and (d) are continuous, it will follow that ω is Borel provided we
see that (b) is a Borel map. But this follows because s 7→ π(s) is Borel and since
every open set in U(H) × U(H) × U(H) is the countable union of open rectangles
V1 × V2 × V3. Thus ω is Borel. Further (D.2) and associativity imply that

ω(s, t)ω(st, r) = ω(s, tr)ω(t, r) for all s, t, r ∈ G. (D.3)
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Definition D.25. A Borel function ω : G×G→ T is called a 2-cocycle with values
in T if it satisfies (D.3). We say that ω is normalized if ω(e, s) = ω(s, e) = 1 for all
s ∈ G. A normalized 2-cocycle is called a multiplier. We say that ω is trivial or a
2-boundary if there is a Borel function b : G→ T such that

ω(s, r) = b(s)b(r)b(sr)−1 for all s, r ∈ G.

The collection of all 2-cocycles is denoted by Z2(G,T), and the 2-boundaries are
denoted by B2(G,T).

It is immediate that Z2(G,T) is an abelian group under pointwise multiplication
and that B2(G,T) is a subgroup. We let H2(G,T) be the quotient group. We’ll
denote the image of ω ∈ Z2(G,T) in H2(G,T) by [ω]. Two elements ω and ω′

that differ by a boundary are called similar. (As the notation suggests, H2(G,T)
is part of a group cohomology for G with coefficients in T. See §7.4 of [139] for
more details and references.)

Note that if we choose c : AutK(H) → U(H) as in Lemma D.24 on the preceding
page with the property that c(1K(H)) = 1H, then the resulting cocycle (D.2) is
normalized. If ω is any cocycle, then ω is similar to a normalized cocycle. Let
b(s) = ω(s, e), and δb(s, r) := b(s)b(r)b(sr)−1. Then ω′ := δb · ω does the trick.

If π : G→ U(H) is a Borel map such that Adπ — defined by (Ad π)s = Ad π(s)
— is a homomorphism, then there is a function ω such that (D.2) holds. Just as
before, ω is Borel and is easily seen to be a 2-cocycle.

Definition D.26. If ω is a multiplier on G, then a ω-representation of G on H is
a Borel map π : G→ U(H) such that

π(s)π(r) = ω(s, r)π(sr) for all s, r ∈ G.

Notice that if π is an ω-representation of G on H, then Adπ is a Borel homo-
morphism of G into AutK(H). If G is second countable and H is separable, then
G and AutK(H) are Polish groups (Lemmas D.9 and [139, Lemma 7.18]), and
Adπ is continuous by Theorem D.11 on page 372. Therefore Adπ is a projective
representation of G. If π and π′ are ω- and ω′-representations, respectively, of
G on H such that Adπ = Adπ′ then for each s ∈ G there is a scalar b(s) ∈ T
such that π(s) = b(s)π′(s). It is easy to see that b is Borel and that ω(s, r) =
b(s)b(r)b(sr)−1ω′(s, r). That is, ω and ω′ are similar.

Of course if α : G → AutK(H) is equal to Adπ for a ordinary representation
of G — that is, α is unitarily implemented — then the corresponding cocycle is
identically one and has trivial image in H2(G,T). On the other hand, if α is
implemented by a ω-representation with ω trivial, then α is unitarily implemented.
To see this, suppose ω(s, r) = b(s)b(r)b(sr)−1. Then we can define π′(s) = b(s)π(s).
Then π′ is a Borel homomorphism, and therefore continuous. But α = Ad π′.

We can summarize the above discussion as follows.

Proposition D.27. Suppose that G is a second countable locally compact group
and that H is a separable Hilbert space. If α : G → AutK(H) is a projective
representation on H, then there is a multiplier ω in Z2(G,T) and a ω-representation
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π such that α = Ad π. The class [ω] ∈ H2(G,T) depends only on α and is called
the Mackey obstruction for α. Furthermore, α is unitarily implemented if and only
if its Mackey obstruction is trivial.

Conversely, if π is an ω-representation for some multiplier ω, then Adπ is a
projective representation with Mackey obstruction [ω].

Now we want to see that multiplier representations of a second countable locally
compact group G are in one-to-one correspondence with certain ordinary represen-
tations of a locally compact group which is an extension of T by G. If ω ∈ Z2(G,T)
is a multiplier, then we let Gω be the set T ×G equipped with the operations

(z, s)(z′, r) :=
(
zz′ω(s, r), sr

)
and

(z, s)−1 := (zω(s, s−1), s−1).

It is not hard to check that Gω is a group, and that we have an (algebraic) exact
sequence

1 // T
i // Gω

j // G // e (D.4)

where i(z) = (z, e), j(z, s) = s and i(T) is central in Gω . If ω is continuous,
then we can give Gω the product topology, and then (D.4) becomes a short exact
sequence of locally compact groups (Proposition 1.53 on page 15). Note that the
product measure µT × µG is a Haar measure on Gω in this case. On the other
hand, if ω is merely Borel, then we have to work a little harder. Since G and T
are second countable, G and T are Borel groups (Example D.22 on page 376), and
it is not hard to see that Gω is a Borel group when we give it the Borel structure
B(T×G) = B(T)×B(G) coming from the Polish topology on T×G (Lemma D.9
on page 372). Furthermore, the product measure µT × µG is invariant under left
multiplication. So all that’s missing is a locally compact topology on Gω. It is a
nontrivial result due to Mackey (Theorem D.23 on page 376) that Gω has a unique
second countable locally compact topology such that B(Gω) = B(T×G) and such
that µT×µG is a Haar measure. Since i and j are clearly Borel homomorphisms, it
follows from Theorem D.3 on page 370 that they are continuous. Proposition 1.53 on
page 15 then implies that (D.4) becomes a short exact sequence of locally compact
groups. Thus there is a unique locally compact topology on Gω such that (D.4) is
again a short exact sequence of locally compact groups.

Notice that if π′ is an ω-representation of G on H, then

π(z, s) := zπ′(s) (D.5)

satisfies

π(z, s)π(z′, r) = zz′π′(s)π′(r)

= zz′ω(s, r)π′(sr)

= π
(
(z, s)(z′, r)

)
.

Thus π is a Borel homomorphism ofGω into U(H). Since Theorem D.11 on page 372
implies that π is strongly continuous, π is a representation satisfying

π
(
i(z)

)
= z1H. (D.6)
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Conversely, if π is a representation of Gω on H satisfying (D.6), then

π′(s) := π(1, s) (D.7)

is a Borel map of G into U(H) such that

π′(s)π′(r) = π(1, s)π(1, r)

= π
(
(ω(s, r), sr)

)

= ω(s, r)π′(sr).

We’ve proved the following.

Proposition D.28. Suppose that ω is a multiplier on a second countable locally
compact group G and that Gω is the corresponding extension (D.4). Then there is
a one-to-one correspondence between ω-representations of G on separable Hilbert
spaces and representations of Gω on separable Hilbert spaces satisfying (D.6)

Thus to understand ω-representations, we’ll want to get a handle on represen-
tations of Gω satisfying (D.6). We’ll do this by showing that there is a quotient
C∗(G,ω) of C∗(Gω) whose representations are exactly those which satisfy (D.6).
We’ll do this in slightly more generality than necessary here to stress the connection
with twisted crossed products as discussed in Section 7.4.

For the moment, G can be any locally compact group (second countable or not),
and let

1 // T
i // E

j // G // e (D.8)

be any central extension of T by G. (That is, we assume that i and j are continuous
homomorphisms, that i is a homeomorphism onto ker j, that j is an open surjection
and that i(T) lies in the center of E.) Let τ : T → T be any character of T. (The
example of interest for multiplier representations is E = Gω and τ(z) = z for all
z ∈ T.) Since i(T) is central, if f ∈ Cc(E) and dz is normalized Lebesgue measure
on T, then ∫

T

f
(
si(z)

)
dz

depends only on j(s) := ṡ in G. Thus we can define a Haar integral on E by
∫

E

f(s) dµE(s) :=

∫

G

∫

T

f
(
si(z)

)
dz dµG(ṡ)

where µG is any fixed Haar measure on G. A unitary representation π of E is said
to preserve τ if

π
(
i(z)

)
= τ(z)1Hπ for all z ∈ T.

If I is the ideal of M
(
C∗(E)

)
generated by { iE

(
i(z)

)
− τ(z)1E : z ∈ T }, then let

Iτ := I ∩ C∗(E).

If π preserves τ , then π̄(I) = { 0 } and Iτ ⊂ kerπ. On the other hand, if Iτ ⊂ kerπ,
then π̄(I) = { 0 }, and

C∗(E, τ) := C∗(E)/Iτ
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can be characterized as the quotient of C∗(E) such that a representation of E
preserves τ if and only if it factors through C∗(E, τ).

Example D.29. In the example at hand — G second countable, E = Gω and
τ(z) = z — a representation of Gω preserves τ if and only if it satisfies (D.6).
Thus representations satisfying (D.6) are exactly those factoring throughC∗(Gω, τ),
and representations of C∗(Gω, τ) on separable Hilbert spaces are in one-to-one
correspondence with ω-representations of G. We usually write C∗(G,ω) in place of
C∗(Gω , τ) in this case.

As with ordinary group C∗-algebras, it will be important to have an underlying
(dense) function space inside of C∗(E, τ). This will be fairly straightforward since
we can take advantage of the facts that i(T) is central and dz is normalized. Let

Cc(E, τ) := { f ∈ Cc(E) : f
(
i(z)s

)
= τ(z)f(s) },

and for each f ∈ Cc(E), let

Qτ (f)(s) :=

∫

T

f
(
si(z)

)
τ(z) dz.

We have Qτ (f) ∈ Cc(E) by Corollary 1.103 on page 36. Since i(T) is in the
center of E, it follows that Qτ (f) ∈ Cc(E, τ). Since we’re working with normalized
Lebesgue measure on T, the T-integrals can often disappear from formulas entirely.
For example, if f, g ∈ Cc(E, τ), then (r, s) 7→ f(r)g(r−1s) depends only on (ṙ, s).
In particular,

f ∗ g(s) =

∫

G

∫

T

f
(
ri(z)

)
g
(
i(z̄)r−1s

)
dz dµG(ṙ)

=

∫

G

∫

T

f(r)g(r−1s) dz dµG(ṙ)

=

∫

G

f(r)g(r−1s) dµG(ṙ).

In a similar vein, if π preserves τ and if f ∈ Cc(E, τ), then s 7→ f(s)π(s) depends
only on ṡ, and

π(f) =

∫

G

f(s)π(s) dµG(ṡ).

If f, g ∈ Cc(E), then applying Fubini’s Theorem as needed,

Qτ (f ∗ g)(s) =

∫

T

f ∗ g
(
si(z)

)
τ(z) dz

=

∫

T

∫

G

∫

T

f
(
ri(w)

)
g
(
i(w̄)r−1si(z)

)
τ(z) dw dµG(ṙ) dz

=

∫

G

(∫

T

f(ri(w))τ(w) dw
)(∫

T

g
(
r−1si(z)

)
τ(z) dz

)
dµG(ṙ)

= Qτ (f) ∗Qτ (g)(s).
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Since we easily check that Qτ (f
∗) = Qτ (f)∗ and that Qτ (f) = f if f ∈ Cc(E, τ), it

follows that Cc(E, τ) is a ∗-subalgebra of Cc(E) and that Qτ is a homomorphism
of Cc(E) onto Cc(E, τ). Furthermore if f ∈ Cc(E) and if π preserves τ , then

π(f) =

∫

G

∫

T

f
(
si(z)

)
π
(
si(z)

)
dz dµG(ṡ)

=

∫

G

∫

T

f
(
si(z)

)
τ(z) dzπ(s) dµG(ṡ)

=

∫

G

Qτ (f)(s)π(s) dµG(ṡ)

= π
(
Qτ (f)

)
.

We have essentially proved the following.

Proposition D.30. Suppose that E is a central extension of T by a locally compact
group G as in (D.8), and that τ : T → T is a character. Then Qτ defines an
isomorphism of C∗(E, τ) onto the completion of Cc(E, τ) with respect to the norm

‖f‖τ := sup{ ‖π(f)‖ : π is a representation of E which preserves τ }.

Proposition D.30 gives us a powerful method for studying ω-representations of
a second countable locally compact group G. If ω is a multiplier of G, then we
can form the locally compact central extension Gω as in (D.4). Then C∗(G,ω) :=
C∗(Gω , τ) (with τ(z) = z for all z) is the completion of Cc(G

ω, τ) as above. Nev-
ertheless, some people prefer to work with an underlying structure for C∗(G,ω)
which is closer to the original data — namely G and ω — rather than the extension
Gω and its Mackey topology. In general, this can’t be done without working with
measurable functions and L1(G) rather than Cc(G). If ω is a multiplier of G and
if f, g ∈ L1(G), then using some care (as in Proposition B.42 on page 348) we can
show that

(r, s) 7→ f(r)g(r−1s)ω(r, r−1s)

is measurable and belongs to L1(G×G). Then Fubini’s Theorem implies that

f ∗ g(s) =

∫

G

f(r)g(r−1s)ω(r, r−1s) dµ(r) (D.9)

is defined for almost all s, and in fact, defines an element in L1(G) which depends
only on the classes of f and g in L1(G). As in Remark B.44 on page 351, we can use
Fubini’s Theorem to justify interchanging the order of integration in the following
computation:

(f ∗ g) ∗ h(s) =

∫

G

f ∗ g(r)h(r−1s)ω(r, r−1s) dµ(r)

=

∫

G

∫

G

f(t)g(t−1r)h(r−1s)ω(t, t−1r)ω(r, r−1s) dµ(t) dµ(r)

=

∫

G

∫

G

f(t)g(r)h(r−1t−1s)ω(t, r)ω(tr, r−1t−1s) dµ(r) dµ(t)
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which, since ω(t, r)ω(tr, r−1t−1s) = ω(t, t−1s)ω(r, r−1t−1s), equals

=

∫

G

f(t)

∫

G

g(r)h(r−1t−1s)ω(r, r−1t−1s) dµ(r)ω(t, t−1s) dµ(t)

=

∫

G

f(t)g ∗ h(t−1s)ω(t, t−1s) dµ(t)

= f ∗ (g ∗ h)(s).

Thus (D.9) defines an associative product on L1(G). Similar computations show
that

f∗(s) := ω(s, s−1)∆(s−1)f(s−1) (D.10)

is an involution on L1(G) making L1(G) into a Banach ∗-algebra that we denote by
L1(G,ω) to distinguish it from L1(G) with the usual group C∗-algebra structure.

If π′ is an ω-representation of G on H and f ∈ L1(G), then s 7→ f(s)π′(s)h is
in L1(G,H) for each h ∈ H.3 Thus we can define a linear operator π′(f) on H by

π′(f)h =

∫

G

f(s)π′(s)h dµ(s) for all h ∈ H.

Clearly ‖π′(f)‖ ≤ ‖f‖1, and more gyrations with Fubini’s Theorem justify

π′(f ∗ g)h =

∫

G

∫

G

f(r)g(r−1s)ω(r, r−1s)π′(s)h dµ(r) dµ(s)

=

∫

G

∫

G

f(r)g(s)ω(r, s)π′(rs)h dµ(s) dµ(r)

=

∫

G

∫

G

f(r)g(s)π′(r)π′(s)h dµ(s) dµ(r)

= π′(f)π′(g)h.

Similarly, π′(f∗)h = π′(f)∗h, and π′ extends to a ∗-homomorphism of L1(G,ω)
into B(H). We can define a C∗-norm on L1(G,ω) by

‖f‖ω := sup{ ‖π′(f)‖ : π′ is an ω-representation of G } ≤ ‖f‖1. (D.11)

We want to see that the completion of L1(G,ω) in the ‖ · ‖ω-norm is (isomorphic
to) C∗(G,ω) := C∗(Gω , τ) with τ(z) = z for all z ∈ T. However, we can define

Φ : Cc(G
ω, τ) → L1(G,ω) (D.12)

3Vector valued integration is discussed in Appendix B. We could avoid vector-valued integrals
here by defining π′(f) weakly:

`

π′(f)h | k
´

:=

Z

G
f(s)

`

π′(s)h | k
´

dµ(s).
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by Φ(f)(s) := f(1, s). Note that

Φ(f ∗ g)(s) = f ∗ g(1, s)

=

∫

G

f(1, r)g
(
(1, r)−1(1, s)

)
dµ(r)

=

∫

G

f(1, r)g
(
ω(r, r−1)ω(r−1, s), r−1s

)
dµ(r)

=

∫

G

f(1, r)g(1, r−1s)ω(r, r−1s) dµ(r)

= Φ(f) ∗ Φ(g)(s).

Since we easily check that Φ(f∗) = Φ(f)∗, Φ is a ∗-homomorphism. If g ∈ Cc(G),
then f(z, s) := z̄g(s) defines an element of Cc(G

ω , τ) such that Φ(f) = g. Therefore
Φ is has dense range. If π′ is an ω-representation of G and if π is the corresponding
representation of Gω, then

π(f) = π′
(
Φ(f)

)
for all f ∈ Cc(G

ω, τ).

Therefore ‖f‖τ = ‖Φ(f)‖ω and Φ is isometric. We’ve summarize the above discus-
sion in the following proposition.

Proposition D.31. If ω is a multiplier on a second countable locally compact
group G, then (D.12) defines an isomorphism of C∗(G,ω) onto the completion of
L1(G,ω) with respect to the norm ‖ · ‖ω defined in (D.11).

D.4 Quasi-invariant Measures

A Borel space (X,B) is called a Borel G-space if G acts on X in such a way that
(s, x) 7→ s · x is a Borel map from

(
G×X,B(G)×B) to (X,B). If µ is a measure

on X , then s · µ is, by definition, the measure given by s · µ(E) := µ(s−1 · E). We
say that µ is quasi-invariant if µ and s · µ are equivalent for all s ∈ G. Recall that
if τ : X → Y is a Borel map and if µ is a measure on X , then the push-forward of
µ by τ is the measure τ∗µ on Y given by τ∗(E) := µ

(
τ−1(E)

)
(see Lemma H.13 on

page 463). Notice that if τ is a Borel isomorphism, then τ∗µ is σ-finite whenever µ
is.

Lemma D.32. Suppose that G is a second countable locally compact group. Let µ be
a finite quasi-invariant measure on a Borel G-space X and define σ : G×X → G×X
by σ(s, x) = (s, s ·x). Then σ is a Borel isomorphism, and if ν is any σ-finite Borel
measure on G, then σ∗(ν × µ) is equivalent to ν × µ.

Proof. Clearly, σ is Borel with Borel inverse (s, x) 7→ (s, s−1 · x), so σ is a Borel
isomorphism as claimed. Thus we only have to show that σ∗(ν × µ) is equivalent
to ν × µ. We can replace ν by an equivalent finite measure and assume that ν is
finite. Let D be a Borel subset of G×X and let f = 1D. Since Fubini’s Theorem
implies that

σ∗(ν × µ)(D) =

∫

G

∫

X

f(s, s · x) dµ(x) dν(s), (D.13)
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it suffices to show that (D.13) is zero if and only if ν × µ(D) = 0. As usual, let
Ds := { x ∈ X : (s, x) ∈ D }. Then (D.13) vanishes if and only if for ν-almost all s,

µ
(
{ x ∈ X : s · x ∈ Ds }

)
= µ(s−1Ds) = 0.

Since µ is quasi-invariant, µ(s−1Ds) = 0 if and only if µ(Ds) = 0. Thus σ∗(ν ×
µ)(D) = 0 if and only if for ν-almost all s, µ(Ds) = 0. But by Fubini’s Theorem,
µ(Ds) = 0 for ν-almost all s if and only if ν × µ(D) = 0.

Since σ∗(ν × µ) is equivalent to ν × µ we can assume that its Radon-Nikodym
derivative strictly positive everywhere.

Remark D.33 (Measured Groupoids). Let κ : G×X → G×X be given by k(s, x) :=
(s−1, s−1 · x). Then κ is a Borel isomorphism and for appropriate f , and we can
use Lemma D.32 on the preceding page to compute that

∫∫

G×X

f(s, x)κ∗(µG × µ)(s, x) =

∫

G

∫

X

f(s−1, s−1 · x) dµ(x) dµG(s)

=

∫

G

∫

X

f(s, s · x)∆(s−1) dµ(x) dµG(s)

=

∫

G

∫

X

f(s, x)∆(s−1)
dσ∗(µG × µ)

d(µG × µ)
(s, x) dµ(x) dµG(s).

Since can assume that ∆(s−1)dσ∗(µG×µ)
d(µG×µ) (s, x) is strictly positive almost everywhere,

it follows that κ∗(µG×µ) is equivalent to µG×µ. In order to apply some selection
results, we will need to realize that these observations amount to showing that
G := G×X together with the measure µG×µ is what is called a measured groupoid
in [140] or [142]. The groupoid operations on G are given by (s, x)−1 := (s−1, s−1 ·x)
and (s, x)(r, s−1 ·x) := (sr, x). For more on groupoids and the selection results below
we need see Remark G.26 on page 450.

Let s ·µ be the push-forward of µ by left-translation by s; thus s ·µ(E) = µ(s−1 ·
E). Since µ is quasi-invariant, for each s there is a Radon-Nikodym derivative d(s·µ)

dµ
which is determined only almost everywhere. We would like to select representatives

for d(s·µ)
dµ so that

(s, x) 7→ d(s · µ)

dµ
(x) (D.14)

is Borel on G × X . Although at first blush it seems “obvious” that we should
be able to do so, our proof requires a very subtle selection theorem in measured
groupoid theory due to Ramsay. (But see Remark D.35 on page 391.) To use
Ramsay’s result, we’ll need to assume that ν is equivalent to Haar measure on G.
Then

(
(G×X), ν ×µ

)
is a measured groupoid (Remark D.33). In the sequel, we’ll

abuse notation a bit and write

f(x) =
d(s · µ)

dµ
(x) or f =

d(s · µ)

dµ

to mean that f is a specific choice of Radon-Nikodym derivative.
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Corollary D.34. Suppose that G is a second countable locally compact group. Let
µ be a finite quasi-invariant finite Borel measure on an analytic Borel G-space X,
let σ be as in Lemma D.32 on page 387 and let µG be Haar measure. Then there
is a Borel function d : G×X → (0,∞) such that

(a) d is a Radon-Nikodym derivative for σ∗(µG × µ) with respect to µG × µ,

(b) such that for all s, r ∈ G,

d(sr, x) = d(s, x)d(r, s−1 · x) for µ-almost all x, and (D.15)

(c) such that for all s ∈ G, d(s, ·) is a Radon-Nikodym derivative for s · µ with
respect to µ. That is,

d(s, ·) =
ds · µ
dµ

(D.16)

for all s ∈ G.

We call d a Borel choice of Radon-Nikodym derivatives.

Proof. For convenience, we can assume that µ is a probability measure and let ν
be a finite Borel measure equivalent to µG. By Lemma D.32 on page 387, there
is a Borel function d0 : G ×X → (0,∞) which is a Radon-Nikodym derivative for
σ∗(ν × µ) with respect to ν × µ.

Note that for any bounded Borel function f ,
∫∫

G×X

f(s, x) dσ∗(ν × µ)(s, x) =

∫

G

∫

X

f(s, s · x) dµ(x) dν(s) (D.17)

=

∫

G

∫

X

f(s, x) d(s · µ)(x) dν(s). (D.18)

On the other hand, the definition of d0 implies that (D.17) is equal to
∫

G

∫

X

f(s, x)d0(s, x) dµ(x) dν(s) =

∫

G

∫

X

f(s, x) dµs(x) dν(s), (D.19)

where µs := d0(s, ·)µ. In both cases, Fubini’s theorem implies that

s 7→
∫

X

f(s, x) d(s · µ)(x) =

∫

X

f(s, s · x) dµ(x)

and

s 7→
∫

X

f(s, x) dµs(x) =

∫

X

f(s, x)d0(s, x) dµ(x)

are Borel for all bounded Borel functions f on G × X . If q is the projection of
G × X onto G, then it follows from (D.17) and the fact that µ is a probability
measure that q∗

(
σ∗(ν × µ)

)
= ν. Thus (D.18) and (D.19) are both disintegrations

of σ∗(ν×µ) with respect to ν as in Theorem I.5 on page 482. Thus the uniqueness
assertion in that result implies that there is a µG-conull set Y such that s · µ = µs
for all s ∈ Y . The uniqueness of the Radon-Nikodym derivative gives

d0(s, ·) =
d(s · µ)

dµ
for all s ∈ Y .
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Using Fubini’s Theorem, it is easy to check that

A := { (s, r) ∈ G×G : s /∈ Y , r /∈ Y and sr /∈ Y }

is a µG × µG-null set. If (s, r) /∈ A and ϕ is a bounded Borel function on G, then
on the one hand

∫

X

ϕ(x)d0(sr, x) dµ(x) =

∫

X

ϕ(sr · x) dµ(x).

On the other hand,
∫

X

ϕ(x)d0(s, x)d0(r, s
−1 · x) dµ(x) =

∫

X

ϕ(s · x)d0(r, x) dµ(x)

=

∫

X

ϕ(sr · x) dµ(x).

(D.20)

It follows that for each (s, r) /∈ A,

d0(sr, x) = d0(s, x)d0(r, s
−1 · x) for µ-almost all x. (D.21)

Since the set of (s, r, x) ∈ G × G ×X where (D.21) holds is Borel, it follows that
(D.21) holds µG × µG × µ-almost everywhere.

Since X is analytic and µ is quasi-invariant, (G ×X,µG × µ) is an example of
what Ramsay calls a virtual group in [140, page 274] and a measured groupoid in
[142] (Remark D.33 on page 388). Using that language, the fact that (D.21) holds
µG×µG×µ-almost everywhere implies that d0 defines an almost everywhere homo-
morphism of G ×X into the multiplicative group R+

× of positive reals. Ramsay’s
selection theorem (Remark G.26 on page 450) implies that there is a Borel function
d : G×X → R+

× and a µ-conull set X0 such that d = d0 µG×µ-almost everywhere
and such that if x, s−1 · x and r−1s−1 · x all lie in X0, then

d(sr, x) = d(s, x)d(r, s−1 · x). (D.22)

Since d = d0 almost everywhere, we can shrink Y a bit if necessary so that d(s, ·) =
d(s·µ)
dµ for s ∈ Y . In particular, the set

Σ := { s ∈ G : d(s, ·) is a Radon-Nikodym derivative

for s · µ with respect to µ }

is a µG-measurable4 conull subset of G. For fixed s, r ∈ Σ, the quasi-invariance of
µ implies that

{ x ∈ X0 : s−1 · x ∈ X0 and r−1s−1 · x ∈ X0 }

is µ-conull. Thus for all s, r ∈ Σ, we have d(sr, x) = d(s, x)d(r, s−1 ·x) for µ-almost
all x. Repeating the calculation in (D.20) with d in place of d0 shows that d(sr, ·)
is a Radon-Nikodym derivative and hence that Σ is a conull subsemigroup of G.
Lemma D.36 on the facing page implies that Σ = G. This completes the proof.

4Recall that a subset is measurable if it a union of a Borel set and a subset of a Borel null set.
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Remark D.35. It should be pointed out that one can omit the use of Ramsay’s
Theorem in the proof at the expense of having (D.15) hold only for almost all
(s, r) and having (D.16) hold for µG almost all s. (Then we can even replace Haar
measure by any σ-finite Borel measure on G.) Since we’ll have to invoke Ramsay’s
result in the proof of the Effros-Hahn conjecture we used it here as well. A proof
without invoking Ramsay’s result can be found in [176, Theorem B9].

D.5 Technical Results

In this section, we collect a number of technical results needed elsewhere but which
either did not seem of sufficient import to include at the time, or which would have
been distracting to the matter at hand.

Lemma D.36. Suppose that G is a locally compact group with left-Haar measure
µG. If Σ is a measurable conull subsemigroup of G (that is, µG(Gr Σ) = 0), then
Σ = G.

Proof. Let H := Σ∩Σ−1. Then H is a conull subgroup of G. Let K be a compact
neighborhood of e. Since K ∩ (G r H) is a null set, 0 < µG(K ∩ H) < ∞. Let
A := H ∩ K. By Lemma D.4 on page 370, A−1A ⊂ H2 = H is a neighborhood
of e. Thus H is open and G is the disjoint union of open sets each of which is a
translate of H . Since H is conull, H = G and the result follows as H ⊂ Σ.

Lemma D.37. If H is a separable complex Hilbert space, then

B(H)1 := {T ∈ B(H) : ‖T ‖ ≤ 1 }

is a compact Polish space in the weak-operator topology, and a Polish space in the
∗-strong operator topology.

Proof. Let { hk } be a countable dense subset of H, and let

C(hk) := { z ∈ C : |z| ≤ ‖hk‖2 }.

Then
∏
k C(hk) is a compact Polish space in the product topology. The map

ϕ : B(H1) → ∏
C(hk) given by ϕ(T )k := (Thk | hk) is a continuous injection.

Suppose that ϕ(Tn) converges to f in
∏
C(hk). Since { hk } are dense in H, it

follows that { (Tnh | h) } converges for all h ∈ H. Since

(Tnh | k) =

3∑

j=1

ij
(
Tn(h+ ijk) | h+ ijk

)
,

{ (Tnh | k) } converges for all h, k ∈ H. The Principle of Uniform boundedness
implies that there is an operator T ∈ B(H)1 such that Tn → T in the weak
operator topology, and that ϕ(Tn) → ϕ(T ). Thus the range of ϕ is closed and ϕ is
a homeomorphism of B(H)1 onto its range. This proves the first assertion.
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The second assertion is proved similarly. Let Hk := { h ∈ H : ‖h‖ ≤ ‖hk‖ }
with { hk } as above. Then

P :=

∞∏

k=1

Hk ×Hk

is a Polish space in the product topology. Define ϕ : B(H1) → P by ϕ(T )k =
(Thk, T

∗hk). Then ϕ is clearly injective and continuous in the ∗-strong operator
topology. If ϕ(Tn) → f in P , then since { hk } is dense in H, Tnh and T ∗

nh converge
for all h ∈ H. Just as above, there are operators T, S ∈ B(H)1 such that Tn → T
and T ∗

n → S in the strong operator topology. It follows that S = T ∗ so that
Tn → T in the ∗-strong operator topology. Therefore ϕ has closed range and is
a homeomorphism onto its range. Thus B(H)1 is Polish in the ∗-strong operator
topology.

If (X,B) is a Borel space, then by a measure on X we mean a measure on
the σ-algebra B. So in the following, our measures are not necessarily Radon
measures, nor are they even necessarily complete. In fact, our model Borel space
is a topological space equipped with its Borel field B(X).

In the literature, our next result says that finite measures on Polish spaces are
tight.

Lemma D.38 ([70, §9(10)]). Suppose that µ is a finite Borel measure on a Polish
space P . If ǫ > 0, then there is a compact set C ⊂ P such that µ(C) ≥ µ(P ) − ǫ.

Proof. We may as well assume that µ(P ) = 1. Let 0 < ǫ < 1, and let D = { xn }
be a countable dense subset of P . Suppose that d is a compatible complete metric
on P . Define

C(n, k) = { x ∈ P : d(x, xn) ≤ 1

k
} and F (m, k) =

m⋃

n=1

C(n, k).

Then C(n, k) and F (m, k) are closed sets and for each k ≥ 1,

∞⋃

m=1

F (m, k) = P

Thus limm→∞ µ
(
F (m, k)

)
= 1. Thus there is a m1 such that µ

(
F (m1, 1)

)
> 1 − ǫ.

But

F (m1, 1) =

∞⋃

m=1

F (m, 2) ∩ F (m1, 1).

Thus there is a m2 such that

µ
( 2⋂

i=1

F (mi, i)
)
> 1 − ǫ.
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Thus we can find a sequence {mi } such that

µ
( k⋂

i=1

F (mi, i)
)
> 1 − ǫ for all k ≥ 1.

Let

C :=

∞⋂

i=1

F (mi, i).

Since we clearly have µ(C) ≥ 1 − ǫ, we just have to check that C is compact.
But C is clearly closed and therefore complete. But construction, C is covered by
finitely many closed balls of radius 1

i for each i ≥ 1. Thus C is totally bounded
and therefore compact by [57, Theorem 0.25].

Corollary D.39. Suppose that µ is a Borel measure on a Polish space P . If E is
any subset of P with finite µ-measure and if ǫ > 0, then there is a compact set C
such that µ(E r C) < ǫ.

Proof. Let µE be the finite Borel measure on P given by µE(B) := µ(B∩E). Then
apply the previous lemma to µE .

Lemma D.40. Suppose that G is a Borel group with a left-invariant σ-finite mea-
sure µ. Then µ is unique up to a positive scalar and has the same null sets as any
right-invariant measure on G. In particular, if N is a µ-null set, then so is Ns for
all s ∈ G. Moreover, there is a Borel homomorphism ∆ : G→ (0,∞) such that

∆(r)

∫

G

f(sr) dµ(s) =

∫

G

f(s) dµ(s) for all f ∈ L1(G).

Proof. Suppose that N is a µ-null set. By assumption, sN is µ-null for all s ∈ G.
Let

E = { (r, s) ∈ G×G : r−1s ∈ N−1 }.
Then Es := { r ∈ G : r−1s ∈ N−1 } = sN is null for all s, and Fubini’s Theorem
implies that E is a µ× µ-null set. Thus there is a r0 ∈ G such that

Er0 := { s ∈ G : r−1s ∈ N−1 } = r0N
−1

is a null set. Since µ is left invariant, N−1 is a null set. It follows that Ns =
(s−1N−1)−1 is null for all s ∈ G whenever N is a null set.

Now suppose that ν is also a left-invariant σ-finite measure on G. We want to
see that ν is a multiple of µ. Note that λ = µ + ν is also left-invariant, and by
symmetry it suffices to show that µ and λ are multiples.

Since µ ≪ λ, we can let f = dµ/dλ be the Radon-Nikodym derivative [57,
Proposition 3.8]. Thus for all ϕ ∈ L1(µ),

∫

G

ϕ(s) dµ(s) =

∫

G

ϕ(s)f(s) dλ(s).
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Since both µ and λ are left-invariant, for each r ∈ G we have
∫

G

ϕ(s)f(s) dλ(s) =

∫

G

ϕ(s)f(rs) dλ(s).

Since the Radon-Nikodym derivative is uniquely defined up to a λ-null set, for each
r ∈ G, f(s) = f(rs) off a λ-null set. But then Fubini’s Theorem implies that

E := { (s, r) ∈ G×G : f(s) 6= f(rs) }

is a λ× λ-null set. Thus there is a s0 ∈ G and a λ-null set N such that

f(rs0) = f(s0) for all r /∈ N .

In other words, f(s) = f(s0) for all s /∈ Ns0. Since Ns0 must be a λ-null set by
the above remarks, f is constant almost everywhere. Thus µ and λ are multiples
as claimed.

It follows that for each r ∈ G, ν(E) := µ(Er) is a left-invariant measure on G
and there is a positive scalar ∆(r) such that µ(Er) = ∆(r)µ(E) for every measur-
able set E. By considering characteristic functions, we have

∫

G

f(sr−1) dµ(s) = ∆(r)

∫

G

f(s) dµ(s) for all f ∈ L1(µ).

Fubini’s Theorem implies that

r 7→
∫

G

f(sr−1) dµ(s)

is Borel, and it follows that r 7→ ∆(r) is Borel. Since ∆ is easily seen to be
multiplicative, ∆ is a homomorphism.

Since any right-invariant measure is transformed into a left-invariant measure
via inversion, the remaining statements follow.

Lemma D.41. Suppose that µ is a σ-finite measure on a countably generated Borel
space (X,B). Then L2(X,µ) is separable.

Proof. Since µ is σ-finite, it is equivalent to finite measure ν and L2(X, ν) is isomor-
phic to L2(X,µ). Thus we may as well assume that µ is finite. Let D = {Ei }∞i=1 be
a countable generating set for B with E1 = X . Let An be the algebra of sets in X
generated by {Ei }ni=1. Then the algebra A generated by D is the union of the An.
Since each An is finite,5 A is countable. We will show that the set of characteristic
functions of sets in A (each of which is in L2 since µ is finite) is dense. Thus it
will suffice to see that any f orthogonal to each such function is zero. Let M be
the set of Borel sets E such that

∫

E

f(x) dµ(x) = 0.

5To see that An is finite, note that it consists of finite unions of its “atoms”: Ex :=
T{Ei :

1 ≤ i ≤ n and x ∈ Ei }.
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The dominated convergence theorem implies that M is closed under countable
increasing unions and countable decreasing intersections. Since A ⊂ M , M

must contain the σ-algebra generated by A by the Monotone Class Lemma ([57,
Lemma 2.35]). Since D ⊂ A , we must have M = B. It follows that f = 0 in
L2.

Lemma D.42. Let U(H) be the group of unitary operators on a complex Hilbert
space H. Then the weak and strong operator topologies coincide on U(H), and
U(H) is a topological group with respect to this topology. If H is separable, then
U(H) is a Polish group.

Proof. Since the the strong operator topology is finer than the weak operator topol-
ogy, in order to see that the two topologies coincide on U(H), it is enough to see
that whenever Uα → U weakly, then ‖Uαh− Uh‖ → 0 for all h ∈ H. But

‖Uαh− Uh‖2 = (Uαh− Uh | Uαh− Uh)

= 2‖h‖2 − (Uαh | Uh) − (Uh | Uαh)

which tends to 0 as α increases. Since multiplication on bounded subsets is con-
tinuous in the strong operator topology and since taking adjoints is continuous in
the weak operator topology, it follows that (U, V ) → UV −1 = UV ∗ is continuous
in U(H). Thus U(H) is a topological group. Since U(H) is clearly closed in B(H)1
in the ∗-strong operator topology, it follows from Lemma D.37 on page 391 that
U(H) is Polish when H is separable.

Lemma D.43. Suppose that G is a locally compact group and that H is a separable
Hilbert space. Let ϕ : G→ U(H) be a function. Then the following are equivalent.

(a) ϕ is Borel.

(b) s 7→ ϕ(s)h is Borel from G to H for all h ∈ H.

(c) s 7→
(
ϕ(s)h | k

)
is Borel from G to C for all h, k ∈ H.

Proof. Since the composition of a continuous map with a Borel map is Borel, we
clearly have (a) =⇒ (b) =⇒ (c). To show that (c) =⇒ (a), we note that the strong
and weak operator topologies coincide on U(H) (Lemma D.42). Thus it will suffice
to show that ϕ−1(V ) is Borel for a weak operator open set V in U(H). Since H is
separable, every such set is a countable union of finite intersections of sets of the
form

V (U0, h, k, ǫ) := {U ∈ U(H) : |(Uh | k) − (U0h | k)| < ǫ }

for U0 ∈ U(H); h, k ∈ H; and ǫ > 0. Since (c) implies that ϕ−1
(
V (U0, h, k, ǫ)

)
is

Borel, this suffices.

Lemma D.44. Suppose that (X,B) is a countably separated Borel space. Then
there is an injective Borel map ϕ : X → [0, 1]. If µ is a σ-finite measure on (X,B),
then we may choose ϕ ∈ L2(X,µ).
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Proof. Suppose that {Ei }∞i=1 ⊂ B separates points in X . Let σ(x)i := 1Ei(x).
Then

σ : X →
∞∏

i=1

Z2

is injective and Borel. We can define a continuous map

β :
∞∏

i=1

Z2 → [0, 1] by β(x) :=
∞∑

i=1

x(i)

3i
.

To see that β is injective, suppose x 6= y in
∏

Z2. Then there is a k ≥ 1 such that
x(i) = y(i) for i ≤ k − 1, and x(k) 6= y(k). We may as well assume that x(k) = 1
and y(k) = 0. If

A :=

k−1∑

i=1

x(i)

3i
,

then

β(x) ≥ A+
1

3k
,

while

β(y) ≤ A+

∞∑

i=k+1

1

3i
= A+

1

2
· 1

3k
< β(x).

Thus β is injective and we can set ϕ := β ◦ σ.
If µ is a σ-finite measure, then there is a sequence of disjoint sets Xi such that

X =
⋃
Xi and µ(Xi) <∞ for all i. We can choose integers ni such that

µ(Xi)

ni
≤ 1

i
and ni+1 > ni ≥ i. (D.23)

If ϕ is defined as above, then define

ψ(x) =
1

1
4 + 1

2ϕ(x) + ni
for x ∈ Xi.

Then ψ is clearly Borel. Since x ∈ Xi implies that

1

ni+1
≤ 1

ni + 1
< ψ(x) <

1

ni
, (D.24)

ψ(x) = ψ(y) implies that x, y ∈ Xi for some i. Since ϕ is one-to-one, this implies
x = y and ψ is injective. In view of (D.23) and (D.24), we also have

∫

X

|ψ(x)|2 dµ(x) =

∞∑

i=1

∫

Xi

|ψ(x)|2 dµ(x)

≤
∞∑

i=1

1

n2
i

µ(Xi)

≤
∞∑

i=1

1

i2
<∞.

Thus ψ is in L2(X,µ) as required.
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Corollary D.45. If X is a standard Borel space, then there is a Borel isomorphism
of X onto a Borel subset of [0, 1].

Proof. Since X is countably separated, Lemma D.44 on page 395 implies there is
an injective Borel map f : X → [0, 1]. Then [2, Theorem 3.3.2] implies that f(X)
is Borel and that f is an isomorphism onto its range.

If τ : X → Y is a Borel map and if µ is a measure on X , then we say that τ
is essentially constant if there is a y0 ∈ Y such that τ(x) = y0 for µ-almost all x.
(Of course, y0 is unique provided µ is nonzero.) Our next result is subtle, and is as
close as we can come to proving that an essentially equivariant map is equal almost
everywhere to an equivariant map. We first have to throw away a null set. Note
that we are not claiming that the restriction of an essentially equivariant map to a
conull set is equivariant.

Theorem D.46 ([176, Proposition B.5]). Suppose that G is a second countable
locally compact group and that X and Y are standard Borel G-spaces. Let µ be
a σ-finite measure on X. If τ : X → Y is a Borel map such that for all s ∈ G,
τ(s · x) = s · τ(x) for µ-almost all x, then there is a G-invariant µ-conull Borel set
X0 ⊂ X and a Borel map τ̃ : X → Y such that τ = τ̃ almost everywhere, and for
all x ∈ X0 and all s ∈ G, τ̃ (s · x) = s · τ̃ (x).
Proof. Let

X0 = { x ∈ X : s 7→ s−1 · τ(s · x) is essentially constant. }

Let ν be a probability measure on G which is equivalent to Haar measure on G. In
view of Corollary D.45, we can assume that Y is a Borel subset of [0, 1]. Fubini’s
Theorem implies that

τ̂(x) :=

∫

G

s−1 · τ(s · x) dν(s)

is a Borel function from X to [0, 1]. Similarly,

J(x) :=

∫

G

|s−1 · τ(s · x) − τ̂(x)| dν(s)

is Borel from X to [0, 1] and X0 = J−1({ 0 }). Thus X0 is Borel and τ̂(X0) ⊂ Y ⊂
[0, 1]. If y0 ∈ Y , we can define a Borel function τ̃ : X → Y by

τ̃(x) :=

{
τ̂ (x) if x ∈ X0, and

y0 otherwise.

Let D = { (s, x) : s−1 · τ(s · x) 6= τ(x) }. Then D is Borel and

Ds := { x : s−1 · τ(s · x) 6= τ(x) }

is µ-null for all s by assumption. Thus D is µG × µ-null and Fubini’s Theorem
implies that there is a µ-conull set X00 such that x ∈ X00 implies that

Dx := { s : s−1 · τ(s · x) 6= τ(x) }
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is µG-null. Since X00 ⊂ X0, X0 is conull.
Suppose that x ∈ X0 and that s ∈ G. Then there is a µG-null set N such that

t /∈ N implies
t−1 · τ(t · x) = τ̃ (x).

Since Ns−1 is µG-null (Lemma D.40 on page 393),

s−1r−1 · τ(rs · x) = τ̃ (x) for almost all r.

Thus,
r−1 · τ(rs · x) = s · τ̃ (x) for almost all r.

This shows that s ·x ∈ X0 and that τ̃(s ·x) = s · τ̃(x). This completes the proof.

Lemma D.47. Suppose that Y is a Borel G-space and that µ is a finite ergodic
measure on Y . If f : Y → X is a G-invariant Borel map into a countably separated
Borel space X, then f is essentially constant.

Proof. Let {Ai } be a separating family of Borel sets in X . Since f−1(Ai) and
f−1(X rAi) are G-invariant, one is µ-null and the other conull. Define

Bi :=

{
Ai if f−1(Ai) is conull, and

X rAi if f−1(X rAi) is conull.

Note that {Bi } still separates points in X . Furthermore, writing Bc := Y rB, we
have

µ
(
f−1

(⋂
Bi

)c)
= µ

(⋃
f−1(Bi)

c
)

= 0.

Thus
⋂
Bi 6= ∅. Since the Bi separate points,

⋂
Bi = { x0 } and f(y) = x0 for

µ-almost all y.



Appendix E

Representations of
C∗-algebras

In this chapter, which is primarily expository, we want to review some of the well-
known (albeit a bit unfashionable these days) basics of representation theory for
C∗-algebras. Much of the material in this Appendix is a brutal shortening of
Chapters 2 and 4 of Arveson’s wonderful little book [2]. Anyone wanting the real
story should skip this appendix, and read Arveson’s book. In particular, we often
refer to Arveson’s book for the proofs.

One of the basic goals of any representation theory is to break down general
representations into their basic building blocks. Our first instinct is to break rep-
resentations down into “irreducible” bits. Although this works very well in finite
dimensions, it is not very useful for infinite dimensional representations — even in
the commutative case. Another approach, using the notion of multiplicity as defined
below, is very useful for the class of GCR C∗-algebras — which, of course, includes
the commutative ones — and provides the basis for more general approaches as
well. However, these more general approaches require that both the C∗-algebra
and the space of the representations in question be separable. Consequently, we
will shortly be making such assumptions, and we will not complicate matters by
holding onto the general situation overly long.

E.1 Multiplicity

Recall that a representation of a C∗-algebra A is a nondegenerate homomorphism
π : A→ B(Hπ) for some complex Hilbert space Hπ. Two representations π and σ
are equivalent if there is a unitary operator U : Hπ → Hσ such that σ(a) = Uπ(a)U∗

for all a ∈ A. We say that π is separable if Hπ is separable, n-dimensional if Hπ is
n-dimensional, infinite-dimensional if Hπ is infinite dimensional, etc. A subspace
V ⊂ Hπ is called invariant if π(a)h ∈ V for all a ∈ A and h ∈ V . Since π is ∗-
preserving, it is not hard to see that V invariant implies that V ⊥ is also invariant.
If V is closed — so that V is a Hilbert space — then the orthogonal projection P

399
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onto V commutes with π(a) for all a ∈ A (we say simply that P commutes with
π). Conversely, if P is an orthogonal projection commuting with π, then the space
of P is a closed invariant subspace V for π. If P is the orthogonal projection onto
the subspace V , and if P commutes with π, then the restriction πP of π to V is a
representation of A called a subrepresentation of π.1 Provided V is closed and P is
the corresponding projection, we have

π = πP ⊕ πI−P .

A representation is called irreducible if it has no nontrivial closed invariant sub-
spaces — and hence no nontrivial subrepresentations.2 Irreducible representations
are a critical component in the theory of C∗-algebras, but in the case of infinite-
dimensional representations, it is not possible to express every representation as
a direct sum of irreducibles (as it is in the finite-dimensional case). For example,
the natural representation of C0(R) on L2(R) via multiplication has no irreducible
subrepresentations at all. (Recall that all irreducible representations of C0(R) are
point-evaluations and therefore 1-dimensional.) Nevertheless, we will have more to
say about decomposition of this representation and others into irreducibles latter.
First we introduce a concept which does allow a decomposition into direct sums for
a large class of representations.

Definition E.1. A representation π of a C∗-algebra A is called multiplicity-free if
π does not have two equivalent orthogonal nonzero subrepresentations.

Remark E.2. Clearly, π is multiplicity-free provided that there is no nonzero rep-
resentation σ of A such that σ ⊕ σ is equivalent to a subrepresentation of π.

If σ is a subrepresentation of π, then since the orthogonal projection P onto the
space of σ must commute with π, P belongs to the commutant

π(A)′ := {T ∈ B(Hπ) : Tπ(a) = π(a)T for all a ∈ A }

of π. Note that the double commutant π(A)′′ (the commutant of π(A)′) is the
closure of π(A) in the weak operator topology (by von Neumann’s Double Commu-
tant Theorem [110, Theorem 4.2.5]). It coincides with the strong closure of π(A)
by [110, Theorem 4.2.7]. Thus Z := π(A)′ ∩ π(A)′′ can be viewed as the center of
either the commutant of π(A) or of the von Neumann algebra generated by π(A).
We call σ a central subrepresentation of π if the corresponding orthogonal projec-
tion belongs to the center of the von Neumann algebra generated by π. If π(A)′ is
commutative, then Z = π(A)′ and every subrepresentation is central.

Lemma E.3 ([2, p. 42]). A representation π of a C∗-algebra A is multiplicity-free
if and only if the commutant π(A)′ is commutative.

1Some care is needed here as we require representations to be nondegenerate. But π is nonde-
generate if and only if π(ei) → IHπ in the strong operator topology for any approximate identity
{ ei } of A. Thus πP (ei) → IV and πP is nondegenerate.

2It is known that irreducible representations of C∗-algebras are actually algebraically irre-
ducible in that they have no nontrivial invariant subspaces at all ([28, Corollary 2.8.4] or [126, The-
orem 3.13.2]).
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Proof. Suppose that σ and η equivalent nonzero orthogonal subrepresentations of
π. Then there is a partial isometry U ∈ π(A)′ such that U∗U is the orthogonal
projection onto the space of σ and UU∗ the orthogonal projection onto the space
of η. Thus U and U∗ do not commute and π(A)′ is not commutative.

Conversely, suppose that π(A)′ is not commutative. Then there is a self-adjoint
operator T ∈ π(A)′ that does not commute with all of π(A)′. Using the spectral
theorem, there is a spectral projection P ∈ π(A)′ for T with the same property.
Thus there is a S ∈ π(A)′ such that

R := PS(I − P ) 6= 0.

Let R = U |R| be the polar decomposition of R (see [2, p. 7] or [126, Proposi-
tion 2.2.9]). Then

U∗U ≤ (I − P ) and UU∗ ≤ P.

Thus U is a nonzero partial isometry in π(A)′ with orthogonal initial and final
spaces. Thus πU

∗U and πUU
∗

are equivalent orthogonal subrepresentations of π,
and π is not multiplicity-free.

Definition E.4. Two representations π and σ of a C∗-algebra A are called disjoint
if no nonzero subrepresentation of π is equivalent to any subrepresentation of σ.

Let X be a second countable locally compact Hausdorff space so that C0(X)
is a separable commutative C∗-algebra.3 Let µ be a finite Borel measure on X .
If Bb(X) is the set of complex-valued bounded Borel functions on X , then each
f ∈ Bb(X) determines a bounded operator Lf on L2(X,µ) via

Lfh(x) := f(x)h(x).

(Of course, we could equally well have used L∞(X,µ) in place of Bb(X) as Lf = Lg
if f and g agree µ-almost everywhere. However, we don’t gain anything and it will
be convenient later, in the vector-valued case, not to be burdened with the niceties
of defining L∞.) As in [2, §2.2], we make the following conventions.

Definition E.5. Let µ be a finite measure on the locally compact space X . We let

L := {Lf ∈ B
(
L2(X)

)
: f ∈ Bb(X) },

and we write πµ for the representation

πµ : C0(X) → B
(
L2(X)

)

given by πµ(f) = Lf .

The representations πµ are fundamental to the what follows. Their basic prop-
erties are developed in [2, §2.2] and we summarize a few of them here.

3Of course, every separable commutative C∗-algebra is isomorphic to C0(Â) with Â second
countable.



402 Representations of C∗-algebras

Theorem E.6 ([2, Theorems 2.2.1, 2.2.2 and 2.2.4] — see also Proposition I.41).
Suppose that X is a second countable locally compact Hausdorff space and that µ is
a finite measure on X.

(a) L is the closure of πµ
(
C0(X)

)
in the strong operator topology and

(b) L ′ = L .

If ν is also a finite measure on X, then

(c) πµ is equivalent to πν if and only if µ and ν are equivalent measures, and

(d) πµ and πν are disjoint if and only if µ and ν are disjoint measures.

Moreover, each πµ is multiplicity-free. In fact,

(e) A representation π of C0(X) is multiplicity-free if and only if there is a finite
Borel measure µ on X such that π is equivalent to πµ.

Remark E.7. Part (a) implies that L is a strongly closed subalgebra of
B

(
L2(X,µ)

)
. Thus L is not only a C∗-algebra, but a von Neumann algebra

as well. Part (b) implies that L is a maximal abelian subalgebra of B
(
L2(X)

)

— that is, there is no strongly closed commutative subalgebra of B
(
L2(X)

)

which properly contains L . Lemma E.3 on page 400 and part (b) imply that
each πµ is multiplicity-free. The converse (part (e)) follows from the fact that
multiplicity-free representations of separable C∗-algebras must have a cyclic
vector [2, Lemma 2.2.3]. Consequently, every multiplicity-free representation of a
separable C∗-algebra is separable.

We want to suggest that multiplicity-free representations make good “building
blocks” for more general representations. For example, if π is any representation
of a C∗-algebra A, then we can define its multiple n · π for any integer n ≥ 1: n · π
denotes the representation π⊕· · ·⊕π on Hπ⊕· · ·⊕Hπ where there are n-summands
in each case. We also allow the case n = ∞ where there are countably infinite many
summands.4 Note that n · π is equivalent to π ⊗ 1H on Hπ ⊗ H where H is any
n-dimensional Hilbert space [139, p. 254]. Naturally, if n ≥ 2, then n · π is not
multiplicity-free and we’d even like to say that n · π has “multiplicity n”. In order
for such a definition to be well defined, we need must first observe that if n · π is
equivalent to m · σ, then n = m. (Note that we do not claim we also have π and σ
equivalent.) Arveson does this in [2, Proposition 2.1.3], and we take advantage of
this to make the following fundamental definition.

Definition E.8. A representation π ofA has multiplicity n (1 ≤ n ≤ ∞) if there is a
multiplicity-free representation σ ofA such that π is equivalent to n·σ. Equivalently,
π has multiplicity n if π has n orthogonal mutually equivalent subrepresentations
{ πi } such that π =

⊕
i πi.

Example E.9. Suppose that µ is a finite measure on a locally compact space X and
that Hn is a Hilbert space of dimension 1 ≤ n ≤ ∞. Then n · πµ is equivalent to

4There is no reason to restrict to countably many summands for this definition, but as we are
ultimately only interested in separable representations, countably infinite suffices for our purposes.
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the representation πµ ⊗ 1Hn on L2(X) ⊗ Hn which we identify with L2(X,Hn).
5

We shall see that every representation of C0(X) with multiplicity n is equivalent
to n · πµ for a finite measure µ on X .

Since it can be impossible to break infinite-dimensional representations into
direct sums of irreducibles, another approach is to try to break a representation up
into direct sums of multiplicity-free representations. This is also not going to be
possible in general, but there are large classes of C∗-algebras for which it is possible.

Definition E.10. A representation π of a C∗-algebra A is called type I if every
central subrepresentation of π has a multiplicity-free subrepresentation. A C∗-
algebra is said to be of type I if every representation of A is of type I.6

Remark E.11. Kaplansky [86] proved that all GCR C∗-algebras are of type I (see
also [2, Theorem 2.4.1]). That the converse holds for separable C∗-algebras is one
of the monumental achievements in the subject and is due to Glimm [60]. Glimm’s
result was extended to the general case by Sakai [157]. However, for the moment,
we will only need to keep in mind that commutative C∗-algebras have only type I
representations.

The significance of type I representations to our discussion is illustrated by the
following decomposition theorem [2, Theorem 2.1.8].

Theorem E.12 (Decomposition Theorem). Suppose that π is a type I represen-
tation of a C∗-algebra A on a separable Hilbert space. Then there is a unique
orthogonal family { πn } of central subrepresentations of π such that

(a) each πn either has multiplicity n or is the zero representation, and

(b) π =
⊕

n

πn.

Remark E.13. A von Neumann algebra M ⊂ B(H) is called a factor if it has trivial
center: M ∩M′ = CIH. A representation π of a C∗-algebra A is called a factor
representation if π(A) generates factor (i.e., π(A)′′ is a factor). Note that every
irreducible representation, and in fact every multiple of an irreducible representa-
tion is a factor representation [28, Proposition 5.4.11]. Also, any multiplicity-free
factor representation is necessarily irreducible (since π(A)′ is commutative). Using
Theorem E.12, it is not too hard to see that a type I factor representation has to be
a multiple of an irreducible representation, and a non-type I factor representation
can’t be a multiple of an irreducible. Another part of Glimm’s fundamental paper
proving that separable type I C∗-algebras are necessarily GCR [60] asserts that a
separable non-type I C∗-algebra does have non-type I factor representations. (In
fact, it must have factor representations generating factors both of von Neumann
type II and type III.)

5To avoid working with vector-valued functions, we can simply define L2(X, µ,H) to be
L2(X, µ) ⊗ H. Otherwise, we can refer to Appendix I.4, and note that we can replace G there
with the second countable locally compact space X.

6An alternative formulation that A is of type I if and only if the von Neumann algebra π(A)′′

is a type I von Neumann algebra for all representations π of A. This is standard terminology even
though a type I von Neumann algebra is rarely a type I C∗-algebra.
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Since commutative C∗-algebras are always of type I, the discussion in this section
allows us to give a complete description of the representations of commutative C∗-
algebras.

Theorem E.14 ([2, pp. 54–5]). Suppose that A = C0(X) is a separable commuta-
tive C∗-algebra and that π is a separable representation of A. Then π is equivalent
to a representation of the form

(πµ∞ ⊗ 1H∞) ⊕ πµ1 ⊕ (πµ2 ⊗ 1H2) ⊕ · · ·

where each µn is a finite Borel measure on X with µn disjoint from µm if n 6= m.
(Some, but not all, of the µn can be the zero measure). If

σ = (πν∞ ⊗ 1H∞) ⊕ πν1 ⊕ (πν2 ⊗ 1H2) ⊕ · · ·

is another such representation, then σ is equivalent to π and if and only if µn and
νn are equivalent measures for all n.

Remark E.15 (Decomposition into irreducibles). Theorem E.14 can also be thought
of as a continuous decomposition of π into irreducibles. First recall that the ir-
reducible representations of A = C0(X) are the point evaluations evx given by
evx(f) := f(x), and that we can identify the spectrum Â of A with X [139, Exam-
ple A.24]. If µ is a finite Borel measure on X , then we can write

πµ(f)h(x) = evx(f)h(x), (E.1)

and this suggests we think of πµ as a continuous sum of the evx’s. Formally this is
called a direct integral ∫ ⊕

Â

evx dµ(x), (E.2)

where (E.2) is simply a shorthand for (E.1). In general, given a representation
π of A and measures µn as in Theorem E.14, we get a Borel partition {Xn } of
X such that µn(E) = 0 if E ∩ Xn = ∅. After possibly multiplying each µn by a
constant, we get a finite measure µ on X by setting µ =

∑
n µn. We can define a

multiplicity function m : X → { 1, 2, . . . ,∞} by m(x) = n if x ∈ Xn and then use
the suggestive notation ∫ ⊕

Â

m(x) · evx dµ(x) (E.3)

as a shorthand for the decomposition of π given by Theorem E.14. The point of
this shorthand is to suggest how π is built up from the point evaluations. Moreover,
with a bit of work, we can see that the equivalence class of π uniquely determines
the measure class of µ and the multiplicity function m almost everywhere. We’ll
have much more to say about direct integrals in Appendix F (cf., Example F.25 on
page 419). A complete treatment of the theory of direct integrals and applications
to representations of C∗-algebras can be found in Dixmier’s books [28, 29].



E.2 Decomposable Operators 405

E.2 Decomposable Operators

Naturally, we also want to decompose representations of noncommutative C∗-
algebras in analogy with what we did for abelian algebras in Theorem E.14 on
the preceding page. This will require that we look a bit further into the pit of
direct integrals. However, in this section, we’ll keep following Arveson’s treatment,
and try to get only a few toes out over the abyss. We take a much more extensive
look in Appendix F.

We let Bb(X,H) be the set of all bounded functions F : X → B(H) such that

x 7→
(
F (x)h | k

)

is Borel for all h, k ∈ H.7 (Such functions are called weak-operator Borel.) The
usual pointwise operations make Bb(X,H) into a ∗-algebra with norm

‖F‖ := sup
x∈X

‖F (x)‖.

This norm satisfies the C∗-norm identity ‖F ∗F‖ = ‖F‖2 and, although we don’t
require it, Bb(X,H) is a C∗-algebra. If F ∈ Bb(X,H), and if h ∈ L2(X,µ,H) :=
L2(X)⊗H, then it is not hard to check that x 7→ F (x)

(
h(x)

)
is in L2(X,µ,H) with

norm bounded by ‖F‖‖h‖2. Thus each F ∈ Bb(X,H) defines a bounded operator
LF on L2(X,H) via the formula

LF (h)(x) := F (x)
(
h(x)

)
.

The subalgebra

L ⊗ 1H = {Lf ⊗ 1H : f ∈ Bb(X) }
is called the set of diagonal operators in B

(
L2(X,H)

)
and we see easily that LF ∈

(L ⊗ 1H)′ for all F ∈ Bb(X,H).

Definition E.16. A bounded operator T on L2(X,µ,H) is called decomposable if
there is a F ∈ Bb(X,H) such that T = LF .

In addition to being more easily understood, decomposable operators have a tidy
characterization as exactly the operators in the commutant of the algebra L ⊗ 1H
of diagonal operators [2, Theorem 4.2.1]. (Also see Theorem F.21 on page 418.)
We summarize some of the facts we need in the next result.

Theorem E.17. Suppose that H is a separable Hilbert space, that X is a second
countable locally compact Hausdorff space and that µ is a finite Borel measure on
X. Then T ∈ B

(
L2(X,µ,H)

)
is decomposable if and only if T ∈ (L ⊗ 1H)′.

Furthermore L ⊗ 1H is an abelian von Neumann algebra, and πµ ⊗ 1H
(
C0(X)

)
is

dense in L ⊗ 1H is the strong operator topology.

7As in the scalar case, Bb(X,H) could be replace by some sort of L∞ space. However, we
are not assuming that the F ∈ Bb(X,H) be essentially separately valued (note that B(H) is not
separable if H is infinite dimensional), so the material in Appendix B does not apply directly.
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Proof. As mentioned above, the first assertion is [2, Theorem 4.2.1]. To see that
(πµ ⊗ 1H)

(
C0(X)

)
is strongly dense in L ⊗ 1H, fix g ∈ Bb(X). Then there is a

bounded sequence { fn } ⊂ C0(X) such that fn(x) → g(x) for µ-almost every x.
Let h ∈ L2(X,µ,H). Then

‖fn(x)h(x) − g(x)h(x)‖2 → 0

for all x off a null set. The dominated convergence theorem then implies that
πµ(fn) ⊗ 1H converges strongly to Lg ⊗ 1H. This suffices.

Since L is closed in the strong operator topology by Theorem E.6 on page 402,
it is not hard to see directly that L ⊗ 1H is as well. Alternatively, we can appeal
to [29, I.2.4 Proposition 4] to conclude that L ⊗ 1H =

(
L ⊗B(H)

)′
.

Now we suppose that we have a C∗-subalgebra A of decomposable operators on
L2(X,H). Then, by definition, for each T ∈ A, there is a FT ∈ Bb(X,H) such that
T = LFT . If A and H are separable, then we can make our choices so that T 7→ FT
is a ∗-homomorphism. The details are worked out in [2, §4.2].

Corollary E.18. Suppose that H is separable Hilbert space and that A is a separable
C∗-subalgebra of (L ⊗ 1H)′. Then there is an isometric ∗-isomorphism π : A →
Bb(X,H) such that

Lπ(T ) = T

for all T ∈ A.

Notice that if we are given π : A → Bb(X,H) as in Corollary E.18, then we
obtain a family of possibly degenerate representations { πx }x∈X of A as follows:

πx(T ) := π(T )(x).

These representations will play a crucial role in what follows. The idea will be to
show that representations which we wish to study are equivalent to representations
ρ having image ρ(A) contained in (L ⊗ 1H)′ for appropriate choices of X , µ and
H. Then letting ρ(A) play the role of A, we obtain a “decomposition” of ρ into
representations ρx := πx ◦ ρ. To determine the properties of the πx, and therefore
the ρx, we need the following technical result from [2, §4.2].

Proposition E.19. If {Fn } is sequence in Bb(X,H) such that LFn → LF in the
strong operator topology, then there is a subsequence {Fnk

} and a µ-null set N
such that Fnk

(x) → F (x) in the strong operator topology for all x ∈ X rN .

Notice that if A is a nondegenerate subalgebra — that is, if the identity map
is a nondegenerate representation of A — and if {Ei } is an approximate identity
in A, then Ei → I in the strong operator topology. Thus off a null set (and after
reindexing) πx(Ei) → IH and almost all the πx are nondegenerate.

Proposition E.20. Let H be a separable Hilbert space, X a second countable locally
compact Hausdorff space and µ a finite measure on X. Suppose that A is a separable
C∗-subalgebra of (L ⊗ 1H)′ with π : A → Bb(X,H) as in Corollary E.18.
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(a) If LF ∈ A′′, then F (x) ∈ πx(A)′′ for µ-almost all x.

(b) If LF ∈ A′, then F (x) ∈ πx(A)′ for µ-almost all x.

(c) If L ⊗ 1H = A′ ∩ A′′, then πx is a factor representation for µ-almost all x.

(d) If L ⊗1H ⊂ A′′, then there is a µ-null set N such that x 6= y and x, y ∈ XrN
implies that πx and πy are disjoint.

Proof. Part (a) is Corollary 1 of [2, Proposition 4.2.2].
For part (b), let {An } be a countable dense subset of A. Then LF commutes

with each Lπ(An). Thus there is a µ-null set N such that

F (x)πx(An) = πx(An)F (x) for all x ∈ X rN .

Thus F (x) ∈ πx(A)′ for almost all x.
Part (d) is Corollary 2 to [2, Proposition 4.2.2].
For part (c), note that if the diagonal operators coincide with the center of

A′′, then A′ and A′′ generate the decomposable operators in the strong operator
topology.8 If T ∈ B(H) generates B(H) and if F (x) := T for all x ∈ X , then
LF ∈ (L ⊗ 1H)′. Since H is separable, there is a sequence {Tn } of elements in
the complex algebra spanned by A′ and A′′ such that Tn → LF (see [2, Corollary
following Theorem 1.2.2]). Using Proposition E.19 on the facing page and replacing
{Tn } by a subsequence if necessary, we can assume that there is a µ-null set N
such that x ∈ X rN implies

π(Tn)(x) → F (x) = T

is the strong operator topology. However, enlarging N if necessary, parts (a) and
(b) allow us to assume that x /∈ N implies each π(Tn)(x) = πx(Tn) is in the algebra
generated by πx(A)′ and πx(A)′′. Thus T is almost everywhere in the commutant
of the center πx(A)′ ∩ πx(A)′′. Since T generates B(H), the center is trivial for
almost every x which completes the proof.

8In general, the commutant of M∩N is the von Neumann algebra generated by M′ and N ′.





Appendix F

Direct Integrals

We knocked on the door to the theory of direct integrals of representations of C∗-
algebras in Appendix E. However, the proof of the Gootman-Rosenberg-Sauvageot
Theorem 8.21 on page 241 requires that we deal with the theory in a more general
setting. We need this generality not only for the proof of Theorem 8.21 in Chapter 9,
but also to develop the key tool used there: Effros’s ideal center decomposition of
a representation of a separable C∗-algebra (Theorem G.22 on page 444). Effros’s
theorem and the consequences we require are developed in Appendix G.

As always when dealing with direct integrals, separability is essential. All the
C∗-algebras and Hilbert spaces appearing in this section are assumed to be sepa-
rable.

F.1 Borel Hilbert Bundles

The classical notion of a direct integral of Hilbert spaces and decomposable opera-
tors is developed in detail in [29, Part II, Chap. 1&2]. A brief survey can be found
in [56, §7.4]. The point of view taken here is that a direct integral of Hilbert spaces
is simply the Banach space of square integrable sections of an appropriate bundle of
Hilbert spaces. A decomposable operator is an operator which respects the fibres.
I got this approach from [108, §3.1], which is based on [141, §1].

We start with a collection

H := {H(x) }x∈X
of separable (nonzero) complex Hilbert spaces indexed by an analytic Borel space
X . Then the total space is the disjoint union

X ∗ H := { (x, h) : h ∈ H(x) },
and we let π : X ∗ H → X be the obvious map.

Definition F.1. Let H = {H(x) }x∈X be a family of separable Hilbert spaces
indexed by an analytic Borel space X . Then (X ∗H, π) is a Borel Hilbert bundle if
X ∗ H has a Borel structure such that

409
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(a) π is a Borel map and

(b) there is sequence { fn } of sections such that

(i) the maps f̃n : X ∗ H → C defined by

f̃n(x, h) :=
(
fn(x) | h

)
,

are Borel for each n,

(ii) for each n and m,

x 7→
(
fn(x) | fm(x)

)

is Borel, and

(iii) the functions { f̃n } and π separate points of X ∗ H.

The sequence { fn } is called a fundamental sequence for (X ∗H, π). We let B(X ∗H)
be the set of sections of X ∗ H such that

x 7→
(
f(x) | fn(x)

)

is Borel for all n.

Remark F.2. We are being a bit sloppy with our notation for sections. A section
f of X ∗H is really of the form f(x) = (x, f̂ (x)), where f̂(x) ∈ H(x). Therefore we

should really write something like
(
f̂n(x) | f̂m(x)

)
H(x)

in place of
(
fn(x) | fm(x)

)
.

Alternatively, we could identify H(x) with { x }×H(x). In any event, we are going

to suppress the f̂ to reduce clutter.

Remark F.3. If f is a section of X ∗ H, then,
(
fn(x) | f(x)

)
= f̃n

(
f(x)

)
(see

Remark F.2). Thus if f is Borel (as a map of X into X ∗H), then f ∈ B(X ∗H). If
in addition, X ∗ H is an analytic Borel space, then Lemma D.20 on page 375 (and
property (iii) of axiom (b)) implies that the Borel field on X ∗ H is that generated
by π and the f̃n. Thus, if X ∗ H is analytic, a section f ∈ B(X ∗ H) if and only if
f is Borel as a map of X into X ∗ H.

Remark F.4. Suppose that X ∗ H is an analytic Borel Hilbert bundle; that is,
we assume X ∗ H is Borel Hilbert bundle and that X ∗ H is an analytic Borel
space. We can give X the largest Borel structure such that π is Borel. Then with
this new, a priori larger (but still countably separated), Borel structure, X is still
analytic [2, Corollary 1 of Theorem 3.3.5]. But then the Unique Structure Theorem
[2, Theorem 3.3.5] implies that the new Borel structure coincides with the original.
In particular, for analytic Borel Hilbert bundles, we can replace condition (a) in
Definition F.1 on the preceding page with

(a)
′
π−1(E) is Borel in X ∗ H if and only if E is Borel in X .

Therefore our definition of an analytic Borel Hilbert bundle coincides with Ramsay’s
in [141, §1] and Muhly’s in [108, Chap 3., §1]. (We are interested only in analytic
Borel Hilbert bundles. We have not made this a blanket assumption in this section
only because in the proof of Proposition F.8 on page 412 we want to deal with
bundles which are not a priori analytic.)
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Example F.5. Let H be any separable Hilbert space with orthonormal basis { en },
and let X be an analytic Borel space. If we let H(x) := H for all x, then with the
product Borel structure on X ∗ H = X × H, (X × H, π) becomes a Borel Hilbert
bundle with respect to the fundamental sequence given by fn(x) := en for all x. If
X is an analytic Borel space (respectively, a standard Borel space) then X ∗ H is
analytic (respectively, standard). More generally, let X = X∞ ∪X1 ∪X2 ∪ . . . be a
Borel partition ofX , and let Hd be a Hilbert space of dimension d with orthonormal
basis { edn }n=d

n=1 for d = 1, . . . ,ℵ0. For each x ∈ Xd, let H(x) = Hd. Then we can

give X ∗H =
∐d=∞
d=1 Xd ×Hd the obvious Borel structure coming from the product

Borel structure on each factor.1 Then X ∗H is a Borel Hilbert bundle with respect
to the fundamental sequence

fn(x) =

{
edn if x ∈ Xd and 1 ≤ n ≤ d, and

0 otherwise.

A above, X ∗ H is either analytic or standard depending on whether X has the
corresponding property.

If we agree that two Borel Hilbert bundlesX∗H andX∗K overX are isomorphic
if there is a bundle map ϕ : X ∗H → X ∗K which is a Borel isomorphism such that
(x, h) 7→ ϕ(x, h) is a unitary isomorphism of H(x) onto K(x),2 then it is something
of a surprise to discover that every bundle is isomorphic to one of the seemingly
trivial examples described in Example F.5 (cf., Corollary F.9 on page 413). On
the other hand, the isomorphism is often not natural or convenient to introduce in
applications. But the result is none-the-less indispensable in the theory.

Proposition F.6. Let X ∗H be a Borel Hilbert bundle with fundamental sequence
{ fn }, and let d(x) := dimH(x). Then, for each n = 1, 2, . . . ,ℵ0,

Xn := { x ∈ X : dimH(x) = n }

is Borel and there is a sequence { ek } in B(X ∗ H) such that

(a) for each x ∈ X, { ek(x) }d(x)k=1 is an orthonormal basis for H(x), and if d(x) <
∞, ek(x) = 0 for all k > d(x), and

(b) for each k, there is a Borel partition X =
⋃∞
n=1B

k
n and for each (n, k) finitely

many Borel functions ϕn,kj : Bkn → C
(
1 ≤ j ≤ m(n, k)

)
such that

ek(x) =

m(n,k)∑

j=1

ϕn,kj (x)fj(x) for all x ∈ Bkn.

If { uk } is any sequence which satisfies (a) & (b), then each uk ∈ B(X ∗ H) and

1If X and Y are Borel spaces, then the disjoint union X
‘

Y is a Borel space where B ⊂ X
‘

Y
is Borel if and only if B ∩X and B ∩ Y are Borel. This generalizes in a straightforward way to
countable disjoint unions.

2We will return to the notion of an isomorphism of Borel Hilbert bundles in Definition F.22
on page 418.
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(c) f ∈ B(X ∗ H) if and only if x 7→
(
f(x) | uk(x)

)
is Borel for all k, and

(d) if f, g ∈ B(X ∗ H), then x 7→
(
f(x) | g(x)

)
is Borel.

Remark F.7. Clearly, { ek } is also a fundamental sequence for X ∗H. We call such
a sequence a special orthogonal fundamental sequence.

Proof of Proposition F.6. The measurability of the Xn and the existence of { ek }
satisfying (a) and (b) are shown in [56, Proposition 7.27] or [29, Lemma II.1.1]
(using a careful application of the usual Gram-Schmidt process). We won’t repeat
the proof here.

Note that part (b) implies that

x 7→
(
f(x) | uk(x)

)
(F.1)

is Borel for all k provided f ∈ B(X ∗H). Thus uk ∈ B(X ∗H). If (F.1) is Borel for
all k, then Parseval’s Identity implies that

x 7→
(
f(x) | fj(x)

)
=

∑

k

(
f(x) | uk(x)

)(
uk(x) | fj(x)

)

is also Borel. This establishes part (c). Part (d) also follows from Parseval’s Iden-
tity: (

f(x) | g(x)
)

=
∑

k

(
f(x) | uk(x)

)(
uk(x) | g(x)

)
.

Other than straightforward situations such as Example F.5 on the preceding
page, Borel Hilbert bundles do not arise fully formed with a natural Borel structure
on the total space. Instead, we rely on the following.

Proposition F.8. Suppose that X is an analytic Borel space and that
H = {H(x) }x∈X is a family of separable Hilbert spaces. Suppose that { fn }
is a countably family of sections of X ∗ H such that conditions (ii) and (iii) of
axiom (b) in Definition F.1 on page 409 are satisfied. Then there is a unique
analytic Borel structure on X ∗ H such that (X ∗ H, π) becomes an analytic Borel
Hilbert bundle and { fn } is a fundamental sequence.

Proof. If (X ∗H, π) has an analytic Borel structure such that { fn } is a fundamental
sequence, then as in Remark F.3 on page 410, the Borel structure is that generated
by π and the f̃n. Thus, if X ∗ H has an analytic Borel structure, it is unique.

On the other hand, we can let X ∗ H have the smallest Borel structure such
that the maps f̃n and π are Borel. Then (X ∗ H, π) is a Borel Hilbert bundle and
{ fn } is a fundamental sequence. Let Xd = { x ∈ X : dim(H(x)) = d }. Then Xd is
Borel (Proposition F.6 on the previous page), and it will suffice to see that Xd ∗H is
analytic.3 By Proposition F.6 on the preceding page, there is a special orthogonal
fundamental sequence { un } for Xd ∗H such that { un(x) } is an orthonormal basis
for H(x) for each x ∈ Xd. Let Hd be a Hilbert space of dimension d and let { en }

3If Y is a Borel subset of X and if X ∗ H is a Borel Hilbert bundle over X, then we let Y ∗ H

denote the obvious Borel Hilbert bundle over Y obtained by restriction.
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be an orthonormal basis for Hd. Then (Xd × Hd, πd) is an analytic Borel Hilbert
bundle and gn(x) = en for all x ∈ Xd defines a fundamental sequence for Xd ×Hd.
Note that πd and the g̃n determine the Borel structure on the analytic Borel Hilbert
Bundle Xd×Hd. Since the { un(x) } determine a unitary isomorphism of H(x) onto
Hd, we get a bundle map ϕ : Xd ∗ H → Xd ×Hd which is a unitary on each fibre.
Since

g̃n
(
ϕ(x, h)

)
= ũn(x, h),

it follows that ϕ is a Borel map. Reversing the roles of gn and un shows that ϕ−1

is Borel. Since Xd ×Hd is analytic, this completes the proof.

Examining the proof of Proposition F.8 and in view of Remark F.3 on page 410,
we have the following corollary.

Corollary F.9. Suppose that X ∗H is an analytic Borel Hilbert bundle over an an-
alytic space X. Let Xd = { x ∈ X : dim

(
H(x)

)
= d }, and let Hd be a Hilbert space

of dimension d. Then X ∗ H is isomorphic to
∐d=∞
d=1 Xd ×Hd (as in Example F.5

on page 411).

F.2 The Direct Integral of Hilbert Spaces

For the rest of this appendix, and in fact elsewhere in this book with the exception
of the previous section, we will be concerned solely with analytic Borel Hilbert
bundles over analytic spaces. In particular, let (X ∗ H, π) be an analytic Borel
Hilbert bundle over an analytic space X . Then B(X ∗ H) denotes the set of Borel
sections. If f ∈ B(X ∗H), then x 7→ ‖f(x)‖ is Borel by Proposition F.6 on page 411.
If µ is a Borel measure on X , then let L2(X ∗ H, µ) be the normed vector space
formed by the quotient of

L2(X ∗ H, µ) = { f ∈ B(X ∗ H) : x 7→ ‖f(x)‖2 is integrable },
where functions agreeing µ-almost everywhere are identified. Notice that if f, g ∈
L2(X ∗ H, µ), then the usual Cauchy-Schwarz inequality implies that x 7→

(
f(x) |

g(x)
)

is integrable, and L2(X ∗H, µ) is an inner product space in the obvious way.
If X ∗ H is the trivial bundle X × H, then it is immediate that L2(X × H, µ) is
the Hilbert space L2(X,µ,H) (see Appendix I.4 and Remark I.12 on page 490). In
general, it is not hard to see that L2(X ∗ H, µ) is a Hilbert space with the above
inner product. To prove this, we could either mimic the proof that L2(X,µ,H) is
complete, or we could invoke Corollary F.9. We’ll leave this as an exercise.

We should notice that L2(X ∗ H, µ) is nothing more than the direct integral

∫ ⊕

X

H(x) dµ(x) (F.2)

as defined in [29].

Remark F.10. Although the integral notation, (F.2), is classical, here we’ll usually
use L2(X ∗H, µ) as it makes clear the dependence on the Borel structure on X ∗H

induced by the fundamental sequence.
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With the above definition is hand, we can record some straightforward corollaries
of Proposition F.6 on page 411 and Corollary F.9 on the previous page.

Corollary F.11. Suppose that X∗H is an analytic Borel Hilbert bundle and suppose
that dimH(x) = d for all x and 1 ≤ d ≤ ℵ0. Then, if Hd is any Hilbert space of
dimension d, X ∗H is isomorphic to the trivial bundle X×Hd. In particular, if µ is
any finite Borel measure on X, then L2(X ∗H, µ) is isomorphic to L2(X,µ)⊗Hd

∼=
L2(X,µ,Hd).

Corollary F.12. Let X ∗H be an analytic Borel Hilbert bundle and let µ be a finite
measure on X. Then there is a Borel partition X = X∞ ∪X1 ∪X2 ∪ · · · such that,
if µd is the restriction of µ to Xd and if Hd is a fixed Hilbert space of dimension
1 ≤ d ≤ ℵ0, then

L2(X ∗ H, µ) ∼= L2(X∞, µ∞) ⊗H∞ ⊕ L2(X1, µ1) ⊕ L2(X2, µ2) ⊗H2 ⊕ · · ·

∼=
d=∞⊕

d=1

L2(Xd, µd,Hd).

Definition F.13. Suppose that µ is a finite measure on a Borel space X and that
X ∗ H is a Borel field of Hilbert spaces. An operator T on L2(X ∗ H, µ) is called
diagonal if there is a bounded (scalar-valued) Borel function ϕ ∈ Bb(X) such that

Th(x) = ϕ(x)h(x)

for µ-almost every x. The collection of diagonal operators on L2(X∗H, µ) is denoted
by ∆(X ∗H, µ). If ϕ ∈ Bb(X), then the associated diagonal operator is denoted by
Tϕ.

Example F.14. If X ∗H is a trivial bundle X×H, then ∆(X×H, µ) is the collection
of operators L ⊗ 1H as defined on page 405 of Appendix E.2.

Lemma F.15. Suppose that X ∗ H is an analytic Borel Hilbert bundle and that
µ is a finite Borel measure on X. Then ∆(X ∗ H, µ) is an abelian von Neumann
subalgebra of B

(
L2(X ∗ H, µ)

)
, and the map ϕ 7→ Tϕ induces an isomorphism of

L∞(X,µ) onto ∆(X ∗ H, µ).

Proof. The map ϕ 7→ Tϕ clearly defines an isometric ∗-isomorphism of L∞(X,µ)
onto ∆(X ∗ H, µ).4 Since

(Tϕf | g) =

∫

X

ϕ(x)
(
f(x) | g(x)

)
dµ(x),

it follows that ϕ 7→ Tϕ is continuous from L∞(X,µ) with the weak-∗ topology (as
the dual of L1(X,µ)) onto ∆(X ∗H, µ) with the weak operator topology. Since the
unit ball of L∞(X,µ) is weak-∗ compact, the unit ball of ∆(X ∗ H, µ) is compact,
and hence closed, in the weak operator topology. Since the Kaplansky Density
Theorem [110, Theorem 4.3.3] implies that the unit ball of ∆(X ∗ H, µ) is weakly
dense in the unit ball of its weak closure, this implies that ∆(X ∗ H, µ) is closed in
the weak operator topology. This completes the proof.

4We are using the standing assumption that each H(x) 6= 0. Otherwise, we could replace µ by
its restriction to the set where H(x) 6= 0, and proceed as above (see [29, II.2.4]).
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Lemma F.16. Suppose that X is an analytic Borel space. Then there is a countable
family {ψi } of bounded Borel functions on X with the property that given a finite
Borel measure µ on X and a function f ∈ L1(X,µ) such that

∫

X

ψi(x)f(x) dµ(x) = 0 for all i,

then f(x) = 0 µ-almost everywhere.

Proof. Let {Ai } be a countable family of Borel sets generating the Borel sets in X
as a σ-algebra. As in Lemma D.41 on page 394, the algebra A generated by {Ai }
is countable.

Let µ be a finite Borel measure on X , let f ∈ L1(X,µ) and let C be the family
of Borel sets B such that ∫

B

f(x) dµ(x) = 0.

The Dominated Convergence Theorem implies that C is closed under countable
increasing unions and countable decreasing intersections. If A ⊂ C , then the
Monotone Class Lemma ([57, Lemma 2.35]) implies that C contains the σ-algebra
generated by A — and therefore every Borel set. In that case, we must have
f = 0 almost everywhere. Therefore it will suffice to let the {ψi } be the set of
characteristic functions of elements of A .

Lemma F.17. Suppose that X ∗ H is an analytic Borel Hilbert bundle over an
analytic space X. Then there is a countable family {ψi } ⊂ Bb(X) such that given
a finite Borel measure µ on X and a square integrable fundamental sequence { fj }
for X ∗ H, the set

{Tψifj : i ≥ 1 and j ≥ 1 }
is dense in L2(X ∗H, µ). In particular, L2(X ∗H, µ) is separable for any finite Borel
measure µ on X.

Proof. Let {ψi } be as in Lemma F.16. Suppose that f is orthogonal to every Tψifj.
Then for each j, ∫

X

ψi(x)
(
fj(x) | f(x)

)
dµ(x) = 0 (F.3)

for all i. Thus there is a µ-null set Nj such that
(
fj(x) | f(x)

)
= 0 for all x /∈ Nj.

Then N :=
⋃
Nj is a null set and f(x) = 0 for all x /∈ N . That is, f = 0 in

L2(X ∗ H, µ).

Example F.18 (Pull-backs). Suppose that X ∗H is an analytic Borel Hilbert bundle
with fundamental sequence { fn } and that σ : Y → X is a Borel map. Then we
can form the pull-back Borel Hilbert bundle

σ∗(X ∗ H) := Y ∗ Hσ := { (y, h) : h ∈ H
(
σ(y)

)
}

with Borel structure compatible with the fundamental sequence { fn◦σ }. Therefore
f ∈ B(X ∗ H) implies that f ◦ σ ∈ B(Y ∗ Hσ). If ν is finite Borel measure on Y
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and if σ∗ν is the push-forward measure on X given by σ∗ν(E) := ν
(
σ−1(E)

)
(see

Lemma H.13 on page 463), then

∫

Y

(
f
(
σ(y)

)
| g

(
σ(y)

))
dν(y) =

∫

Y

(
f(x) | g(x)

)
d(σ∗ν)(x).

Thus W (f)(y) := f
(
σ(y)

)
defines an isometry

W : L2(X ∗ H, σ∗ν) → L2(Y ∗ Hσ, ν)

which is an isomorphism if σ is a Borel isomorphism.

Example F.19. Let Y ∗ K be a Borel Hilbert bundle over a standard Borel space
Y , and let τ : Y → X be a Borel surjection onto a standard Borel space X . Let
ν be a finite Borel measure on Y and let µ = τ∗ν be the push forward. Using the
Disintegration Theorem on page 482, we can disintegrate ν with respect to µ so
that we have, for each x ∈ X , finite measures νx with supp νx ⊂ τ−1(x) and such
that for all bounded Borel functions ϕ on Y

∫

Y

ϕ(y) dν(y) =

∫

X

∫

Y

ϕ(y) dνx(y) dµ(x).

Let { ui } be a special orthogonal fundamental sequence for Y ∗ K, and let

H(x) := L2(Y ∗ K, νx).

Let {ψj } ⊂ Bb(Y ) be as in Lemma F.17 on the preceding page. Since each νx is
a finite measure, ui ∈ L2(Y ∗ K, νx), and hence {Tψjui } is dense in L2(Y ∗ K, νx)
for each x. Define a section gij of X ∗ H by letting gij(x)(y) = ψj(y)ui(y). If
f ∈ L2(Y ∗ K, νx) satisfies (gij(x) | f)L2(νx) = 0 for all i and j, then f = 0 νx-
almost everywhere. Thus { gij } define a Borel structure on X ∗H (Proposition F.8
on page 412). The map sending f ∈ L2(Y ∗K, ν) to the section g(x)(y) = f(y) is a
natural isomorphism of L2(Y ∗ K, ν) onto L2(X ∗ H, µ).

F.3 Decomposable Operators

Let X ∗ H and X ∗ K be analytic Borel Hilbert bundles over the same space X
with fundamental sequences { fn } and { gk }, respectively. A bundle map T̂ :
X ∗ H → X ∗ K is determined by a family of maps T (x) : H(x) → K(x) such

that T̂ (x, h) =
(
x, T (x)h

)
. Using Corollary F.9 on page 413 and Lemma D.20 on

page 375, it is possible to prove that T̂ is Borel if and only if

x 7→ g̃k
(
T̂

(
fn(x)

))
=

(
T (x)fn(x) | gk(x)

)
is Borel for all n and k. (F.4)

Rather than sketch a proof here, we will define a family of linear maps T (x) :
H(x) → K(x) to be a Borel field of operators if (F.4) holds. In particular, if
f ∈ B(X ∗ H), then x 7→ T (x)f(x) is in B(X ∗ K).



F.3 Decomposable Operators 417

If each T (x) is a bounded linear operator, then we have

‖T (x)‖ = sup
h∈S
h(x) 6=0

‖T (x)h(x)‖‖h(x)‖−1,

where S is any countable family in B(X ∗ H) such that { h(x) : h ∈ S } is dense
in H(x) for all x. (Rational linear combinations of the fn will do.) It follows that
x 7→ ‖T (x)‖ is Borel. If µ is a finite Borel measure on X , then we can set

λ := ess supx∈X ‖T (x)‖. (F.5)

If λ < ∞, then we get a linear operator T on L2(X ∗ H, µ) with norm at most
λ via Tf(x) := T (x)f(x) for all f ∈ L2(X ∗ H, µ). In fact, ‖T ‖ = λ. Thus
an essentially bounded Borel field of operators {T (x) } defines a bounded linear
operator T : L2(X ∗ H, µ) → L2(X ∗ K, µ) with norm λ given by (F.5).

Operators T determined by a Borel field of operators {T (x) } as above are called
decomposable and the classical notation is

T :=

∫ ⊕

X

T (x) dµ(x). (F.6)

Lemma F.20. Suppose that X ∗H and X ∗K are Borel Hilbert bundles over X and
that µ is a finite Borel measure on X. Let {T (x) }x∈X be an essentially bounded
Borel field of operators T (x) : H(x) → K(x), and let the direct integral

T :=

∫ ⊕

X

T (x) dµ(x)

be the associated decomposable operator from L2(X ∗ H, µ) to L2(X ∗ K, µ).

(a) If T = 0, then T (x) = 0 for µ-almost all x.

(b) If {T ′(x) }x∈X is another essentially bounded Borel family such that

T =

∫ ⊕

X

T ′(x) dµ(x),

then T ′(x) = T (x) for µ-almost all x.

Proof. Clearly, it suffices to prove part (a). Let { fn } and { gm } be fundamental
sequences in L2(X ∗ H, µ) and L2(X ∗ K, µ), respectively. Then for each n and m,

(
T (x)fn(x) | gm(x)

)
= 0 for µ-almost all x.

Therefore T (x) = 0 almost everywhere.

Note that a decomposable operator such as T in (F.6) commutes with diagonal
operators: if ϕ is a bounded Borel function on X , then we can let TH

ϕ and TK
ϕ be the

corresponding diagonal operators on L2(X ∗ H, µ) and L2(X ∗ K, µ), respectively,
and we have

TTH
ϕ = TK

ϕ T. (F.7)
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Although we won’t prove it here, a bounded operator T from L2(X∗H, µ) → L2(X∗
K, µ) is decomposable if and only if (F.7) holds for all bounded Borel functions ϕ
[29, II.2.5 Theorem 1].5 The case where H = K is a bit more straightforward.

Theorem F.21. Suppose that X ∗H is a Borel Hilbert bundle and that µ is a finite
measure on X. Let T ∈ B

(
L2(X ∗H, µ)

)
. Then T is decomposable if and only if T

is in the commutant of the diagonal operators ∆(X ∗ H, µ).

Sketch of the Proof. In view of the above discussion, any decomposable operator
in B

(
L2(X ∗ H, µ)

)
belongs to ∆(X ∗ H, µ)′. Hence it suffices to see that any

T ∈ ∆(X ∗H, µ)′ is decomposable. Since the commutant is a von Neumann algebra,
and hence a C∗-algebra, it is spanned by its unitary elements. If T is unitary, the
result is a special case of (the proof of) part (c) of Proposition F.33 on page 423.6

Alternatively, we could use Corollary F.12 on page 414 to reduce to the case where
X ∗ H is trivial an appeal to [2, Theorem 4.2.1]. A complete proof of the theorem
can be found in [29, II.2.5 Theorem 1].

We can now formalize the notion of a Hilbert bundle isomorphism employed in
Appendices F.1 and F.2.

Definition F.22. Let X ∗ H and X ∗ K be Borel Hilbert bundles. Then X ∗ H

and X ∗K are isomorphic (as Borel Hilbert bundles) if there is a Borel bundle map

V̂ : X ∗ H → X ∗ K such that V (x) : H(x) → K(x) is a unitary for each x.

Remark F.23. If V̂ is an isomorphism of X ∗ H onto X ∗ K then,

V :=

∫ ⊕

X

V (x) dµ(x)

is a unitary from L2(X ∗ H, µ) onto L2(X ∗K, µ) for any finite Borel measure µ on
X .

Remark F.24. In the above remark about isomorphisms, it is critical that the
measure µ is used for both X ∗ H and X ∗ K. Even if H = K and T (x) = idH(x) for
all x, the corresponding operator need not even map L2(X ∗H, µ) into L2(X ∗K, ν)
for arbitrary finite Borel measures µ and ν — even if µ is equivalent to ν. In
particular, the direct integral notation used in (F.6) should be used only in the
case where the measures match up. We will discuss how to proceed when we have
bundles over different base spaces in Appendix F.4.

Let A be a separable C∗-algebra. A collection of representations πx : A →
B

(
H(x)

)
is called a Borel field of representations of A if { πx(a) } is a Borel field of

operators for all a ∈ A. In that case, we get a representation π of A on L2(X ∗H, µ)
given by π(a)f(x) := πx(a)f(x) for all f ∈ L2(X ∗ H, µ). The representation π is
called the direct integral of the { πx } and is denoted by

∫ ⊕

X

πx dµ(x).

5In essence, we prove this as part of the proof of Proposition F.33 on page 423; see page 423.
6See footnote 8 on page 423.
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Example F.25 (Remark E.15 on page 404 — take II). If X is a second countable
locally compact space and if π is a separable representation of C0(X), then Theo-
rem E.14 on page 404 and the discussion in Appendix E.1 implies that there is an
analytic Borel Hilbert bundle X ∗ H =

∐d=∞
d=1 Xd ×Hd and a finite Borel measure

µ on X such that π is equivalent to the representation ρµ on L2(X ∗H, µ) given by

ρµ(f)h(x) := f(x)h(x).

If m(x) := d for x ∈ Xd, then it is a matter of untangling definitions to see that

ρµ =

∫ ⊕

X

m(x) · evx dµ(x).

This justifies the assertions made in Remark E.15 on page 404. Furthermore, since
ρµ is essentially the direct sum of representations of the form πν⊗1, it follows from

the second half of Theorem E.17 on page 405 that ρµ
(
C0(X)

)′′
= ∆(X ∗ H, µ).

The above example is the key which allows us to find direct integral decompo-
sitions with various properties (cf., Proposition E.20 on page 406).

Proposition F.26 ([28, Theorem 8.3.2]). Suppose that ρ is a separable represen-
tation of a separable C∗-algebra A on Hρ and that C is an abelian von Neumann
subalgebra of ρ(A)′. Then there is a second countable locally compact Hausdorff
space X, a Borel Hilbert bundle X ∗ H, a finite measure µ on X, a Borel fam-
ily { πx } of representations of A on H(x) and a unitary isomorphism of Hρ onto
L2(X ∗ H, µ) intertwining ρ and the direct integral

π =

∫ ⊕

X

πx dµ(x) (F.8)

as well as C and the diagonal operators ∆(X ∗ H, µ).

Remark F.27. We call (F.8) a direct integral decomposition of ρ with respect to C.
If

ρ′ :=

∫ ⊕

Y

ρy dν(y)

is another direct integral decomposition of ρ, then (F.8) and ρ′ are equivalent via a
unitary intertwining the respective diagonal operators. Then Proposition F.33 on
page 423 applies.

Sketch of the Proof of Proposition F.26. Since Hρ is separable, there is a separable
C∗-subalgebra C0 of C which is dense in the weak operator topology [2, Proposi-
tion 1.2.3]. Then C0 is isomorphic to C0(X) for a second countable locally com-
pact space X [2, Theorem 1.1.1]. The identity map on B(Hρ) is a representation
of C0(X) and it follows from Example F.25 that Hρ is unitarily isomorphic to
L2(X ∗ H, µ) for a suitable Borel Hilbert bundle X ∗ H and finite measure µ, and
that the unitary intertwines the identity representation of C0 with the represen-
tation ρµ from that example. Therefore C = C′′

0 is intertwined with the diagonal
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operators ∆(X ∗ H, µ) = ρµ
(
C0(X)

)′′
. Thus ρ is equivalent to a representation π

on L2(X ∗ H, µ) such that π(A) ⊂ ∆(X ∗ H, µ)′. Using Corollary E.18 on page 406
(together with Corollary F.12 on page 414), it follows that there is a Borel field
{ πx } of representations on A on H(x) such that

π =

∫ ⊕

X

πx dµ(x). (F.9)

This completes the proof.

Example F.25 on the preceding page can be thought of as a decomposition of π
into irreducibles. Furthermore, the equivalence class of π is determined by the class
of the measure µ and the µ-almost everywhere equivalence class of the “multiplicity
function” m [2, §2.2]. Although this result is very satisfactory, it does not extend
to the general case. (Well, it works pretty well in case that A is of GCR — see
[2, Chap. 4] for example — but we want to allow for the possibility of non-GCR
algebras.) The difficulty is that, in the general case, the uniqueness of a direct
integral decomposition of a representation (Proposition F.33) is rather fussy and
depends strongly on the abelian subalgebra of π(A)′ used in the decomposition.7

Lemma F.28. Suppose that

π =

∫ ⊕

X

πx dµ(x)

is a direct integral of representations of a separable C∗-algebra A on a Hilbert space
L2(X ∗ H, µ). Then the map x 7→ kerπx is a Borel map of X into I(A). If
kerπx ∈ PrimA for all x, then x 7→ kerπx is a Borel map into PrimA.

Proof. Since the topology on PrimA is the relative topology coming from I(A), it
suffices to prove the first statement.

Let J be an ideal in A and let

OJ := { I ∈ I(A) : J 6⊂ I }.

Since the OJ ’s form a subbasis for the topology on I(A), it suffice to show that the
inverse image of each OJ is Borel; that is, we need to see that

B = { x ∈ X : πx(J) 6= { 0 } }

is Borel. Let { fi } be a fundamental sequence for X ∗ H in L2(X ∗ H, µ) and let
{ ai } be a countable dense subset of J . Then

Bijk := { x ∈ X :
(
πx(ai)fj(x) | fk(x)

)
6= 0 }

7For example, to get a direct integral decomposition in which almost all the component rep-
resentations πx are irreducible, it is necessary that the abelian subalgebra of π(A)′ be maximal
abelian [28, Lemma 8.5.1]. Unfortunately, in the non-GCR case, π(A)′ can have lots of maximal
abelian subalgebras, and the decompositions can have very little to do with one another [28, §8.5.3
& §18.9.8].
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is Borel and
B =

⋃

ijk

Bijk.

Thus B is Borel.

For later use, we need the following variation on Proposition E.19 on page 406.
It can be proved using Proposition E.19 and Corollary F.9 on page 413. It can
also be proved directly by mimicking the proof of Proposition E.19 (as found in
[2, §4.2]). A complete proof can be found in [29, II.2.3 Proposition 4(i)]. We’ll omit
the details here.

Proposition F.29. Suppose that X ∗ H is an analytic Borel Hilbert bundle over
an analytic Borel space X. Suppose that

T =

∫ ⊕

X

T (x) dµ(x) and Ti =

∫ ⊕

X

Ti(x) dµ(x) i = 1, 2, 3, . . .

are decomposable operators such that the sequence Ti → T in the strong operator
topology. Then there is a subsequence {Tij } and a a µ-null set N such that Tij (x) →
T (x) in the strong operator topology for all x ∈ X rN .

F.4 τ -isomorphisms

We want to expand our discussion at the beginning of Appendix F.3 so that we
can consider Hilbert space isomorphisms U of direct integrals L2(X ∗ H, µ) and
L2(Y ∗K, ν) over different spacesX and Y . We will want U to be “decomposable” in
an appropriate sense. For example, if we have a Borel isomorphism τ : X → Y , then
we could look for maps U(x) : H(x) → K

(
τ(x)

)
such that y 7→ U

(
τ−1(y)

)
f
(
τ−1(y)

)

is Borel if and only if x 7→ f(x) is Borel. If this map is to be isometric, it will be
convenient to assume that ν = τ∗µ so that τ is measure preserving.

Definition F.30. Suppose that X ∗ H and Y ∗ K are Borel Hilbert bundles and
that τ : X → Y is a Borel isomorphism. Then a family of unitaries V (x) : H(x) →
K

(
τ(x)

)
is called a τ-isomorphism if

x 7→
(
V (x)f(x) | g

(
τ(x)

))
(F.10)

is Borel for all f ∈ B(X ∗ H) and g ∈ B(Y ∗ K).

Remark F.31. If { ek } and { uj } are special orthogonal fundamental sequences
(Remark F.7 on page 412) for X ∗ H and Y ∗ K, respectively, then

(
V (x)f(x) | g

(
τ(x)

))

=
∑

k,j

(
f(x)|ej(x))

(
V (x)ej(x) | uk

(
τ(x)

))(
uk

(
τ(x)

)
| g

(
τ(x)

))
,

and it follows that it suffices to check (F.10) for f and g in a fundamental sequence
for X ∗ H and Y ∗ K, respectively.
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The terminology “τ -isomorphism” is justified by the following easy observation.
Note that the choice of measure in the range space is determined by τ .

Lemma F.32. Suppose that τ : X → Y is a Borel isomorphism and that
{V (x) }x∈X is a τ-isomorphism of X ∗ H onto Y ∗ K. Then if µ is a finite Borel
measure on X, there is a unitary

V : L2(X ∗ H, µ) → L2(Y ∗ K, τ∗µ)

given by V f
(
τ(x)

)
:= V (x)

(
f(x)

)
for all x ∈ X.

Proof. If f ∈ L2(X ∗H, µ), then h
(
τ(x)

)
= V (x)f(x) is in B(Y ∗K) since {V (x) } is

a τ -isomorphism. Then, using the definition of τ∗µ, we easily check that ‖h‖ = ‖f‖.
Thus V is certainly an isometry. If we letW

(
τ(x)

)
:= V (x)∗, then {W (y) } is a τ−1-

isomorphism implementing an inverse for V . Thus V is a unitary as claimed.

Since null sets are invisible to integral formulas, it is not always appropriate to
expect to get an everywhere defined isomorphism τ as above. Instead, there will be
a ν-null set N and a ν-null set M and an Borel isomorphism τ : X rN → Y rM .
Then we can define U as before with the understanding that Uf(y) or Uf

(
τ(x)

)

is zero if y ∈ M or x ∈ N . Of course in this situation, ν := τ∗µ is formally only a
measure on Y rM , but we interpret it as a measure on Y in the obvious way. We
will also make repeated use of the following observation: if N ′ ⊃ N is a µ-null set,
then τ(N ′ r N) is a ν-null set and τ restricts to a Borel isomorphism of X r N ′

onto Y rM ′ where M ′ = M ∪ τ(N ′ rN).

Using Lemma F.32, it is clear that a bona fide τ -isomorphism {V (x) } from
X ∗ H|XrN to Y ∗ K|YrM induces in a simple way a unitary

U :=

∫ ⊕

X

U(x) dµ(x) (F.11)

from L2(X ∗H, µ) to L2(Y ∗K, τ∗µ). We will simply say that this unitary is induced
by the τ -isomorphism {V (x) } via Lemma F.32. A straightforward variation on
Lemma F.20 on page 417 implies that the U determines the U(x) for µ-almost all
x. Thus if a unitary U is determined by a τ -isomorphism, then the unitaries U(x)
that appear in the decomposition (F.11) are essentially unique.

F.5 Uniqueness of Direct Integrals

If direct integral decompositions of a representation are going to be a useful replace-
ment for the decomposition of finite dimensional representations into irreducible
summands, then we are going to want some sort of uniqueness result under unitary
equivalence. The basic result is taken from [29, II.6.3 Theorem 4]. The key hypoth-
esis is that the unitary implementing the equivalence also intertwine the respective
diagonal operators.
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Proposition F.33. Let A be a separable C∗-algebra. Suppose that

π :=

∫ ⊕

X

πx dµ(x) and ρ :=

∫ ⊕

Y

ρy dν(y)

are direct integral representations on L2(X ∗ H, µ) and L2(Y ∗ K, ν), respectively.
Suppose that U : L2(X ∗ H, µ) → L2(Y ∗ K, ν) is an isomorphism implementing
an equivalence between π and ρ which also intertwines the respective algebras of
diagonal operators ∆(X ∗ H, µ) and ∆(Y ∗ K, ν). Then there is

(a) a µ-null set N and ν-null set M ,

(b) a Borel isomorphism τ : X rN → Y rM such that τ∗µ is equivalent to ν,

(c) an essentially unique τ-isomorphism from X ∗H|XrN to Y ∗K|YrM consisting
of unitaries V (x) : H(x) → K

(
τ(x)

)
for each x ∈ X rN such that

V f
(
τ(x)

)
= V (x)f(x) (x ∈ X rN)

induces a unitary V : L2(X ∗H, µ) → L2(Y ∗K, τ∗µ) with the properties that

(d) U = WV , where W : L2(Y ∗K, τ∗µ) → L2(Y ∗K, ν) is the natural isomorphism

Wf(y) =
d(τ∗µ)

dν
(y)

1
2 f(y), and

(e) such that V (x) implements an equivalence between πx and ρτ(x) for all x ∈
X rN .

If ϕ and ψ are bounded Borel functions on X and Y , respectively, and if Tϕ and

T̃ψ are the corresponding diagonal operators on L2(X ∗ H, µ) and L2(Y ∗ K, τ∗µ),

respectively, then V Tϕ = T̃ϕ◦τ−1V .

Proof. Since U induces an isomorphism of ∆(µ) and ∆(ν), we obtain an isomor-
phism Ψ of L∞(X,µ) onto L∞(Y, ν). Von Neumann’s Theorem (Corollary I.38 on
page 502) implies that there are N , M and τ as in parts (a) and (b) such that
Ψϕ(y) = ϕ

(
τ−1(y)

)
for y /∈M .

If ϕ ∈ Bb(X) and ψ ∈ Bb(Y ), then we let Tϕ and T̃ψ be the corresponding
diagonal operators on L2(X∗H, µ) and L2(Y ∗K, τ∗µ), respectively. Chasing through
the various maps shows that

WT̃ϕ◦τ−1W−1 = UTϕU
−1.

Then V := W−1U is an isomorphism of L2(X ∗H, µ) onto L2(Y ∗K, τ∗µ) satisfying

V Tϕ = T̃ϕ◦τ−1V. (F.12)

We need to see that V “decomposes” as a τ -isomorphism.8 (The V (x) will be
essentially unique since V is determined by U and W .) Let { fn } be a fundamental
sequence for X ∗ H in L2(X ∗ H, µ). Choose a representative gi ∈ L2(Y ∗ K, ν) for

8Notice that if X = Y and τ = id, then we recover the result — at least for unitary operators
— that the Decomposable operators coincide with the commutant of the diagonal operators.
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V fi. If r1, . . . , rn are complex rational numbers and if ϕ ∈ Bb(X), then we can
compute that

∫

XrN

|ϕ(x)|
∥∥∥

n∑

i=1

rigi
(
τ(x)

)∥∥∥ dµ(x)

=

∫

XrN

∥∥∥
n∑

i=1

riT̃ϕ◦τ−1V fi
(
τ(x)

)∥∥∥ dµ(x)

which, using (F.12), is

=

∫

XrN

∥∥∥
n∑

i=1

riV Tϕfi
(
τ(x)

)∥∥∥ dµ(x)

=

∫

YrM

∥∥∥
n∑

i=1

riV Tϕfi(y)
∥∥∥ dτ∗µ(y)

=
∥∥∥V

( n∑

i=1

riTϕfi

)∥∥∥

which, since ‖V ‖ = 1, is

≤
∥∥∥
n∑

i=1

riTϕfi

∥∥∥

=

∫

XrN

|ϕ(x)|
∥∥∥
n∑

i=1

rifi(x)
∥∥∥ dµ(x).

Since ϕ is arbitrary, there is a µ-null set N(r1, . . . , rn) ⊃ N such that

∥∥∥
n∑

i=1

rig
(
τ(x)

)∥∥∥ ≤
∥∥∥
n∑

i=1

rifi(x)
∥∥∥ (F.13)

provided x /∈ N(r1, . . . , rn). Since the set of finite sequences of complex rational
numbers is countable, there is a null set N ′ ⊃ N such that x /∈ N ′ implies that
(F.13) holds for any finite sequence of rationals. Thus if x ∈ X r N ′, then there
is a well defined operator V (x) : H(x) → K

(
τ(x)

)
such that ‖V (x)‖ ≤ 1 and such

that for all n
V (x)fn(x) = gn

(
τ(x)

)
(x /∈ N ′).

As described above, there is a τ∗µ-null set M ′ such that τ : X rN ′ → Y rM ′ is a
Borel isomorphism.

Let { hm } be a fundamental sequence for Y ∗ K in L2(Y ∗ K, τ∗µ). Then

y 7→
(
gn(y) | hm(y)

)

is Borel (on Y rM ′) for all n and m. Equivalently,

x 7→
(
gn

(
τ(x)

)
| hm

(
τ(x)

))
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is Borel (on X rN ′) for all n and m. Therefore

x 7→
(
V (x)fn(x) | hm

(
τ(x)

))
=

(
fn(x) | V (x)∗hm

(
τ(x)

))

is Borel for all n. It follows that

x 7→ V (x)∗hm
(
τ(x)

)

is in B(X ∗ H|XrN ′). Thus if f ∈ L2(X ∗ H, µ),

x 7→
(
f(x) | V (x)∗hm

(
τ(x)

))
=

(
V (x)f(x) | hm

(
τ(x)

))

is Borel for all m. Thus

h
(
τ(x)

)
:= V (x)f(x) (x /∈ N ′)

defines an element h ∈ B(Y ∗ K|YrM ′) Furthermore,

‖h‖2 :=

∫

Y

‖h(y)‖2 dτ∗µ(y)

=

∫

X

‖h
(
τ(x)

)
‖2 dµ(x)

=

∫

X

‖V (x)
(
f(x)

)
‖ dµ(x)

≤
∫

X

‖f(x)‖ dµ(x)

= ‖f‖2.

Thus we get a bounded operator V ′ from L2(X ∗ H, µ) to L2(Y ∗ K, τ∗µ) defined
by V ′f

(
τ(x)

)
:= V (x)

(
f(x)

)
. In particular, V ′fi = V fi by construction, and if

ϕ ∈ L∞(µ), then using (F.12) we have

V ′Tϕfi = T̃ϕ◦τ−1V ′fi

= T̃ϕ◦τ−1V fi

= V Tϕfi.

Since the Tϕfi span a dense subset (Lemma F.17 on page 415), we have V ′ = V .
To complete the proof of part (c), we need to see that V (x) is a unitary for almost

all x. It follows from the above that if g ∈ B(Y ∗ K), then f(x) := V (x)∗g
(
τ(x)

)

defines an element in B(X ∗ H). Since ‖V (x)∗‖ = ‖V (x)‖ ≤ 1 for all x, we have

‖f‖2 =

∫

X

‖V (x)∗g
(
τ(x)

)
‖ dµ(x)

≤
∫

X

‖g
(
τ(x)

)
‖ dµ(x)

=

∫

Y

‖g(y)‖2 dτ∗µ(y)

= ‖g‖2.
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Thus there is a bounded operator V ′′ : L2(Y ∗ K, τ∗µ) → L2(X ∗ H, µ) given by
V ′′g(x) := V (x)∗g

(
τ(x)

)
, and we have

(V ′′f | g) =

∫

X

(
V (x)∗f

(
τ(x)

)
| g(x)

)
dµ(x)

=

∫

X

(
f
(
τ(x)

)
| V (x)g(x)

)
dµ(x)

=

∫

Y

(
f(y) | V g(y)

)
dτ∗µ(y)

= (f | V g) = (V ∗f | g).

Thus V ′′ = V ∗. Since V is unitary, both

V ∗V =

∫ ⊕

X

V (x)∗V (x) dµ(x) and V V ∗ =

∫ ⊕

X

V (x)V (x)∗ dµ(x)

are the identity, and V (x) is unitary for almost all x as required.
Define a representation π′ of A on L2(Y ∗ K, τ∗µ) by π′(a) := V π(a)V −1, and

observe that

π′ =

∫ ⊕

Y

π′
y d(τ∗µ)(y),

where

π′
τ(x)(a) = V (x)πx(a)V (x)−1 (x /∈ N).

Furthermore, π′ is equal to W−1ρW which is equal to

∫ ⊕

Y

ρy d(τ∗µ)(y).

Since π′(a) = W−1ρ(a)W , there is a null set M(a) ⊃M such that

π′
y(a) = ρy(a) (y /∈M(a)). (F.14)

Since A is separable, there is a null set MA ⊃ M such that (F.14) holds for all
a when y /∈ MA. Thus there is a µ-null set NA such that V (x) implements an
equivalence between πx and ρτ(x) for all x /∈ NA. This proves part (e). The last
assertion is (F.12).

An easy application of Proposition F.33 arises when we have bundles X ∗ H

and X ∗ K in which the intertwining unitary commutes with actions of L∞(X) as
diagonal operators.

Corollary F.34. Let A be a separable C∗-algebra and suppose that

π =

∫ ⊕

X

πx dµ(x) and ρ =

∫ ⊕

X

ρx dµ(x)
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are direct integral decompositions on L2(X ∗ H, µ) and L2(X ∗ K, µ), respectively.
Suppose that U : L2(X ∗H, µ) → L2(X ∗K, µ) is a unitary implementing an equiva-
lence between π and ρ which commutes with the diagonal operators; more precisely,
if ϕ is bounded Borel function on X and if Tϕ and T ′

ϕ are the corresponding diag-
onal operators on L2(X ∗ H, µ) and L2(X ∗ K, µ), respectively, then UTϕ = T ′

ϕU .
Then πx is equivalent to ρx for µ-almost all x.

Proof. An examination of the beginning of the proof of Proposition F.33 on page 423
shows that we can apply that result with τ = idX and W = I.

F.6 Isomorphism Bundle

Definition F.35. Let X ∗H be a Borel Hilbert bundle with Borel sections B(X,H).
The isomorphism bundle of X ∗ H is the set

Iso(X ∗ H) := { (x, V, y) : V : H(y) → H(x) is a unitary }

endowed with the smallest Borel structure such that, for all f, g ∈ B(X,H),

ψf,g(x, V, y) :=
(
V f(y) | g(x)

)

define Borel functions from Iso(X ∗ H) to C.

The isomorphism bundle admits a partially defined multiplication making it into
a “groupoid”. Two elements (x, V, y) and (y′, U, z) are composable if y = y′, then
their product is (x, V, y)(y, U, z) := (x, V U, z). Elements of the form (x, IH(x), x)
act as identities or units, and each element has an inverse: (x, V, y)−1 := (y, V ∗, x).
Groupoids and their relevance to our interests here are discussed briefly in Re-
mark G.26 on page 450.

Remark F.36. If X is a standard Borel space, then so is Iso(X ∗ H). Using Corol-
lary F.12 on page 414, X ∗H is Borel isomorphic to

∐
nXn×Hn for Hilbert spaces

Hn and {Xn } is a Borel partition ofX . Then it is not hard to check that Iso(X∗H)
is Borel isomorphic to

∐
nXn × U(Hn) × Xn where U(Hn) is the unitary group

of Hn endowed with its standard Borel structure coming from the (Polish) weak
operator topology and Xn × U(Hn) ×Xn has the product Borel structure.

Remark F.37. Note that a function U : Z → Iso(X ∗ H) is Borel if and only if
ψf,g ◦U is Borel for all f and g. In fact, it suffices to take f and g in fundamental
sequences.

F.7 Product Borel Structure

Let G be a second countable locally compact group. Let X ∗ H be a Borel Hilbert
bundle with fundamental sequence { fn }. Let r : G × X → X be the projection
onto the second factor.9 We will have special need for the pull-back of X ∗H via r

9Although we’ll normally keep groupoid structure and terminology in the background, we use
r for this map as it is the “range” map for the relevant groupoid structure on G × X. See
Remark G.26 on page 450.
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and will use the notation r∗(X ∗ H) in place of X ∗ Hr. Note if g ∈ B(r∗(X ∗ H)),
then g(s, x) ∈ H(x). Since { (s, x) 7→ fn(x) }∞n=1 is a fundamental sequence for
r∗(X ∗ H), f ◦ r ∈ B

(
r∗(X ∗ H)

)
for all f ∈ B(X ∗ H) and

(s, x) 7→
(
f(x) | g(s, x)

)

Borel for any f ∈ B(X ∗ H).
Normally, we treat elements of L2(X) or even L2(X ∗H, µ) as functions. Occa-

sionally we have to admit that these elements are formally equivalence classes, and
even more infrequently, it makes a difference. The next proposition will allow us to
deal with such an instance. When such distinctions are necessary, will write [f ] to
denote the almost everywhere equivalence class of a function f .

Proposition F.38. Suppose that f ∈ L2(X ∗ H, µ). Let [f ] be the class of f in
L2(X ∗ H, µ). If V is a representation of G on L2(X ∗ H, µ) and if µG is Haar
measure on G, then there is a g ∈ B(r∗(X ∗ H)) such that for µG-almost all s,

V (s)[f ] = [g(s, ·)].
Proof. Since G is second countable, µG is σ-finite and there is a finite Borel measure
ν on G which is equivalent to µG. Thus if f ∈ L2(X ∗ H, µ), then (s, x) 7→ f(x) is
in L2

(
r∗(X ∗ H), ν × µ

)
. Fubini’s Theorem implies that

s 7→
∫

X

(
h(s, x) | f(x)

)
dµ(x) =

(
h(s, ·) | f

)

is Borel and ν-integrable for all h ∈ L2
(
r∗(X ∗H), ν × µ

)
. Thus, after modification

on a null set, s 7→ h(s, ·) is a weakly Borel square integrable function of G into
L2(X ∗ H, µ) with norm ‖h‖. Since s 7→ V (s)f is continuous,

s 7→
(
h(s, ·) | V (s)f

)

is Borel and we can define a bounded linear functional on L2
(
r∗(X ∗ H), ν × µ

)
by

Φ(h) :=

∫

G

(
h(s, ·) | V (s)f

)
dν(s).

The Riesz Representation Theorem implies that there is a g ∈ L2
(
r∗(X ∗H), ν×µ

)

such that Φ(h) = (h | g).
Let { en } be an orthonormal basis for L2(X ∗ H, µ). Then for all ϕ ∈ Cc(G),

(s, x) 7→ ϕ(s)en(x) is in L2
(
r∗(X ∗ H), ν × µ

)
and

∫

G

ϕ(s)
(
en | V (s)f − g(s, ·)

)
dν(s) = 0.

Thus there is a ν-null set Mn such that
(
en | V (s

)
f − g(s, ·)) = 0 if s /∈Mn.

If M :=
⋃
Mn, then provided s /∈M , we have

V (s)[f ] = [g(s, ·)]
as required.
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F.8 Measurable Sections

Unlike the discussion in Appendix B, in this Chapter we are working almost ex-
clusively with Borel functions and Borel sections in particular. Of course, one
advantage of Borel functions is that they are intrinsic to the space and do not
depend on a choice of measure. It also seems appropriate to work in the Borel
category when we are working with analytic and Standard Borel spaces where it
is important that our σ-algebras actually be the Borel sets coming from a Polish
topology somewhere. However, once we fix a measure µ, we could, as in [56] and
[29], work with measurable sections of Borel Hilbert bundles. That is, we could
define a section to be measurable if

x 7→
(
f(x) | fn(x)

)
(F.15)

is µ-measurable (that is, Borel with respect to the σ-algebra of sets in X for the
completion of µ). Then Proposition F.6 on page 411 is still valid and the theory is
essentially unchanged. That one arrives at the same direct integrals L2(X ∗ H, µ)
follows from the observation that, as in the scalar case, every measurable section is
almost everywhere equal to a Borel section.

Remark F.39. If f is measurable section of X ∗ H, and if { fn } is a fundamental
sequence, then there is a Borel function bn such that

bn(x) =
(
f(x) | fn(x)

)

off a Borel µ-null set Nn. Thus

x 7→
(
f(x) | fn(x

)
)

is Borel off N :=
⋃
Nn. Let

g(x) :=

{
0x if x ∈ N , and

f(x) if x /∈ N .

Then g ∈ B(X ∗ H), and f = g µ-almost everywhere.





Appendix G

Effros’s Ideal Center
Decomposition

The approach to proving the Effros-Hahn conjecture used by Gootman, Rosenberg
and Sauvageot requires that we decompose representations into representations
with primitive kernels. The normal means of decomposing arbitrary representa-
tions into irreducibles, or even factor representations, can’t be done in manner that
is sufficiently unique to suit our methods. Sauvageot’s idea was to use homoge-
neous representations, and to invoke a structure theory, due to Effros, that allows
a very useful decomposition of arbitrary representations into a direct integral of
homogeneous representations.

G.1 Effros’s Ideal Center Decomposition

Before we launch into the details of Effros’s theory, we should define homogeneous
representations and investigate a few of their properties. Recall that if E is a
projection in the commutant π(A)′ of π, then πE denotes the subrepresentation of
π acting on EHπ.

Definition G.1. A (possibly degenerate) representation of a C∗-algebra A is called
homogeneous if

kerπE = kerπ

for every nonzero projection E ∈ π(A)′.

Notice that π is homogeneous exactly when every (possibly degenerate) non-
trivial subrepresentation has the same kernel as π. Hence if π is nonzero and
homogeneous, then π must be nondegenerate. Also, if π is homogeneous and if
E ∈ π(A)′ is a nonzero projection, then π(a) 7→ πE(a) is a well-defined, injective
∗-homomorphism of π(A) onto π(A)E. Since π(A) and π(A)E are C∗-subalgebras
of B(Hπ), it follows that π(a) 7→ π(a)E is isometric for all a ∈ A. This is the harder
half of the following useful characterization of homogeneous representations.

431



432 Effros’s Ideal Center Decomposition

Lemma G.2. If π is a (possibly degenerate) representation of A on H, then π is
homogeneous if and only if

π(a) 7→ πE(a)

is isometric on π(A) for every nonzero projection E ∈ π(A)′.

Suppose that P is a projection in π(A)′. Let M = PH be the space of P , and
define

[π(A)′M] := span{Th : T ∈ π(A)′ and h ∈ M}.
Let Q be the projection onto [π(A)′M]. Then Q is central — that is, Q ∈ π(A)′ ∩
π(A)′′. The corresponding subrepresentation of π, πQ is called the central cover of
πE . Central covers play a big role in the general decomposition theory of type I
representations (cf., e.g., [2, §2.1]). Our interest in central covers stems from a
corollary to the next observation.

Lemma G.3. Suppose that π is a (possibly degenerate) representation of a C∗-
algebra A on H. If P is a projection in π(A)′ and if πQ is the central cover of πP ,
then

kerπQ = kerπP .

Proof. Let M := PH. Note that a ∈ kerπP if and only if π(a)h = 0 for all
h ∈ M. Since M ⊂ [π(A)′M], a ∈ kerπQ implies that a ∈ kerπP . To prove
the reverse inclusion, let a ∈ kerπP . To see that a ∈ kerπQ, it will suffice to see
that π(a)Th = 0 for all T ∈ π(A)′ and h ∈ M. But π(a)Th = Tπ(a)h = 0 if
a ∈ kerπP .

Corollary G.4. Suppose that π is a factor representation of a C∗-algebra. Then
π is homogeneous.

Proof. Suppose that P is a nonzero projection in π(A)′. Since the center of π(A)′′

is trivial, the central cover of πP is π. Therefore kerπP = kerπ by Lemma G.3.

The converse of Corollary G.4 is false. If A is separable and not type I, then A
has inequivalent irreducible representations π and ρ with the same kernel [126, The-
orem 6.8.7]. Since π and ρ are irreducible, and therefore have trivial commutants,
the commutant of π ⊕ ρ consists of operators of the form α1Hπ ⊕ β1Hρ , where α
and β are complex constants. It follows easily that π ⊕ ρ is homogeneous and not
factorial.

Recall that if π is a (possibly degenerate) representation of A on H, then essπ
is the subrepresentation of π on the essential subspace of H given by

span{ π(a)h : a ∈ A and h ∈ H}.

Thus π = essπ ⊕ 0, where 0 denotes the zero representation on the orthogonal
complement of the essential subspace for π. If I ∈ I(A) is an ideal in A, then
we will write e(I), or eπ(I) if there is some ambiguity about which representation
we’re talking about, for the orthogonal projection onto the essential subspace of
the restriction π|I of π to I.
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Lemma G.5. Suppose that π is a (possibly degenerate) representation of A on
H. If I ∈ I(A) and if { un } is an approximate identity for I, then π(un) → e(I)
in the strong operator topology on B(H). In particular, e(I) belongs to the center
π(A)′ ∩ π(A)′′ of the von Neumann algebra generated by π(A).

Proof. By definition, e(I) is the projection onto the subspace

M = span{ π(a)h : a ∈ I and h ∈ H}.

But if a ∈ I, then π(un)π(a)h = π(una)h → π(a)h. It follows that π(un)h′ → h′

for all h′ ∈ M. But if h′′ ∈ M⊥, then π(a)h′′ = 0 for all a ∈ I. If h ∈ H, then
h = h′ + h′′ with h′ ∈ M and h′′ ∈ M⊥. Thus π(un)h = π(un)h

′ → h′ = e(I)h.
This proves the first assertion and that e(I) ∈ π(A)′′ (which is the strong

operator closure of π(A)). Since e(I) is the projection onto an invariant subspace,
we certainly also have e(I) ∈ π(A)′.

In [45], Effros calls Q(I) := 1H − e(I) the ideal center projection associated to
I.

Definition G.6. Suppose that π is a (possibly degenerate) representation of a C∗-
algebra A on H. The von Neumann algebra IC(π) generated by the ideal center
projections Q(I), for I ∈ I(A), is called the ideal center for π.

Remark G.7. Notice that IC(π) is a subalgebra of the center π(A)′ ∩ π(A)′′. In
particular, IC(π) is an abelian von Neumann algebra. We can also view IC(π) as
the von Neumann algebra generated by the e(I)’s.

Proposition G.8. Let π be a (possibly degenerate) representation of A on H. Then
π is homogeneous if and only if IC(π) = C1H.

Proof. If IC(π) 6= C1H, then there is an ideal center projection Q = Q(I) which
equals neither 0 nor 1H. Since π|I is the zero representation on QH, we must have
I ⊂ kerπQ. Since Q 6= 1H, I 6= { 0 }. Let { un } be an approximate identity for
I. If h ∈ (QH)⊥, then π(un)h → h by Lemma G.5. Thus for large n, un /∈ kerπ.
Thus kerπQ 6= kerπ, and π is not homogeneous (since Q 6= 0).

If π is not homogeneous, then there is a nonzero projection P ∈ π(A)′ such that

kerπP 6= kerπ. (G.1)

Let Q = Q(kerπP ). If { en } is an approximate identity for kerπP , then π(en)P = 0
for all n. Since π(en) → 1H − Q, we have (1H − Q)P = 0. Hence 0 6= P ≤ Q.
But if Q = 1H, then ess(π|kerπP ) = 0. This implies that kerπP ⊂ kerπ. Since we
trivially have kerπ ⊂ kerπP , this contradicts (G.1). Thus Q is a nontrivial ideal
center projection, and IC(π) 6= C1H.

Recall that an ideal I ∈ I(A) is prime if I 6= A and if whenever J,K ∈ I(A)
satisfy JK ⊂ I, then either J ⊂ I or K ⊂ I. All primitive ideals are prime and
the converse holds for separable C∗-algebras (cf., [139, Proposition A.17 and Theo-
rems A.49 and A.50]). Now we can establish the connection between homogeneous
representations and primitive ideals.
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Corollary G.9. Suppose that π is a nonzero homogeneous representation of a C∗-
algebra A on H. Then kerπ is a prime ideal in A. In particular, if A is separable,
then kerπ is a primitive ideal.

Proof. Since kerπ 6= A, it suffices to show that if J,K ∈ I(A) satisfies JK ⊂ kerπ,
then either J ⊂ kerπ or K ⊂ kerπ. Since π is homogeneous, Q(K) is either 0 or
1H. Equivalently, e(K) is either 0 or 1H. Recall that e(K) is the projection onto

M := span{ π(b)h : b ∈ K and h ∈ H}.

If a ∈ J and b ∈ K, then π(a)π(b)h = π(ab)h = 0. Thus, π(J)M = { 0 }. If
e(K) = 1H, then M = H and J ⊂ kerπ.

On the other hand, if e(K) = 0, then K ⊂ kerπ. Thus kerπ is prime.

Lemma G.10. Suppose that X ∗ H is an analytic Borel Hilbert bundle over an
analytic space X.1 Let

π =

∫ ⊕

X

πx dµ(x)

be a direct integral of representations of a separable C∗-algebra on L2(X ∗H, µ). If
I is an ideal in A, then

eπ(I) =

∫ ⊕

X

eπx(I) dµ(x).

Proof. Let { ui } be an approximate identity for I. Then

eπ(I) = lim
i
π(ui) and eπx(I) = lim

i
πx(ui) (G.2)

in the strong operator topology. Since eπ(I) ∈ π(A)′′ and ∆(X ∗H, µ) ⊂ π(A)′, we
have eπ(I) ∈ ∆(X ∗ H, µ)′ and eπ(I) is decomposable:

eπ(I) =

∫ ⊕

X

eπ(I)(x) dµ(x).

It follows from the left-hand side of (G.2) and Proposition F.29 on page 421 that,
after passing to a subsequence and relabeling, πx(ui) → eπ(I)(x) in the strong
operator topology for µ-almost every x. Hence, the result follows from the right-
hand side of (G.2).

Remark G.11. If 1 ≤ n ≤ ℵ0 and if π is a homogeneous representation of A, then
n ·π is homogeneous. To see this, notice that π is homogeneous if and only if given
an ideal J ∈ I(A) and a approximate identity { ui } for J , then the strong operator
limit of π(ui) is either 0 of IHπ . Thus π is homogeneous if and only if n · π is.

1With the sole exception of Appendix F.1, we will use “Borel Hilbert bundle” to signify an
analytic Borel Hilbert Bundle over an analytic Borel space X.
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To prove Effros’s decomposition theorem, we’ll need a Borel selection result for
representations. To discuss this, it’s probably best to start with the treatment in
section 4.1 of [2]. Let A be a separable C∗-algebra and H a separable complex
Hilbert space. We let rep(A,H) be the set of ∗-homomorphisms of A into B(H).
(Thus π ∈ rep(A,H) is a representation exactly when it is nondegenerate.2) We
give rep(A,H) the smallest topology for which

π 7→
(
π(a)h | k

)

is continuous for all a ∈ A and all h, k ∈ H. Since

‖π(a)h− k‖2 =
(
π(a∗a)h | h

)
− 2 Re

(
π(a)h | k

)
+ ‖k‖2,

π 7→ π(a)h is continuous for all a ∈ A and h ∈ H.3 Let { an } and { hn } be dense
sequences in the unit balls of A and H, respectively. It is not hard to check that

d(π, ρ) :=

∞∑

n,m=1

2−n−m‖π(an)hm − ρ(an)hm‖

is a metric on rep(A,H) which is compatible with the given topology. Some more
work is required to see that d is a complete metric and that rep(A,H) is second
countable (cf. [26, Lemme 1]). Thus rep(A,H) is a Polish space.

We let rephom(A,H) be the set of homogeneous representations of A (including
the zero representation), and we let repnh(A,H) be its complement: the set of
nonhomogeneous ∗-homomorphisms of A into B(H). We let P (H) be the set of
projections in B(H), and let P0(H) the set P (H)r{ 0 } of nonzero projections. We
give P (H) and P0(H) the relative Borel structure as subsets of the unit ball

B(H)1 := {T ∈ B(H) : ‖T ‖ ≤ 1 }

equipped with the weak operator topology.

Theorem G.12. The set repnh(A,H) of nonhomogeneous ∗-homomorphisms of A
into B(H) is an analytic Borel space in its relative Borel structure. Furthermore

E := { (π, P ) ∈ repnh(A,H) × P0(H) :

P ∈ π(A)′ and π(a) 7→ π(a)P is not an isometry on π(A). } (G.3)

is a Borel subset of the standard Borel space rep(A,H)×P0(H) (and hence a stan-
dard Borel space in its relative Borel structure).

Remark G.13. In [45, Theorem 1.7], Effros proves that both rephom(A,H) and
repnh(A,H) are Borel subsets of rep(A,H), and hence that both are standard Borel
spaces. However, for our purposes (Theorem G.14 on page 437), it is sufficient to
have only that repnh(A,H) is an analytic Borel space. Since this is a bit easier to
establish, we have settled for the weaker assertion.

2Recall that we have reserved the term “representation” for nondegenerate homomorphisms of
a C∗-algebra into B(H).

3As pointed out in [2], the topology on rep(A,H) is also generated by the functions π 7→ π(a)h.
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Proof. By Lemma D.37 on page 391, B(H)1 is a Polish space in the weak operator
topology. Since T 7→ T ∗ is continuous in the weak operator topology,

B(H)s.a.1 := {T ∈ B(H)1 : T = T ∗ }

is also Polish. Let { en } be an orthonormal basis for H. If T = T ∗, then

(T 2h | k) = (Th | Tk) =
∑

n

(Th | en)(en | Tk).

Since the pointwise limit of Borel functions is Borel,

T 7→ (T 2h | k)

is Borel on B(H)s.a.1 . If

B(n,m) := {T ∈ B(H)s.a.1 : |(T 2en | em) − (Ten | em)| = 0 },

then B(n,m) is Borel and

P (H) =
⋂

n,m

B(n,m)

is Borel and equals the set of orthogonal projections in B(H). Thus the set P0(H) =
P (H) r { 0 } of nonzero projections is a standard Borel space. Since

(
π(a)Th | k

)
=

∑(
Th | en

)(
π(a)en | k

)
, and

(
Tπ(a)h | k

)
=

∑(
π(a)h | en

)(
Ten | k

)
,

it follows that
(π, T ) 7→

((
π(a)T − Tπ(a)

)
h | k

)

is Borel on rep(A,H) ×B(H)s.a.1 for all a ∈ A and h, k ∈ H. Let

P (a, n,m) := { (π, P ) ∈ rep(A,H) × P0(H) :
((
π(a)P − Pπ(a)

)
en | em

)
= 0 }.

Then each P (a, n,m) is Borel. Therefore if { ak } is dense in A, then

C := { (π, P ) ∈ rep(A,H) × P0(H) : P ∈ π(A)′ } =
⋂

k,n,m

P (ak, n,m) (G.4)

is a Borel subset of the standard Borel space rep(A,H) × P0(H). If (π, P ) ∈ C,
then

‖π(a)Ph‖2 =
(
π(a∗a)h | Ph

)

=
∑(

π(a∗a)h | ek
)(
ek | Ph

)
.

Therefore both

(π, P ) 7→ ‖π(a)Ph‖ and (π, P ) 7→ ‖π(a)h‖
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are Borel functions on C for all a ∈ A and h ∈ H. If { hn } is dense in the unit
sphere of H, then

‖π(a)P‖ = ‖πP (a)‖ = sup
n

‖π(a)Phn‖.

Therefore both
(π, P ) 7→ ‖π(a)P‖ and (π, P ) 7→ ‖π(a)‖

are Borel. Thus

D(a) := { (π, P ) ∈ C : ‖πP (a)‖ = ‖π(a)‖ }
is a Borel set. Since A is separable, and since π is homogeneous exactly when
‖πP (a)‖ = ‖π(a)‖ for all a ∈ A and P ∈ π(A)′ ∩ P0(H),

D := { (π, P ) ∈ C : π(a) 7→ π(a)P is isometric on π(A) } (G.5)

is Borel.
Let E = CrD. Then E a Borel subset of the standard Borel space rep(A,H)×

P0(H) (in the product Borel structure), and coincides with the set described by
(G.3). On the other hand, σ : E → rep(A,H) given by σ(π, P ) = π is a Borel map
into a Polish space with image exactly repnh(A,H). Since E is a standard Borel
space, σ(E) = repnh(A,H) is analytic by [2, Theorem 3.3.4].

Theorem G.14 ([45, Theorem 1.8]). Suppose that µ is a finite Borel measure on
a second countable locally compact space X and that X ∗H is a Borel Hilbert bundle
over X. Let

π :=

∫ ⊕

X

πx dµ(x)

be a direct integral decomposition of a representation π of a separable C∗-algebra
A on L2(X ∗ H, µ). Let IC(π) be the ideal center of π and ∆(X ∗ H, µ) the diag-
onal operators on L2(X ∗ H, µ). Then IC(π) ⊂ ∆(X ∗ H, µ) if and only if πx is
homogeneous for µ-almost all x.

For the proof, we need some preliminaries on things measurable (as compared
with Borel).

Lemma G.15. Suppose that µ is a finite measure on X and that τ : X → P (H)
is µ-measurable. Then there is a Borel null set N such that f : X rN → P (H) is
Borel.

Proof. Let { hn } be a countable dense subset of the unit sphere in H. Since P (H)
inherits its standard Borel structure from the weak operator topology, τ : X →
P (H) is Borel (resp. µ-measurable) if and only if x 7→

(
τ(x)hn | hm

)
is Borel (resp.

µ-measurable) for all n and m (Lemma D.20 on page 375). Thus if τ : X → P (H)
is measurable, then there are null sets Nn,m such that x 7→

(
τ(x)hn | hm

)
is Borel

off Nn,m. Let

N =
⋃

n,m

Nn,m.

Then τ is Borel on X rN .
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Remark G.16 (Absolutely measurable). If (X,B) is a Borel space, then a subset
A ⊂ X is called absolutely measurable if it is µ-measurable for every finite Borel
measure µ on (X,B). This means that given µ, then there are Borel sets Eµ and
Fµ such that Eµ ⊂ A ⊂ Fµ and such that µ(Fµ r Eµ) = 0. Then collection of
absolutely measurable subsets of X is a σ-algebra A in X which contains B. Since
analytic subsets of a Polish space are absolutely measurable [2, Theorem 3.2.4], it
is often the case that A strictly contains B. A function f : (X,B) → (Y,M ) is
absolutely measurable if it is Borel from (X,A ) to (Y,M ); that is, f is absolutely
measurable if the inverse image of every Borel set in Y is absolutely measurable in
X . Alternatively, f : X → Y is absolutely measurable if its µ-measurable for all
finite Borel measures on X .

Proof of Theorem G.14. Using Corollary F.12 on page 414, it will suffice to treat
the case where X ∗H is a trivial bundle X×H for a fixed Hilbert space H. Assume
that IC(π) ⊂ ∆(X ∗ H, µ) = L ⊗ 1H. If the conclusion of the theorem were
false, there would be a set S ⊂ X such that µ(S) > 0 and such that πx was
nonhomogeneous for all x ∈ S. After replacing X by S and µ by µ|S , we may
as well assume that πx is not homogeneous for all x in X . Therefore, for each
x ∈ X , there is a nonzero projection Px ∈ πx(A)′ such that πx(a) 7→ πx(a)Px is
not isometric on πx(A). The problem is that we want to choose the Px so that
x 7→ Px is a Borel function. The gymnastics required for this are provided largely
by Theorem G.12 on page 435. Let E be as in (G.3) and define

σ : E → repnh(A,H) by σ(π, P ) = π.

Since Theorem G.12 implies that E and repnh(A,H) are both analytic Borel spaces,
there is an absolutely measurable cross-section

c : repnh(A,H) → E

for σ [2, Theorem 3.4.3]. Since, by assumption,

x 7→
(
πx(a)h | k

)

is Borel for all a ∈ A and h, k ∈ H, it follows that τ(x) := πx defines a Borel map
τ : X → rep(A,H). Let ν := τ∗µ be the push-forward measure on rep(A,H). Then
c is ν-measurable, and it is not hard to see that c ◦ τ is a µ-measurable function
from X to E. Since the projection on the second factor, pr2, is certainly Borel from
E to P0(H), there is a µ-measurable map x → Px (given by pr2 ◦c ◦ τ) of X into
P0(H) such that (πx, Px) ∈ E for all x ∈ X . Lemma G.15 on the previous page
implies that there is a Borel null set N ⊂ X such that x 7→ Px is Borel on X rN .

We claim there is a Borel set T ⊂ X r N , an a ∈ A and a ǫ > 0 such that
µ(T ) > 0 and such that

‖πx(a)Px‖ ≤ ‖πx(a)‖ − ǫ for all x ∈ T . (G.6)

Suppose the claim is false. Let { ak } be a dense sequence in A. Then

T (n,m) := { x ∈ X : ‖πx(an)Px‖ ≤ ‖πx(an)‖ −
1

m
}
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has measure zero. Then
X r

⋃

n,m

T (n,m) (G.7)

is conull. If x belongs to (G.7), then

‖πx(an)Px‖ = ‖πx(an)‖ for all n.

Thus πx(a) 7→ ‖πx(a)Px‖ is an isometry which contradicts our choice of Px. This
proves the claim and there is a set T such that (G.6) holds on T for a given a ∈ A
and ǫ > 0. Define F ∈ Bb(X,H) by

F (x) =

{
Px if x ∈ T , and

0 otherwise.

Let P := LF be the corresponding decomposable operator, and let E = L1T be the
diagonal operator corresponding to T . Then P ∈ π(A)′ and

‖π(a)P‖ = ess supx∈T ‖πx(a)Px‖
≤ ess supx∈T ‖πx(a)‖ − ǫ

= ‖π(a)E‖ − ǫ.

(G.8)

Let I := kerπP , and let Q = Q(I) be the ideal center projection onto the com-
plement of the essential subspace of π|I . If { un } is an approximate identity
for I, then π(un) converges to 1H − Q in the strong operator topology. But
π(un)P = πP (un) = 0 for all n. Thus (1H − Q)P = 0, and we have Q ≥ P .
Thus kerπQ ⊂ kerπP . On the other hand, if a ∈ kerπP , then

π(a) = lim
n
π(aun) = π(a)(1H −Q).

Thus π(a)Q = 0, and a ∈ kerπQ. Therefore

kerπQ = kerπP . (G.9)

But, by definition, Q ∈ IC(π). Thus by assumption, Q = L1W for a Borel set
W ⊂ X . Since Px 6= 0 for all x ∈ T and since Q ≥ P , we must have W ⊃ T
µ-almost everywhere. Thus

E = L1T ≤ Q = L1W . (G.10)

But (G.8) and (G.9) imply that

‖π(a)Q‖ = ‖π(a)P‖ < ‖π(a)E‖.

But this contradicts (G.10). Therefore we conclude that πx is almost everywhere
homogeneous if IC(π) ⊂ ∆(X ∗ H, µ).

To prove the converse, suppose that πx is homogeneous for all x ∈ X . Let
I be an ideal in A and let E be the projection onto the essential subspace of
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π|I . Since projections of this form generate IC(π), it suffices to show show that
E ∈ ∆(X ∗H, µ). Let { un } be an approximate identity for I. Then π(un) converge
to E in the strong operator topology. Since E ∈ IC(π) ⊂ π(A)′ ∩π(A)′′ ⊂ π(A)′′ ⊂
∆(X ∗ H, µ)′, E is decomposable. Let E = LF for some F ∈ Bb(X,H). We can
assume that F (x) ∈ P (H) for all x. Using Proposition F.29 on page 421, we can
pass to a subsequence, relabel, and assume that πx(un) → F (x) in the strong
operator topology for µ-almost all x. Thus F (x) is almost everywhere a projection
in IC(πx). Since each πx is homogeneous, we can assume that F (x) is either 0 or
1H for all x ∈ X . Thus E = LF ∈ ∆(X ∗ H, µ) as required.

Corollary G.17. Suppose A is separable and that

π =

∫ ⊕

X

πx dµ(x)

is a direct integral representation on L2(X ∗ H, µ). If π is homogeneous, then for
almost all x, πx is homogeneous with kernel equal to kerπ.

Proof. Fix a ∈ A. Then ‖π(a)‖ = ess supx ‖πx(a)‖. Thus there is a null set N
such that x /∈ N implies ‖πx(a)‖ ≤ ‖π(a)‖. If π(a) = 0, then ‖πx(a)‖ = ‖π(a)‖ for
µ-almost all x. If ‖π(a)‖ > 0, let

Sn = { x : ‖πx(a)‖ < ‖π(a)‖ − 1

n
}.

Let En be the corresponding projection in π(A)′. Then

‖Enπ(a)‖ < ‖π(a)‖.

Since π is homogeneous, we must have En = 0 and µ(Sn) = 0. Thus ‖πx(a)‖ =
‖π(a)‖ for µ-almost all x. Since A is separable, there is a µ-null set M such that
x /∈M implies ‖πx(a)‖ = ‖π(a)‖ for all a ∈ A. Thus kerπx = kerπ for all x /∈M .

On the other hand, IC(π) = CIHπ by Proposition G.8 on page 433. Thus
IC(π) is a subalgebra of the diagonal operators ∆(H ∗H, µ), and Theorem G.14 on
page 437 implies that πx is homogeneous for µ-almost all x.

It should be kept in mind that if A is a separable C∗-algebra, then PrimA is a
standard Borel space (Theorem H.40 on page 477).

Definition G.18. Let ρ be a separable representation of a separable C∗-algebra
A. We say that ρ has an ideal center decomposition if there is a (standard) Borel
Hilbert Bundle PrimA ∗ H and a finite Borel measure µ on PrimA such that ρ is
equivalent to a direct integral decomposition

π =

∫ ⊕

PrimA

πP dµ(P )

on L2(PrimA ∗ H, µ) where each πP is homogeneous with kernel P .
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The terminology in the definition is at least partially justified by the following
result.

Lemma G.19. Suppose that PrimA∗H is a Borel Hilbert bundle, µ a finite measure
on PrimA and

π =

∫ ⊕

PrimA

πP dµ(P )

an ideal center decomposition on L2(PrimA∗H, µ). Then the ideal center IC(π) of
π is equal the algebra ∆(PrimA ∗H, µ) of diagonal operators on L2(PrimA ∗H, µ).

Proof. Let U ⊂ PrimA be an open subset in the hull-kernel topology on PrimA.
Let EU be the corresponding diagonal operator. Let

IU :=
⋂

{ J ∈ PrimA : J /∈ U }

be the ideal in A corresponding to U . Thus if P is a primitive ideal, then IU ⊂ P
if and only if P /∈ U . For any ideal I in A, let eP (I) be the essential projection for
πP |I . Since πP is homogeneous, eP (I) is either 0 or 1H(P ). In particular,

eP (IU ) =

{
1H(P ) if P ∈ U , and

0 if P /∈ U .

If e(I) is the essential projection for π|I , then Lemma G.10 on page 434 implies
that

e(IU ) =

∫ ⊕

PrimA

eP (IU ) dµ(P ) = EU .

But every ideal in A is of the form IU for some open set U . Thus the e(IU ) generate
IC(π). On the other hand, the EU generate ∆(PrimA∗H, µ) ∼= L∞(PrimA, µ).

To show that every representation has an ideal center decomposition, we have
to sharpen Theorem G.14 on page 437 slightly. Our proof is taken from [45, Theo-
rem 1.10] and [160, Lemme 1.10].

Proposition G.20. Suppose that µ is a finite Borel measure on a second countable
locally compact space X and that X ∗ H is a Borel Hilbert bundle over X. Let

π :=

∫ ⊕

X

πx dµ(x) (G.11)

be a direct integral decomposition of a representation π of a separable C∗-algebra
A on L2(X ∗ H, µ). Then ∆(X ∗ H, µ) = IC(π) if and only if there is conull set
Y ⊂ X such that πx is homogeneous for all x ∈ Y and such that kerπx 6= kerπy
for all distinct points x, y ∈ Y .

Proof. Suppose that ∆(X ∗ H, µ) = IC(π). If I is an ideal in A, then let Q(I) be
the corresponding ideal center projection. Thus if { un } is an approximate identity
for I, then 1H − Q(I) is the strong operator limit of π(un). Recall that IC(π) is
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generated by the Q(I). On the other hand, we can identify the lattice of projections
P in IC(π) with the Boolean σ-algebra B/N of Borel sets in X modulo the µ-null
sets. Clearly, P is countably generated — say by {Ei }. As IC(π) is generated by
the ideal center projections, and since each Ei belongs to a sublattice generated
by countably many ideal center projections (cf., e.g., [70, Chap. I §5 Theorem D]),
there is a sequence {Qi } of ideal center projections which generate P as a Boolean
σ-algebra. Let Si be a Borel set in X such that Qi = L1Si

. Define an equivalence
relation on X by

x ∼ y if and only if 1Si(x) = 1Si(y) for all i.

Then X/∼ is countably generated and is an analytic Borel space with the quotient
Borel structure [2, Corollary 2 to Theorem 3.3.5]. Let q : X → X/∼ be the
quotient map, and let ν = q∗µ be the push-forward measure on X/∼. Let A /M
be the Boolean σ-algebra of Borel sets in X/∼ modulo the ν-null sets, and let Φq
be the corresponding σ-homomorphism of A /M into B/N . The definition of ν
guarantees that Φq is injective. If y ∈ q−1

(
q(Si)

)
, then y ∼ x for some x ∈ Si.

Thus 1Si(y) = 1 and y ∈ Si. This means that q(Si) is a Borel set in X/∼, and that
Φq([q(Si)]) is the class of Si in B/N . Thus, as we’re identifying P and B/N ,
we’ve shown that the image of Φq contains the Qi. Since the Qi generate, Φq is a
bijection. It follows from Theorem I.37 on page 501 (and Remark I.35) that there
is a Borel map ϕ : X → X/∼ which implements Φq and a null set X0 such that
ϕ|XrX0 is injective. It follows from Lemma I.36 on page 501 that q = ϕ µ-almost
everywhere. Thus, after enlarging X0 if necessary, we can assume that q is one-
to-one on X r X0. Then the sets Ti := Si r X0 separate points of X r X0. Let
Ji = kerπQi . Since Qi is an ideal center projection, Qi = Q(Ki) = 1H − e(Ki) for
some ideal Ki ∈ I(A). If a ∈ Ki, then π(a)Qi = 0, so a ∈ Ji, and Ki ⊂ Ji. Thus

Qi = Q(Ki) ≥ Q(Ji).

But if { uin } is an approximate identity for Ji, then

(
1H −Q(Ji)

)
Qi = lim

n
π(uin)Qi = 0.

Thus, Qi ≤ Q(Ji). ThereforeQi = Q(Ji) and π(uin) converges to 1−Qi in the strong
operator topology. Using Proposition F.29 on page 421, passing to a subsequences
and enlarging X0 by a Borel null set for each i, we can assume that for all i we have

πx(u
i
n) →

(
1 − 1Ti(x)

)
1H(x) for all x ∈ X rX0.

Therefore the projection onto the essential part of πx|Ji is
(
1 − 1Ti(x)

)
1H(x). In

particular, x ∈ Ti if and only if πx(Ji) = { 0 }. Therefore if x, y ∈ X r X0 and if
kerπx = kerπy, then x ∈ Ti if and only if y ∈ Ti. Thus x = y.

This shows that the kernels of the πx are distinct on X rX0. This suffices as
the πx are almost everywhere homogeneous by Theorem G.14 on page 437.

Now suppose that there is a µ-conull set Y as in the statement of the theorem.
Then we may as well assume that Y = X . Then x 7→ kerπx is an injective Borel
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map f of X into PrimA (Lemma F.28 and Corollary G.9). On the other hand,
in view of Theorem H.39, we can assume that PrimA is a Polish space. Then
[2, Theorem 3.3.2] implies that f is a Borel isomorphism of X onto a Borel subset
of PrimA. Thus we can replace X by PrimA, µ by the push-forward f∗µ, πx by
πf(x) and (G.11) by

π =

∫ ⊕

PrimA

πP dµ(P ).

Now Lemma G.19 on page 441 implies that ∆(PrimA∗H, µ) = IC(π) as desired.

One of the essential features of ideal center decompositions is that they have a
strong uniqueness property. In general, to compare two direct integral decomposi-
tions of a given representation class, it is first necessary to assume that the asso-
ciated diagonal operators are intertwined by the equivalence. Then we can apply
Proposition F.33 on page 423. The next proposition, taken from [160, Lemme 1.7],
gives a much stronger result for ideal center decompositions which says that the
measure class of µ and the equivalence classes of the πP are uniquely determined.
Notice that there is no explicit mention of the diagonal operators.

Proposition G.21. Suppose that

π =

∫ ⊕

PrimA

πP dµ(P ) and ρ =

∫ ⊕

PrimA

ρP dν(P )

are ideal center decompositions on L2(PrimA ∗ H, µ) and L2(PrimA ∗ K, ν), re-
spectively. Suppose that W : L2(PrimA ∗ H, µ) → L2(PrimA ∗ K, ν) is a unitary
implementing an equivalence between π and ρ. Then

(a) µ and ν are equivalent measures,

(b) there is an essentially unique idPrimA-isomorphism4 W ′ = {W (P ) } of
PrimA ∗ H onto PrimA ∗ K implemented by an almost everywhere family of
unitaries W (P ) : H(P ) → K(P ) such that W (P ) implements an equivalence
between πP and ρP for almost all P , and

(c) W = UW ′ where U is the natural isomorphism of L2(PrimA ∗ K, µ) onto
L2(PrimA ∗ K, ν) induced by the equivalence of µ and ν.

(d) If ϕ is a bounded Borel function on PrimA and if Tϕ and T̃ϕ are the respective
diagonal operators on L2(PrimA ∗H, µ) and L2(PrimA ∗K, ν), then W ′Tϕ =

T̃ϕW
′.

Proof. Clearly, W must intertwine IC(π) and IC(ρ). Lemma G.19 on page 441
implies that W must therefore intertwine the respective diagonal operators. Hence
Proposition F.33 on page 423 applies. Thus there are null sets N and M together
with a Borel isomorphism τ : PrimArN → PrimArM such that τ∗µ is equivalent
to ν. Also there is a τ -isomorphism {W (P ) } consisting almost everywhere of
unitaries W (P ) : H(P ) → K(τ(P )) implementing an equivalence of πP with ρτ(P ),

4That is, a τ -isomorphism with τ = idPrim A.
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and such that W ′Tϕ = T̃ϕ◦τW
′. However, equivalent representations have the same

kernels, so

P = kerπP = ker ρτ(P ) = τ(P ).

Therefore, τ is the identity map. It follows that µ = τ∗µ is equivalent to ν and that
W ′Tϕ = T̃ϕW

′. This completes the proof.

Theorem G.22 (Effros’s Ideal Center Decomposition). Every separable represen-
tation ρ of a separable C∗-algebra A has an ideal center decomposition.

Proof. We clearly have IC(ρ) ⊂ ρ(A)′, so Proposition F.26 on page 419 implies
that there is a second countable locally compact space X , a Borel Hilbert Bundle
X ∗ K and a finite measure ν on X so that ρ has a direct integral decomposition

π =

∫ ⊕

X

πx dν(x)

with IC(π) = ∆(X ∗ K, ν). Proposition G.20 on page 441 implies that we may
assume that the map τ : X → PrimA given by τ(x) := kerπx is injective. It is
Borel by Lemma F.28 on page 420, and as both X and PrimA are Polish,5 it is
a Borel isomorphism onto its range [2, Theorem 3.3.2]. Let µ := τ∗ν. Then there
is a Borel Hilbert bundle PrimA ∗ H, with H

(
τ(x)

)
= K(x), and an isomorphism,

induced by τ , of L2(X ∗ K, ν) onto L2(PrimA ∗ H, µ) which intertwines π with an
ideal center decomposition.

Remark G.23. Suppose that π is a representation of a separable C∗-algebra A with
ideal center decomposition

∫ ⊕

PrimA

πP dµ(P )

on L2(PrimA ∗ H, µ). If 1 ≤ n ≤ ℵ0, then Remark G.11 on page 434 implies that

n·πP is homogeneous with kernel P . Let K(P ) =
⊕j=n

j=1 H(P ) and form the obvious
Borel Hilbert bundle PrimA ∗ K. Then

∫ ⊕

PrimA

n · πP dµ(P )

is ideal center decomposition of n · π on L2(PrimA ∗ K, µ). If n = ℵ0, then each
K(P ) has infinite dimension and we can replace PrimA ∗ K with a constant field.
Therefore we can realize an ideal center decomposition of any representation π with
infinite multiplicity on L2(PrimA, µ;H) for a fixed separable infinite-dimensional
Hilbert space H (cf., Corollary F.11 on page 414).

5Second countable locally compact spaces are Polish by Lemma 6.5, and PrimA has the Borel
structure coming from a Polish space by Theorem H.40 on page 477.
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G.2 Ideal Center Decompositions for Covariant

Representations

The next proposition is critical for forming the restriction of a covariant representa-
tion to the stability groups as required in our proof of the Effros-Hahn conjecture.
Although we could restrict to representations of infinite multiplicity (cf, Remark 9.6
on page 271), and therefore do away with one level of direct integrals, it seems
worthwhile to work out a more general result here for future reference.

Proposition G.24. Suppose that R = (π, V ) is a covariant representation of
(A,G, α) on L2(PrimA ∗ H, µ), and that

π =

∫ ⊕

PrimA

πP dµ(P ) (G.12)

is an ideal center decomposition of π on L2(PrimA ∗ H, µ). Let PrimA ∗ Hs be
the pull-back of PrimA ∗ H via lt−1

s as in Example F.18 on page 415. Then the
following statements hold.

(a) The measure µ is quasi-invariant for the natural G-action on PrimA.

(b) Let d : G×PrimA→ (0,∞) be a Borel choice of Radon-Nikodym derivatives
as in Corollary D.34 on page 389. Then for each s ∈ G, there is a unitary

W (s) : L2(PrimA ∗ H, µ) → L2(PrimA ∗ Hs, µ)

given by W (s)f(P ) := d(s, P )
1
2 f(s−1 · P ).

(c) The operator U(s) := V (s)W (s−1) is decomposable. Moreover, there is a
µ-conull set X ⊂ PrimA such that if

E := { (s, P ) ∈ G× PrimA : P ∈ X and s−1 · P ∈ X },

then there are unitaries U(s, P ) : H(s−1 · P ) → H(P ) for all (s, P ) ∈ E such
that

(s, P ) 7→
(
U(s, P )f(s−1 · P ) | g(P )

)

is Borel on E for all Borel sections f, g ∈ B(X,H), and such that for all
s ∈ G,

U(s) =

∫ ⊕

PrimA

U(s, P ) dµ(P ).

(d) For all s, r ∈ G and all P ∈ X such that s−1 · P ∈ X and r−1s−1 · P ∈ X,
we have

U(sr, P ) = U(s, P )U(r, s−1 · P ).

(e) If (s, P ) ∈ E, then

πP (a) = U(s, P )πs−1·P

(
α−1
s (a)

)
U(s, P )∗ for all a ∈ A.
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(f) If P ∈ X, then σP (t) := U(t, P ) defines a unitary representation of GP and
(πP , σP ) is a covariant representation of (A,GP , α).

Proof. Recall that s · π := π ◦ α−1
s . Therefore

s · π =

∫ ⊕

PrimA

s · πP dµ(P ) (G.13)

on L2(PrimA ∗ H, µ). As in Example F.18 on page 415, we can define a unitary

T (s) : L2(PrimA ∗ H, µ) → L2(PrimA ∗ Hs, s · µ)

by T (s)f(P ) = f(s−1 · P ). Let

π′
P := s · πs−1·P = πs−1·P ◦ α−1

s .

Notice that π′
P is homogeneous with kernel P , and that { π′

P } is a Borel field of
representations on PrimA ∗ Hs. Thus

π′ :=

∫ ⊕

PrimA

π′
P d(s · µ)(P ) (G.14)

is an ideal center decomposition on L2(PrimA ∗ Hs, s · µ). Since

T (s)s · π(a)f(P ) = s · π(a)f(s−1 · P )

= s · πs−1·P (a)
(
f(s−1 · P )

)

= π′
P (a)

(
f(s−1 · P )

)

= π′
P (a)

(
T (s)f(P )

)

= π′(a)T (s)f(P ),

T (s) intertwines s · π an π′. Since (π, V ) is covariant,

π(a) = V (s)s · π(a)V (s)∗

= V (s)T (s−1)π′(a)
(
V (s)T (s−1)

)∗
.

Thus π and π′ are equivalent ideal center decompositions, and it follows from Propo-
sition G.21 on page 443 that that µ an s · µ are equivalent for all s. This proves
part (a).

Let d : G × PrimA → (0,∞) be a Borel choice of Radon-Nikodym derivatives

as in Corollary D.34 on page 389. Then W (s)f(P ) := d(s, P )
1
2 f(s−1 · P ) defines a

unitary as required for part (b). Since d(s, P )−1 = d(s−1, s−1 ·P ) for almost all P ,
we see that W (s)∗ = W (s)−1 = W (s−1). If

π′′ :=

∫ ⊕

PrimA

π′
P dµ(P ) (G.15)
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is the ideal center decomposition on L2(PrimA ∗ Hs, µ), then using (G.13), we
compute that

W (s)V (s−1)π(a)f(P ) = W (s)π
(
α−1
s (a)

)
V (s−1)f(P )

= d(s, p)
1
2 s · π(a)V (s−1)f(s−1 · P )

= d(s, P )
1
2 s · πs−1·P (a)

(
V (s−1)f(s−1 · P )

)

= d(s, P )
1
2 π′

P (a)
(
V (s−1)f(s−1 · P )

)

= π′′(a)W (s)V (s−1)f(P ).

Therefore U(s) := V (s)W (s−1) implements an equivalence between the ideal center
decompositions for π and π′′ on L2(PrimA ∗ H, µ) and L2(PrimA ∗ Hs, µ), respec-
tively. Then we can apply Proposition G.21 on page 443 with K = Hs and ν = µ.
In particular, the map U appearing in that proposition is the identity, and for each
s, there is an essentially unique id-isomorphism {W0(s, P ) } consisting of unitaries
W0(s, P ) : H(s−1 · P ) → H(P ) (for µ-almost all P ) such that

U(s) =

∫ ⊕

PrimA

W0(s, P ) dµ(P ),

and such that for µ-almost all P ,

πP (a) = W0(s, P )π′
P (a)W0(s, P )∗ = W0(s, P )πs−1·P

(
α−1
s (a)

)
W0(s, P )∗

for all a ∈ A. Since
U(sr) = U(s)W (s)U(r)W (s−1) (G.16)

and since the W0(s, P ) are essentially unique, we have for each (s, r) ∈ G×G,

W0(sr, P ) = W0(s, P )W0(r, s
−1 · P )

off an µ-null set N(s, r). However, there is no reason that {W0(s, P ) } should be
jointly Borel in s and P as required in condition part (c). The easiest way to address
this defect is to repeat parts of the proofs of Proposition F.33 on page 423 and
Proposition G.21 on page 443 while keeping track of the dependence on the G
variable.

Let { fn } be a fundamental sequence in L2(PrimA ∗ H, µ). Since d(s, P ) > 0
everywhere,

fsn := W (s)fn

defines a fundamental sequence in L2(PrimA∗Hs, µ) for all s. Let p : G×PrimA→
PrimA be the projection onto the second factor, and let p∗(PrimA∗H) = PrimA∗
Hp be the pull-back by p. Then Proposition F.38 on page 428 implies that for each
n, there is a gn ∈ B(p∗(PrimA ∗ H)) and a µG-null set Mn such that

V (s)[fn] = [gn(s, ·)] if s /∈Mn.

Then M :=
⋃
Mn is a µG-null set, and if s /∈M , we have

U(s)[fsn] = V (s)[fn] = [gn(s, ·)].
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A computation similar to that establishing (F.13) on 424 shows that for all s /∈
M and any finite set r1, . . . , rn of complex rational numbers there is a µ-null set
N(r1, . . . , rn) such that P /∈ N(r1, . . . , rn) implies that

∥∥∥
∑

i

rigi(s, P )
∥∥∥ ≤

∥∥∥
∑

i

rif
s
i (P )

∥∥∥. (G.17)

Since the set of finite sequences of complex rational numbers is countable, there is
a µ-null set N such that (G.17) holds for any finite sequence of rationals. Thus if
s /∈M and P /∈ N , there is a well-defined contraction U0(s, P ) : H(s−1 ·P ) → H(P )
such that

U0(s, P )
(
fsn(P )

)
= gn(s, P ).

Let Y ′ be the conull set (GrM) × (X rN). Since gn ∈ B
(
p∗(PrimA ∗ H)

)
,

(s, P ) 7→ d(s, P )−
1
2

(
gn(s, P ) | fm(P )

)
=

(
U0(s, P )fn(s

−1 · P ) | fm(P )
)

is Borel on Y ′.
Let U ′(s) : L2(PrimA ∗Hs, µ) → L2(PrimA ∗H, µ) be the contraction given by

the direct integral

U ′(s) :=

∫ ⊕

PrimA

U0(s, P ) dµ(P ).

Since U ′(s)fn = U(s)fn for all n, U ′(s) = U(s). By Lemma F.20 on page 417, for
all s /∈M , we have

U0(s, P ) = W0(s, P ) for µ-almost all P .

Therefore there is a µG×µ-conull set Y ⊂ G×PrimA such that U0(s, P ) is unitary
for all (s, P ) ∈ Y . Also we claim that

U0(sr, P ) = U0(s, P )U0(r, s
−1 · P )

off a µG × µG × µ-null set. To see this, let N(s) be a µ-null set such that that
U0(s, P ) = W0(s, P ) provided P /∈ N(s). Then, since µ is quasi-invariant, N :=
N(s)∪N(sr)∪s ·N(r) is a µ-null set, and if P /∈ N , we have U0(sr, P ) = W0(sr, P ),
U0(s, P ) = W0(s, P ) and U0(r, s

−1 · P ) = W0(r, s
−1 · P ). Now the claim follows as

the corresponding equality for W0 holds µG × µG × µ-almost everywhere.
We now invoke Ramsay’s selection theorem via Lemma G.25 on the next page.

Therefore there is a µ-conull set Z ⊂ PrimA and unitaries U(s, P ) : H(s−1 · P ) →
H(P ) for all (s, P ) ∈ F := { (s, P ) : P ∈ Z and s−1 · P ∈ Z } such that

(i) U(s, P ) = U0(s, P ) for µG × µ-almost all (s, P ),

(ii) (s, P ) 7→
(
U(s, P )f(s−1 · P ) | g(P )

)
is Borel on F for all f, g ∈ B(X,H),

(iii) if P , s−1 · P and r−1s−1 · P are in Z, then U(sr, P ) = U(s, P )U(r, s−1 · P ).

Let E be the set of (s, P ) ∈ F such that

πP (a) = U(s, P )πs−1·P

(
α−1
s (a)

)
U(s, P )∗ for all a ∈ A.
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Since U(s, P ) = W0(s, P ) for µG×µ-almost all (s, P ) and since F is µG×µ-conull,
it follows that E contains a Borel µG × µ-conull set. Furthermore, if (s, P ) and
(r, s−1 · P ) both belong to E, then since E ⊂ F , part (iii) implies that

πP (a) = U(s, P )πs−1·P

(
α−1
s (a)

)
U(s, P )∗

= U(s, P )U(r, s−1 · P )πr−1s−1·P

(
α−1
r

(
α−1
s (a)

))
U(r, s−1 · P )∗U(s, P )∗

= U(sr, P )πr−1s−1·P

(
α−1
sr (a)

)
U(sr, P )∗.

Therefore E is closed under multiplication and we can apply Lemma G.27 on
page 451, and there is a X ⊂ Z such that parts (d) and (e) hold (as well as
most of part (c)).

To get the rest of part (c), let Σ be the set of s ∈ G such that

U(s) =

∫ ⊕

PrimA

U(s, P ) dµ(P ).

Using (G.16), it is not hard to see that Σ is a conull semigroup. Hence Lemma D.36
on page 391 implies that Σ′ = G and part (c) follows.

If P ∈ Z, then t 7→ U(t, P ) is a Borel homomorphism of GP into U
(
H(P )

)
.

Hence it is continuous by Theorem D.3 on page 370, and σP (t) := U(t, P ) defines
a representation σP of GP . If P ∈ X , then part (e) implies that

πP (a) = σP (t)πP
(
α−1
t (a)

)
σP (t)∗ for all a ∈ A. (G.18)

Thus (πP , σP ) is a covariant representation of (A,GP , α), and part (f) holds. This
completes the proof of the proposition.

G.2.1 Ramsay’s Selection Theorem

We need the following technical lemma, which is an application of a beautiful Borel
selection result due to Ramsay [140, Theorem 5.1].

Lemma G.25. Let G be a second countable locally compact group and µ a quasi-
invariant measure on an analytic G-space X. Suppose that X ∗H is a Borel Hilbert
bundle and that Y ⊂ G × X is a µG × µ-conull set such that for each (s, x) ∈ Y
there is a unitary U(s, x) : H(s−1 · x) → H(x) such that

(s, x) 7→
(
U(s, x)f(s−1 · x) | g(x)

)

is Borel on Y for all f, g ∈ B(X,H), and such that

U(sr, x) = U(s, x)U(r, s−1 · x)

holds off a µG × µG × µ-null set.
Then there is a µ-conull set Z ⊂ X such that

(a) for each (s, x) ∈ E = { (s, x) : x ∈ Z and s−1 · x ∈ Z } there is a unitary

V (s, x) : H(s−1 · x) → H(x)

such that V (s, x) = U(s, x) for µG × µ-almost all (s, x) and
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(b) such that
(s, x) 7→

(
V (s, x)f(s−1 · x) | g(x)

)

is Borel on E for all f, g ∈ B(X,H) and such that

(c) if x, s−1 · x, r−1s−1 · x ∈ Z, then

V (sr, x) = V (s, x)V (r, s−1 · x).

Remark G.26 (Ramsay’s Selection Theorem). The proof of Lemma G.25 is essen-
tially an invocation of Ramsay’s selection theorem [140, Theorem 5.1]. It is a more
complex application than we needed in the proof of Corollary D.34 on page 389, and
we outline the set-up here. Recall that if X is an analytic Borel G-space and if µ is
a quasi-invariant finite Borel measure, then (G×X,µG × µ) is what Ramsay calls
a virtual group in [140].6 It is a special case of what he calls a measured groupoid
in [142]. Without getting too involved in technicalities here, a groupoid A is a an
analytic space with a partially defined multiplication satisfying certain axioms.7

The set of composable pairs is denoted by A(2). If, for example, G = (G × X),
then (s, x) and (r, y) are composable when y = s−1 · x, and then we define their
product by (s, x)(r, s−1 · x) := (sr, x), and each element has an “inverse” given by
(s, x)−1 = (s−1, s−1 · x). If Y ⊂ X , then

G|Y = { (s, x) ∈ G : x ∈ Y and s−1 · x ∈ Y }

is a subgroupoid of G (in the sense that it is closed under the partially defined
multiplication) called the restriction of G to Y . If Y is conull in X , then since µ is
quasi-invariant, G|Y is µG×µ-conull in G, and G|Y is called an essential reduction.8

A map ϕ : G → A is called a (groupoid) homomorphism if whenever γ and η are
composable in G, then ϕ(γ) and ϕ(η) are composable in A and ϕ(γη) = ϕ(γ)ϕ(η).
Ramsay’s result says that if ϕ0 is a Borel map of G = (G × X,µG × µ) into an
analytic groupoid A which is almost everywhere a homomorphism in the sense that

ϕ(s, x)ϕ(r, s−1 · x) = ϕ(sr, x) for µG × µG × µ-almost all (s, r, x),

then there is a Borel map ϕ : G → A such that ϕ = ϕ0 µG × µ-almost everywhere
and such that there is a µ-conull set Y ⊂ X such that the restriction of ϕ to G|Y
is a homomorphism.9

6A careful look at [140] will reveal that Ramsay requires that µ also be ergodic. This hypothesis
is not used in the results we reference and is not required in the definition of a measured groupoid
in [142] which uses the same results from [140] as we do. An excellent discussion, as well as proofs
of Ramsay’s results, can be found in Muhly’s as yet unpublished notes on groupoids [108, Chap. 4].

7Since we are only interested in two concrete examples of groupoids here, the precise axioms
are not necessary to follow the argument. For the curious, they are given in [140, §1]. A more up
to date and more complete source for this discussion is [108].

8To see that G|Y is conull, note that for each y ∈ Y , the quasi-invariance of µ implies that
{ s ∈ G : (s, y) ∈ G|Y } is µG-conull.

9In heuristic terms, we would like to see that a Borel map ϕ0 : G → A which almost everywhere
a homomorphism is equal almost everywhere to a homomorphism. If A is an analytic groupoid
and if G is σ-compact Polish groupoid, then Ramsay proves such a result in [142]. Here, although
PrimA is Polish, it need not be σ-compact in the regularized topology. So we settle for Ramsay’s
result from [140] in which he shows ϕ0 is equal almost everywhere to a bona fide homomorphism
on an essential reduction of G.
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Proof of Lemma G.25. We want to apply Ramsay’s Theorem to a map ϕ0 from G :=
G×X into the isomorphism bundle A := Iso(X ∗ H) as defined in Definition F.35
on page 427. (In view of Remark F.36 on page 427, A is an analytic groupoid.)
For each (s, x) ∈ Y , define ϕ0(s, x) := (x, U(s, x), s−1 · x). Then ϕ0 is Borel on
Y , and we can extend ϕ0 to a Borel function on all of G by letting ϕ0 take a
constant value on the complement of Y . We have arranged our hypotheses so that
ϕ0 is an almost everywhere homomorphism of G into A. Thus, Ramsay’s Theorem
[140, Theorem 5.1] implies that there is a Borel map ϕ : G → Iso(X ∗ H) and a
µ-conull set X0 ⊂ X such that ϕ = ϕ0 µG × µ-almost everywhere and such that ϕ
restricted to A0 = G|X0 is a homomorphism.

Let x ∈ X0. Then (e, x) ∈ A0 and we can define a(x) ∈ X by ϕ(e, x) =(
a(x), I, a(x)

)
. If (s, x) ∈ A0, then (s, x) = (e, x)(s, x)(e, s−1 · x). Therefore, for all

(s, x) ∈ A0 we have

ϕ(s, x) =
(
a(x), V (s, x), a(s−1 · x)

)
,

where V (s, x) is a unitary mapping H
(
a(s−1 · x)

)
onto H

(
a(x)

)
. Since ϕ(s, x) =

ϕ0(s, x) µG×µ-almost everywhere and since there is a s ∈ G, such that (s, x) ∈ A0

for µ-almost all x, there is a µ-conull set Z ⊂ X0 such that a(x) = x for all x ∈ Z.
Let A = G|Z = { (s, x) : x ∈ Z and s−1 · x ∈ Z }. Then {V (s, x) }(s,x)∈A satisfies
the requirements of the lemma.

We will also need the following generalization of Lemma D.36 on page 391.
(It can be proved in a general groupoid setting — cf., [140, Lemma 5.2] or [108,
Lemma 4.9] — and is a critical component of the proof of Ramsay’s selection
theorem.)

Lemma G.27. Let G be a second countable locally compact group and µ a quasi-
invariant finite measure on an analytic Borel G-space X. Let Y ⊂ G × X be a
µG × µ-conull (measurable) set which is closed under multiplication; that is, Y is
such that (s, x), (r, s−1 · x) ∈ Y implies (s, x)(r, s−1 · x) = (sr, x) ∈ Y . Then there
is a µ-conull Borel set X0 ⊂ X such that

E := { (s, x) : x ∈ X0 and s−1 · x ∈ X0 } ⊂ Y.

Proof. Let
Y −1 := { (s−1, s−1 · x) : (s, x) ∈ Y }.

In view of Remark D.33 on page 388, Y −1 is µG×µ-conull (because, in the notation
of Remark D.33, the measure κ∗(µG × µ) is equivalent to µG × µ). Therefore
Y ′ := Y ∩ Y −1 is also conull. Since µG and µ are σ-finite, Fubini’s Theorem
implies there is a µ-conull set X0 such that x ∈ X0 implies there is a µG-conull set
G(x) ⊂ G such that G(x) × { x } ⊂ Y ′. Let E be as in the lemma, and suppose
that (s, x) ∈ E. Note that s−1G(x)∩G(s−1 · x) is µG-conull, and hence nonempty.
Let r ∈ s−1G(x) ∩ G(s−1 · x). Then (r, s−1 · x)−1 = (r−1, r−1s−1 · x) ∈ Y ′, and
(sr, x) ∈ Y ′. Since Y is closed under multiplication,

(s, x) = (sr, x)(r−1, r−1s−1 · x) ∈ Y.

This completes the proof.
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The above lemma together with Ramsay’s Selection Theorem (see Remark G.26
on page 450) provide the tools needed for the proof of Lemma 9.2 on page 267. Of
course, we adopt the notations and conventions of Lemmas 9.1 and 9.2.

Proof of Lemma 9.2. We can view G := PrimA × PrimA as a standard Borel
groupoid with G(2) = {

(
(P,Q), (Q′, R)

)
: Q = Q′ } so that (P,Q)(Q,R) = (P,R)

and (P,Q)−1 = (Q,P ). Part (a) of Lemma 9.1 on page 264 together with (9.1)
imply that (G, γ) is a measured groupoid. Part (b) of Lemma 9.1 implies that
(P,Q) 7→ D(P,Q) is almost everywhere a homomorphism of G into the multiplica-
tive positive reals R+

×. Therefore Ramsay’s Theorem [140, Theorem 5.1] implies
that there is a Borel map D0 : G → R+

× such that D = D0 holds γ-almost every-
where, and such that there is a µ-null set X ⊂ PrimA such that

D0(P,Q)D0(Q,R) = D0(P,R) provided P , Q and R are in X .

Using Lemma H.14 on page 463 and the fact that D = D0 almost everywhere,
it follows that (9.3) holds with D replaced by D0. Furthermore, examining the
proof of Corollary D.34 on page 389 (see (D.22) on page 390), there is a µ-null set
X00 ⊂ X ⊂ PrimA such that

d(s, P )d(r, s−1 · P ) = d(sr, P ) if P , s−1 · P and r−1s−1 · P are in X00.

Let
Y0 := { (s, P ) ∈ G× PrimA : P ∈ X00 and s−1 · P ∈ X00 }.

Then the quasi-invariance of µ together with Fubini’s Theorem implies that Y0 is
µG × µ-conull. Let

Y = { (s, P ) ∈ Y0 : D0(P, s
−1 · P ) = d(s, P )ρ(s−1, GP )−1 }.

In view of (9.3) (with D0 in place of D), it follows that Y0 is also conull. Suppose
that (s, P ) and (r, s−1 ·P ) are in Y . Since Y ⊂ Y0, we must have P, s−1 ·P, r−1s−1 ·
P ∈ X00 ⊂ X . Therefore

d(s, P )d(r, s−1 · P ) = d(sr, P ) and

D0(P, s
−1 · P )D0(s

−1 · P, r−1s−1 · P ) = D(P, r−1s−1 · P ).

Since we also have ρ(r−1s−1, GP ) = ρ(s−1, GP )ρ(r−1, Gs−1·P ), it follows that
(sr, P ) ∈ Y . Therefore Lemma G.27 on the previous page implies that there is a
µ-conull set X0 ⊂ PrimA such that P ∈ X0 and s−1 · P ∈ X0 implies that

D0(P, s
−1) = d(s, P )ρ(s−1, GP )−1.

Thus if P ∈ X0 and if t ∈ GP , then D0(P, P ) = 1 and

d(t, P ) = ρ(t−1, GP ) = γGP (t)2ρ(e,GP ) = γGP (t)2.



Appendix H

The Fell Topology

The closed subsets C (X) of any topological space can given a topology, called the
Fell topology, in which C (X) is compact. If X is a (not necessarily Hausdorff) lo-
cally compact space, then C (X) is Hausdorff. If X is a locally compact group, then
the subset of closed subgroups is closed in C (X), and the set of closed subgroups
inherits its own compact Hausdorff topology which is both natural and very useful.
We develop some of the important properties of this topology in this section. If
(A,G, α) is a dynamical system, then simple examples show that the stability map
P 7→ GP is often not continuous, where GP is the stability group at P for the
natural action of G on PrimA. We show here that the stability map is at least
a Borel map, and this will be of importance in our proof of the GRS-Theorem in
Chapter 9. We also give Dixmier’s proof of Effros’s result that PrimA is a standard
Borel space in the Borel structure coming from the usual hull-kernel topology on
PrimA. In the process, we see that PrimA has a possibly finer topology, called
the regularized topology, which is a Polish topology and which generates the same
Borel structure as the hull-kernel topology.

H.1 The Fell Topology

Let X be an arbitrary topological space. Let C (X) be the collection of all closed
subsets of X (including the empty set). If F is a finite collection of open subsets
of X and if K is a compact subset of X , then we define

U(K; F ) := {F ∈ C (X) : F ∩K = ∅ and F ∩ U 6= ∅ for all U ∈ F }.

It is not hard to check that the U(K; F ) form a basis for a topology on C (X) called
the Fell Topology. The first thing to prove about C (X) is that it is compact. This
was proved by Fell in [51]. The key to his proof is the concept of a universal net.
A net { xλ }λ∈Λ in X is called universal if given any subset F ⊂ X , then either xλ
is eventually in F or it is eventually in X r F . Every net has a universal subnet
[127, Theorem 1.3.8], and a space X is compact if and only if every universal net
in X is convergent [127, Theorem 1.6.2].

453
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Lemma H.1. If X is any topological space, then C (X) is compact in the Fell
topology.

Proof. Let {Fi } be a universal net in C (X). Let

Z := { x ∈ X : given any neighborhood U of x,

we eventually have Fi ∩ U 6= ∅ }.

It is not hard to see that Z is closed. Thus it will suffice to see that Fi → Z in
C (X).

Suppose that Z ∈ U(K; F ). It will suffice to see that Fi is eventually in
U(K; F ). But if U ∈ F , then there exists a z ∈ Z ∩ U . Since U is a neigh-
borhood of z, we eventually have Fi ∩ U 6= ∅. So we just need to verify that we
eventually have Fi ∩K = ∅. However, if this fails, then we can pass to a subnet,
{Fij }, so that we can find xij ∈ K ∩ Fij . Since K is compact, we may as well
assume that xij → z ∈ K. Let V be a neighborhood of z. We eventually have
Fij ∩ V 6= ∅. Since Fi is universal, we eventually have Fi ∩ V 6= ∅. Thus z ∈ Z.
But this is a contradiction as Z ∈ U(K; F ) implies Z ∩K = ∅.

The following characterization of the Fell topology when X is locally compact
not only gives an intuitive feel for convergence in the Fell topology, but it is also a
useful technical tool.

Lemma H.2. Suppose that X is a (not necessarily Hausdorff) locally compact
space. Let {Fi }i∈I be a net in C (X). Then Fi → F in C (X) if and only if

(a) given ti ∈ Fi such that ti → t, then t ∈ F , and

(b) if t ∈ F , then there is a subnet {Fij } and tij ∈ Fij such that tij → t.

Proof. Assume that Fi → F . Suppose that ti ∈ Fi and that ti → t. If t /∈ F , then
there is a compact neighborhood K of t disjoint from F . Thus we eventually must
have ti ∈ K. But U(K; ∅) is a neighborhood of F which implies that we eventually
have Fi ∩K = ∅. This is a contradiction, so that (a) holds.

If t ∈ F , let

Γ := { (i, U) : i ∈ I, U is a neighborhood of t and Fi ∩ U 6= ∅ }.

Given (i1, U1) and (i2, U2) in Γ, U3 := U1 ∩ U2 is a neighborhood of t, and
U

(
∅; {U3 }

)
is a neighborhood of F . Hence, there is an i, dominating both i1

and i2, such that Fi ∩ U 6= ∅. It follows that Γ is directed by (i, U) ≥ (i′, U ′) if
i ≥ i′ and U ′ ⊂ U . For each (i, U) ∈ Γ, choose s(i,U) ∈ Fi ∩ U . Then { s(i,U) } is
a net converging to t. Let ti(j,U)

= s(j,U) and Fi(j,U)
= Fj . Then { tiγ }γ∈Γ is the

subnet required in (b). Thus (a) and (b) both hold if Fi → F .
Now suppose that (a) and (b) both hold. Suppose that F ∈ U(K; F ). If we

don’t eventually have Fi ∩K = ∅, then we can pass to a subnet, relabel, and find
ti ∈ Fi ∩ K such that ti → t ∈ K. But then (a) implies t ∈ F ∩ K, which is a
contradiction. If U ∈ F and if we don’t eventually have Fi ∩ U 6= ∅, then we can
pass to a subnet, relabel, and assume that U ∩ Fi = ∅ for all i. But if t ∈ F ∩ U ,
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then (b) implies that we may also assume that there are ti ∈ Fi such that ti → t.
But the ti must eventually be in U . This is a contradiction and completes the
proof.

Lemma H.2 on the facing page implies that the limit of any net in C (X) is
unique. Hence we obtain the following important corollary.

Proposition H.3. If X is a (not necessarily Hausdorff) locally compact space,
then C (X) is a compact Hausdorff space.

An important application of the Fell topology is to the collection of closed
subgroups of a locally compact group.

Corollary H.4. Suppose that G is a locally compact group. Let

ΣG := {H ∈ C (G) : H is a closed subgroup of G }.

Then ΣG is closed in C (G). In particular, ΣG is a compact Hausdorff space.

Proof. Suppose that Hi → H with each Hi a closed subgroup of G. It will suffice
to see that H is a subgroup. Since e ∈ Hi for all i, item (a) of Lemma H.2 on the
preceding page implies that e ∈ H . If s, t ∈ H , then using item (b) of Lemma H.2
on the facing page, we can pass to a subnet, relabel, and assume that there are
si, ti ∈ Hi such that si → s and ti → t. But then siti ∈ Hi and siti → st. Thus
st ∈ H . A similar argument shows that if s ∈ H , then s−1 ∈ H .

The Urysohn Metrization Theorem implies that a compact Hausdorff space is
Polish exactly when it is second countable. Therefore the following theorem is not
surprising, but nevertheless, the proof is just a bit subtle.

Theorem H.5. Suppose that X is a second countable (not necessarily Hausdorff)
locally compact space. Then C (X) is Polish. In particular, ΣG is Polish in the Fell
topology for any second countable locally compact group G.

To prove the theorem, we just need to show that C (X) is second countable
whenever X is. For this, we need the following observation about locally compact
spaces. Some care is needed as we are not assuming the space to be Hausdorff.

Lemma H.6. Suppose that X is a second countable (not necessarily Hausdorff)
locally compact space. Then there is a countable family {Ki } of compact sets in X
such that given a neighborhood U of x in X, there is an i such that

x ∈ intKi ⊂ Ki ⊂ U,

where intKi denotes the interior of Ki.

Proof. Let {Uj }j∈J be a countable basis for the topology on X . Let

A = { (i, j) ∈ J × J : there is a compact set K such that Ui ⊂ K ⊂ Uj }.
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For each (i, j) ∈ A, fix K(i,j) such that Ui ⊂ K(i,j) ⊂ Uj . If x ∈ U , then since {Uj }
is a basis, there is a j such that x ∈ Uj ⊂ U . Since X is locally compact, there is a
compact neighborhood K of x such that x ∈ K ⊂ Uj . Since {Ui } is a basis, there
is an i such that x ∈ Ui ⊂ K. Then (i, j) ∈ A and

x ∈ intK(i,j) ⊂ K(i,j) ⊂ U.

Thus {K(i,j) }(i,j)∈A suffices.

Theorem H.5 on the previous page is an immediate consequence of the next
lemma.

Lemma H.7. If X is a second countable (not necessarily Hausdorff) locally com-
pact space, then C (X) is second countable in the Fell topology.

Proof. Let {Ka }a∈A be a family of compact sets as in Lemma H.6 on the preceding
page, and let {Vi }i∈I be a countable basis for the topology. It will suffice to see
that the neighborhoods

U
( ⋃

a∈Af

Ka; {Vi }i∈If

)

form a basis for the Fell topology on C (X) as Af and If range over finite subsets
of A and I, respectively.

Suppose that F ∈ U(K; F ). Since F ∩K = ∅ and since F is closed, each point
in the compact set K has neighborhood disjoint from F . Then there is an ax ∈ A
such that Kax is a neighborhood of x disjoint from F . Since K is compact, there
is a finite set Af ⊂ A such that

K ⊂
⋃

a∈Af

Ka

and such that the above union is disjoint from F . Furthermore, if
F = {U1, . . . , Un } then there are ij such that Vij ⊂ Uj and Vij ∩ F 6= ∅. Then

F ∈ U
( ⋃

a∈Ff

Ka; {Vi1 , . . . Vin }
)
⊂ U(K; F ).

This completes the proof.

H.2 Basic Results

Let Σ be the set of closed subgroups of a locally compact group G with Fell’s
compact Hausdorff topology. A continuous choice of left Haar measures on Σ is a
family of left Haar measures {µH }H∈Σ such that

H 7→
∫

H

f(s) dµH(s)
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is continuous for all f ∈ Cc(G). Glimm showed such families exist in [61, p. 908].
In order to give his proof, we need to recall the notion of a generalized limit. Let D
be a directed set and let cD be the set of bounded D-convergent nets in C. That is,
D is the set of bounded nets x = { xd }d∈D indexed by D such that limd xd exists.
For example, if D = N, then cN is the set of convergent sequences and is usually
denoted by c.1 Note that cD is a subspace of the Banach space ℓ∞(D) of bounded
functions on D with the sup norm: ‖x‖ := supd∈D |xd|. The linear functional γ
sending x ∈ cD to limd xd is of norm 1. Any norm 1 extension Γ of γ to ℓ∞(D)
such that Γ(x) ≥ 0 if xd ≥ 0 for all d is called a generalized limit over D. To see
that such things exist, we proceed as follows (cf. [18, Theorem III.7.1]). Let ℓ∞R (D)
be the Banach space of bounded real-valued functions on D. Define γ1 and c1D in
analogy with γ and cD above. Let Γ1 be any norm-one extension of γ1 to ℓ∞R (D).
Suppose that xd ≥ 0 for all d. If Γ1(x) < 0, then let yd := ‖x‖∞ for all d. Then
‖y − x‖∞ ≤ ‖x‖∞ and |Γ1(y − x)| = ‖x‖∞ − Γ1(x) > ‖x‖∞. This contradicts
‖Γ1‖ = 1. Thus we must have Γ1(x) ≥ 0.

If x ∈ ℓ∞(X), then x = x1 + ix2 with each xk ∈ ℓ∞R (D). It is not hard to see
that

Γ(x) := Γ1(x1) + iΓ1(x2)

defines a linear functional on ℓ∞(D) extending γ. Clearly Γ(x) ≥ 0 if xd ≥ 0 for all
d, and ‖Γ‖ ≤ 2. To see that ‖Γ‖ = 1, so that Γ is a generalized limit, we need a bit
of fussing. Let x be an element in the unit ball of ℓ∞(D) taking only finitely many
values. Then there is a partition E1, . . . , Em of D and αk ∈ C such that |αk| ≤ 1
and such that

x =

m∑

k=1

αk1Ek
.

Then Γ(x) =
∑

k αkΓ(1Ek
) =

∑
k αkΓ1(1Ek

). But Γ1(1Ek
) ≥ 0, and

∑
k Γ1(1Ek

) =
Γ1(1D) ≤ 1. Since |αk| ≤ 1 for all k,

|Γ(x)| ≤
m∑

k=1

Γ1(1Ek
) ≤ 1.

However, if x is any element in the unit ball of ℓ∞(D), then there is a sequence
xn → x in ℓ∞(D) such that each xn is an element in the unit ball of ℓ∞(D)
taking only finitely many values (cf. [57, Theorem 6.8(e)]). Since Γ is bounded,
Γ(xn) → Γ(x). Since |Γ(xn)| ≤ 1 by the above, we must have |Γ(x)| ≤ 1. Thus
‖Γ‖ = 1, and we’ve shown that generalized limits exist.

Notice that if x and y are nets over D and if xd = yd for sufficiently large d,
then x − y is eventually 0 and Γ(x) = Γ(y) for any generalized limit Γ. It follows
that for all nets x,

|Γ(x)| ≤ lim sup
d

|xd| := inf
c

{
sup
d≥c

|xd|
}
.

1Unlike a sequence, a convergent net need not be bounded. This is the reason for the hypothesis
that cD consist of bounded convergent nets.
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Now suppose that M is a directed set and that there is a function N : M → D
which satisfies condition (b) in the definition of a subnet on page 4. Then given
x ∈ ℓ∞(D), m 7→ xNm is a subnet of { xd }d∈D. Let

cD(M) := { x ∈ ℓ∞(D) : lim
m
xNm exists }.

Then cD(M) is a subspace of ℓ∞(D) containing cD. Let γM be the norm one
linear functional on cD(M) given by γM (x) := limm xNm . Repeating the above
gymnastics shows that there is a generalized limit Γ which restricts to γM on
cD(M). In particular, if x ∈ ℓ∞(D) has a subnet converging to c, then there is
a generalized limit Γ such that Γ(x) = c. It follows that a = limd xd if and only if
a = Γ(x) for all generalized limits over D.

Lemma H.8 (Glimm). Suppose that f0 ∈ C+
c (G) and that f0(e) > 0. For each

H ∈ Σ, let µH be the left Haar measure on H such that such that

∫

H

f0(s) dµH(s) = 1.

Then {µH }H∈Σ is a continuous choice of Haar measures on Σ.

Proof. We claim that for each compact set K in G, there is a number a(K) such
that

µH(K ∩H) ≤ a(K) for all H ∈ Σ. (H.1)

To prove the claim, notice that there is an ǫ > 0 and a neighborhood U of e in
G such that f0(s) > ǫ provided s ∈ U . Since K is compact, there are open sets
U1, . . . , Un such that

K ⊂
n⋃

i=1

Ui and U−1
i Ui ⊂ U for all i.

If H ∈ Σ, let J = { j : Uj ∩H 6= ∅ }. For each j ∈ J , pick hj ∈ Uj ∩H . Then

g(s) :=
∑

j∈J

f0(h
−1
j s)

defines an element of Cc(G) such that g(s) > ǫ for all s ∈ H ∩K. Thus

µH(H ∩K) ≤ 1

ǫ

∫

H

g(s) dµH(s)

≤ 1

ǫ

∑

j∈J

∫

H

f0(h
−1
j s) dµH(s)

≤ n

ǫ

Therefore we can set a(K) = n/ǫ. This proves the claim.
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Now suppose that Hi → H in Σ and that f ∈ Cc(G). The first part of the proof
implies that

i 7→
∫

Hi

f(s) dµHi(s)

is a bounded net. Let Γ be a generalized limit and define

Φ(f) := Γ
(
i 7→

∫

Hi

f(s) dµHi(s)
)
.

Since Γ is arbitrary, it will suffice to show that

Φ(f) =

∫

H

f(s) dµH(s).

The positivity condition on Γ implies that Φ is a positive linear functional on
Cc(G). If f, g ∈ Cc(G) and if f(s) = g(s) for all s ∈ H , then given ǫ > 0,

C := { s ∈ G : |f(s) − g(s)| ≥ ǫ }

is a compact set disjoint from H . Using the definition of the topology on Σ, we
must eventually have Hi ∩ C = ∅. Thus

∣∣∣
∫

Hi

(
f(s) − g(s)

)
dµHi(s)

∣∣∣ ≤ ǫ
(
a
(
supp(f) ∪ supp(g)

))

Since ǫ was arbitrary, we must have Φ(f) = Φ(g). Therefore

ϕ(f |H) := Φ(f)

is a positive linear functional on Cc(H).

To see that ϕ is left-invariant, and therefore a Haar measure, fix t ∈ H and a
compact neighborhood C of t. Then if t′ ∈ C,

s 7→ f(ts) − f(t′s)

has support in K := C−1 supp(f). The uniform continuity of f (Lemma 1.62 on
page 19) implies that there is a neighborhood U ⊂ C of t such that t′ ∈ U implies
that ∣∣f(ts) − f(t′s)

∣∣ < ǫ

a(K) + 1
.

Thus for all L ∈ Σ,

∣∣∣
∫

L

f(ts) dµL(s) −
∫

L

f(t′s) dµL(s)
∣∣∣ < ǫ.

Since H ∩ U 6= ∅, we eventually have Hi ∩ U 6= ∅. Thus for large i we can pick
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ti ∈ Hi ∩ U . Then we compute that

∣∣ϕ(lt−1
t (f)|H) − ϕ(f |H)

∣∣ =
∣∣∣Γ

(
i 7→

∫

Hi

f(ts) dµHi(s) −
∫

Hi

f(s) dµHi(s)
)∣∣∣

≤ lim sup
i

(∣∣∣
∫

Hi

f(ts) dµHi(s) −
∫

Hi

f(tis) dµHi (s)
∣∣∣

+
∣∣∣
∫

Hi

f(tis) dµHi(s) −
∫

Hi

f(s) dµHi(s)
∣∣∣
)

≤ ǫ+ 0 = ǫ.

Since ǫ is arbitrary, ϕ is left invariant and a Haar measure on H . Since

ϕ(f0|H) = Γ
(
i 7→

∫

Hi

f0(s) dµHi(s)
)

= 1,

the uniqueness of Haar measure guarantees that ϕ is given by µH . Thus

Φ(f) =

∫

H

f(s) dµH(s).

This completes the proof.

The following observations will be useful.

Lemma H.9 ([169, Lemma 2.12]). Suppose that {µH }H∈Σ is a continuous choice
of Haar measures on Σ.

(a) If K ⊂ G is compact, then there is a constant a(K) ∈ R+ such that µH(K ∩
H) ≤ a(K) for all H ∈ Σ.

(b) If { fi } is a net of functions in Cc(G) converging to f ∈ Cc(G) in the inductive
limit topology and if {Hi } is a net in Σ converging to H ∈ Σ (with the same
index set), then

∫

Hi

fi(s) dµHi(s) →
∫

H

f(s) dµH(s).

(c) If ∆H is the modular function on H, then (s,H) 7→ ∆H(s) is continuous on
G ∗ Σ.

(d) If X is a locally compact space and if F ∈ Cc(X ×G× Σ), then

(x,H) 7→
∫

H

F (x, s,H) dµH(s)

is continuous on X × Σ.

Proof. Let f ∈ C+
c (G) be such that f(s) = 1 for all s ∈ K. By assumption,

H 7→
∫

H

f(s) dµH(s)
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defines a continuous function F on the compact set Σ. Part (a) follows with a(K) =
‖F‖∞.

Using part (a), it follows that for any f ∈ Cc(G),

∣∣∣
∫

H

f(s) dµH(s)
∣∣∣ ≤ ‖f‖∞a(supp f).

Part (b) is an immediate consequence.
Let f0 ∈ C+

c (G) be such that

ϕ(H) :=

∫

H

f0(s) dµH(s) > 1 for all H ∈ Σ. (H.2)

Then ϕ is continuous and

∆H(s) = ϕ(H)−1

∫

H

f0(sr
−1) dµH(s).

Let f r(s) := f(sr). The map r 7→ f r
−1

is continuous from G into Cc(G) with the
inductive limit topology. Therefore part (c) follows from part (b).

Part (d) is proved similarly: (x,H) 7→ F (x, ·, H) is continuous from X ×Σ into
Cc(G) with the inductive limit topology.

Lemma H.10. There is a continuous function ω : G × Σ → (0,∞) such that for
all g ∈ Cc(G) we have

∫

H

g(sts−1) dµH(t) = ω(s,H)

∫

s·H

g(t) dµs·H(t),

where s ·H := sHs−1. Furthermore, for all s, r ∈ G and all H ∈ Σ, we have

ω(sr,H) = ω(r,H)ω(s, r ·H). (H.3)

Proof. The existence of ω(s,H) for each s and H follows from the uniqueness of
Haar measure. Let f0 ∈ C+

c (G) and ϕ ∈ C+(Σ) be as in (H.2). Then

ω(s,H) = ϕ(s ·H)−1

∫

H

f0(sts
−1) dµH(t),

But s 7→ f(s ·s−1) is continuous from G to Cc(G) with the inductive limit topology,
and (s,H) 7→ s · H is easily seen to be continuous. Therefore ω is continuous by
part (b) of Lemma H.9 on the facing page. Equation (H.3) is a straightforward
computation.

We define
ρ(s,H) := ∆G(s−1)ω(s,H). (H.4)

Then ρ is continuous and satisfies

ρ(st,H) =
∆H(t)

∆G(t)
ρ(s,H) for all s ∈ G and t ∈ H ∈ Σ,
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and in view of (H.3),

ρ(sr,H) = ρ(r,H)ρ(s, r ·H) for all r, s ∈ G.

Given a function ρ as above, it is well-known (for example, see [139, Lemma C.2] or
[56, Theorem 2.56]) that there is a quasi-invariant measure βH on G/H such that

∫

G

f(s)ρ(s,H) dµG(s) =

∫

G/H

∫

H

f(st) dµH(t) dβH(ṡ) (H.5)

for all f ∈ Cc(G)2, and such that, if r · βH is defined by

∫

G/H

g(ṡ) d(r · βH)(ṡ) =

∫

G/H

g(r · ṡ) dβH(ṡ),

then
d(r · βH)

dβH
(ṡ) =

ρ(r−1s,H)

ρ(s,H)
= ρ(r−1, s ·H).

Since this material is primarily destined to be used in proving the Effros-Hahn
conjecture, where separability is assumed, we’ll often assume that G is second
countable. For many of these results, more general versions are available, but
usually at the expense of considerably more intricate arguments.

We want to see that the decomposition of Haar measure on G given by (H.5)
holds for Borel functions. When G is second countable (so that all the measures
involved are σ-finite), this is a straightforward consequence of Fubini’s Theorem.
What we want is summarized in the following.

Proposition H.11. Suppose that G is second countable and H ∈ Σ. Let βH be the
quasi-invariant measure on G/H associated to ρ as above. If f is a Borel function
on G such that s 7→ f(s)ρ(s,H) is µG-integrable, then

(a) t 7→ f(st) is Borel on H for all s ∈ G,

(b) there is a βH -null set D such that t 7→ f(st) is µH-integrable for all ṡ /∈ D,

(c) if

Ff (ṡ) :=

{∫
H f(st) dµH(t) is ṡ /∈ D

0 if ṡ ∈ D,

then Ff is Borel and βH-integrable, and

(d) we have ∫

G

f(s)ρ(s,H) dµG(s) =

∫

G/H

Ff (ṡ) dβ
H(ṡ). (H.6)

Remark H.12. In practice, we will never introduce the function Ff . Instead, we will
write (H.5) in place of (H.6), and assume that parts (a)–(d) of Proposition H.11
are understood.

We will need the following observation.

2As elsewhere, we have written ṡ in place of sH to make the notation a bit easier to read.
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Lemma H.13. Suppose that τ : X → Y is a Borel map and that µ is a measure
on X. Define the push-forward measure on Y by τ∗µ(E) := µ

(
τ−1(E)

)
. If f is a

nonnegative Borel function on Y , then

∫

Y

f(y) d(τ∗µ)(y) =

∫

X

f
(
τ(x)

)
dµ(x). (H.7)

Thus a Borel function f on Y is τ∗µ-integrable if and only if f ◦ τ is µ-integrable.

Proof. If E ⊂ Y is Borel and f = 1E , then (H.7) holds by definition. If f is a
nonnegative Borel function on Y , then there are nonnegative simple Borel functions
fn ր f and (H.7) holds by the Monotone Convergence Theorem. (Note that both
sides may be infinite.) The rest is straightforward.

Proof of Proposition H.11. Since (s, t) 7→ f(st) is Borel on G×H , the first assertion
follows from Fubini’s Theorem applied to µG × µH . Let c : G/H → G be a Borel
cross section to the quotient map ([2, Theorem 3.4.1] or [104, Lemma 1.1]). Then
σ : G/H×H → G, given by σ(ṡ, t) := c(ṡ)t is a Borel isomorphism, and σ∗(β

H×µH)
is a Borel measure on G. If f ∈ Cc(G) is nonnegative, then, using the left invariance
of µH ,

∫

G

f(s) dσ∗(β
H × µH)(s) =

∫

G/H

∫

H

f
(
c(ṡ)t

)
dµH(t) dβH(ṡ)

=

∫

G/H

∫

H

f(st) dµH(t) dβH(ṡ)

=

∫

G

f(s)ρ(s,H) dµG(s).

(H.8)

Since (H.8) holds for all f ∈ Cc(G), we have σ∗(β
H × µH) = ρ(·, H)µG. The rest

follows from Fubini’s Theorem applied to βH × µH .

Lemma H.14. Suppose that G is second countable.3 Let D be a Borel subset of
G/H and let A = q−1(D) be its saturation in G. Let β be any quasi-invariant
measure on G/H. Then D is β-null if and only if A is µG-null. In particular, any
two quasi-invariant measures on G/H are equivalent.

Proof. Clearly, (s, ṙ) 7→ 1D(s · ṙ) is Borel. Thus Tonelli’s Theorem implies that

∫

G/H

∫

G

1D(s · ṙ) dµG(s) dβ(ṙ) =

∫

G

∫

G/H

1D(s · ṙ) dβ(ṙ) dµG(s). (H.9)

3This hypothesis implies that Haar measure is σ-finite and allows us to invoke Fubini’s Theorem
at will in the proof. In the general case, a bit more care must be taken and the general result
states that provided β is a Radon measure, a subset has a β-null image if and only if it is locally
µG-null [54, Proposition III.14.8].
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If A = q−1(D) is a µG-null set, then

∫

G

1D(s · ṙ) dµG(s) =

∫

G

1A(sr) dµG(s)

= ∆(r)−1

∫

G

1A(s) dµ(s)

= 0.

Thus the left-hand side of (H.9) is 0. Since the right-hand side also vanishes,

∫

G/H

1D(s · ṙ) dβ(ṙ) = β(s−1 ·D) = 0 for µG-almost all s.

Therefore, for some s ∈ G, β(s−1 ·D) = 0. Since β is quasi-invariant, β(D) = 0.
On the other hand, if D is β-null, then by quasi-invariance, β(s−1 ·D) = 0 for

all s. Thus the right-hand side of (H.9) vanishes. Arguing as above, there is a
ṙ ∈ G/H such that

0 =

∫

G

1D(s · ṙ) dµG(s) =

∫

G

1A(sr) dµG(s) = ∆(r)−1

∫

G

1A(s) dµG(s).

Thus µG(A) = 0. This completes the proof of the first assertion.
However, the first assertion implies that any two quasi-invariant measures on

G/H have the same null sets. Hence they are equivalent.

Lemma H.15. Suppose that H is a closed subgroup of G and that ϕ is a Borel
function on G whose modulus is constant on H-cosets, and is such that ṡ 7→ |ϕ(s)|
is in L2(G/H, βH). If K ⊂ G is compact, then ϕ|K is in L2(G,µG).4 In particular,
the inner product (ϕ | f) in L2(G) is finite for all f ∈ Cc(G). If A ⊂ Cc(G) is
dense in the inductive limit topology on Cc(G) and if (ϕ | f) = 0 for all f ∈ A,
then ϕ(s) = 0 for µG-almost all s.

Proof. Suppose that K ⊂ G is compact and that g ∈ C+
c (G) is such that g(s) = 1

for all s ∈ K. Then

Fg2(ṡ) :=

∫

H

g(st)2ρ(st,H)−1 dµH(t)

defines an element of Cc(G/H). We have

‖ϕ|K‖2
L2(G) ≤

∫

G

g(s)2|ϕ(ṡ)|2 dµG(s)

=

∫

G/H

|ϕ(ṡ)|2
∫

H

g(st)2 dµH(t) dβH(ṡ)

≤ ‖Fg2‖∞‖|ϕ|‖2
L2(βH).

4One says that ϕ is locally in L2(G).
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Thus ϕ is locally in L2(G) as claimed.
If f ∈ Cc(G) and if K = supp f , then (ϕ | f) = (ϕ|K | f), which is finite by

the above. If (ϕ | f) = 0 for all f ∈ Cc(G), then for all compact sets K, ϕ|K = 0
µG-almost everywhere. Thus ϕ = 0 µG-almost everywhere.

If A ⊂ Cc(G) is dense and f ∈ Cc(G), then there is a compact neighborhood
K of supp f and a sequence { fi } ⊂ A such that supp fi ⊂ K for all i and fi → f
uniformly. Thus (ϕ | fi) → (ϕ | f). The final assertions follows.

H.3 Bruhat Approximate Cross Sections

Let G×Σ/∼ be the quotient topological space obtained from G×Σ by identifying
(s,H) and (st,H) for all s ∈ G, H ∈ Σ and t ∈ H .

Lemma H.16. The quotient map q : G × Σ → G × Σ/∼ is open. Furthermore,
G× Σ/∼ is a locally compact Hausdorff space.

Proof. Let V ⊂ G and U ⊂ Σ be open. To see that q is an open map, it will suffice
to see that

O := q−1
(
q(V × U)

)
= { (st,H) : s ∈ V , H ∈ U and t ∈ H }

is open in G×Σ. Fix s ∈ V , H ∈ U and t ∈ H . Let { (ri, Hi) } be a net converging
to (st,H). It will suffice to see that a subnet is eventually in O. Passing to a
subnet, and relabeling, we find ti ∈ Hi such that ti → t (Lemma H.2 on page 454).
Then rit

−1
i → s, and rit

−1
i is eventually in V . Since we certainly eventually have

Hi ∈ U , (ri, Hi) = (rit
−1
i ti, Hi) is eventually in O as required.

Since q is open by the above, to prove the final statement, we just need to
see that G × Σ/∼ is Hausdorff. Suppose that { q(si, Hi) } is a net converging to
both q(s,H) and q(s′, H ′). Since q is open, we can pass to a subnet, relabel, and
assume that there are ti ∈ Hi such that (si, Hi) → (s,H) and (siti, Hi) → (s′, H ′)
(Proposition 1.15 on page 4). Thus H = H ′ and ti → s−1s′. Lemma H.2 on
page 454 implies that s−1s′ ∈ H . Thus q(s,H) = q(s′, H).

A locally compact space is paracompact if and only if it is the topological disjoint
union of σ-compact spaces [31, Theorem XI.7.3]. Thus any locally compact group
G is paracompact (Lemma 1.38 on page 10) as is G×Σ. However, it is conceivable
that G×Σ/∼ could fail to be paracompact. (However, I don’t know of any examples
where it isn’t.) Since q is continuous, G × Σ/∼ is σ-compact whenever G is, and
therefore paracompact. Thus any example where G×Σ/∼ fails to be paracompact
would be pretty obscure.

Suppose that H is a closed subgroup of G. Then a continuous nonnegative
function b on G with the properties that

∫

H

b(st) dµH(t) = 1 for all s ∈ G

and such that the support of b has compact intersection with the saturation of any
compact subset of G is called a Bruhat approximate cross section for G over H .
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Since G/H is easily seen to be paracompact,5 the existence of such functions is a
special case of the following proposition which is a minor variation on [11, App. I,
Lemme 1].

Proposition H.17. Suppose that G × Σ/∼ is paracompact. Then there is a con-
tinuous function b : G× Σ → [0,∞) such that

(a)

∫

H

b(st,H) dµH(t) = 1 for all H ∈ Σ and s ∈ G, and

(b) if K ⊂ G is compact, and if q : G× Σ → G× Σ/∼ is the quotient map, then

supp b ∩ q−1
(
q(K × Σ

))

is compact.

We call b a generalized Bruhat approximate cross section.

Remark H.18. In order to dispense with the paracompactness assumption in certain
applications of Proposition H.17, it will be convenient to prove a version of the
proposition that applies only to saturated subsets of G × Σ with paracompact
quotient. Specifically, let L be a subset of G for which q(L × Σ) is a paracompact
locally compact subset of G×Σ/∼.6 Define S(L) to be the saturation q−1

(
q(L×Σ)

)

of L×Σ in G×Σ. We will prove that there is a continuous function b ∈ C+
(
S(L)

)

such that

(a)′
∫

H

b(st,H) dµH(t) = 1 for all s ∈ L and H ∈ Σ, and

(b)
′

if K ⊂ L is compact, then

supp b ∩ S(K)

is compact, where S(K) := q−1
(
q(K × Σ)

)
.

Of course, we recover Proposition H.17 by taking L = G.

Proof. For each a = q(s,H) ∈ q(L× Σ), let fa ∈ C+
c

(
S(L)

)
be such that

∫

H

fa(st,H) dµH(t) > 0.

Let

U(a) := { (r,K) ∈ S(L) : fa(r,K) > 0 }.
Since q is open, { q

(
U(a)

)
}a∈q(L×Σ) is an open over of q(L × Σ). Since we’ve

assumed that the latter is paracompact, there is a locally finite subcover {Vi }i∈I
of { q

(
U(a)

)
}. Again using paracompactness, there is a partition of unity, {ϕi }i∈I

5Let G0 be a σ-compact open subgroup of G as in Lemma 1.38 on page 10. Then it is not
hard to see that G0sH is a clopen subset of G for each s ∈ G (it is a union of clopen right G0

cosets). Thus G/H is the disjoint union of the images of these sets, each of which is clopen and
σ-compact. Thus G/H is paracompact.

6The application we need is when L is compact. However, L could be any open σ-compact
subset such as the subgroup generated by a compact neighborhood.
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subordinate to {Vi } ([139, Lemma 4.34]). For each i ∈ I, there is an ai = q(si, Hi)
such that

Vi ⊂ q
(
U(ai)

)
.

Define Fi(s,H) := ϕi
(
q(s,H)

)
fai(s,H). Then Fi ∈ C+

c

(
S(L)

)
and suppFi ⊂

q−1(Vi). Since {Vi }i∈I is locally finite, every (s,H) ∈ G × Σ has a neighborhood
such that all by finitely many of the Fi vanish off that neighborhood. Thus we
obtain a continuous function on S(L) via

F (s,H) :=
∑

i∈I

Fi(s,H).

If (s,H) ∈ S(L), then there is an i ∈ I such that ϕi
(
q(s,H)

)
> 0. Since Vi ⊂

q
(
U(ai)

)
, there is a t ∈ H such that (st,H) ∈ U(ai). This implies that fai(st,H) >

0 and that ϕi
(
q(st,H)

)
= ϕi

(
q(s,H)

)
> 0. Therefore Fi(st,H) > 0. Since F is

continuous and nonnegative,

∫

H

F (st,H) dµH(t) > 0.

Suppose that K ⊂ L is compact. Since q(K × Σ) is compact and since {Vi } is
locally finite, there is a finite subset J ⊂ I such that q(K ×Σ) ⊂ ⋃

i∈J Vj and such

that Vi∩q(K×Σ) = ∅ if i /∈ J . Thus i /∈ J implies that suppFi∩q−1
(
q(K×Σ)

)
= ∅.

Thus

q−1
(
q(K × Σ)

)
∩ suppF ⊂ q−1

(
q(K × Σ)

)
∩

(⋃

i∈I

suppFi

)

= q−1
(
q(K × Σ)

)
∩

(⋃

j∈J

suppFj

)
,

which is compact.

Now fix s ∈ L and let K be a compact neighborhood of s. Since suppF ∩
q−1

(
q(K × Σ)

)
is compact by the above, the function (s, t,H) 7→ F (st,H) has

compact support on K × G ∗ Σ. Thus there is a F ′ ∈ Cc(K × G × Σ) such that
F (st,H) = F ′(s, t,H) for all s ∈ K and t ∈ H . Thus we can apply Lemma H.9 on
page 460 to F ′, and conclude that

(s,H) 7→
∫

H

F (st,H) dµH(t)

is continuous and greater than zero on S(L). Therefore we can define a continuous
function by

b(s,H) := F (s,H)
(∫

H

F (st,H) dµH(t)
)−1

.

This function clearly satisfies (a)
′
and (b)

′
in Remark H.18 on the facing page.
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Corollary H.19. Suppose that K ⊂ G is compact. There there is a b ∈ C+
c (G×Σ),

called a cut-down generalized Bruhat approximate cross section, such that

∫

H

b(st,H) dµH(t) = 1 for all s ∈ K and all H ∈ Σ.

Proof. Let L be a compact neighborhood ofK. In view of Remark H.18 on page 466,
the proof of Proposition H.17 on page 466 implies that there is a b ∈ C+

(
S(L)

)

satisfying (a)
′
and (b)

′
on page 466. If U is a an open set such that K ⊂ U ⊂ L,

then

K ′′ := supp b ∩ S(K)

is compact and there is a ϕ ∈ C+
c (G×Σ) such that ϕ(s,H) = 1 for all (s,H) ∈ K ′′

and such that ϕ vanishes off of the open set S(U) = q−1
(
q(U × Σ

)
. Thus

b(s,H) =

{
ϕ(s,H)b(s,H) if (s,H) ∈ S(U), and

0 if (s,H) /∈ K ′′

is continuous. If s ∈ K and H ∈ Σ, then since b vanishes off K ′′,

∫

H

b(st,H) dµH(t) =

∫

H

b(st,H) dµH(t) = 1.

Lemma H.20. Suppose that G is a locally compact group and that Σ is the compact
Hausdorff space of closed subgroups of G. For each H ∈ Σ, let qH : G → G/H be
the natural map. Let K ⊂ G be compact. Then there is a positive constant m(K)
such that for all H ∈ Σ we have

βH
(
qH(K)

)
≤ m(K).

Proof. To find a m(K), let b be a cut-down generalized Bruhat approximate cross
section (as in Corollary H.19) such that

∫

H

b(st,H) dµH(t) = 1 for all s ∈ K and H ∈ Σ.

Then

H 7→
∫

G

b(st,H)ρ(s,H) dµG(s)

is a continuous function F1 on Σ. Furthermore,

∫

H

b(st,H)ρ(s,H) dµG(s) =

∫

G/H

∫

H

b(st,H) dµH(t) dβH(ṡ)

≥ βH
(
qH(K)

)
.

Thus we can let m(K) = ‖F1‖∞.
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H.4 The Stabilizer Map

An important application of the Fell topology on the space Σ of closed subgroups of
G arises when considering a transformation group (G,X). If X is a T0-topological
space, so that each stability group Gx is closed by Lemma 3.23 on page 95, then
we obtain a natural map σ of X into Σ defined by

σ(x) = Gx := { s ∈ G : s · x = x }.

We call σ the stabilizer map. The stabilizer map is rarely continuous — even in
rather nice situations such as the circle group T action on the complex numbers C
by multiplication. A more involved example is the following which is taken from
[59, p. 134]. Working out the details is an interesting exercise.

Example H.21. Let G =
∏∞
i=1 Z2 and let X =

∏∞
i=1[−1, 1]. Let the ith factor of

G act on the ith factor of X by reflection about the origin. Given x = (xi), then
Gx = { e } if and only if xi 6= 0 for all i. The stabilizer map is continuous at x if
and only if x ∈ P = {x ∈ X : xi 6= 0 for all i }. Notice that P has no interior.

Remark H.22. If G is a Lie group, if X is a second countable almost Hausdorff
locally compact space and if G\X is T0 (see Theorem 6.2 on page 173), then Glimm
has shown that there is a dense open subset of X on which the stabilizer map is
continuous [59, Theorem 3]. We have already seen in Example H.21 that if G is not
a Lie group, then it is possible for the set where the stabilizer map is continuous to
have no interior. However, as we will show in Theorem H.24 on the following page,
the situation in Example H.21 is about as bad as it gets.

Our next result shows that the stabilizer map is always a Borel map. This will
important in our study of the Effros-Hahn conjecture. (See Proposition H.41 on
page 477.)

Proposition H.23. Suppose that (G,X) is a topological transformation group with
G locally compact and second countable, and with X Hausdorff. Then the stabilizer
map σ : X → Σ is a Borel map.

Proof. It suffices to see that σ−1
(
U(K; {U1, . . . , Un }

)
is Borel for all compact sets

K ⊂ G and open sets Ui ⊂ G. To begin with, for any subset K ⊂ G, let

W (K) := σ−1
(
{H ∈ Σ : H ∩K 6= ∅ }

)
.

We claim that W (K) is closed when K is compact. Suppose that K is compact,
that { xi } ⊂ W (K) and that xi → x. We want to show that Gx := σ(x) is such
that Gx ∩ K 6= ∅. Let hi ∈ Gxi ∩ K. Since K is compact, we can pass to a
subsequence, relabel, and assume that hi → h ∈ K. Then xi = hi ·xi → h ·x. Since
X is Hausdorff, we must have h ∈ Gx. Thus x ∈W (K), and W (K) is closed.

Now suppose that U ⊂ G is open. Since G is second countable, there are
compact sets Kn such that

U =

∞⋃

n=1

Kn.
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Thus

W (U) = σ−1
(
{H ∈ Σ : H ∩ U 6= ∅ }

)
=

∞⋃

n=1

W (Kn)

is a Fσ subset (i.e., a countable union of closed sets) of Σ. In particular, W (U) is
Borel whenever U is open.

If K is compact and U1, . . . , Un are open, then

σ−1
(
U(K; {U1, . . . , Un })

)
= W (K)c ∩

n⋂

i=1

W (Ui),

which is certainly Borel.

Although Proposition H.23 on the previous page (in the form of Proposi-
tion H.41) is sufficient for our needs in the study of the Effros-Hahn conjecture, it
is interesting to consider just how well or badly behaved the stabilizer map can be.
Even in Example H.21 on the preceding page, the stabilizer map is still continuous
on a large subset. We include a proof which shows that the stabilizer map is
always continuous on a dense set. Note that this is a much stronger statement
than is provided by Lusin’s Theorem (Theorem 9.25 on page 298) which provides
a large subset on which the restriction of σ is continuous.

Theorem H.24. Suppose that (G,X) is a Polish transformation group with G
second countable and locally compact. Then there is a dense Gδ subset of X on
which the stabilizer map σ is continuous.

Our proof follows [4, Chap. II Propositions 2.1 and 2.3]. To obtain points
of continuity, we rely on the fact that lower semicontinuous functions on Baire
spaces must be continuous on large subsets. Recall that f : X → R is lower
semicontinuous if f−1

(
(a,∞)

)
is open for all a ∈ R. We say that a topological

space X is a Baire space if the countable intersection of open dense sets is dense.
Of course all Polish spaces are Baire spaces, but even non-Hausdorff spaces, such as
the primitive ideal space of a C∗-algebra, can be Baire spaces [139, Corollary A.47
and §A.48].

Proposition H.25. Suppose that X is a Baire space, and that f : X → R is lower
semicontinuous. Then the set C of x such that f is continuous at x is a dense Gδ
subset of X.

If X is a metric space and if f is a nonnegative lower semicontinuous function,
then f in the increasing pointwise limit of a a sequence { gn } of continuous functions
(see, for example, [168, 7K(4)] or [156, p. 60 #22]). Then [109, Theorem 48.5] and
its proof imply that the set of points were f is continuous is a dense Gδ subset of
X . In the general case, we’ll make use of the notion of the oscillation of f at a
point. If f : X → R is any bounded function, let

ω(f, U) := sup{ |f(x) − f(y)| : x, y ∈ U }, and

ω(f, x) = inf{ω(f, U) : U is a neighborhood of x }.
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Clearly, if f is continuous at x, then ω(f, x) = 0. On the other hand, if f is not
continuous at x, then there is a net xi → x such that |f(xi) − f(x)| ≥ ǫ > 0 for
some ǫ. Then ω(f, U) ≥ ǫ for all neighborhoods U of x. Thus ω(f, x) ≥ ǫ. That is,
f is continuous at x if and only if ω(f, x) = 0.

Proof of Proposition H.25. Since x 7→ x/(1 + |x|) is increasing,

g(x) :=
f(x)

1 + |f(x)|
is lower semicontinuous and it is continuous at exactly those points where f is.
Therefore, we can replace f by g and assume that f is bounded. Suppose that
xi → x and that for each i, ω(f, xi) ≥ ǫ. If U is any neighborhood of x, then U is
also a neighborhood of some xi, and ω(f, U) ≥ ǫ. Therefore ω(f, x) ≥ ǫ, and ω(f, ·)
is upper semicontinuous. In particular,

En := { x : ω(f, x) ≥ 1

n
}

is closed. Suppose that En were to contain a nonempty open set W . Let α :=
sup{ f(x) : x ∈ W }. Since f is lower semicontinuous,

U := { x : f(x) > α− 1

2n
} ∩W

is a neighborhood of some x0 ∈ W , and ω(f, x0) ≤ ω(f, U) ≤ 1
2n < 1

n . This
contradicts x0 ∈ En. Thus Gn := X r En is open and dense. But

C := { x ∈ X : ω(f, x) = 0 }

= X r

∞⋃

n=1

En

=

∞⋂

n=1

Gn

is a Gδ subset which is dense since X is assumed to be a Baire space.

Since G is second countable, it has a countable neighborhood basis at e. Con-
sequently G is metrizable and there is a compatible metric d on G which is left-
invariant; that is, d(rs, rt) = d(s, t) for all r, s, t ∈ G ([71, Theorem II.8.4]). Let

Bǫ(s) := { r ∈ G : d(r, s) < ǫ }
be the ǫ-ball centered at s in G. Define b ∈ (0,∞] by

b := sup{ ǫ : Bǫ(e) is compact },
and let a = min{ b

2 , 1 }. Since d is left-invariant, Bǫ(s) is pre-compact for all
0 < ǫ ≤ a.

For each s ∈ G, define ds : Σ → [0, a] by

ds(H) := min{ a, d(s,H) } where d(s,H) = inf{ d(s, t) : t ∈ H }.
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Lemma H.26. For each s ∈ G, ds is continuous from Σ to [0,∞).

Proof. Fix ǫ > 0, s ∈ G and H ∈ Σ. Choose t ∈ H such that

d(s, t) ≤ d(s,H) +
ǫ

2
,

and let V = B ǫ
2
(t).

If s ∈ H , then ds(H) = 0 and U = U(∅; {V }) is a neighborhood of H such that
H ′ ∈ U implies that d(s,H ′) < ǫ. Thus ds is continuous at H in the event s ∈ H .

If s /∈ H and if d(s,H) > a, then K = Ba(s) is compact and U = U(K; ∅) is
a neighborhood of H such that H ′ ∈ U implies ds(H

′) = a = ds(H). Thus ds is
continuous at H in this case.

If s /∈ H and if 0 < d(s,H) ≤ a, then there is no harm in assuming that
ǫ < d(s,H). Pick δ such that d(s,H) − ǫ ≤ δ < a. Then K = Bδ(s) is compact
and H ′ ∈ U := U(K; {V }) must satisfy

d(s,H) − ǫ ≤ d(s,H ′) ≤ d(s,H) + ǫ.

Thus ds is continuous at H in all cases.

Let D = { si }∞i=1 be a countable dense subset of G.

Lemma H.27. The functions { dsi }∞i=1 separate points in Σ. If Z is any topological
space and if f : Z → Σ, then f is continuous at z ∈ Z if and only if dsi ◦ f is
continuous at z for all i.

Proof. Suppose that H and H ′ are distinct elements in Σ. Without loss of gener-
ality, we can assume that H rH ′ is nonempty and choose s ∈ H rH ′. Since D is
dense, there is a sequence sik → s. Then dsik

(H) → 0 while dsik
(H ′) is eventually

bounded away from 0 by min{ d(s,H ′)/2, a }. This proves the first assertion.
It follows that

H 7→
(
dsi(H)

)
(H.10)

is a continuous injection of Σ into
∏∞
i=1[0, a]. Since Σ is compact, (H.10) is a

homeomorphism onto its range. The remaining assertion follows easily from this.

Lemma H.28. Let (G,X) be as in Theorem H.24, and let σ be the stabilizer map.
For each i, dsi ◦ σ is lower semicontinuous.

Proof. It suffices to show that for each x ∈ X ,

c := lim inf
y→x

dsi

(
σ(y)

)
≥ dsi

(
σ(x)

)
.

If c = a, then there is nothing to show. Assume that c < a, and let yn → x be such
that

c = lim inf
n

dsi

(
σ(yn)

)
.

Passing to a subsequence and relabeling, we can assume that dsi

(
σ(yn)

)
< a for

all n. Therefore d(si, Gyn) < a, and after passing to another subsequence, there is
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a tn ∈ Gyn such that d(si, tn) < a and such that d(si, tn) → c. Since { tn } belong
to the pre-compact set Ba(si), we can pass to a subsequence, relabel, and assume
that tn → t. Since each tn ∈ Gyn and since tn · yn → t · x, we must have t · x = x
(since X is Hausdorff). That is, t ∈ Gx and

dsi

(
σ(x)

)
≤ d(si, Gx) ≤ d(si, t) = c.

Thus each dsi is lower semicontinuous as claimed.

Proof of Theorem H.24 on page 470. Proposition H.25 on page 470 and Lem-
ma H.28 imply that each dsi ◦ σ is continuous on a dense Gδ subset Ai of X . By
Lemma H.27 on the facing page, σ is continuous on the intersection A :=

⋂
Ai.

However, A is a Gδ subset and it is dense since X is a Baire space.

Remark H.29. The proof of Lemma H.27 on the preceding page shows that a map
f : Z → Σ is Borel if and only if f ◦dsi is Borel for all i. Consequently, Lemma H.28
on the facing page gives a proof that σ is Borel (with the additional assumption
that X is a Polish space).

H.5 Borel Issues

Let {µH }H∈Σ be a continuous choice of Haar measures on Σ. Let K ⊂ G be
compact and let CK be the set of bounded Borel functions F on K ∗Σ = { (s,H) ∈
G ∗ Σ : s ∈ K } such that

ϕ(H) :=

∫

H

F (s,H) dµH(s) (H.11)

defines a Borel function on Σ. Then CK contains C(K ∗ Σ) and is closed under
monotone sequential limits. Therefore [127, Proposition 6.2.9] implies that CK

contains all bounded Borel functions. More generally, we have the following.

Lemma H.30. Suppose that X is a Polish space and that F is a bounded Borel
function on X ×G ∗ Σ with compact support in the second variable; that is, there
is a compact set K ⊂ G such that F (x, s,H) = 0 if s /∈ K. Then

ϕ(x,H) :=

∫

H

F (x, s,H) dµH(s)

defines a Borel function on X × Σ.

Remark H.31. Since X is a standard Borel space, we could evoke Kuratowski’s
Theorem I.40 on page 503 and replace X by a second countable locally compact
space such as [0, 1]. Then we could simply repeat the argument above invoking
[127, Proposition 6.2.9]. Instead we’ll give a direct proof. Note that we only use
the fact that the Borel structure on X comes from a second countable topology.
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Proof of Lemma H.30 on the preceding page. It will suffice to consider nonnegative
F and to replace G ∗Σ with K ∗Σ as above. Since there are Borel simple functions
Fi ր F , it suffices to take F of the form 1B for some Borel set B ⊂ X×K∗Σ. Since
X and K ∗ Σ are second countable, the Borel sets of X × G ∗ Σ are generated by
Borel rectangles B1×B2 with B1 ⊂ X and B2 ⊂ K ∗Σ each Borel (see Lemma 4.44
on page 141). Since the collection of Borel sets B such that

ϕB(x,H) :=

∫

H

1B(x, s,H) dµH(s)

defines a Borel function is a monotone class of sets containing the algebra of
Borel rectangles, it contains all Borel sets by the Monotone Class Lemma ([57,
Lemma 2.35]).

Lemma H.32. Let A be a separable C∗-algebra. Then every weakly Borel function
f : X → A is Borel. That is, if ϕ ◦ f : X → C is Borel for all ϕ ∈ A∗, then f is
Borel.

Remark H.33. Since each ϕ ∈ A∗ is continuous, it is obvious that Borel functions
are weakly Borel. The proof of the converse is essentially that of Lemma B.7 on
page 333.

Proof. Let V be open in A. It suffices to see that f−1(V ) is Borel. Since A is
separable, there are closed balls

An := { a ∈ A : ‖a− an‖ ≤ ǫn }

such that

V =

∞⋃

n=1

An.

Thus it will suffice to see the f−1(An) is Borel. But Lemma B.8 on page 333 implies
that there is a countable set {ϕm } in A∗ such that

‖a− an‖ ≤ ǫn if and only if |ϕm(a− an)| ≤ ǫn for all m.

Thus
f−1(An) =

⋂

m

{ x ∈ X : |ϕm
(
f(x) − an

)
| ≤ ǫn }.

This suffices since the sets on the right-hand side are Borel by assumption.

H.6 Prim A Standard

Here we want to take a close look at the space PrimA with its usual hull-kernel
topology. We want to see that PrimA is a standard Borel space. This result goes
back at least to Effros’s paper [45]. The treatment here uses the Fell topology on
the closed subsets of PrimA, and is due to Dixmier [27].
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Recall that an nonempty closed subset of a topological space is called irreducible
if it cannot be written as a nontrivial union of two closed sets. Thus F is irreducible
if and only if whenever C1 and C2 are closed sets such that F = C1∪C2, then either
C1 = F or C2 = F . In any topological space X , the closure of a point is irreducible.
Here we have in mind the space X = PrimA, where A is a separable C∗-algebra.
Then points in X need not be closed. But X is at least second countable,7 and
since every closed subset of the primitive ideal space is the primitive ideal space of
a quotient of A, every closed subset has the Baire property—that is, the countable
intersection of open dense sets is again dense [139, Corollary A.47].

Lemma H.34. Suppose that X is a second countable (not necessarily Hausdorff)
locally compact space in which every nonempty closed subset has the Baire property.
Then every irreducible subset is a point closure.

Proof. (The proof is essentially that of Proposition 6.21 on page 186.) Suppose that
F is irreducible. Then every nonempty open subset of F is dense in F . Since the
relative topology on F is second countable, the intersection of all nonempty open
subsets of F is dense. Any point in the intersection of every open set is necessarily
dense in F .

Lemma H.35. Let C (X) be the closed subsets of a (not necessarily Hausdorff)
locally compact space X. Define Θ : C (X) × C (X) → C (X) by Θ(E,F ) = E ∪ F .
Then Θ is continuous when C (X) has the Fell topology.

Remark H.36. Easy examples show the map taking (E,F ) to E∩F is not continuous
in general.

Proof. This is a straightforward consequence of Lemma H.2 on page 454. Suppose
that Ei → E and Fi → F in C (X). If t ∈ E ∪ F , then we may as well assume
that t ∈ E. Then passing to a subnet and relabeling, we can assume that there are
ti ∈ Ei ⊂ Ei∪Fi such that ti → t. Similarly, if ti ∈ Ei∪Fi and if ti → t, then we can
pass to a subnet, relabel, and assume that ti is either always in Ei or always in Fi. In
either case, we must have t ∈ E ∪F . Thus Θ(Ei, Fi) = Ei∪Fi → E ∪F = Θ(E,F )
as required.

Proposition H.37. Suppose that X is a second countable (not necessarily Haus-
dorff) locally compact space. Then

I := {F ∈ C (X) : F is irreducible }

is a Gδ subset of C (X). In particular, I is a Polish space in the relative topology.

Proof. Let

E := { (E1, E2) ∈ C (X) × C (X) : E1 ⊂ E2 } and

F := { (E1, E2) ∈ C (X) × C (X) : E2 ⊂ E1 }.
7This follows from [139, Theorem A.38] and [139, Proposition A.46]
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Using Lemma H.2 on page 454, it is not hard to see that E and F are closed.
Furthermore, a closed set F fails to be irreducible if and only if there are closed
sets E1 and E2 such that F = E1 ∪ E2 while E1 6⊂ E2 and E2 6⊂ E1. Thus I is
the complement of the image under the continuous map Θ of the complement of
E ∪ F . Since open subsets of second countable metric spaces are the countable
union of closed sets, and since C (X) × C (X) is compact, there are compact sets
Ki ⊂ C (X) × C (X) such that

C (X) × C (X) r (E ∪ F ) =
⋃
Ki.

Thus I is the complement of ⋃
Θ(Ki).

Since Θ is continuous, Θ(Ki) is compact, and since C (X) is Hausdorff, closed.
Thus I is the countable intersection of open sets; that is, I is a Gδ subset of
C (X). Since C (X) is Polish (Theorem H.5 on page 455), I is Polish since all
Gδ subsets of a Polish space are Polish (cf, [2, Theorem 3.1.2; 139, Lemma A.44;
168, Theorem 24.12]).

Now we specialize to the case where X = PrimA for a separable C∗-algebra A.
Then PrimA is a second countable locally compact space which certainly need not
be Hausdorff in general. Define

λ : PrimA→ C (PrimA)

by λ(P ) = {P } = { J ∈ PrimA : J ⊃ P }. Since PrimA is a T0-topological space,
λ is injective. If V is open in PrimA, then

λ(V ) = U(∅; {V }) ∩ λ(PrimA).

Consequently, λ is an open bijection of PrimA onto λ(PrimA). The following
terminology is from [64].

Definition H.38. Suppose that A is a separable C∗-algebra. The regularized topol-
ogy on PrimA is that obtained by identifying PrimA with its image in C (PrimA)
via the map λ.

Theorem H.39. Suppose that A is a separable C∗-algebra. The regularized topol-
ogy on PrimA is finer than the hull-kernel topology and generates the same Borel
structure as the hull-kernel topology. With the regularized topology, PrimA is a
Polish space and (G,PrimA) is a topological transformation group.

Proof. Since λ is an open map, it is immediate that the regularized topology is
finer than the hull-kernel topology. Since closed subsets of PrimA have the Baire
property, the irreducible subsets I of C (PrimA) are exactly the point closures
(Lemma H.34 on the preceding page). Thus λ(PrimA) = I is a Gδ subset of
C (PrimA) (Proposition H.37 on the previous page), and therefore Polish.

On the other hand, since the hull-kernel topology on PrimA is T0 and second
countable, PrimA is a countably separated Borel space with the Borel structure
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generated by the hull-kernel topology. Since λ is open, λ−1 : λ(PrimA) → PrimA is
Borel map from the standard Borel space λ(PrimA) onto the countably separated
Borel space PrimA. Therefore λ−1 is a Borel isomorphism (Corollary 1 of [2,
Theorem 3.3.4] and Corollary 1 of [2, Theorem 3.3.5]).

It only remains to show that the map (s, {P }) 7→ { s · P } is continuous from
G×λ(PrimA) → λ(PrimA). (The corresponding map from G×PrimA→ PrimA
is continuous in the hull-kernel topology by [139, Lemma 7.1].) Suppose that si → s
and {Pi } → {P }. Note that

{ s · P } = s · {P } = { s · J : J ⊃ P }.

Note that if Qi ∈ { si · Pi } and if Qi → Q, then Qi = si · Ji with Ji ∈ {Pi }.
Furthermore, Ji → s−1 ·Q in PrimA. Lemma H.2 on page 454 implies that s−1 ·Q ∈
{P }. That is, Q ∈ { s · P }. On the other hand, if J ∈ { s · P }, then J = s ·Q for
some Q ∈ {P }. Using Lemma H.2, we can pass to a subnet, relabel, and assume
that there are Ji ∈ {Pi } such that Ji → Q. Thus si ·Ji → J , and si ·Ji ∈ { si · Pi }.
Thus { si · Pi } → { s · P } by Lemma H.2.

Since Theorem H.39 on the preceding page implies that the Borel structure
coming from the hull-kernel topology is the same as that coming from the stronger
Polish topology, we get the following as an immediate corollary.

Theorem H.40. If A is a separable C∗-algebra, then PrimA is a standard Borel
space in the Borel structure coming from the hull-kernel topology.

We also obtain a crucial corollary to Proposition H.23 on page 469.

Proposition H.41. Suppose that (A,G, α) is a separable dynamical system. Then
the stabilizer map P 7→ GP is Borel from PrimA into the compact Hausdorff space
Σ of closed subgroups of G.

Proof. Using Theorem H.39 on the preceding page, we can replace the hull-kernel
topology on PrimA with it regularized topology. Then the result follows from
Proposition H.23 on page 469.





Appendix I

Miscellany

I.1 The Internal Tensor Product

In [139], we only considered a special case of the internal tensor product which
sufficed for the study of imprimitivity bimodules. Here we want to consider a
more general situation. Let A and B be C∗-algebras and suppose that X is a
right Hilbert A-module, Y is a right Hilbert B-module and that ϕ : A → L(Y) is
a homomorphism. We can view Y as a left A-module — a · y := ϕ(a)y — and
form the A-balanced module tensor product X ⊙A Y; recall that this is simply the
quotient of the vector space tensor product X⊙Y by the subspace N generated by

{ x · a⊗ y − x⊗ ϕ(a)y : x ∈ X, y ∈ Y, and a ∈ A }.

The B-module structure is given by (x ⊗A y) · b := x ⊗A y · b. Our object here is
to equip X⊙A Y with a B-valued inner product and use [139, Lemma 2.16] to pass
to the completion X ⊗ϕ Y which is a Hilbert B-module called the internal tensor
product. I’ll give a minimal treatment here just sufficient for our purposes. A more
complete treatment can be found in Lance [98]. Here we take a slight short-cut, and
merely equip X⊙Y with a B-valued pre-inner product. As it turns out, elements in
N all have 0-length, and we can, and do, view X⊗ϕ Y as a completion of X⊙A Y.1

Proposition I.1. Let X be a Hilbert A-module and Y and Hilbert B-module with a
homomorphism ϕ : A → L(Y). Then there is a unique B-valued pre-inner product
on X ⊙ Y such that

〈〈x ⊗ y , z ⊗ w〉〉
B

:=
〈
y , ϕ

(
〈x , z〉

A

)
w

〉
B
. (I.1)

The completion X ⊗ϕ Y is a Hilbert B-module which satisfies

x · a⊗ϕ y = x⊗ϕ ϕ(a)y

for all x ∈ X, y ∈ Y, and a ∈ A.

1Lance goes the extra mile and proves that the pre-inner product is actually an inner product
(that is, definite) on X ⊙A Y.

479
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Remark I.2. When the map ϕ : A → L(Y) is understood, it is common to use the
notation X ⊗A Y in place of X ⊗ϕ Y.

Proof. As in Propositions 2.64, 3.16, and 3.36 of [139], the universal property of
the algebraic tensor product ⊙ implies that (I.1) determines a unique sesquilinear
form on X ⊙ Y. The only real issue is to prove that this form is positive.

So let t :=
∑
xi ⊗ yi. Then

〈〈t , t〉〉
B

=
∑

i,j

〈
yi , ϕ

(
〈xi , xj〉

A

)
yj

〉
B
. (I.2)

But [139, Lemma 2.65] implies thatM :=
(
〈xi , xj〉

A

)
is a positive matrix in Mn(A).

Thus there is a matrix D such that M = D∗D, and there are dkl ∈ A such that

〈xi , xj〉
A

=
∑

k

d∗kidkj .

Thus (I.2) equals

∑

i,j,k

〈
yi , ϕ(d∗kidkj)yj

〉
B

=
∑

i,j,k

〈
ϕ(dki)yi , ϕ(dkj)yj

〉
B

=
∑

k

〈(∑

i

ϕ(dki)yi)
)
,
(∑

i

ϕ(dki)yi)
)〉

B

≥ 0

Now we want to see that each T ∈ L(X) determines an operator T ⊗ϕ 1 on the
internal tensor product X ⊗ϕ Y.

Lemma I.3. Let A, B, X, Y, and ϕ be as above, and let Z be a Hilbert A-module.
If T ∈ L(X,Z), then there is unique operator T ⊗ϕ 1 ∈ L(X⊗ϕ Y,Z⊗ϕ Y) such that

T ⊗ϕ 1(x⊗ϕ y) = Tx⊗ϕ y.

Furthermore, if Z = X, then T 7→ T ⊗ϕ 1 is a homomorphism ϕ∗ of L(X) into
L(X ⊗ϕ Y).

Proof. We clearly have a well-defined operator T ⊗ 1 on X ⊙ Y, and if t ∈ X ⊙ Y

and s ∈ Z ⊙ Y, then straightforward calculations reveal that

〈〈(T ⊗ 1)t , s〉〉
B

= 〈〈t , (T ∗ ⊗ 1)s〉〉
B
.

Similarly, if S ∈ L(Z,X), then on the algebraic tensor product, (T ⊗ 1) ◦ (S ⊗ 1) =
(TS ⊗ 1). Since there is a R ∈ L(X) such that ‖T ‖21X − T ∗T = R∗R, for all
t ∈ X ⊙ Y,

‖T ‖2‖t‖2
X⊗ϕY − ‖(T ⊗ 1)t‖2

X⊗ϕY = 〈〈‖T ‖2t , t〉〉
B
− 〈〈(T ∗T ⊗ 1)t , t〉〉

B

= 〈〈((‖T ‖21X − T ∗T ) ⊗ 1)t , t〉〉
B

= ‖(R⊗ 1)t‖2
X⊗ϕY ≥ 0.
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It follows that T ⊗ 1 is bounded, and extends to an operator T ⊗ϕ 1 ∈ L(X ⊗ϕ
Y,Z⊗ϕ Y) such that (T ⊗ϕ 1)∗ = T ∗ ⊗ϕ 1 and ‖T ⊗ϕ 1‖ ≤ ‖T ‖. The last assertion
is straightforward.

Let XA, YB and ϕ : A → L(Y) be as above. Suppose also that Z is a right
Hilbert C-module and that ψ : B → L(Z). Then we can form the Hilbert C-
modules X ⊗ψ∗◦ϕ (Y ⊗ψ Z) and (X ⊗ϕ Y) ⊗ψ Z. We expect these modules to be
naturally isomorphic and we want to give a quick sketch of why this is so. The
universal properties of the algebraic tensor product give us natural maps

σ : X ⊙ (Y ⊙ Z) → (X ⊙ Y) ⊙ Z

σ1 : X ⊙ (Y ⊙ Z) → X ⊙ (Y ⊗ψ Z)

σ2 : (X ⊙ Y) ⊙ Z → (X ⊗ϕ Y) ⊙ Z.

As in the proof of Proposition I.1, we can equip the algebraic tensor product (X ⊙
Y) ⊙ Z with a C-valued pre-inner product such that

〈〈
(x1 ⊗ y1) ⊗ z1 , (x2 ⊗ y2) ⊗ z2

〉〉
C

=
〈
z1 , ψ

(
〈〈x1 ⊗ y1 , x2 ⊗ y2〉〉

B

)
(z2)

〉
C

=
〈
z1 , ψ

(〈
y1 , ϕ

(
〈x1 , x2〉

A

)
(y2)

〉
B

)
(z2)

〉
C

It follows that σ2 extends to an isomorphism of the completion of (X⊙Y)⊙Z with
(X ⊗ϕ Y) ⊗ψ Z. Similarly, σ1 will extend to an isomorphism of X ⊗ϕ⊗1 (Y ⊗ψ Z)
with the completion of X⊙ (Y ⊙Z) with respect to the C-valued pre-inner product

〈〈
x1 ⊗ (y1 ⊗ z1) , x2 ⊗ (y2 ⊗ z2)

〉〉
C

=
〈〈
y1 ⊗ z1 , ψ∗

(
ϕ
(
〈x1 , x2〉

A

))
(y2 ⊗ z2)

〉〉
C

=
〈〈
y1 ⊗ z1 , ϕ

(
〈x1 , x2〉

A

)
(y2) ⊗ z2

〉〉
C

=
〈
z1 , ψ

(
〈y1 , ϕ

(
〈x1 , x2〉

A

)
(y2)〉

B

)
(z2)

〉
C

Comparing these two pre-inner products, it is now clear that σ extends to the
required isomorphism.

We summarize the above discussion in the following lemma.

Lemma I.4. Suppose that X is a right Hilbert A-module, Y is a right Hilbert B-
module and that Z is a right Hilbert C-module. Let ϕ : A → L(Y) and ψ : B →
L(Z) be homomorphisms. Then the right Hilbert C-modules X ⊗ψ∗◦ϕ (Y ⊗ψ Z) and
(X⊗ϕY)⊗ψZ can be viewed as completions of the algebraic tensor products X⊙(Y⊙Z)
and (X ⊙ Y) ⊙ Z, respectively. Furthermore, the natural algebraic isomorphism
σ : X⊙ (Y⊙Z) → (X⊙Y)⊙Z extends to an isomorphism of X⊗ψ∗◦ϕ (Y⊗ψ Z) onto
(X ⊗ϕ Y) ⊗ψ Z.

I.2 Disintegration of Measures

More general formulations and references can be found in [47, Lemma 4.4] and [1].
We will settle for a special case suitable to our needs in the proof of the Gootman-
Rosenberg-Sauvageot result in Chapter 9.
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Suppose that X and T are Borel spaces, that µ is a measure on X and that
q : X → T is Borel.2 Then the image or push-forward of µ under q is the measure
ν := q∗(µ) on T given by ν(E) := µ

(
q−1(E)

)
. Thus for any nonnegative (complex-

valued) Borel function f on T we have

∫

T

f(t) dν(t) =

∫

X

f
(
q(x)

)
dµ(x). (I.3)

If µ, and hence ν, is finite, then (I.3) holds for all bounded Borel functions on T or
even all Borel functions in L1(ν) (see Lemma H.13 on page 463).3

Theorem I.5 (Disintegration of Measures). Suppose that µ is a finite Borel mea-
sure on the second countable locally compact space X, that (T,M ) is a countably
separated Borel space and that q : X → T is a Borel surjection. Let ν := q∗µ be the
image of µ by q. Then there is a family of (positive) Borel measures {µt }t∈T on
X and a ν-null set N such that

(a) For all t /∈ N , µt is a probability measure with suppµt ⊂ q−1(t),4

(b) µt = 0 if t ∈ N ,

(c) For all h ∈ Bb(X),

t 7→
∫

X

h(x) dµt(x)

is bounded and Borel and

(d) ∫

X

h(x) dµ(x) =

∫

T

∫

X

h(x) dµt(x) dν(t).

If {µ′
t }t∈T is another family of finite measures satisfying suppµ′

t ⊂ q−1(t) for ν
almost all t as well as (c) and (d), then µt = µ′

t for ν-almost every t.

Remark I.6. Theorem I.5 is illustrated by the special case where X is the product
A × B and q is the projection on the first factor. Then the measures µa can be
viewed as measures on B, and for all h ∈ Bb(A×B) we have

∫

A×B

h(a, b) dµ(a, b) =

∫

A

∫

B

h(a, b) dµa(b) dν(a).

2We are using terminology consistent with Appendix D.2. Thus a Borel space is a pair (T,M )
where M is a σ-algebra of sets in T . A function q : (X,B) → (T,M ) is called Borel if q−1(E) ∈ B

for all E ∈ M . In many texts, the pair (T,M ) is called simply a measurable space, and a function
q as above is called a measurable function.

3When working with measures on the Borel sets of a topological space T , there is a distinction
between real-valued Borel functions and ν-measurable functions. A ν-measurable function is
measurable with respect to the completion of ν. That is f is ν-measurable if for every open set
V ⊂ R there are Borel sets B and C such that B ⊂ f−1(V ) ⊂ C with ν(BrC) = 0. Since q−1(B)
and q−1(C) are Borel sets in X which differ by a µ-null set, it follows that f ◦ q is µ-measurable
if and only if f is ν-measurable. In particular, (I.3) holds for integrable ν-measurable f as well.

4The support of a measure is used informally here. It has a clear definition in a topological
space as the complement of the union of open null sets. Here supp µ ⊂ B just means µ(XrB) = 0.
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This iterated integral should be compared with that resulting from Fubini’s Theo-
rem in the case where µ is the product of two probability measures ν on A and σ
on B. Then q∗µ = ν and each µa = σ.

The proof of Theorem I.5 given here depends on a classical result of Dunford
and Pettis. Suppose that (T,M ) is a Borel space and that B is a Banach space.
The dual space of B is the space B∗ of bounded linear functionals on B. The value
of ϕ ∈ B∗ on b ∈ B is often denoted by 〈b , ϕ〉. A map F : X → B∗ is called weak-∗
Borel if t 7→

〈
b , F (t)

〉
is Borel for all b ∈ B.5

Theorem I.7 (Dunford-Pettis). Let (T,M , ν) be a finite measure space and let B
be a separable Banach space with dual B∗. If Φ : L1(ν) → B∗ is a bounded linear
map, then there is a bounded weak-∗ Borel function F : T → B∗ such that for all
b ∈ B

〈
b , Φ(g)

〉
=

∫

T

g(t)
〈
b , F (t)

〉
dν(t).

The function F is determined up to a ν-null set.

The proof of this result basically requires that we make sense out of “evaluating
an element of L∞(ν) at a point.” As usual, if ν is a measure on (T,M ), then
we’ll write Bb(T ) for the bounded Borel functions on T , and reserve L∞(ν) for
the Banach space of equivalence classes of functions in Bb(T ) which agree ν-almost
everywhere and equipped with the essential supremum norm.6 Usually we ignore
the fact that elements of L∞ are equivalence classes and treat them as functions.
This usually causes no harm provided one realizes that certain operations — such
as evaluation at a point — makes no sense on L∞. Our next lemma says that
provided we restrict attention to a separable subspace of L∞, we can pick functions
representing elements of this subspace in a linear way. (In particular, on such a
subspace, point evaluations do define linear functionals.) Such a map is called a
linear lifting for L∞ and there is a considerable industry in finding such maps —
even multiplicative ones (cf., [24, Chap. II, §11]). The lemma here is based on
[13, §2, No. 5, Lemme 2] and suffices for our needs.

Lemma I.8. Suppose that ν is a finite measure on (T,M ) and that π : Bb(T ) →
L∞(ν) is the quotient map. If S is a separable subspace of L∞(ν), then there is a
linear map

ρ : S → Bb(T )

such that π
(
ρ(f)

)
= f for all f ∈ S.

Proof. Let D be a countable dense subset in S. Let S0 be the rational subspace
generated by D. Since S0 is countable, it must have a countable basis { hn } as
a vector space over the rationals. Let fn ∈ Bb(T ) be any function such that

5Note that B∗ may not be separable even though B is. In particular, a weak-∗ Borel function
on a locally compact space need not be measurable as defined in Appendix B.

6Alternatively, we could have worked with the set L∞(ν) of M -measurable functions on T
which are ν-essentially bounded.
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π(fn) = hn. Then there is a unique Q-linear map ρ′ : S0 → Bb(T ) such that
ρ′(hn) = fn for all n. By linearity,

π
(
ρ′(h)

)
= h for all h ∈ S0.

Therefore the essential supremum of ρ′(h) equals ‖h‖∞. In particular, there is a
null set N(h) such that

|ρ′(h)(t)| ≤ ‖h‖∞ for all t ∈ T rN(h).

Since S0 is countable, there is a null set N such that

|ρ′(h)(t)| ≤ ‖h‖∞ for all h ∈ S0 and t /∈ N .

For each h ∈ S0, define

ρ(h) :=

{
ρ′(h)(t) if t /∈ N , and

0 otherwise.

Then we still have π ◦ ρ(h) = h for all h ∈ S0 and ρ is isometric from the subspace
S0 ⊂ L∞(ν) into Bb(T ) equipped with the supremum norm. Since the latter is a
complete, ρ has a unique extension to all of S.

Proof of Theorem I.7. Since ν is finite, we can identify L1(ν)∗ with L∞(ν), and
define ϕ : B → L∞(ν) by

〈
g , ϕ(a)

〉
:=

〈
a , Φ(g)

〉
for g ∈ L1(ν).

Notice that
∥∥ϕ(a)

∥∥ = sup
‖g‖1=1

∥∥〈
a , Φ(g)

〉∥∥

≤ sup
‖g‖1=1

‖Φ‖‖g‖1‖a‖

= ‖Φ‖‖a‖.
Thus ϕ is continuous, and since B is separable, the image ϕ(B) is a separable
subspace of L∞(ν). By Lemma I.8, there is a linear cross section

ρ : ϕ(B) → Bb(T )

for the quotient map π : Bb(T ) → L∞(ν). Then for each t ∈ T , we can define
F (t) ∈ B∗ by 〈

b , F (t)
〉

= ρ
(
ϕ(b)

)
(t).

Since ρ
(
ϕ(b)

)
∈ Bb(T ), t 7→ F (t)(b) =

〈
b , F (t)

〉
is Borel and F is weak-∗ Borel

with ‖F (t)‖ ≤ ‖ϕ‖ for all t. Moreover for all g ∈ L1(ν) and all b ∈ B, we have
〈
b , Φ(g)

〉
= ϕ(b)(g)

=

∫

T

ρ
(
ϕ(b)

)
(t)g(t) dν(t)

=

∫

T

g(t)
〈
b , F (t)

〉
dν(t). (I.4)
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To prove that F is determined up to null sets, it suffices to see that if Φ is the
zero map, then F is zero ν-almost everywhere. But if Φ is the zero map, then given
b ∈ B, (I.4) is zero for all g ∈ L1(ν). Therefore there is a ν-null set N(b) such that〈
b , F (t)

〉
= 0 if t /∈ N(b). Since B is separable, there is a null set N such that〈

b , F (t)
〉

= 0 for all b ∈ B. This suffices.

Proof of the Disintegration Theorem on page 482. Recall that the Banach space
M(X) of complex measures on X equipped with the total variation norm can be
identified with the dual C0(X)∗ of C0(X). If g ∈ L1(ν), then g ◦ q is in L1(µ), and
(g ◦ q) · µ is a complex measure in M(X) which depends only on the class of g in
L1(ν). Thus we get a linear map Φ : L1(ν) → C0(X)∗ which is bounded since

‖(g ◦ q) · µ‖ = ‖g ◦ q‖L1(µ)‖µ‖ = ‖g‖L1(ν)‖‖µ‖.

The Dunford-Pettis Theorem on page 483 implies there is a bounded weak-∗ Borel
function F : X →M(X) = C0(X)∗ such that for each h ∈ C0(X) we have

∫

X

h(x)g
(
q(x)

)
dµ(x) := Φ(g)(h) =

∫

T

g(t)
〈
h , F (t)

〉
dν(t). (I.5)

Let F (t) be given by the complex measure µt. Since F is weak-∗ Borel, for each
h ∈ C0(X),

t 7→
∫

X

h(x) dµt(x)

is a Borel function bounded by ‖h‖∞‖F‖, and the right-hand side of (I.5) is equal
to ∫

T

g(t)

∫

X

h(x) dµt(x) dν(t). (I.6)

Therefore we see that for all g ∈ L1(ν) and h ∈ C0(X), we have

∫

X

h(x)g
(
q(x)

)
dµ(x) =

∫

T

g(t)

∫

X

h(x) dµt(x) dν(t). (I.7)

If h and g are nonnegative, then the left-hand side of (I.7) is too. Thus for each
nonnegative h ∈ C0(X), there is a ν-null set N(h) ∈ M such that

t 7→
∫

X

h(x) dµt(x)

is nonnegative off N(h). Since X is second countable, there is a countable dense
subset { hn } of the nonnegative functions in C0(X). Let

N :=
⋃
N(hn).

Then N is ν-null and for all t /∈ N ,
∫

X

h(x) dµt(x) ≥ 0 for all nonnegative h ∈ C0(X).
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It follows that µt is a positive measure for all t ∈ T r N . Since N is a ν-null set
in M , we can replace µt by the zero measure for all t ∈ N without changing the
conclusions above. Thus we’ll assume from now on that each µt is either the zero
measure or a finite positive measure.

Let A be the collection of functions h in Bb(X) for which t 7→
∫
X h(x) dµt(x) is

Borel and (I.7) holds for all g ∈ L1(ν). Then C0(X) ⊂ A. Let { hn } be a sequence
in A converging monotonically to h. Then |hn(x)| ≤ |h(x)| + |h1(x)|. Since µt is
finite, the Dominated Convergence Theorem implies that

∫

X

hn(x) dµt(x) →
∫

X

h(x) dµt(x) for all t. (I.8)

Thus t 7→
∫
x
h(x) dµt(x) is Borel. Furthermore

∣∣∣
∫

X

hn(x) dµt(x)
∣∣∣ ≤

(
‖h‖∞ + ‖h1‖∞

)
‖µt‖ ≤

(
‖h‖∞ + ‖h1‖∞

)
‖F ‖.

Hence another application of the Dominated Convergence Theorem implies that
∫

T

g(t)

∫

X

hn(x) dµt(x) dν(t) →
∫

T

g(t)

∫

X

h(x) dµt(x) dν(t). (I.9)

Applying the Dominated Convergence Theorem on the left-hand side of (I.7) shows
that h ∈ A. Thus A is a monotone sequentially complete class in Bb(X) containing
Cc(X). SinceX is second countable, this means A = Bb(X) [127, Proposition 6.2.9].
In particular, we have established part (c) and, taking g identically equal to 1 in
(I.7), part (d).

Now let h be identically one and let g = 1E . Then (I.7) implies that

ν(E) =

∫

E

µt(X) dν(t).

Since this holds for all E ∈ M , we must have µt(X) = 1 for ν-almost every t.
Thus µt is ν-almost everywhere a probability measure. Thus we can assume from
here on that µt is either the zero measure or a probability measure. This completes
the proof of the existence part of the theorem with the exception of the statement
about supports of the µt.

Since (T,M ) is countably separated, there is a countable family D ⊂ M which
separate points. There is no reason not to assume that D is closed under comple-
mentation so that for each t ∈ T ,

T r { t } =
⋃

t/∈E
E∈D

E. (I.10)

If k is a bounded Borel function on T , then k ◦ q ∈ Bb(X) and it follows from (I.7)
(and (I.3)) that for any g ∈ L1(ν) we have

∫

T

k(t)g(t) dν(t) =

∫

X

k
(
q(x)

)
g
(
q(x)

)
dµ(x)

=

∫

T

g(t)

∫

X

k
(
q(x)

)
dµt(x) dν(t).
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Thus there is a ν-null set N(k) such that

k(t) =

∫

X

k
(
q(x)

)
dµt(x) for all t ∈ T rN(k).

In particular, if k = 1E , then1E(t) = µt
(
q−1(E)

)
if t ∈ T rN(1E). (I.11)

Now let
N :=

⋃

E∈D

N(1E)

Since D is countable, N is a ν-null set and if t /∈ N and E ∈ M , then (I.11) implies
that q−1(E) is a µt-null set whenever E ∈ D and if t /∈ E. It follows from (I.10) that
q−1(T r{ t }) = Xr q−1(t) is a µt-null set for all t ∈ T rN . Thus suppµt ⊂ q−1(t)
if t /∈ N .

To prove the uniqueness assertion, note that using (I.5) and that suppµ′
t ⊂

q−1(t) for ν-almost all t, it follows that for all g ∈ L1(ν) and h ∈ C0(X) we have

〈
h , Φ(g)

〉
=

∫

X

g(q(x))h(x) dµ(x)

=

∫

T

∫

X

g
(
q(x)

)
h(x) dµ′

t(x) dν(t)

=

∫

T

g(t)

∫

X

h(x) dµ′
t(x) dν(t).

Thus,

Φ(g)(h) =

∫

T

g(t)
〈
h , F ′(t)

〉
dν(t),

where F ′(t) = µ′
t. But F = F ′ ν-almost everywhere in view of the uniqueness

assertion in Theorem I.7 on page 483.

We took ν = q∗µ in the statement of Theorem I.5 on page 482 for convenience.
If ν = q∗µ is absolutely continuous with respect to ρ, then we can replace ν(t) by
dν
dρ (t)dρ(t) in part (d). Since we can choose dν

dρ to be a Borel function with values

in [0,∞), we can define µ′
t(·) = dν

dρ (t)µt(·). Since µ′
t is the zero measure whenever

dν
dρ (t) = 0, it follows that the set where suppµt ⊂ q−1(t) is ρ-conull. Therefore we
obtain the following corollary.

Corollary I.9. Suppose that µ is a finite Borel measure on the second countable
locally compact space X, that (T,M ) is a countably separated Borel space and that
q : X → T is a Borel surjection. If q∗µ ≪ ρ, then there is a family {µ′

t }t∈T of
finite Borel measures on X and a ρ-null set N such that

(a) For all t /∈ N , µ′
t is a finite measure with suppµ′

t ⊂ q−1(t),

(b) For all h ∈ Bb(X),

t 7→
∫

X

h(x) dµ′
t(x)

is Borel and
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(c) ∫

X

h(x) dµ(x) =

∫

T

∫

X

h(x) dµ′
t(x) dρ(t).

I.3 Abelian Von Neumann Algebras

If B is a C∗-subalgebra of C0(X), then it not hard to see that B ∼= C0(Y ) where Y
is the locally compact quotient space X/∼, where x ∼ y if and only if f(x) = f(y)
for all f ∈ B. Thus B is exactly the subalgebra of f ∈ C0(X) which are constant
on equivalence classes. Here we want to investigate the analogue of this result when
C0(X) is replaced by L∞(X,µ) for a finite Borel measure µ.

To begin with, suppose that (X,B) is an analytic Borel space and that we are
given an equivalence relation R ⊂ X × X . Let X/∼ be the quotient space and
q : X → X/∼ be the quotient map. The quotient Borel structure on X/∼ is the
largest Borel structure B/∼ making q a Borel map and consists of those sets E such
that q−1(E) ∈ B. The pair (X/∼,B/∼) is called the quotient Borel space. The
forward image of µ under q is the measure ν := q∗(µ) given by ν(E) := µ

(
q−1(E)

)
.

Every function g : X/∼→ C has a lift g̃ := q ◦ q to X such that

X
g̃

!!C
C

C
C

C
C

C
C

q

��
X/∼ g

// C

commutes, and g is Borel if and only if g̃ is. If we let B̃b(X) denote the bounded
Borel functions on X which are constant on equivalence classes, then g 7→ g ◦ q
is a bijection between the bounded Borel functions on X/∼ and B̃b(X) which

induces a C∗-algebra isomorphism of L∞(X/∼, ν) onto the image of B̃b(X) in
L∞(X,µ). In this section, we will identify L∞(X/∼, ν) with this subalgebra of
L∞(X,µ). Note that in general, the equivalence classes in X need not be Borel
(or even µ-measurable) so that points in X/∼ need not be Borel. In particular,

B̃b(X) need not be very large. However, if there is a countable family f1, f2, . . . in

B̃b(X) such that x ∼ y if and only if fn(x) = fn(y) for all n, then (X/∼,B/∼)
is countably separated and therefore an analytic Borel space (by Corollary 2 to
[2, Theorem 3.3.5]). (Thus (X/∼,B/∼) is Borel isomorphic to an analytic subset
of a Polish space by Corollary 1 to [2, Theorem 3.3.4].) It is standard terminology
to call an equivalence relation for which X/∼ is countably separated a smooth
equivalence relation.

Theorem I.10. Suppose that µ is a finite measure on a second countable locally
compact space X. Let L = L∞(X,µ) be the von Neumann algebra of diagonal
operators on L2(X,µ) and suppose that A is a von Neumann subalgebra of L .
Then there is a smooth equivalence relation on X such that A is equal to the
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image in L of the bounded Borel functions on X which are constant on equivalence
classes. Thus, with the notation and identifications above, A can be identified with
L∞(Y, ν) where Y = X/∼ and ν is the image of µ via the quotient map.

Proof. Since A is a von Neumann algebra, it is generated by its projections [110,
Theorem 4.1.11]. Since A acts on a separable Hilbert space, its unit ball is a
separable metric space in the weak (or strong) operator topology. Therefore, A is
generated by a countable family 1En , where each En is a Borel set in X . Then we
can define a smooth equivalence relation on X by

x ∼ y if and only if 1En(x) = 1En(y) for all n.

Let Y := X/∼ be the quotient space, q : X → Y the quotient map and ν := q∗(µ).
As above, we identify L∞(Y, ν) with the C∗-subalgebra of L∞(X,µ) which is the

image of B̃b(X). Let A0 be the complex algebra generated by the 1En . Then
A0 ⊂ L∞(Y, ν), and since L2(X,µ) is separable, the Kaplansky Density Theorem
implies that every element of A is the strong limit of a sequence of elements in A0

([2, Corollary to Theorem 1.2.2]). If Lf ∈ A , then Proposition E.19 on page 406
implies that there is a µ-null set N and { fn } ⊂ A0 such that

fn(x) → f(x) for all x /∈ N .

Since

{ x ∈ X : lim
n→∞

fn(x) exists }

is both Borel and saturated with respect to our equivalence relation, there is a

g ∈ B̃b(X) such that f = g µ-almost everywhere. Thus Lf = Lg and we’ve shown
that

A ⊂ L∞(Y, ν). (I.12)

On the other hand, since (Y,B/∼) is analytic, the images in Y of the saturated
sets En generate B/∼ as a σ-algebra [2, Theorem 3.3.5]. Therefore A0 is dense in
L∞(Y, ν) in the strong operator topology coming from its natural representation
on L2(Y, ν). Suppose that g is a bounded Borel function on Y — which we view

as a function in B̃b(X). Since L2(Y, ν) is separable, we can invoke the Kaplansky
Density Theorem as above to obtain a sequence in A0 converging to g in the strong
operator topology on L∞(Y, ν) coming from its natural representation on L2(Y, ν).
Then Proposition E.19 implies that there are fn ∈ A0 such that fn → g ν-almost
everywhere (as functions on Y ). But then as functions on X , fn → g µ-almost
everywhere, and it follows that Lfn → Lg in the strong operator topology. Thus g ∈
A . This supplies the reverse containment for (I.12) and completes the proof.

Lemma I.11. Suppose that X and Y are standard Borel spaces and that µ and ν
are finite Borel measures on X and Y , respectively. Suppose that ϕ : L∞(Y, ν) →
L∞(X,µ) is a unital isomorphism onto a von Neumann subalgebra of L∞(X,µ).
Then there is a Borel map τ : X → Y such that ϕ(f)(x) = f

(
τ(x)

)
.
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Proof. Let E be a Borel subset in Y . Then ϕ(1E) is a projection and there is a
Borel set F ⊂ X , determined up to a µ-null set, such that ϕ(1E) = 1F . Thus
we obtain a set map Φ from the Borel sets of Y into the boolean σ-algebra B/N
of Borel sets in X modulo the µ-null sets as in Appendix I.6. (We will adopt the
notation and terminology of that appendix here.) Since ϕ is unital, Φ(Y ) = [X ].
Since ϕ(1YrE) = 1X − ϕ(1E), we have Φ(Y r E) = ϕ(E)′. Since 1E∩F = 1E1F ,
Φ(E ∩F ) = Φ(E)∧Φ(F ). It follows that Φ(E ∪F ) = Φ(E)∨Φ(F ). To see that Φ
is a σ-homomorphism, we need to see that

Φ
(⋃

Ei
)

=
∨

i

Φ(Ei) (I.13)

where {Ei }∞i=1 is a family of Borel sets in Y . But 1S

Ei
is the supremum in L∞(Y, ν)

of the elements 1S

n
i=1 Ei

(cf., [29, Appendix II]). Since ϕ is an isomorphism of von
Neumann algebras, it must be normal [29, I.4.3 Corollary 1]. In this context, the
normality of ϕ implies that ϕ

(1S

Ei

)
is the supremum in L∞(X,µ) of the ele-

ments ϕ(1S

n
i=1 Ei

). Therefore (I.13) holds, and Φ is a σ-homomorphism. Therefore
Proposition I.31 on page 499 implies that there is a Borel map τ : X → Y such
that Φ(E) = [τ−1(E)]. That is, in essence, ϕ(1E)(x) = 1E(

τ(x)
)
. But ϕ′(f)(x) :=

f
(
τ(x)

)
is clearly a normal homomorphism from L∞(Y, ν) into L∞(X,µ) which

agrees with ϕ on projections. Thus ϕ = ϕ′ [29, I.4.3 Corollary 2].

I.4 The Hilbert Space L2(G, H)

If H is a complex Hilbert space and G a locally compact group with left-Haar
measure µ, then it will be necessary to work with the Hilbert space L2(G,H). As
we’ll show shortly, we can think of L2(G,H) as the space of (equivalence classes)
of certain H-valued functions on G. To begin with, we simply define L2(G,H) to
be the completion of Cc(G,H) with respect to the norm ‖ · ‖2 coming from the
inner-product

(ξ | η) :=

∫

G

(
ξ(s) | η(s)

)
dµ(s) for all ξ, η ∈ Cc(G,H). (I.14)

This definition clearly gives us the usual space L2(G) when H is one-dimensional,
and suffices for most purposes. We also will need to know that L2(G,H) is naturally
isomorphic to the Hilbert space tensor product L2(G)⊗H, which, to be consistent
with the convention above, should be thought of as the completion of Cc(G) ⊙H.

Remark I.12. Instead of working with a locally compact group and Haar measure,
we could equally well work with any locally compact spaceX with a Radon measure
µ. Then the material below shows that L2(X,µ) ⊗H can be realized as the space
L2(X,µ,H) of equivalence classes of H-valued functions on X .

Lemma I.13. The natural identification of elements of Cc(G) ⊙H with functions
in Cc(G,H) extends to a unitary isomorphism of the Hilbert space tensor product
L2(G) ⊗H with L2(G,H).
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Proof. It suffices to see that Cc(G) ⊙ H is ‖ · ‖2-norm dense in Cc(G,H). But
Lemma 1.87 on page 29 implies that Cc(G)⊙H is dense in Cc(G,H) in the inductive
limit topology, and this clearly suffices.

Now we turn to the task of realizing L2(G,H) as a space of equivalence classes
of H-valued functions as in the scalar case.

Definition I.14. A function ξ : G → H is said to be essentially separately-valued
on K ⊂ G if there is a null set N ⊂ K and a separable subspace H0 ⊂ H such that
ξ(s) ∈ H0 for all s ∈ K rN . A function ξ : G→ H is said to be weakly measurable
if

(a) The scalar-valued function s 7→
(
ξ(s) | h

)
is measurable in the usual sense for

all h ∈ H, and

(b) ξ is essentially separately valued on every compact set K ⊂ G.

Although such functions are properly called weakly measurable, we will shorten
this to just “measurable” here. Condition (b) may seem annoying and/or unmo-
tivated at first, but its importance is illustrated by the proof of the next result.
(The fact that this result is not immediate also illustrates why we’ve attempted to
soft-pedal vector valued integration.)

Lemma I.15. If ξ : G→ H is measurable, then s 7→ ‖ξ(s)‖2 is measurable.

Proof. Since Haar measure is complete, we can alter ξ on a null set without effecting
its measurability. Since Haar measure is saturated, it suffices to show that the
restriction of s 7→ ‖ξ(s)‖2 to an arbitrary compact set is measurable. Hence we may
assume that ξ takes values in a separable subspace H0 with countable orthonormal
basis { en }∞n=1. Then Parseval’s identity implies

‖ξ(s)‖2 =
(
ξ(s) | ξ(s)

)
=

∞∑

n=1

(
ξ(s) | en

)(
en | ξ(s)

)
,

where the sum is absolutely convergent. Since each s 7→
(
ξ(s) | en

)
is measurable

by assumption and since the sum is countable, the result follows.

Lemma I.16. Every element of Cc(G,H) is measurable. A linear combination of
measurable H-valued functions is measurable. If { ξn } is a sequence of measur-
able functions converging almost everywhere to a function ξ : G → H, then ξ is
measurable.

Proof. The first statement is routine once we note that image of f ∈ Cc(G,H)
is a compact metric space, and then recall that a compact metric space is second
countable. Thus the range of f is separable and is contained in a separable subspace
of H. The second statement is straightforward. For the third, it is immediate that
s 7→

(
h | ξ(s

)
) is measurable for all h ∈ H. We just have to see that ξ is essentially

separately valued on each compact set K. But there are null sets Nn and separable
subspaces Hn such that ξn takes values in Hn on K rNn. There is a null set N0
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such that ξn(s) → ξ(s) for all s ∈ G r N0. Let N :=
⋃∞
n=0Nn. Let

∨Hn be the
subspace generated by the Hn. Then if s ∈ K rN ,

ξ(s) ∈
∞∨

n=1

Hn,

which is certainly a separable subspace.

Definition I.17. A H-valued function ξ on G is called square integrable if it is
measurable and s 7→ ‖ξ(s)‖2 is integrable. The set of square integrable functions on
G is denoted by L2(G,H). The set of equivalence classes in L2(G,H) in which two
functions are identified if they agree almost everywhere is denoted by L2(G,H).7

Lemma I.18. If ξ ∈ L2(G,H), then ξ vanishes off a σ-compact set and is essen-
tially separately valued on G.

Proof. Since ‖ξ(s)‖2 is integrable, ξ clearly vanishes off a σ-finite set, and the first
assertion follows from Lemma B.43 on page 349. Thus there are compact sets Kn

such that ξ vanishes off
⋃
Kn. However, since ξ is measurable, it is essentially sep-

arately valued on each Kn. Thus ξ is essentially separately valued on the countable
union

⋃
Kn. Since ξ vanishes off this set, this suffices.

In view of Lemma I.16 on the previous page and the inequality

‖ξ(s) + η(s)‖2 ≤ 2(‖ξ(s)‖2 + ‖η(s)‖2),

it is clear that L2(G,H) is a vector space.

Lemma I.19. If ξ and η are in L2(G,H), then

s 7→
(
ξ(s) | η(s)

)
(I.15)

is integrable and

(ξ | η) :=

∫

G

(
ξ(s) | η(s)

)
dµ(s)

defines an inner-product on L2(G,H).

Proof. Since ξ and η are essentially separately valued by Lemma I.18, there is a
null set N and a separable subspace H0 such that ξ(s) and η(s) belong to H0 for
all s ∈ GrN . Let { en } be an orthonormal basis for H0. Then if s ∈ GrN ,

(
ξ(s) | η(s)

)
=

∞∑

n=1

(
ξ(s) | en

)(
en | η(s)

)
.

Since each s 7→
(
ξ(s) | en

)
and s 7→

(
en | η(s)

)
are measurable and since the count-

able sum converges almost everywhere on G, it follows that (I.15) is measurable.
Now integrability follows from the Cauchy-Schwarz and Hölder inequalities:

∫

G

∣∣(ξ(s) | η(s)
)∣∣ dµ(s) ≤

∫

G

‖ξ(s)‖‖η(s)‖ dµ(s) ≤ ‖ξ‖2‖η‖2.

The rest follows as in the scalar case.
7The notation L2 is a temporary artifact and will be dispensed with shortly.
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Lemma I.20. L2(G,H) is a Hilbert space. In particular, if { ξn } is a Cauchy
sequence in L2(G,H), then there is a ξ ∈ L2(G,H) and a subsequence { ξnk

} such
that ξnk

converges to ξ almost everywhere and

lim
n→∞

‖ξnk
− ξ‖2 = 0.

Proof. At this point, to show that L2(G,H) is a Hilbert space we need only show
that it is complete. Since a Cauchy sequence with convergent subsequence is conver-
gent, it suffices to prove the last statement. Therefore we can pass to a subsequence,
relabel, and assume that

‖ξn+1 − ξn‖2 ≤ 1

2n
for n ≥ 1.

Now define

zn(s) :=

n∑

k=1

‖ξk+1(s) − ξk(s)‖ and z(s) :=

∞∑

k=1

‖ξk+1(s) − ξk(s)‖,

with z taking values in [0,∞]. Since the ‖·‖2-norm is a norm, the triangle inequality
implies

‖zn‖2 ≤
n∑

k=1

‖ξk+1 − ξk‖2 ≤ 1.

In other words,

‖zn‖2
2 =

∫

G

zn(s)
2 dµ(s) ≤ 1 for all n,

and the Monotone Convergence Theorem implies

∫

G

z(s)2 dµ(s) ≤ 1 <∞.

Therefore z is finite almost everywhere, and there is null set N ⊂ G such
that

∑∞
k=1 ξk+1(s) − ξk(s) is absolutely convergent in H for all s ∈ G r N .

Since H is complete, the series converges and there is a ξ′(s) such that
ξ′(s) = limn→∞

∑n
k=1 ξk+1(s) − ξk(s) = limn→∞ ξn+1(s) − ξ1(s). Thus we can

define ξ on GrN by

lim
n
ξn(s) = ξ′(s) + ξ1(s) := ξ(s) for all s ∈ GrN .

We can define ξ to be identically 0 on N , and then ξ is measurable by Lemma I.16
on page 491.

We still have to see that ξ ∈ L2(G,H) and that ξn → ξ in L2(G,H). Let ǫ > 0.
By assumption, we can choose N so that n,m ≥ N implies

‖ξn − ξm‖2 < ǫ.
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For all s ∈ GrN , we have ‖ξ(s)− ξm(s)‖ = limn ‖ξn(s)− ξm(s)‖. Thus if m ≥ N ,
Fatou’s Lemma implies

‖ξ − ξm‖2
2 ≤ lim inf

n
‖ξn − ξm‖2

2 ≤ ǫ2. (I.16)

Since

‖ξ(s)‖2 ≤
(
‖ξ(s) − ξm(s)‖ + ‖ξm(s)‖

)2 ≤ 2‖ξ(s) − ξm(s)‖2 + 2‖ξm(s)‖2,

it follows from (I.16) that ξ ∈ L2(G,H) and that ξn → ξ.

Proposition I.21. Let G be locally compact group and H a complex Hilbert space.
Then Cc(G,H) is dense in L2(G,H). In particular, we can identify L2(G,H) with
L2(G,H). Moreover, if ξ ∈ L2(G,H), then there is a sequence { ξn } ⊂ Cc(G,H)
such that ξn → ξ in L2(G,H) and ξn(s) → ξ(s) almost everywhere on G.

Proof. Lemma I.20 on the preceding page implies that L2(G,H) is a Hilbert space,
so to identify L2(G,H) with L2(G,H), it suffices to see that Cc(G,H) is dense. The
final assertion will then follow from Lemma I.20 on the previous page.

To see that Cc(G,H) is dense, it will suffice to see that if ξ ∈ L2(G,H) satisfies
(η | ξ) = 0 for all η ∈ Cc(G,H), then ξ is equal to 0 almost everywhere. Let N0

be a null set and H0 a separable subspace with orthonormal basis { en } such that
ξ(s) ∈ H0 for all s ∈ G r N0. If z ∈ Cc(G), then by assumption the elementary
tensor z ⊗ en satisfies (z ⊗ en | ξ) = 0. That is,

∫

G

z(s)
(
en | ξ(s

)
) dµ(s) = 0 for all z ∈ Cc(G).

It follows that there is a null set Nn such that

(
en | ξ(s)

)
= 0 for all s ∈ GrNn.

Thus ξ(s) = 0 if s /∈ N :=
⋃∞
n=0Nn. Since N is a null set, we’re done.

For those who are dissatisfied with our “weak” definition of measurability in
Definition I.14 on page 491, we include the following.

Definition I.22. A function ξ : G→ H is called strongly measurable if

(a) ξ−1(V ) is measurable for each open set V ⊂ H,8 and

(b) ξ is essentially separately valued on each compact set K ⊂ G.

Our choice to call weakly measurable functions just “measurable” is, perhaps,
justified by the following result.

Lemma I.23. A function ξ : G → H is strongly measurable if and only if ξ is
(weakly) measurable.

8Our definition of measurable set follows Rudin [156, Theorem 2.14] or [71, §III.11], and A is
therefore measurable if and only if A ∩K is measurable for all compact subsets K in G. In other
treatments, such a set would be locally measurable.
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Proof. Since k 7→ (k | h) is continuous on H, strong measurability certainly implies
measurability. So, assume that ξ is measurable. Since µ is saturated, it suffices to
see that ξ−1(V ) ∩K is measurable for all V ∈ H open and K ⊂ G compact. Let
N be a null set in G and H0 a separable subspace of H such that ξ(s) ∈ H0 for all
s ∈ K rN . Let

ξ0(s) =

{
ξ(s) if s ∈ GrN , and

0 if s ∈ N .

Since Haar measure is complete, it will suffice to show that ξ−1
0 (V ) ∩K is measur-

able:
ξ−1(V ) ∩K = (ξ−1

0 (V ) ∩K rN) ∪ (ξ−1(V ) ∩N ∩K).

Since H0 is separable and since

ξ−1
0 (V ) ∩K = ξ−1

0 (V ∩H0) ∩K,

there are countably many open balls Bn := { h ∈ H0 : ‖h− hn‖ < ǫn } such that

ξ−1
0 (V ) ∩K =

∞⋃

n=1

ξ−1
0 (Bn) ∩K.

So it will suffice to see that each ξ−1
0 (Bn) is measurable. But since H0 is separable,

there is a countable set { kn } of unit vectors in H0 such that h ∈ H0 satisfies

‖h− hn‖ < ǫn if and only if |(h− hn | km)| < ǫn for all m.

Since ξ0(s) ∈ H0 for all s,

ξ−1
0 (Bn) =

∞⋂

m=1

{ s : |(ξ0(s) − hn | km)| < ǫm },

which is measurable since s 7→
(
ξ0(s) − hn | km

)
agrees with s 7→

(
ξ(s) − hn | km

)

almost everywhere and the latter is measurable by assumption.

I.5 The Dual of L1(G)

We can view L1(G) as the completion of Cc(G). We will need to know that the
dual of L1(G) can be identified with L∞(G) via the natural pairing: if g ∈ L∞(G),
then the corresponding functional ϕ should be given by

ϕ(f) :=

∫

G

f(s)g(s) dµ(s) for all f ∈ Cc(G). (I.17)

This is a straightforward result in functional analysis provided G is σ-compact. In
fact, if (X,µ) is any σ-finite measure space, then the pairing in (I.17) identifies
L1(X,µ)∗ isometrically with L∞(X,µ). On the other hand, it is also well-known
that the identification of L∞ with the dual of L1 can fail if the σ-finite assumption
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on the measure space is dropped. Nevertheless, we can still recover this pairing for
a locally compact group with Haar measure provided we modify the definition of
L∞(G) to account for locally null sets. (Recall a subset N is locally null if N ∩K
is null for every compact set K ⊂ G.)

Remark I.24. The material here applies equally well to L1(X,µ) for any Radon
measure on a paracompact locally compact space X . Then X is the disjoint union
of clopen σ-compact sets [31, Theorem XI.7.3], and the proof proceeds exactly as
below.9

Let L∞(G) denote the set of all bounded measurable functions on G equipped
with the supremum norm. Since the pointwise limit of measurable functions is
measurable, L∞(G) is a closed subspace of ℓ∞(G) and is therefore a Banach space.
Let S ⊂ L∞(G) be the set of locally null functions on G; that is, functions which
vanish off a locally null set. Then S is a closed subspace of L∞(G) and we can
make the following definition.

Definition I.25. We define L∞(G) to be the Banach space quotient L∞(G)/S
with quotient norm

‖f + S‖∞ = inf
g∈S

(
sup
s∈G

|f(s) + g(s)|
)

We also write ‖ · ‖∞ for the induced seminorm on L∞(G):

‖f‖∞ := inf
g∈S

(
sup
s∈G

|f(s) + g(s)|
)

Lemma I.26. Suppose that f ∈ L∞(G).

(a) ‖f‖∞ = inf{M : { s : |f(s)| > M } is locally null}.
(b) ‖f‖∞ = inf{M : K ⊂ G compact implies { s ∈ K : |f(s)| > M } is null }.
(c) { s : |f(s)| > ‖f‖∞ } is locally null.

Sketch of the Proof. If { s : |f(s)| > M } is locally null, then

g(s) :=

{
f(s) if |f(s)| > M, and

0 otherwise,

defines a locally null function and sups∈G |f(s) − g(s)| ≤ M . Part (a) follows
immediately, and part (b) follows from part (a). To prove part (c), notice that

{ s : |f(s)| > ‖f‖∞ } =

∞⋃

n=1

{ s : |f(s)| > ‖f‖∞ +
1

n
}.

The assertion follows as each set on the right-hand side is locally null, and the
countable union of locally null sets is certainly locally null.

9In fact, we can always identify the dual of L1(X, µ) with L∞(X, µ) provided X is locally
compact, µ is a Radon measure and we define L∞ as equivalence classes of functions which are
equal locally almost everywhere. The proof is a bit involved: see [71, Theorem III.12.18] or
[13, Chap. V.5.8 Theorem 4].
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Now it is clear that L∞(G) is the usual thing when G is σ-compact. In general,
we have to think of L∞(G) as equivalence classes of bounded measurable functions
on G which can be identified if they agree locally almost everywhere — that is, if
they agree off a locally null set.

If g ∈ L∞(G), then

ϕ(f) =

∫

G

f(s)g(s) dµ(s)

defines a linear functional onCc(G) ⊂ L1(G) which as norm ‖g‖∞ in view of part (b)
of Lemma I.26 on the preceding page. If g′ ∈ L∞(G) induces the same functional,
then g and g′ must agree almost everywhere on each compact set K ⊂ G. Thus, g
and g′ define the same class in L∞(G).

On the other hand, suppose that ϕ is a bounded linear functional with respect
to the L1-norm on Cc(G); that is, ϕ ∈ L1(G)∗. By Lemma 1.38 on page 10, G is
the disjoint union

G =
⋃

i

Gi

of clopen σ-compact sets Gi. Certainly ϕ defines, by restriction, a bounded linear
functional of norm at most ‖ϕ‖ on L1(Gi). Since the restriction of Haar measure
to Gi is σ-finite, there is a gi ∈ L∞(Gi) such that for all s ∈ Gi, |gi(s)| ≤ ‖ϕ‖ and

ϕ(f) =

∫

G

f(s)gi(s) dµ(s) for all f ∈ Cc(Gi).

Since the Gi are disjoint, we can define g by g(s) := gi(s) if s ∈ Gi. Since Haar
measure is a Radon measure, to show that g is measurable it suffices to see that
g−1(V )∩K is measurable for all compact sets K. But this follows from the measur-
ability of the gi and the fact that the Gi are disjoint and open. Thus g is measurable
and clearly bounded by ‖ϕ‖. If f ∈ Cc(G), then f = f1 + · · · + fn with each fj
supported in some Gij . Thus

ϕ(f) =

∫

G

f(s)g(s) dµ(s) for all f ∈ Cc(G).

Thus ϕ is given by a necessarily unique element g ∈ L∞(G). We have proved the
following result.

Proposition I.27. If G is a locally compact group and if L∞(G) is defined as in
Definition I.25 on the preceding page, then we can identify the dual of L1(G) with
L∞(G) via the usual pairing given in (I.17).

The following technicality will be needed in Appendix A.2. Recall that we use
the notation

Sc(G) = { f ∈ C+
c (G) : ‖f‖1 = 1 }

to suggest that Sc(G) is a subspace of the state space of L∞(G).

Lemma I.28. Sc(G) is weak-∗ dense in the state space of L∞(G).
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Proof. Note that ϕ ∈ L∞(G) represents a positive element in L∞(G) if and only if
{ s ∈ G : ϕ(s) 6≥ 0 } is locally null. Therefore it is not hard to see that ϕ represents
a positive element in L∞(G) if and only if

∫

G

ϕ(s)f(s) dµ(s) ≥ 0 for all ϕ ∈ Sc(G).

Consequently, this result is an immediate consequence of the next lemma.

Lemma I.29. Suppose that A is a C∗-algebra with identity, and that C is a convex
subset of the state space S(A) of A with the property that

a = a∗ and ρ(a) ≥ 0 for all ρ ∈ C implies that a ≥ 0. (I.18)

Then C is weak-∗ dense in S(A).

Proof. Let C be the weak-∗ closure of C. If C were not dense, then there would
be a τ ∈ S(A) r C. Then τ has a convex open neighborhood D disjoint from the
convex set C. It follows from [139, Lemma A.40] that there would be an a ∈ A and
an α ∈ R such that

Re τ(a) < α ≤ Re ρ(a) for all ρ ∈ C.

Since ρ(a∗) = ρ(a) for all ρ ∈ S(A), we can replace a by a0 := 1
2 (a+ a∗) so that

τ(a0) < α ≤ ρ(a0) for all ρ ∈ C. (I.19)

Then (I.18) implies that a0 − α1A ≥ 0. Since τ is a state, and hence positive, we
have τ(a0) ≥ α. This contradicts (I.19), and completes the proof.

I.6 Point Maps

Under certain circumstances a map from a σ-algebra to itself may be induced by
a map on the underlying space. Although there is considerable literature available
(cf. [154, Chap. 15], [29, Appendix IV], [4, Proposition 2.14], [106, Theorem P.4]),
we’ll settle for a special case. Suppose that (X,A ) is a Borel space and that M is
the collection of µ-null sets in A for some measure µ on (X,A ). We define A /M
to be the quotient A /∼ where E ∼ F if the symmetric difference E△F ∈ M . If [F ]
denotes the equivalence class of F in A /M , then it is not hard to see that we can
define a partial order on A /M by [E] ≤ [F ] if E rF ∈ M . Similar considerations
show that

[E]′ := [X r E] [E] ∨ [F ] := [E ∪ F ] and [E] ∧ [F ] := [E ∩ F ] (I.20)

are well-defined operations on A /M . Since the countable union of null sets is null,
we can also define

∞∨

i=1

[Ei] :=
[ ∞⋃

i=1

Ei

]
. (I.21)
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Let (Y,B) be a Borel space and N the null sets in B for a measure ν on Y . A map
Φ : B → A /M is called a σ-homomorphism if Φ(Y ) = [X ], Φ(Y r E) = Φ(E)′,
Φ(E ∪ F ) = Φ(E) ∨ Φ(F ) and Φ

(⋃
Ei

)
=

∨
Φ(Ei). Notice that if ϕ : X → Y is

any Borel map, then Φ(E) := [ϕ−1(E)] is a σ-homomorphism. If Φ(E) = Φ(F )
whenever E △ F ∈ N , then Φ induces a map Φ̄ : B/N → A /M which is also
called a σ-homomorphism. We want to see that under mild hypotheses on Φ and
(Y,B), any σ-homomorphism is induced by a map ϕ. Since measures play no role
in the next result, we’ll introduce the terminology of a σ-ideal ; we say that N ⊂ B

is a σ-ideal in B if N is closed under countable unions and if N has the property
that any B in B which is contained in an element of N is itself in N .

Remark I.30 (Boolean Algebras). In general, a set B, together with operations
∨, ∧ and ′ modeled on (I.20), is called a boolean algebra. If there is a countable
operation

∨
as in (I.21), then B is called a boolean σ-algebra. A subset N of

B is called a σ-ideal if N is closed under
∨

and if A ∈ N and B ⊂ A implies
B ∈ N . Then the quotient B/N is again a boolean σ-algebra and the notion of
σ-homomorphism is defined in the obvious way. A general discussion of boolean
σ-algebras and their properties can be found in [154, §15.2].

Proposition I.31. Suppose that (X,A ) is a Borel space and that M is a σ-ideal in
A . Suppose that (Y,B) is a standard Borel space and that Φ : B → A /M is a σ-
homomorphism. Then there is a Borel map ϕ : X → Y such that Φ(B) = [ϕ−1(B)].
If ϕ1 : X → Y is another map implementing Φ, then ϕ = ϕ1 off a set in M .

We won’t give a complete proof here. Instead, we’ll show that the proposition
follows almost immediately from [154, §15.6 Proposition 19]. To do this properly,
we need the following lemma.

Lemma I.32. Suppose that (X,B) is a standard Borel space. Then there is a
Polish space Q such that (Q,B(Q)) is Borel isomorphic to (X,B).

Proof. We may assume that X is a Borel subset of a Polish space P and that B

is the relative Borel structure coming from B(P ). Then [2, Theorem 3.2.1] implies
that there is a Polish space Q and a one-to-one continuous map f : Q → P such
that f(Q) = X . Then [2, Theorem 3.3.2] implies that f defines a Borel isomorphism
of (Q,B(Q)) onto (X,B).

Proof of Proposition I.31. Using Lemma I.32, we can assume that Y is a Polish
space. If Y is uncountable, then the proposition is exactly [154, §15.6 Proposi-
tion 19]. If Y is countable, say Y = { y1, y2, . . . }, then we can choose Borel sets
Ei ⊂ X such that Φ({ yi }) = [Ei]. Since Φ(Y ) = [X ], we may as well assume that⋃
Ei = X . Notice that if i 6= j, then Ei ∩ Ej ∈ M . We can define disjoint Borel

sets by B1 = E1 and

Bn := En r

n−1⋃

i=1

Ei

such that [En] = [Bn] and
⋃
Bi = X . (Some of the Bn could be empty.) Then we

define a Borel function by
ϕ(x) = yi if x ∈ Bi.
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If F is a Borel set in Y , then

[ϕ−1(F )] =
[ ⋃

yi∈F

Bi

]

=
∨

yi∈F

[Ei]

=
∨

yi∈F

Φ({ yi })

= Φ(F ),

and ϕ implements Φ. If ϕ1 : X → Y is another such map, then i 6= j implies

ϕ−1({ yi }) ∩ ϕ−1
1 ({ yj }) ∈ M .

But ϕ and ϕi must agree off
⋃

i6=j

ϕ−1({ yi }) ∩ ϕ−1
1 ({ yj }) ∈ M .

This completes the proof.

If the map Φ in Proposition I.31 on the previous page doesn’t see null sets (more
precisely, if Φ induces a σ-homomorphism on B/N ), then we can significantly
weaken the hypothesis that Y be a standard Borel space. The classical definition
is as follows.

Definition I.33. We say that (Y,B, ν) is a standard measure space if ν is σ-finite
and if there is a ν-conull set E ⊂ Y which is a standard Borel space in its relative
Borel structure.

Standard measure spaces are more common than one might guess.

Lemma I.34. Suppose that (Y,B) is an analytic Borel space and that ν is a σ-finite
measure on Y . Then (Y,B, ν) is a standard measure space.

Proof. Since ν is equivalent to a finite measure, we may as well assume that ν
is finite. We can also assume that X is an analytic subset of a Polish space P
([2, Corollary 1 to Theorem 3.3.4]). Then we can extend ν to a measure ν̄ on P by
ν̄(E) := ν(E∩X). Since analytic subsets of Polish spaces are absolutely measurable
([2, Theorem 3.2.4]), there are Borel sets E and F in P such that

E ⊂ X ⊂ F and ν̄(F r E) = 0 = ν(X r E).

Since E is, by definition, a standard Borel space, this suffices.

Remark I.35. If (Y,B) is an analytic Borel space and Φ : B → A /M is a σ-
homomorphism, then Proposition I.31 on the preceding page does not apply (since
it requires (Y,B) to be standard). However, if ν is a σ-finite measure on (Y,B)
with null sets N , then (Y,B, ν) is a standard measure space by Lemma I.34. If
Φ(F ) = Φ(E) whenever F △ E is a ν-null set, then Φ factors through B/N , and
the next lemma is a useful substitute for Proposition I.31.
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Lemma I.36. Suppose that (X,A ) is a Borel space and that M is a σ-ideal in A .
Let (Y,B, ν) be a standard measure space with null sets N . If Φ : B/N → A /M
is a σ-homomorphism, then there is a Borel map ϕ : X → Y such that Φ([F ]) =
[ϕ−1(F )]. If ψ : X → Y is another such map, then ϕ = ψ off a set in M .

Proof. Let N be a ν-null set in Y such that Y rN is a standard Borel space. Let
B(Y r N) be the Borel sets in Y r N . Then we can define a σ-homomorphism
Ψ : B(Y rN) → A /M by Ψ(F ) := Φ([F ]). Proposition I.31 on page 499 implies
that there is a Borel map ϕ : X → Y rN ⊂ Y such that Ψ(F ) = [ϕ−1(F )] for all
Borel sets F in Y rN . But if F is any Borel set in Y , then

Φ
(
[F ]

)
= Φ

(
[F rN ]

)

= Ψ(F rN)

= [ϕ−1(F rN)]

which, since ϕ(X) ⊂ Y rN , is

= [ϕ−1(F )].

Thus ϕ implements Φ as required.
Suppose that ψ is another Borel map fromX → Y such that Φ

(
[F ]

)
= [ψ−1(F )].

If N ∈ N , then M := ψ−1(N) ∈ M . Fix y0 ∈ Y rN and define ψ0 : X → Y rN
by

ψ0(x) =

{
ψ(x) if x ∈ X rM , and

y0 if x ∈M .

Then ψ0 is Borel and equals ψ off a set in M . Thus Ψ
(
[F ]

)
= [ψ−1

0 (F )]. Propo-
sition I.31 on page 499 implies that ϕ = ψ0 off a set in M . Therefore ϕ = ψ off a
set in M as required.

Let (X,A , µ) and (Y,B, ν) be standard measure spaces with null sets M and
N , respectively. Suppose that Φ : B/N → A /M is a σ-homomorphism. Then
Lemma I.36 implies that there is a Borel map ϕ : X → Y such that Φ

(
[F ]

)
=

[ϕ−1(F )]. If Φ is a bijection, then Φ−1 is also a σ-homomorphism, and it makes
sense to call Φ a σ-isomorphism. In this case, we could hope that we could choose
ϕ to be a Borel isomorphism. However, this can fail to be the case (cf. [154, §15.6
Exercise 26]). But it is nearly the case.

Theorem I.37. Suppose that (X,A , µ) and (Y,B, ν) are standard measure spaces
with null sets M and N , respectively. If Φ : B/N → A /M is a σ-isomorphism,
then there is a Borel map ϕ : X → Y and null sets X0 ∈ M and Y0 ∈ N such
that Φ([F ]) = [ϕ−1(F )] and such that the restriction of ϕ to X r X0 is a Borel
isomorphism of X rX0 onto Y r Y0.

Proof. Lemma I.36 implies that there are Borel maps ϕ : X → Y and ψ : Y → X
such that Φ

(
[F ]

)
= [ϕ−1(F )] and Φ−1

(
[E]

)
= [ψ−1(E)]. Then ψ ◦ ϕ implements

that identity map on A /M . The uniqueness assertion in Lemma I.36 implies that
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there is a null set X ′
0 ∈ M such that ψ

(
ϕ(x)

)
= x if x /∈ X ′

0. Since [ψ−1(XrX ′
0)] =

Φ−1
(
[X r X ′

0]
)

= Φ−1
(
[X ]

)
, there is null set Y ′

0 ∈ N such that ψ−1(X r X ′
0) =

Y rY ′
0 . However, we also have that ϕ ◦ψ implements the identity on B/N . Thus

there is a null set Y0 ∈ N such that ϕ
(
ψ(y)

)
= y for all y /∈ Y0. We can enlarge

Y0 if necessary so that Y ′
0 ⊂ Y0. (This ensures that ψ−1(X r X ′

0) ⊃ Y r Y0.) As
above, ϕ−1(Y r Y0) differs from X by a null set, and we can find X0 ∈ M such
that

X rX0 = ϕ−1(Y r Y0) ∩ (X rX ′
0).

Of course, if x ∈ X rX0, then ϕ(x) ∈ Y r Y0. On the other hand, if y ∈ Y r Y0,
then we have ψ(y) ∈ XrX ′

0 and ϕ
(
ψ(y)

)
= y. Thus ψ(y) ∈ XrX0. In particular,

ϕ is a Borel isomorphism of X rX0 onto Y r Y0.

As an application of these ideas, we consider isomorphisms of abelian von Neu-
mann algebras. A collection F of positive elements in a von Neumann algebra N
is said to be filtering if given a, b ∈ F , then there is a c ∈ F such that a ≤ c and
b ≤ c. Naturally, we say d = lubF if d ∈ N , a ≤ d for all a ∈ F and if c ∈ N
also satisfies a ≤ c for all a ∈ F , then d ≤ c. For example, if N = L∞(X,µ) and
if {Bi } are Borel sets in X , then lub{ 1Bi } = 1S

Bi
. A filtering subset of N+

which is bounded above must have a lub as above [29, I.1.3 and Appendix II]. A
positive linear map L : N → M is called normal if given a filtering subset F with
a = lubF , then

L(a) = lub{L(b) : b ∈ F }.
Since an isomorphism of one von Neumann algebra onto another must be an order
isomorphism on the positive cones, it must be normal [29, I.4.3].

Corollary I.38 (von Neumann). Let (X,µ) and (Y, ν) be standard measure spaces
and suppose that Ψ : L∞(Y, ν) → L∞(X,µ) is an isomorphism. Then there are

(a) a µ-null set N ⊂ X,

(b) a ν-null set M ⊂ Y and

(c) a Borel isomorphism τ : X rN → Y rM

such that
Ψ(f)(x) = f

(
τ(x)

)
. (I.22)

Remark I.39. Since elements of L∞ are almost-everywhere equivalence classes of
functions, (I.22) is a rather sloppy, but intuitive, way to state our conclusion. To be
precise, we should say that if f is a bounded Borel function on Y and [f ] its class
in L∞(ν), then the class of Ψ([f ]) is given by the function x 7→ f

(
τ(x)

)
. Obscuring

this sort of detail is probably to everyone’s advantage.

Proof. Let A be the Borel sets in X and B the Borel sets in Y . Let M and N

be the ν- and µ-null sets, respectively. If E is a projection in L∞(ν), then Ψ(E)
is a projection in L∞(µ). Thus there are Borel sets B ∈ B and A ∈ A such that
E = 1B and Ψ(E) = 1A. Since A and B are determined up to null sets, we obtain
a map

Φ : B/N → A /M .
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We claim that Φ is a σ-homomorphism. Since Ψ is unital, we certainly have
Φ([B])′ = Φ([B]′). Since 1B11B2 = 1B1∩B2 , it follows that Φ

(
[B1] ∧ [B2]

)
=

Φ([B1]) ∧ Ψ([B2]). Since Ψ is normal,

Φ
(∨

[Bi]
)

=
∨

Φ([Bi]).

This proves the claim. Therefore Theorem I.37 on page 501 implies that there are
null sets N and M as well as a Borel isomorphism τ as in (a), (b) and (c) such that

Φ([B]) = [τ−1(B)].

Thus for µ-almost all x,
Ψ(1B)(x) = 1B(

τ(x)
)
.

Define Ψ′ : L∞(ν) → L∞(µ) using τ : Ψ′(f)(x) := f
(
τ(x)

)
. Then Ψ and Ψ′ are

isomorphisms which agree on the linear span of the projections in L∞(ν). Thus
Ψ = Ψ′.

Royden’s proof of Proposition I.31 on page 499 for standard Borel spaces, re-
quires Kuratowski’s Theorem which says that any two uncountable standard Borel
spaces are Borel isomorphic.

Theorem I.40 (Kuratowski’s Theorem). Every uncountable standard Borel space
is Borel isomorphic to [0, 1] with the usual Borel structure.

The usual reference for Kuratowski’s Theorem is Remark (i) on page 451 of
his classic treatise on Topology [96]. Since it is a formidable task to sort of the
details from [96], it’s nice to know that a more accessible treatment is given in
[154, Theorem 15.10] where the result is proved for a standard Borel space of the
form

(
Q,B(Q)

)
with Q an uncountable Polish space. To recover Kuratowski’s

Theorem as stated here, it suffices to apply Lemma I.32 on page 499.

I.7 Representations of C0(X)

We need to revisit the situation in Appendix E.1, but in slightly greater generality
so that we have an appropriate reference for our applications in Section 8.3. Let
µ be a Radon measure on a locally compact space X . For each bounded Borel
function f ∈ Bb(X) define an operator Lf ∈ B

(
L2(X,µ)

)
by Lfh(x) := f(x)h(x).

As in Appendix E.1 we let L be the ∗-algebra of operators {Lf : f ∈ Bb(X) }. As
in Appendix I.5, we let L∞(X,µ) be the collection of locally µ-almost everywhere
equivalence classes of functions in Bb(X).10 If X is paracompact, then X is the
disjoint union of clopen σ-compact sets [31, Theorem XI.7.3], and the proof of
Proposition I.27 on page 497 shows that L∞(X,µ) is the dual of L1(X,µ). For a
Radon measure on an arbitrary locally compact space, the result still holds, but the
proof seems quite difficult (see [71, Theorem III.12.18] or [13, Chap. V.5.8 Theorem
4]). We’ll assume the general result here, but in fact, when we need to apply these

10That is, f ∼ g if f and g agree off a Borel locally null set.
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results in Section 8.3 (in the form of Lemma I.42 on the facing page), X will be a
locally compact abelian group and Proposition I.27 on page 497 suffices.

As in Appendix E.1, we let πµ be the representation of C0(X) on L2(X,µ) given
by πµ(f) := Lf . Note that

L
′ := {T ∈ B

(
L2(X,µ)

)
: TLf = LfT for all f ∈ Bb(X) }

is a von Neumann algebra. The following result is a variation on [2, Theorem 2.2.1].

Proposition I.41. Suppose that µ is a Radon measure on a locally compact space
X. Let πµ, Lf and L be as above. Then

(a) L = L ′, and

(b) πµ
(
C0(X)

)
is dense in L in the strong operator topology.

Proof. Let L ′′ be the von Neumann algebra generated by L . The Kaplansky
Density Theorem [110, Theorem 4.3.3] implies that the unit ball (L )1 of L is
dense in the unit ball (L ′′)1 of L ′′ in the strong operator topology (and a priori
in the weak operator topology).

Since each h ∈ L2(X,µ) vanishes off a set which is the countable union of
sets of finite measure, Lf depends only on the class of f in L∞(X,µ). Clearly
‖Lf‖ ≤ ‖f‖∞.11 A standard estimate shows that ‖Lf‖ = ‖f‖∞. Since

(
Lfh | k

)
=

∫

X

f(x)h(x)k(x) dµ(x),

it follows that f 7→ Lf defines an isometric map with is continuous from L∞(X,µ)
with the weak-∗ topology (as the dual of L1(X,µ)) into B

(
L2(X,µ)

)
with the weak

operator topology. Since the unit ball of L∞(X,µ) is weak-∗ compact, its image,
(L )1 is compact, and hence closed, in the weak operator topology. Therefore
it must equal (L ′′)1. Thus L = L ′′ and L is a von Neumann subalgebra of
B

(
L2(X,µ)

)
.

Let T ∈ L ′. If C ⊂ X is compact, then 1C ∈ L2(X) ∩ L∞(X). In particular,
there is a Borel function gC ∈ L2(X) such that T1C = gC . (Really we should say
that the class of gC is T1C , but this seems more distracting than helpful.) Since
T1C = T (1C)2 = TL1C1C = L1CT1C , we can assume that gC vanishes off C. We
view L2(C) as the square integrable Borel functions on X that vanish off C. Then,
if h ∈ L2(C) ∩ Bb(X),

∣∣∣
∫

X

gC(x)h(x)k(x) dµ(x)
∣∣∣ =

∣∣(LhT1C | k
)∣∣

=
∣∣(TLh1C | k

)∣∣
=

∣∣(Th | k
)∣∣

≤ ‖T ‖‖h‖2‖k‖2.

(I.23)

Using (I.23), it is not hard to show that |gC(x)| ≤ ‖T ‖ for µ-almost all x ∈ C.
Therefore we can assume that gC ∈ Bb(X), that gC vanishes off C and that |g(x)| ≤

11Here, ‖ · ‖∞ is the essential sup norm on L∞(X, µ) as in Appendix I.5.



I.7 Representations of C0(X) 505

‖T ‖ for all x. If h ∈ Bb(C) (viewed as bounded Borel function on X which vanishes
off C), then h ∈ L2(X) and

LgCh = gCh = LhgC = LhT1C = TLh1C = Th

Since Bb(C) is dense in L2(C), T = LgC on L2(C). Since Cc(X) is dense in L2(X),
it is not hard to see that {L1C } converges to the identity on L2(X) as C increases.
Then

Th = lim
C
TL1Ch = lim

C
T (1Ch) = lim

C
LgC (1Ch) = lim

C
LgCh.

Therefore LgC → T in the strong operator topology. Since L is a von Neumann
algebra, T ∈ L . This proves that L ′ ⊂ L . Since the other containment is clear,
this proves part (a).

For part (b), let f ∈ Bb(X). If C ⊂ X is compact, let V be a precompact
open neighborhood of C. Given ǫ > 0, Lusin’s Theorem (cf., [156, Theorem 2.24]
or [57, Theorem 7.10]) implies there is a g1 ∈ C(V ) such that ‖g1‖∞ ≤ ‖f‖∞ and
such that µ

(
{ x ∈ V : g1(x) 6= f(x) }

)
< ǫ. If g2 ∈ C+

c (X) is such that 0 ≤ g2 ≤ 1,
g2(x) = 1 for all x ∈ C and such that g2 vanishes off V , then

g(C,ǫ)(x) :=

{
g1(x)g2(x) if x ∈ V

0 if x /∈ V ,

defines an element of Cc(X) such that ‖g(C,ǫ)‖∞ ≤ ‖f‖∞ and such that

µ
(
{ x ∈ C : g(C,ǫ)(x) 6= f(x) }

)
< ǫ.

We can complete the proof by showing that πµ(g(C,ǫ)) → Lf in the strong operator
topology as C increases and ǫ decreases. Since { πµ(g(C,ǫ)) } is bounded and since
Cc(X) is dense in L2(X), it will suffice to see that

πµ(g(C,ǫ))h→ Lfh in L2(X) for all h ∈ Cc(X).

But if C ⊃ supph,

‖πµ(g(C,ǫ))h− Lfh‖ = ‖L(g(C,ǫ)−f)h‖ ≤ ǫ‖h‖2.

This completes the proof.

This rather technical result will be useful in understanding the type structure
of transformation group C∗-algebras.

Lemma I.42. Suppose that X, Y and Z are locally compact spaces and that µ
is a Radon measure on Y and that ν is a Radon measure on Z. Let i : Y → X
and j : Z → X be continuous injections, and let Π1 and Π2 be the corresponding
representations of C0(X) on L2(Y, µ) and L2(Z, ν), respectively, given by

Π1(f)h(y) := f
(
i(y)

)
h(y) and Π2(f)k(z) = f

(
j(z)

)
k(z).

If i(Y ) ∩ j(Z) = ∅, then Π1 and Π2 have no equivalent subrepresentations. In
particular, Π1 and Π2 are not equivalent.
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Proof. Let H be an invariant subspace for Π1. We want to see that H must be of
the form L2(E, µ) for a Borel subset E ⊂ Y . Let C(H) be the collection of Borel
subsets F of Y such that 1F ∈ H. If h ∈ H, let

En = { y ∈ Y : |h(y)| ≥ 1

n
}.

Then En has finite measure and y 7→ h(y)−11En is a bounded Borel function on Y .

Claim 1. Let πµ be the natural representation of C0(Y ) on L2(Y, µ). If g is a
bounded Borel function on Y , then there is a net { fi } in Cc(X) such that Π1(fi) →
πµ(g) in the weak operator topology.

Proof of Claim 1. In view of Proposition I.41 on page 504, we can take g ∈ C0(Y ).
If C ⊂ Y is compact, then i restricts to a homeomorphism of C onto its compact
image in X . Thus, by the Tietze Extension Theorem, there is a fC ∈ Cc(X) such
that fC

(
i(y)

)
= g(y) for all y ∈ C. Then, as in Proposition 8.27 on page 244,

Πi(fC) → πµ(g) in the weak operator topology. This proves the claim.

Claim 2. 1En ∈ H.

Proof of Claim 2. It suffices to see that (1En | k) = 0 for all k ∈ H⊥. Let g
be the bounded Borel function y 7→ h(y)−11En(y). Using Claim 1, there is net
{ fi } ⊂ Cc(X) such that Π1(fi) → πµ(g) in the weak operator topology. Then
since H is invariant for Π1,

(1En | k) =
(
πµ(g)h | k

)
= lim

i

(
Π1(fi)h | k

)
= 0.

This proves the claim.

Notice that if hn := 1Enh, then hn → h in L2(Y ) (by the Dominated Conver-
gence Theorem). If F ∈ C(H) and if F ⊃ En, then ‖1Fh− h‖2 ≤ ‖hn− h‖2. Thus
{ 1F }F∈C(H) converges strongly to the identity on H as F increases.

Claim 3. If k ∈ H⊥, then 1Fk = 0 for all F ∈ C(H).

Proof of Claim 3. Note that H⊥ is also an invariant space. If E ∈ C(H⊥), then
(1F | 1E) = 0. Since 1F and 1E are nonnegative functions, it follows that 1F 1E =
0.12 But 1Fk = lim

E∈C(H⊥)
1F1Ek = 0.

This proves the claim.

Now if f ∈ L2(Y ), then we can write f = f1 + f2 with f1 ∈ H and f2 ∈ H⊥.
Using Claim 3, we have

lim
F∈C(H)

1F f = lim
F∈C(H)

1F (f1 + f2) = lim
F∈C(H)

1F f1 = f1.

12If 1F (y)1E(y) is not zero for µ-almost every y, then
R 1F 1E dµ 6= 0.
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Thus if P is the orthogonal projection of L2(Y ) onto H, then L1F → P in the
strong operator topology. Since LY := {Lg : g ∈ Bb(Y ) } is a von Neumann
algebra (Proposition I.41 on page 504), P ∈ LY and P = L1E for some Borel set
E ⊂ Y . Thus we have shown H = L2(E) as claimed. Of course, a similar statement
holds for Π2 invariant subspaces of L2(Z, ν).

Now suppose that Π1 has a subrepresentation Π′
1 equivalent to a subrepresen-

tation Π′
2 of Π2. The above discussion proves that Π′

1 must act on a subspace of
the form L2(E) for some Borel set E ⊂ Y . Since L2(E) is not the zero subspace,
E must contain a set of nonzero finite measure. By the regularity of µ, there must
be a compact subset C ⊂ E with µ(C) > 0. Then L2(C) is an invariant subspace
of Π1 and determines a subrepresentation of Π1 which is equivalent to a subrep-
resentation of Π2 on a subspace of the form L2(F, ν) for F ⊂ Z. As before, there
is a compact subset K ⊂ F such that ν(K) > 0. L2(K) is invariant for Π2, and
the corresponding subrepresentation is equivalent to a subrepresentation of Π1 on
a subspace of L2(C). But i(C) and j(K) are disjoint compact sets in X . Then
there is a f ∈ Cc(X) such that f if identically zero on i(C) and identically one on
j(K). But then Π1(f) = 0 on L2(C) and Π2(f) is the identity on L2(K). This is
a contradiction, and the completes the proof.

I.8 Invariants of Morita Equivalent C∗-Algebras

Recall that a C∗-algebra is CCR if π(A) = K(Hπ) for all π ∈ Â. We say that A
is GCR if π(A) ⊃ K(Hπ) for all π ∈ Â. A C∗-algebra is called elementary if it
is isomorphic to the compact operators on some Hilbert space. Notice that a C∗-
algebra is elementary if and only if it is Morita equivalent to the complex numbers
C.

The following observations probably should have been made in [139]. These
results, and much more, are due to Zettl [174, 175]. The proofs here come from
[81]. In the case of separable algebras, or more generally for σ-unital algebras, these
results also follow from The Brown-Green-Rieffel Theorem [139, Theorem 5.55]
which implies that Morita equivalent C∗-algebras are stably isomorphic.

Proposition I.43. Suppose that X is an A –B-imprimitivity bimodule. If B is
CCR, then A is CCR.

Proof. Let hX : PrimA → PrimB be the Rieffel homeomorphism [139, Corol-
lary 3.33(a)]. If π ∈ Â, then let P = kerπ. Then hX(P ) ∈ PrimB. Since B
is CCR, B/hX(P ) is elementary. Since A/P and B/hX(P ) are Morita equivalent
[139, Proposition 3.35], A/P is Morita equivalent to C, and therefore elementary.
Since π factors through A/P , π is onto the compacts on Hπ. Therefore, A is CCR
as claimed.

Proposition I.44. Suppose that X is an A –B-imprimitivity bimodule. If B is
GCR, then so is A.

Proof. Let hX : PrimA → PrimB be the Rieffel homeomorphism. Fix π ∈ Â and
let P := kerπ. [139, Proposition 3.25] shows that A/P is Morita equivalent to
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B/hX(P ). Since B is GCR, B/hX(P ) has an elementary ideal which is therefore
Morita equivalent to C. The Rieffel correspondence implies that A/P must also
have an elementary ideal I. Since π(I) 6= { 0 }, π|I is an irreducible representation
on Hπ. Since I is elementary, π(I) = K(Hπ), and π(A) ⊃ K(Hπ). Since π was
arbitrary, A is GCR.
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approximate identity, 23, 327

for C∗(G) in Cc(G), 313
ax+ b group, 7, 91, 256

Baire measurable, 139
Baire property, 372
Baire sets, 139
Baire space, 172, 470
base space, 360
bi-invariant measure, 16
boolean σ-algebra, 499
boolean algebra, 499
Borel G-space, 387
Borel choice of Radon-Nikodym

derivatives, 389
Borel field

of operators, 416
of representations, 418

Borel group, 376
analytic, 376
standard, 376

Borel Hilbert bundle, 409
Borel field of operators, 416
Borel field of representations,

418
fundamental sequence, 410

special orthogonal, 412

isomorphism bundle of, 427
pull-back, 415
τ -isomorphism, 421

Borel isomorphic, 375
Borel isomorphism, 375
Borel map, 375
Borel measurable, 139
Borel measure, 16

support of, 300
Borel sets, 139, 374
Borel space, 374

analytic, 375
Borel isomorphic, 375
countably generated, 374
countably separated, 374
disjoint union, 411
standard, 375

Borel structure, 374
compatible topology, 376

Bruhat approximate cross section,
465

cut-down, 468
generalized, 466

bundle, 360
Busby-Smith twisted crossed

products, 208

C-measurable, 336
Cauchy-Schwarz inequality, 328
CCR C∗-algebra, 221, 507
CCR group, 222
central cover, 432
central group extension, 383
central subrepresentation, 400
character, 371
character group, 23
closed convex hull, 30
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commutant, 400
compact-open topology, 7
compatible metric, 371
compatible topology, 376
complete measure, 332
completely metrizable, 371
completion of normed vector space,

38
composition series, 235
continuous choice of Haar measures,

456
convex, 30
convex hull, 30
convolution, 48
countably generated, 374
countably separated, 374
covariance algebras, xi
covariant homomorphism, 57

integrated form, 58
covariant representation, 44

direct sum, 46
integrated form, 49
nondegenerate, 44
preserves τ , 208

cross section, 138
locally bounded, 138

crossed product, 52
twisted, 209
universal characterization, 72

C∗-dynamical system, see dynamical
system

C∗-bundle, 360
has enough sections, 362
section, 362

cut-down generalized Bruhat
approximate cross section,
468

C0(X)-algebra, 354
ΦA, 354
σA, 355

open, 357
fibre over x, 354
multiplier algebra of, 358

C0(X)-linear dynamical system, 230

Dauns-Hofmann Theorem, 355

decomposable operator, 405, 417
diagonal actions, 106
diagonal operators, 405, 414
direct integral, 404

τ -isomorphism, 421
of Hilbert spaces, 409, 413
of representations, 418

direct integral decomposition, 419
disjoint representations, 401
Dominated Convergence Theorem,

342
double commutant, 400
double dual action, 190
dual action, 190
dual space, 483
dual system, 190
dynamical system, 43

C0(X)-linear, 230
covariant isomorphism, 73
exterior equivalent, 74

induced action on Â, 44
induced action on PrimA, 44
regular, 186
separable, 43
trivial, 75
unitary, 75

Effros-Hahn conjecture, 241
elementary C∗-algebra, 222, 507
elementary abelian groups, 2
elementary tensor, 28
equivalent measures, 21
equivalent representations, 27, 399
equivariant homomorphism, 63
equivariant isomorphism, 73
equivariantly isomorphic, 73
ergodic measure, 262
essential reduction, 450
essential subspace, 52
essentially constant, 397
essentially equivariant map, 397
essentially separately-valued, 333,

491
exact group, 201
exterior equivalent, 74
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factor, 403
factor representation, 403
Fell Topology, 453
Fell’s subgroup crossed product, 256,

258
field of Borel sets in X , 374
filtering, 502
finite group actions, 64
first category, 172, 372
first countable topological space, 372
Fourier transform, 26, 82, 194, 195
Fubini’s Theorem, 37, 345

vector-valued, 346
fundamental sequence, 410

G-simple, 241
G-space, 42

locally compact, 42
GCR C∗-algebra, 221, 507
GCR group, 222
Gδ set, 139
generalized Bruhat approximate

cross section, 263, 466
cut-down, 468

generalized Effros-Hahn conjecture,
241

generalized limit, 457
generalized Souslin Theorem, 375
Green twisting map, 208
Green’s Imprimitivity Theorem, 132
Green’s Symmetric Imprimitivity

Theorem, 126
group C∗-algebra, 54

of a compact group, 84
of an abelian group, 82

group action, 41
transitive, 97

group extension, 14
topological, 15

group measure space, xi

Haar functional, 17
Haar measure, 16
Hamel basis, 369
Heisenberg representation, 135
homogeneous representation, 431

homogeneous space, 12
homomorphism, xii

ideal, xii
ideal center, 433
ideal center decomposition, 440
ideal center projection, 433
ideal structure, xi, 228
image of a measure, 482
induced algebra, 100
induced from a stability group, 235
induced representation, 152

alternate formulation, 153
imprimitivity theorem, 160
in stages, 157
of groups, 156

inducing ideals, 164
induction in stages, 156, 157
inductive limit topology, 29
inner regular, 332
integrable, 341
integrated form, 49
internal tensor product, 479
invariant measures, 16
invariant subspace, 27, 399
irrational rotation algebra, 67, 71,

130, 254
NGCR, 254
simple, 68, 254

irreducible closed set, 184, 475
irreducible representation, 27, 400

lives on J/I, 235
isomorphism groupoid, 427

jointly continuous action, 42

Kuratowski’s Theorem, 503

L1-norm, 17, 29, 341
left-invariant mean, 318
left-invariant measure, 16
left-regular representation, 27
left-uniformly continuous, 319
liminary C∗-algebra, 221

liminaire, 221
liminal, 221

limit ordinal, 173
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lives on a quasi-orbit, 183
locally almost everywhere, 497
locally Baire, 140
locally bounded, 139
locally closed, 6
locally compact G-space, 42
locally compact group, 5
locally compact space, 5

is Polish, 175
locally compact transformation

group, 42
locally in L2(G), 464
locally measurable, 332, 494
locally null, 332
locally null set, 496
lower semicontinuous function, 470

Mackey obstruction, 382
Mackey-Glimm Dichotomy, 173
maximal abelian subalgebra, 402
maximal norm, 75
meager, 372
mean, 318

left-invariant, 318
measurable H-valued function, 491
measurable B-valued function, 335
measurable rectangles, 376
measurable space, see Borel space
measure class, 21
measured groupoid, 388, 450
metric group, 372
metrizable, 371

completely metrizable, 371
minimal G-action, 241
minimal norm, 76
minimal transformation group, 241
modular function, 19
Morita equivalence

preserves CCR, 507
preserves GCR, 507

multiplicity n, 402
multiplicity function, 404
multiplicity-free representation, 400
multiplier, 381
multiplier algebra, 32, 54

neighborhood, 3
neighborhood basis, 3
net, 4
NGCR C∗-algebra, 254
normal map, 502
normalized 2-cocycle, 381
normed ∗-algebra, 327
nowhere dense, 372
nuclear C∗-algebra, 76
nuclear crossed product, 203

ω-representation, 381
open equivalence relation, 299
open maps

characterization of, 4
orbit, 94
orbit map, 94
orbit space, 94
ordinal, 173

immediate predecessor, 173
immediate successor, 173
limit ordinal, 173

oscillation, 470
outer regular, 332

paracompact, 11
partitions of unity, 12
passing evaluation through integrals,

39
point-norm topology, 3
Polish group, 372
Polish space, 175, 375
Pontryagin dual, 23
positive definite function, 312

pointwise product, 313
positive linear functional, 327
postliminary C∗-algebra, 221
pre-compact, 38
preserve τ , 204, 208, 383
prime ideal, 433
primitive C∗-algebra, 221
product Borel structure, 376
product measure, 345
projective representation, 379

unitarily implemented, 381
projective unitary group, 379
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proper G-space, 99
proper map, 99
pull-backs of direct integrals, 415
push-forward measure, 264, 387, 463

quasi-invariant measure, 387
on G, 21
on G/H , 138, 462

are all equivalent, 463
quasi-orbit, 180
quasi-orbit map, 180
quasi-orbit space, 180
quasi-regular, 183
quotient Borel space, 488
quotient Borel structure, 488
quotient map, 12
quotient topology, 12, 94

Radon measure, 16, 331
Raeburn’s Symmetric Imprimitivity

Theorem, 110
Ramsay’s Selection Theorems, 450
rational rotation algebra, 67, 71, 254

spectrum of, 254
reduced crossed product, 198
reduced group C∗-algebra, 198
reduced norm, 198
regular dynamical system, 186
regular measure, 332
regular orbit, 186
regular representations, 46
regularized topology, 476
relative Borel structure, 375
relatively compact, see pre-compact
representation, xii, 399

central cover of, 432
direct integral, 418
direct integral decomposition,

419
disjoint, 401
equivalent, 399
essential subspace, 52
factor, 403
factors through, 198
homogeneous, 431
ideal center decomposition, 440

ideal center of, 433
induced from stability group,

235
invariant subspace, 399
irreducible, 400
lives on quasi-orbit, 183
multiple of, 402
multiplicity n, 402
multiplicity-free, 400
of C0(X), 82
of abelian groups, 83
restriction of, 181
separable, 399
type I, 403

restriction map, 181
restriction of representations, 181
restriction to the stability groups,

262, 272
right Haar measure, 16
right-invariant measure, 16
right-regular representation, 27, 296
right-uniformly continuous, 319
rotation algebra, 67, 71, 254

saturated
measure, 332
set, 180

Schrödinger representation, 135
Schur product, 313
second category, 172, 372
section, 362
separable dynamical system, 43
separable topological space, 372
separation axioms, 2
short exact sequence of groups, 14
short exact sequence of topological

groups, 15
σ-bounded, 140
σ-compact, 10
σ-algebra generated by C , 374
σ-homomorphism, 499
σ-ideal, 499
σ-isomorphism, 501
similar cocycles, 381
simple function, 337
smooth action, 172
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smooth equivalence relation, 488
spatial norm, 75
special orthogonal fundamental

sequence, 412
spectrum of G, 60
square integrable, 492
stability group, 94
stabilizer map, 469
standard Borel group, 376
standard Borel space, 375
standard measure space, 500
∗-representation, 49

L1-norm decreasing, 49
continuous in the inductive limit

topology, 61
∗-strong operator topology, 34
strict topology, 34
strongly measurable, 333, 494
subbasis, 7
subnet, 4
subquotient, 224, 236
subrepresentation, 47, 400
support of a measure, 300
symmetric difference, 372
symmetric neighborhood, 10

T0-topological space, 2, 171
T0-ization, 180
T1-topological space, 2
τ -isomorphism, 421
tensor product dynamical systems,

77
tensor products of C∗-algebras, 75
Tietze Extension Theorem, 11

vector-valued version, 340
tight measures, 392
Tonelli’s Theorem, 346
topological group, 2

metric group, 372
Polish group, 372

topological group extension, 15
total space, 360
totally Baire space, 185
transformation group, 42

locally compact, 42
minimal, 241

transformation group C∗-algebra, 53
CCR, 223
GCR, 222

transitive group action, 97
trivial multiplier, 381
trivial representation, 326
twisted crossed product, 209

Busby-Smith, xv
twisted dynamical system, 208
twisting map, 208
2-boundary, 381
2-cocycle, 381

normalized, 381
type I C∗-algebra, 221, 403
type I representation, 403

uniform continuity, 319
left-, 319
of functions in Cc(G), 19
of functions in Cc(G,D), 29
right-, 319

unimodular, 20
Unique Structure Theorem, 375
unitarily implemented, 75, 381
unitary 1-cocycle, 74
unitary dynamical system, 75
unitary representation, 27

dimension of, 27
equivalence of, 27
irreducible, 27

universal net, 453
universal norm, 52
upper semicontinuous C∗-bundle,

360
enough sections, 362
not Hausdorff, 368
section, 362

upper semicontinuous function, 357
Urysohn’s Lemma, 11

vector valued integrals, 28
virtual group, 450

weak-∗ Borel, 483
weak-operator Borel, 405
weakly Borel, 474



Index 519

weakly measurable, 333, see
measurable H-valued
function





Bibliography

[1] William Arveson, Operator algebras and invariant subspaces, Ann. of Math. (2) 100 (1974),
433–532.

[2] , An Invitation to C∗-algebras, Springer-Verlag, New York, 1976. Graduate Texts in
Mathematics, No. 39.

[3] , Notes on measure and integration in locally compact spaces, 1996.
http://www.math.berkeley.edu/~arveson.

[4] Louis Auslander and Calvin C. Moore, Unitary representations of solvable Lie groups, Mem.
Amer. Math. Soc. No. 62 (1966), 1–199.

[5] Larry Baggett and Adam Kleppner, Multiplier representations of abelian groups, J. Func-
tional Analysis 14 (1973), 299–324.

[6] Teresa Bates, David Pask, Iain Raeburn, and Wojciech Szymański, The C∗-algebras of row-
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[35] Maurice J. Dupré and Richard M. Gillette, Banach bundles, Banach modules and auto-
morphisms of C∗-algebras, Vol. 92, Pitman (Advanced Publishing Program), Boston, MA,
1983.

[36] Siegfried Echterhoff, On induced covariant systems, Proc. Amer. Math. Soc. 108 (1990),
703–706.

[37] , Erratum to: “On induced covariant systems” [Proc. Amer. Math. Soc. 108 (1990),
no. 3, 703–706; MR 90f:46105], Proc. Amer. Math. Soc. 116 (1992), 581.

[38] , Crossed products with continuous trace, Mem. Amer. Math. Soc. 123 (1996), i–viii,
1–134.

[39] Siegfried Echterhoff, Steven Kaliszewski, John Quigg, and Iain Raeburn, Naturality and
induced representations, Bull. Austral. Math. Soc. 61 (2000), 415–438.

[40] , A categorical approach to imprimitivity theorems for C∗-dynamical systems, Mem.
Amer. Math. Soc. 180 (2006), i–viii, 1–169.

[41] Siegfried Echterhoff and Ryszard Nest, The structure of the Brauer group and crossed prod-
ucts of C0(X)-linear group actions on C0(X,K), Trans. Amer. Math. Soc. 353 (2001),
3685–3712 (electronic).

[42] Siegfried Echterhoff and Jonathan Rosenberg, Fine structure of the Mackey machine for
actions of abelian groups with constant Mackey obstuction, Pacific J. Math. 170 (1995),
17–52.



Bibliography 523

[43] Siegfried Echterhoff and Dana P. Williams, Locally inner actions on C0(X)-algebras, J.
Operator Theory 45 (2001), 131–160.

[44] , Inducing primitive ideals, preprint, 2005.

[45] Edward G. Effros, A decomposition theory for representations of C∗-algebras, Trans. Amer.
Math. Soc. 107 (1963), 83–106.

[46] , Transformation groups and C∗-algebras, Ann. of Math. 81 (1965), 38–55.

[47] , Global structure in von Neumann algebras, Trans. Amer. Math. Soc. 121 (1966),
434–454.

[48] , Polish transformation groups and classification problems, General topology and
modern analysis (Proc. Conf., Univ. California, Riverside, Calif., 1980), Academic Press,
New York, 1981, pp. 217–227.

[49] Edward G. Effros and Frank Hahn, Locally compact transformation groups and C∗-algebras,
Memoirs of the American Mathematical Society, No. 75, American Mathematical Society,
Providence, R.I., 1967.

[50] James M. G. Fell, The structure of algebras of operator fields, Acta Math. 106 (1961), 233–
280.

[51] , A Hausdorff topology on the closed subsets of a locally compact non-Hausdorff
space, Proc. Amer. Math. Soc. 13 (1962), 472–476.

[52] , Weak containment and induced representations of groups, II, Trans. Amer. Math.
Soc. 110 (1964), 424–447.

[53] , Induced representations and Banach ∗-algebraic bundles, Lecture Notes in Math.,
vol. 582, Springer-Verlag, New York, 1977.

[54] James M. G. Fell and Robert S. Doran, Representations of ∗-algebras, locally compact
groups, and Banach ∗-algebraic bundles. Vol. 1, Pure and Applied Mathematics, vol. 125,
Academic Press Inc., Boston, MA, 1988. Basic representation theory of groups and algebras.

[55] , Representations of ∗-algebras, locally compact groups, and Banach ∗-algebraic bun-
dles. Vol. 2, Pure and Applied Mathematics, vol. 126, Academic Press Inc., Boston, MA,
1988. Banach ∗-algebraic bundles, induced representations, and the generalized Mackey anal-
ysis.

[56] Gerald B. Folland, A course in abstract harmonic analysis, Studies in Advanced Mathemat-
ics, CRC Press, Boca Raton, FL, 1995.

[57] , Real analysis, Second, John Wiley & Sons Inc., New York, 1999. Modern techniques
and their applications, A Wiley-Interscience Publication.
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[118] Alexander Ju. Ol′šanskĭı, On the question of the existence of an invariant mean on a group,
Uspekhi Mat. Nauk 35 (1980), 199–200.

[119] Judith A. Packer and Iain Raeburn, Twisted crossed products of C∗-algebras, Math. Proc.
Cambridge Philos. Soc. 106 (1989), 293–311.

[120] , Twisted crossed products of C∗-algebras. II, Math. Ann. 287 (1990), 595–612.

[121] , On the structure of twisted group C∗-algebras, Trans. Amer. Math. Soc. 334 (1992),
685–718.

[122] Judith A. Packer, Iain Raeburn, and Dana P. Williams, The equivariant Brauer group of
principal bundles, J. Operator Theory 36 (1996), 73–105.

[123] Theodore W. Palmer, Classes of nonabelian, noncompact, locally compact groups, Rocky
Mountain J. Math. 8 (1978), 683–741.

[124] Kalyanapuram Rangachari Parthasarathy, Introduction to probability and measure,
Springer-Verlag New York Inc., New York, 1978.

[125] Alan L. T. Paterson, Amenability, Mathematical Surveys and Monographs, vol. 29, American
Mathematical Society, Providence, RI, 1988.

[126] Gert K. Pedersen, C∗-algebras and their automorphism groups, London Mathematical So-
ciety Monographs, vol. 14, Academic Press Inc. [Harcourt Brace Jovanovich Publishers],
London, 1979.

[127] , Analysis now, Graduate Texts in Mathematics, vol. 118, Springer-Verlag, New York,
1989.

[128] N. Christopher Phillips, A classification theorem for nuclear purely infinite simple C∗-
algebras, Doc. Math. 5 (2000), 49–114 (electronic).

[129] Lev S. Pontrjagin, Topological groups, Princeton University Press, Princeton, 1946.

[130] John Quigg, Duality for reduced twisted crossed products of C∗-algebras, Indiana Univ.
Math. J. 35 (1986), 549–571.

[131] John Quigg and Jack Spielberg, Regularity and hyporegularity in C∗-dynamical systems,
Houston J. Math. 18 (1992), 139–152.

[132] Iain Raeburn, Induced C∗-algebras and a symmetric imprimitivity theorem, Math. Ann.
280 (1988), 369–387.

[133] , On crossed products and Takai duality, Proc. Edinburgh Math. Soc. (2) 31 (1988),
321–330.

[134] , On crossed products by coactions and their representation theory, Proc. London
Math. Soc. 64 (1992), 625–652.

[135] , Crossed products of C∗-algebras by coactions of locally compact groups, Operator
algebras and quantum field theory (Rome, 1996), Internat. Press, Cambridge, MA, 1997,
pp. 74–84.

[136] , Dynamical systems and operator algebras, Proc. Centre Math. Appl. Austral. Nat.
Univ. 36 (1999), 109–120.

[137] Iain Raeburn and Jonathan Rosenberg, Crossed products of continuous-trace C∗-algebras
by smooth actions, Trans. Amer. Math. Soc. 305 (1988), 1–45.

[138] Iain Raeburn and Dana P. Williams, Pull-backs of C∗-algebras and crossed products by
certain diagonal actions, Trans. Amer. Math. Soc. 287 (1985), 755–777.



Bibliography 527

[139] , Morita equivalence and continuous-trace C∗-algebras, Mathematical Surveys and
Monographs, vol. 60, American Mathematical Society, Providence, RI, 1998.

[140] Arlan Ramsay, Virtual groups and group actions, Advances in Math. 6 (1971), 253–322
(1971).

[141] , Nontransitive quasi-orbits in Mackey’s analysis of group extensions, Acta Math.
137 (1976), 17–48.

[142] , Topologies on measured groupoids, J. Funct. Anal. 47 (1982), 314–343.

[143] Jean Renault, A groupoid approach to C∗-algebras, Lecture Notes in Mathematics, vol. 793,
Springer-Verlag, New York, 1980.

[144] , The ideal structure of groupoid crossed product C∗-algebras, J. Operator Theory
25 (1991), 3–36.

[145] Marc A. Rieffel, Induced representations of C∗-algebras, Advances in Math. 13 (1974), 176–
257.

[146] , Strong Morita equivalence of certain transformation group C∗-algebras, Math. Ann.
222 (1976), 7–22.

[147] , C∗-algebras associated with irrational rotations, Pacific J. Math. 93 (1981), 415–
429.

[148] , Applications of strong Morita equivalence to transformation group C∗-algebras,
Operator algebras and applications, Part I (Kingston, Ont., 1980), Proc. Sympos. Pure
Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 299–310.

[149] , The cancellation theorem for projective modules over irrational rotation C∗-
algebras, Proc. London Math. Soc. (3) 47 (1983), 285–302.

[150] , Proper actions of groups on C∗-algebras, Mappings of operator algebras (Philadel-
phia, PA, 1988), Progr. Math., vol. 84, Birkhäuser Boston, Boston, MA, 1990, pp. 141–
182.

[151] , Integrable and proper actions on C∗-algebras, and square-integrable representations
of groups, Expo. Math. 22 (2004), 1–53.

[152] Mikael Rørdam, Classification of nuclear, simple C∗-algebras, Classification of nuclear C∗-
algebras. entropy in operator algebras, Encyclopaedia Math. Sci., vol. 126, Springer, Berlin,
2002, pp. 1–145.

[153] Jonathan Rosenberg, A selective history of the Stone-von Neumann theorem, Operator alge-
bras, quantization, and noncommutative geometry, Contemp. Math., vol. 365, Amer. Math.
Soc., Providence, RI, 2004, pp. 331–353.

[154] Halsey L. Royden, Real analysis, Third Edition, Macmillan Publishing Company, New York,
1988.

[155] Walter Rudin, Functional analysis, McGraw-Hill Book Co., New York, 1973. McGraw-Hill
Series in Higher Mathematics.

[156] , Real and complex analysis, McGraw-Hill, New York, 1987.
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