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CROSSED PRODUCTS OF CONTINUOUS-TRACE
C*-ALGEBRAS BY SMOOTH ACTIONS

IAIN RAEBURN AND JONATHAN ROSENBERG

Abstract. We study in detail the structure of C*-crossed products of the form
A X a G, where A is a continuous-trace algebra and a is an action of a locally
compact abelian group G on A, especially in the case where the action of G on A
has a Hausdorff quotient and only one orbit type. Under mild conditions, the
crossed product has continuous trace, and we are often able to compute its spectrum
and Dixmier-Douady class. The formulae for these are remarkably interesting even
when G is the real line.

In recent years, considerable progress has been made in understanding the
structure of a transformation group C*-algebra C*(G, X) (sometimes written
C0(X) X G) when the orbit space X/G is reasonable. For example, a well-known
theorem by Green [10] asserts that if G acts freely and properly on X, then
C*(G, X) is isomorphic to C0(X/G, Jf(L2(G))) (for a good discussion of this, and
some generalizations, see [29]), and for abelian G a description of the topology on
the spectrum of C*(G, X) has been given by Williams [38]. The structure of crossed
products A X a G with A noncommutative is much more complicated, due to an
extra step in the description of their representation theory by the "Mackey machine"
(e.g., [34 and 11]): if -r e A, there is an obstruction in H (Gn, T) to extending -r to
a covariant representation of (A,G„), where G„ is the stabilizer of -n in G, and even
if this obstruction vanishes, it may not be possible to find a canonical extension of
*r. Here we shall study the crossed product A X 0 G, when yl is a continuous-trace
C*-algebra, G is abelian, and the action of G on the spectrum X of A satisfies
various local triviality hypotheses. Somewhat surprisingly, our point of view yields
new information even about transformation group algebras. For example, it turns
out that for a certain action of R on S3, the associated transformation group algebra
has nonzero Dixmier-Douady invariant (Example 4.6 below).

There are two extreme cases which have already been investigated to some extent.
First of all, locally unitary automorphism groups a: G -» Aut.4 [27] are group
actions which act trivially on the spectrum and for which Mackey obstructions do
not arise, and they include all such actions if G and A are separable and G is
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2 IAIN RAEBURN AND JONATHAN ROSENBERG

compactly generated and abelian [32, §2]. For such a, the spectrum of the crossed
product A X a G is in a natural way a principal G-bundle over A [27, Theorem 2.2],
and in fact A X a G is isomorphic to the balanced tensor product

Ç>(U*«G)A)®c()<;o^
[28, Proposition 1.5].

Secondly, some things are known about diagonal actions on the pull-backs of
C*-algebras. If B is a C*-algebra with spectrum T and p: Yl -* T is a principal
G-bundle, then the pull-back p*B is by definition C0(ß) ®c (T) 5 (so the previously
quoted result asserts A X a G = />*/! for/?: (,4XaG)A->yl when a is locally
unitary). A diagonal action on p*B, denoted p*ß, is one inherited from a tensor
product action y ® ¿S of G on C0(ß) ® 5, where y is translation on ß and ¿8 is an
action of C on fi which commutes with the action of Ch{T) = Z{M{B)). The
spectrum of p*B is canonically homeomorphic to ß, and p*ß induces the original
action of G on ß, so these give nontrivial examples of actions which induce principal
bundle structures on the spectrum. In [28] it is shown that p*B X p»ß G is often, but
not always, Morita equivalent to B. (It is if ß is implemented by a unitary group, or
if the bundle p: ß -* T is trivial.)

We begin where [28] leaves off: we consider actions of G on A which make Â into
a locally trivial principal G-bundle over Â/G. Our first main result (Theorem 1.1)
says that, up to stable isomorphism, the pull-back actions studied in [28] are the only
examples of such automorphism groups. The crossed product is again a continuous-
trace C*-algebra, and we give a formula for its Dixmier-Douady class

8(P*BXp.ßG)

in the case where ß is locally unitary: the ingredients in our formula are 8(B), the
class of the bundle p: ß —> T, and the class of the G-bundle (B Xß G)A-> B
constructed in [27].

Next we consider automorphism groups a: G -* Aut A such that the action of G
on ß = Â has a fixed isotropy group H, and such that the induced action of G/H
gives ß the structure of a locally trivial principal G///-bundle over a space
T = ß/G. When the restriction of a to H is locally unitary (recall this is automatic
if H = Z, T, or R), the spectrum of A X a|( H is a principal //-bundle over ß, and
it turns out that we have a commutative diagram of locally trivial principal bundles

7T*/7   ¡/ \   p*7T

{AXaG)A ß,
ir \ ¡/ p

T
where the SE arrows are //-bundles and the SW arrows are G///-bundles. The proof
of this uses Green's version of the Mackey machine for twisted crossed products,
and the realization of A X a G as a twisted crossed product of A X a)   H by G/H.
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CONTINUOUS-TRACE C*-ALGEBRAS 3

In fact, A X a G again has continuous trace, and by duality its Dixmier-Douady
class must pull back under m*p to 8{A X a|w H) = {p*ir)*8{A).

Our motivating example for this analysis is the case G = R. The only non trivial
closed subgroups of R are isomorphic to Z, so actions with reasonable orbit space
and one orbit type fall into 3 classes: trivial, free and periodic. The first was
discussed in [27], we have already handled the second, and it remains to analyze the
periodic case. The restriction of a to the isotropy group Z is automatically locally
unitary, and ß -> T is a principal bundle for the free action of the quotient
T = R/Z by a theorem of Gleason [6]. We therefore obtain a commutative diamond
of principal T-bundles.

In fact R-actions turn out to be particularly interesting, and we can say substan-
tially more in this case. First of all, we prove a vanishing theorem for the Moore
cohomology group H2{U,C{X, T)), where X is any R-space (satisfying a mild
technical condition). As well as answering a question left open in [14], this implies
that any action of R on a continuous-trace algebra A is determined up to exterior
equivalence by its action on the spectrum X of A. Secondly, it turns out that if A is
stable (modulo a technical hypothesis on X) then every free action of T on X lifts
to an action a of R on A. To see that this is not completely obvious, note that it
cannot lift to an action of T unless the algebra A is a pull-back along the bundle
X -* T = X/J. These two results together imply that the action a, and hence also it
and 8{A X a R), are determined uniquely by [p] S H2{T,Ï) and 8{A) e H3{X,I).
We show that these invariants are related by the Gysin sequences of the bundles it
and p.

We have organized our work as follows. We begin with a §0 on preliminary
matters, where we set up notation and review material from [25, 26, 27, 28, and 14].
In fact, our presentation includes some minor improvements and new observations.
We then discuss our results on automorphism groups which act freely on the
spectrum. Our realization of these as pull-backs is Theorem 1.1, and our formula for
the Dixmier-Douady class of the crossed product is Theorem 1.5. We also apply this
formula to the problem of realizing a given automorphism group of p*B as a
pull-back of a locally unitary group on B.

In §2 we study the spectrum of A X a G when the action of G on ß = A has fixed
isotropy group H. The commutative diamond is valid in considerable generality
(Proposition 2.1) and consists of principal bundles when a\ H is locally unitary and
ß -» ß/G locally trivial for the action of G/H (Theorem 2.2). In our §3 we present
some examples satisfying these hypotheses. The first class of examples consists of
induced C*-algebras—given an action of a subgroup H of G on a C*-algebra D,
there is an action of G on a C*-algebra Ind^, D of sections of an induced bundle of
C*-algebras over G/H. For the induced action we can identify explicitly the various
topological invariants associated to our diamond. The second set of examples
involves actions on the twisted transformation group C*-algebras C*{G, X, u) of
Wassermann ([35, §1]; see also [28, §4]). For these all the invariants can be nontrivial
simultaneously. We also show how to construct explicitly actions of R on algebras A
with spectrum S3 for which the induced action of R/Z on Â is the Hopf fibration.
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4 IAIN RAEBURN AND JONATHAN ROSENBERG

Our final section contains a detailed study of actions of R. The results of §§2 and
3 already indicate that the spectrum of A X a R can be more complicated than
previously expected: the conjecture of [31] would have implied that as a T-bundle
{A X a R) A was always trivial. However, our cohomology vanishing theorem (4.1)
enables us to verify this conjecture when 8{A) = 0 (Theorem 4.8), which case seems
the most likely to arise in the applications envisaged in [31]. In fact, we show the
system {A ® X, a ® id) is equivalent to {C0{X) ® X~, t ® id), where t is transla-
tion on X, and the conjecture reduced to Williams' theorem [38, Theorem 5.3]. In
Theorem 4.10, we prove that an action of R on a manifold M can be lifted to any
stable continuous-trace algebra over M, and we note as a corollary that this makes it
possible to construct some new examples of simple C*-algebras. Our results on
lifting circle actions on A to actions of R on A, and the associated topological
formulae, are in Theorem 4.12. (The proofs of Theorems 4.10 and 4.12 use a certain
amount of machinery from differential geometry, differential topology, and homo-
topy theory.) Then we continue with brief discussions of how our results assist the
calculation of A X a R, when the action of R on A has more than one orbit type,
and in particular, the calculation of the C*-algebra of a solvable Lie group. We
consider the question of when the Dixmier-Douady invariant of continuous-trace
subquotients of such an algebra can be nonzero, and conclude with a discussion of
what one expects for exponential solvable Lie groups.

The research described here was begun in July, 1983, at the University of New
South Wales, and completed in March, 1985, at the Mathematical Sciences Research
Institute in Berkeley. We gratefully acknowledge the assistance of the MSRI, its
members and its staff, in helping us bring this project to fruition.

0. Preliminaries. In this section, we review a number of basic definitions and
concepts that will be used later, and fix a number of notations. We include a few
results of a preliminary nature, the most important of which (Theorems 0.8 and 0.11
below) should be viewed as supplements to [26 and 14], respectively.

Automorphisms and automorphism groups of C*-algebras. An automorphism of a
C*-algebra will always mean a »-isomorphism (necessarily isometric). If A is a
C*-algebra, Aut(^4) will denote the group of all automorphisms of A. This is a
topological group with respect to the topology of pointwise convergence. (We shall
never use the norm topology on Ant{A).) When A is separable, Aut{A) is a Polish
group, i.e., may be given a complete separable metric. (For equivalent properties, see
[20, §2].)

An automorphism a e Aut{A) is called inner if there is some unitary element u
in the multiplier algebra M{A) such that a = Ad u, i.e., a{a) = uau* for all ael
The inner automorphisms of A constitute a normal subgroup lnn{A) of Aut(,4)
which is usually not closed in Aut{A). However lnn{A) is naturally isomorphic to
the quotient of U{M{A)), the unitary group of M {A) equipped with the strict
topology (see [24, §3.12]), by its center. In fact, the center of U{M{A)) may by the
Dauns-Hofmann Theorem [24, §4.4] be identified with C(Prim A, T), where T is the
circle and Prim A is the primitive ideal space of A, equipped with the hull-kernel
topology. Here one may replace Prim A by its largest Hausdorff quotient (see [1, p.
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CONTINUOUS-TRACE C*-ALGEBRAS ■5

268]), and the strict topology corresponds to uniform convergence on compacta. The
following lemma compensates in part for the fact that lnn{A) may not be closed in
Aut{A).

Lemma 0.1. Let A be a separable C*-algebra. Then lnn{A) is a Borel subset of
Aut{A), and the relative Borel structure on it coincides with that given by the
identification with the Polish group U{M{A))/C(Prim A, T).

Proof. The map

Ad: U{M{A)) -» Aut{A)

is clearly a continuous homomorphism with kernel C(Prim^4,T), hence gives a
continuous embedding of i/(Af(^))/C(Prim^4,T) into Aut(^), with image Inn(v4).
When A is separable, Aut(vl) and U{M{A)) are Polish groups, hence Inn(^4) is
Borel and the embedding is a Borel isomorphism by [19, Theorem 3.2].   D

Corollary 0.2. Suppose A is separable C*-algebra, G is a Polish group, and <p:
G -» Aut( A ) is a continuous homomorphism or crossed homomorphism that happens to
have image contained in lnn{A). Then tp is actually continuous for the Polish topology
on lnn{A) obtained from the identification with t/(M(/4))/C(Prim ^4,T).

Proof. Since q> is continuous, it is certainly Borel, hence by the lemma is Borel
with respect to the Polish topology on lnn{A). But then <p is continuous by an
automatic continuity theorem of Banach (see for example [20, Proposition 5]).   D

Now a group action on A, often called an automorphism group G of A (or
C*-dynamical system) means a continuous homomorphism from a topological group
G (usually locally compact) into Aut{A). A group action a: G -» Aut{A) is called
inner or unitary if it is implemented by a homomorphism u: G -» U{M{A)),
continuous with respect to the strict topology on M {A). (In other words, otg{a) -
ugau* for all g e G and a & A, and g >-* uga, g <-> aug are continuous for any
fixed a e A.) When G = Z, this notion coincides with that of innerness of the single
automorphism a(l) = a,. A weaker notion is for a group action to be locally unitary,
which means that for each point in A, one can choose a map u so that the condition
ag{a) = ugau* holds locally in a neighborhood of this point [27].

Cohomology. We shall need throughout this paper to refer to cohomology groups
of both topological spaces and topological groups. In the case of spaces, we shall
work exclusively with sheaf cohomology, which coincides with the Cech theory since
our spaces will be paracompact. The following lemma will be used later.

Lemma 0.3. Let X be a compact metric space, or more generally, a space with the
homotopy type of a compact metric space. Then the {Cech) cohomology groups
H"{ X, Z) are countable.

Proof. For any paracompact space X, to compute H*{X,Z) it is enough to
compute H*{<%, Z) as % runs over a cofinal family of open coverings of X. When X
is compact, one may take each covering °17 to be finite, and when X is second-coun-
table, a countable number of ^'s suffice. Now for <% finite, the Cech cochain
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6 IAIN RAEBURN AND JONATHAN ROSENBERG

groups C"{tf7, Z) are obviously finitely generated, hence so are the groups //"(^, Z).
So for X compact metric, H"{X,Z) is a countable direct limit of finitely generated
groups, and so is countable. Since Cech cohomology with discrete coefficients is
homotopy-invariant, it actually suffices for X to have the homotopy type of a
compact metric space.   D

Remark 0.4. There are many quite nice second-countable locally compact spaces
for which the Cech cohomology groups are uncountable. For instance, if X is an
infinite disjoint union of copies of S", H"{X, Z) is an infinite product (not sum!) of
copies of Z, and so is uncountable. If « > 1, this pathology can arise even when X is
a connected open manifold (such as a surface of infinite genus).

In fact, there are natural ways to topologize H"{X,Z). When X is compact, this
group will be discrete, but for X noncompact it may fail to be Hausdorff. For
instance, if A' = lim Xk is a limit of finite complexes Xk, then H"{X, Z) will contain

i —*
lim H"  *{Xk,Z) [36, pp. 272-273], which sometimes is a non-Hausdorff quotient
of UkHn-\Xk,Z).   D

For A a topological abelian group, we shall denote by A the sheaf of germs of
continuous A -valued functions over some (implicit) space. When A is discrete, A
may be identified with the constant sheaf A. Recall that for X paracompact,
H\X, A) classifies locally trivial principal ,4-bundles. Thus H\X,1) s H2{X,Z)
classifies principal T-bundles over X. If X is locally compact and paracompact, the
Dixmier-Douady invariant of a continuous-trace algebra with spectrum X lives in
H2{X,J) = H\X,Z).

The sort of group cohomology that will be relevant for us is the so-called "Borel
cochain" theory of C. C. Moore [20]. This theory associates groups H"{G, A) to a
pair G, A, where G is a second-countable locally compact group and A is a Polish
G-module. These groups are often the natural setting for certain obstructions to
triviality of group actions on operator algebras (see, for instance, [21, 14, and 32]).

Continuous-trace algebras and their automorphisms. Recall that a C*-algebra A is
said to have continuous trace if A is Hausdorff and

{a G A+: it >-> tr7r(a)is finite-valued and continuous on A}

is dense in the positive cone A+ of A. The most basic such algebra is JT(JÉ*), the
algebra of compact operators on a Hilbert space JÉ*. When 37? is separable and
infinite-dimensional, we often write X for JT( JÉ"). A C*-algebra A is called stable
if A ® 777= A. A stable separable continuous-trace algebra A with fixed spectrum X
is classified up to C0(^-isomorphism by its Dixmier-Douady invariant 8{A) g
H3{X,Z), and all classes in H3 can arise. We shall use the following facts about
automorphisms of continuous-trace algebras.

Theorem 0.5 [26]. Let A be a continuous-trace algebra with paracompact spectrum
X and Dixmier-Douady invariant 8.

(a) Autc tX)A, the subgroup of Aut(^4) consisting of automorphisms leaving the
spectrum pointwise fixed, coincides with the group of locally inner automorphisms.
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CONTINUOUS-TRACE C'-ALGEBRAS 7

(b) There is a short exact sequence

l^lnn{A)^AntCo(X)A^H2{X,Z),

and if A is stable, f is surjective.
(c) There is a short exact sequence

p
1 -> Autc (X)A -» Aut(A) -* Homeos(X),

where Homeos(X) denotes the subgroup of the homeomorphism group of X that
preserves 8. If A is separable and stable, p is surjective.    D

Remark 0.6. It is obvious that Autc (X) A is closed in Aut{A) and that the map p:
Aut(^) -» Homeo(A') is continuous (for the compact-open topology on homeomor-
phisms). When 8 = 0, the exact sequence of (c) splits; however, we shall see that this
is not usually the case otherwise.   D

Corollary 0.7. // A is a separable stable C*-algebra with spectrum X and
Dixmier-Douady invariant 8, there is a short exact sequence

1 -► H2(X,Z) -* Out(A) -h> Horneo^*) -* 1,

where Out(^) = Aut(^)/Inn(^).    □

Theorem 0.8. Let A be a separable C*-algebra with spectrum X such that H2(X, Z)
is countable. (By Lemma 0.3, this is automatic if X is compact or homotopy-equivalent
to a compact space.) Then Inn(^4) is open in Autc (_V) A and closed in Aut(A).

Proof. When A is separable, Autc IX)A is a closed subgroup of the Polish group
Aut(^), hence is Polish. By Lemma 0.1, lnn(A) is a Borel subgroup, and by
hypothesis together with Theorem 0.5(b), it has countable index. Thus if
Autc (X^A/lnn(A) is given the discrete topology, the quotient map Autc iX^A -*
Autc {X)A/lnn(A) is a Borel homomorphism from one Polish group onto another,
hence is continuous and open. (See also [21, Proposition 6].)   □

Remark 0.9. The nature of the proof of Theorem 0.8 suggests that if A is a
continuous-trace algebra with H2(Â,Z) uncountable, then perhaps lnn(A) might
not be closed in Aut(^4). In fact this can occur even when A is separable, as the
following example illustrates.

Let X be the infinite mapping cylinder constructed in [36, p. 272], from iterations
of a map S1 -* S1 of degree 2. The space X is an infinite, locally finite CW complex,
hence is locally compact but not compact. By construction, X is a union of finite
skeleta X„ with H\X„, Z) = Z, H2(X„, Z) = 0, and with the maps H\X„ + 1, Z) -»
H1(Xn, Z) equal to multiplication by 2. By construction,

H2{X,Z) = linW--- ^Z^Z-iz)

is uncountable. Let A = C0{X, 777{377)), when JÉ" is a separable infinite-dimen-
sional Hilbert space. Then

AutCo(X)A = C{X,PU{Ji7)),
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8 IAIN RAEBURN AND JONATHAN ROSENBERG

where the maps from X to the projective unitary group PU (which is a K(Z, 2)-space)
are given the compact-open topology. The map Autc (X) A -* H2(X, Z) of Theorem
0.5 is exactly the map sending a function v: X -* PU to its homotopy class in
[X, K(Z,2)] at H2{X,Z). Since H2(Xn,Z) = 0 for all n, any such v is null-homo-
topic when restricted to any Xn, and thus v may be approximated uniformly on
compacta by null-homotopic maps (which correspond to inner automorphisms). This
shows Inn A is dense in Autc (;r) A even though the quotient H2(X, Z) is nontrivial
(in fact, uncountable).

We take this opportunity to correct what seems to be an erroneous remark on
p. 122 of [5]. While it is true that continuous-trace algebras have all their central
sequences trivial, it seems to us that the argument used by Connes to prove
equivalence of this condition with triviality of Inn A /Inn A, when translated over to
the C ""-context, breaks down precisely in the case of nonunital algebras with Â
noncompact. This explains why there can be a separable continuous-trace algebra
with Innyi/Inn/1 non trivial.   D

Notions of equivalence for group actions. If a, ß: G -» Aut(A) are two actions of a
locally compact group G on a C*-algebra, there are several plausible candidates for
"equivalence" of the two actions. One is that they be related by an automorphism
y g Aut(A), i.e., that ag = yßgy~l for all g g G. The notion of equivalence may be
made more restrictive if one requires y to fix A or PrnruM) pointwise, to be locally
inner, or even inner. Another useful notion is that of exterior equivalence; a and ß
are exterior equivalent if they differ by a cocycle G —> U(M(A)) or if they may be
chosen to be opposite corners of an action of G on M2(A) (2-by-2 matrices over A)
[24, Lemma 8.11.2]. Exterior equivalence may be combined with equivalence via an
isomorphism, i.e., one might say a and ß are equivalent if a is exterior equivalent to
g >-» yßg*i'x for some y (again, various restrictions on y are possible). The weakest
reasonable notion of equivalence is for a and ß to be called equivalent if the
C*-crossed products, which we shall denote A X a G and A X ß G, are isomorphic.
Usually, however, one would also like to keep track of the dual coaction of G. The
following theorem is due to G. K. Pedersen [25, (35)] however, as the statement
there is not completely precise, we restate it for convenience.

Theorem 0.10. Let G be a locally compact abelian group and let a, ß: G -» Aut(A)
be two actions of G on a C*-algebra. Denote by ta and tß the canonical inclusions of A
into the multiplier algebras of A X a G and A X ß G, respectively. Then

(a) The actions a and ß are exterior equivalent if and only if there is an isomorphism
$: A X aG -* A X ß G, intertwining the dual actions â and ß of G, such that (after
extending G> to the multiplier algebra) the diagram

'.^    M(A*aG)
A 1*

.;*    M{A-AßG)

commutes.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CONTINUOUS-TRACE C*-ALGEBRAS 9

(b) The actions a and ß are exterior equivalent modulo an automorphism (i.e., a is
exterior equivalent to g <-> Y¿8gY_1 for some y g Ant(A)) if and only if there is an
isomorphism í>: A'xiaG-*A'XißG, intertwining the dual actions â and ß of G,
such that for some y g Aut(A), the diagram

A       ^      M(AXaG)

yî i*

A       *      M{Ay-ßG)

commutes. (If y is inner,  this notion of equivalence is no different from exterior
equivalence in the strict sense.)   D

A more detailed study of the above notions of equivalence will be made in
Remark 1.7 below. See also [32]. Meanwhile, the following proposition (implicit in
[14]) explains the connection between the Moore cohomology theory and the notion
of exterior equivalence.

Theorem 0.11. Let a, ß: G -> Aut(y4) be two actions of a second-countable locally
compact group G on a separable C*-algebra A, and assume that otgß~l G Inn(/1) for
all g G G. Then a and ß are exterior equivalent if and only if a certain naturally
defined obstruction class in H2(G, C(X, J)) vanishes. Here X is the largest Hausdorff
quotient of Prim(A) and C(X, J) is given the topology of uniform convergence on
compacta. The action of G on C(X, J) arises from the action of G on Prim(y4) induced
by either a or ß.

Proof.   The   map   v.   g -» agßgl   satisfies   the   cocycle   identity   v(gh) =
v(g)ßgv(h)ß~x, and so by Corollary 0.2 defines a continuous 1-cocycle from G to
U{M{A))/C{Prim A, T). By definition, a and ß are exterior equivalent if and only
if v can be lifted to a continuous 1-cocycle with values in U{M{A)). But the short
exact sequence

1 -> C(X,J) -> U(M(A)) -* U(M(A))/C(X,J) -* 1
gives rise to an exact sequence

H\G,U{M{A))) - H1{G,U{M{A))/C(X,J)) -* H2{G,C(X,J)),
which shows that the desired lifting exists if and only if the coboundary of the class
of v vanishes in H2(G,C{X,J)).

Note. Since U{M{A)) is noncommutative in general, Hl{G,U{M{A))) and
Hl{G, U{M{A))/C{X, T)) are only pointed sets, not groups. Nevertheless, since
C( X, T) is central in U(M(A)), there is a (not very) long exact cohomology sequence
extending out as far as needed, with the usual properties. See, for instance, [20, p. 21
and 21, pp. 40-41].   D

Corollary 0.12. With notation as in the theorem, if a: G -» Ant(A) is a group
action such that ag G Inn(^) for all g g G, then a is unitary if and only if a naturally
defined obstruction in H2(G, C( X, T)) ( where G acts trivially on C( X, J)) vanishes.

Proof. Take ß = id.   D
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



10 IAIN RAEBURN AND JONATHAN ROSENBERG

Corollary 0.13. Suppose A is a separable continuous-trace algebra with spectrum
X such that H2{X,Z) is countable. {By Lemma 0.3, X compact suffices.) Assume a
and ß are two actions of a connected second-countable locally compact group G on A
that induce the same action on X. Then the only obstruction to exterior equivalence of a
and ß lies in H2{G,C{X,J)).

Proof. By assumption, v(g) = agß~l takes values in Autc (X)A, and v is
continuous since Autc (X)A is closed in Aut(^4). Since G is connected, the range of
v must lie in the connected component of the identity in A\xtc ,X)A. But by
Theorem 0.8, Inn(^4) is open in Autc i^A, so v must take values in lnn(A). Now
onecanapplyTheoremO.il.    D

Corollary 0.14. Suppose A is a separable continuous-trace algebra with compact
spectrum X. Then any action a of R or of a connected, simply connected {semisimple)
compact Lie group on A which induces the identity on X is necessarily unitary.

Proof. Taking ß = id in Corollary 0.13, we see the only obstruction to innerness
of a lies in H2(G,C(X,1)), where G acts trivially on X If G = R or G is a
compact, simply connected Lie group, then H2(G,C(X, J)) = 0 by [14, Theorem
2.6] or by [21, Proposition 4].   D

Remark 0.15. Corollary 0.14 can be extended to the case where X is noncompact,
by the following argument. For each x G X and compact neighborhood K of x, a is
unitary over K by 0.14, and thus a is locally inner. Where two compact neighbor-
hoods KY and K2 intersect, implementing representations G -» U(M(A\ K )) and
G -* U(M(A\ K )) must differ by a continuous function Kx Pi K2 -» Hom(G,T).
When G is semisimple, Hom(G, T) is trivial so we can certainly patch to get a global
implementing representation. In the case G = R, Hom(G,T) = R and so the ob-
struction to global patching lies in Hl{X, R). Since R is a fine sheaf, the obstruction
vanishes and a is unitary. For a more detailed discussion and generahzations, see
[32].    D

Pull-backs and locally unitary group actions. Finally, we review a number of ideas
and results from [27 and 28]. The following theorem essentially reduces to Theorem
0.5 in the special case G = Z.

Theorem 0.16 [27, Theorem 2.2, Proposition 2.5, and Theorem 3.8]. (a) Let A
be a C*-algebra with Hausdorff spectrum, and G a locally compact abelian group.
Then for any locally unitary action a: G -* Aut(A), (A X a G) A-> yl is a locally
trivial principal G-bundle relative to the dual action of G. Two locally unitary actions
are exterior equivalent if and only if the corresponding bundles are isomorphic.

(b) //, further, A is stable and A is paracompact, then every locally trivial G-bundle
over A arises from a locally unitary action of G on A.   D

Finally, we need the notion of pull-backs of C *-algebras and of group actions, as
introduced in [28]. If X and Y are locally compact (Hausdorff) spaces, /: X -* Y is
a continuous map, and A is a C*-algebra with Prim(A) = Y, the pull-back of A
along f is f*A = C0(X)®C (Y)A. (As usual, Cb denotes bounded continuous
functions and  C0 denotes continuous functions vanishing at infinity.) In case
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A = Y0(E), the algebra of sections vanishing at infinity of a continuous field E of
C*-algebras over Y, then f*A = Y0(f*E). When /: X -> Y is the bundle projection
for some principal G-bundle and a: G -* Autc (y)j4 is any G-action on A fixing Y
pointwise, one can also define f*ct: G -* Aut/M to be the diagonal action coming
from a on A and the translation action of G on C0{X). Then one of the main results
of [28] describes the crossed products that arise in the situation of Theorem 0.16.

Theorem 0.17 [28, Proposition 1.5]. If A is a C*-algebra with paracompact
spectrum Y, G is a locally compact abelian group, and a: G -* Aut(^l) is a locally
unitary action, then (A X a G,à) is isomorphic (as a C*-algebra with action of G) to
(p*A, p*id), wherep: {A X a G) A-> Y is the natural map of Theorem 0.16.    D

1. Automorphism groups which act freely on the spectrum. Let A be a C*-algebra
with Hausdorff spectrum ß and let G be a locally compact group which acts freely
on ß. We suppose that compact subsets of ß are wandering (as in [10, p. 88]), or
equivalently, that ß is a principal G-bundle in the sense of Cartan (see [23, Theorem
1.2.9]). A common alternative phrase is to say G acts properly on ß, that is, that the
map (g, x) -> (x, gx) is proper from G X ß to ß X ß. We shall study the crossed
product A X a G of A by an action a of G which induces the given action of G on
the spectrum ß. Our first result shows that such an a can only exist if the algebra is
essentially a pull-back in the sense of [28].

Theorem 1.1. Let a be an action of a locally compact group G on a C*-algebra A
with Hausdorff spectrum ß. Suppose that the action of G on ß induced by a is free and
proper, and letp: ß -» T = ß/G be the orbit map. Then

(1) inducing representations from A to A X aG gives a homeomorphism of T onto
(A X a G) A, such that the resulting action of Cb(T) on A X aG agrees with that
inherited from the action of Cb(T) c Cb{Qi) on A;

(2) there is an isomorphism of A ® 3#~{L2{G)) onto the pull-back p*(A X a G)
which respects the natural actions of C6(ß) and intertwines a ® Ad p with p*id (here
À and p are the left and right regular representations of G); and

(3) if A has continuous trace, so does A X a G.

Proof. (1) As we mentioned above, the properness of the action of G on ß
implies that T is locally compact and Hausdorff and that each G-orbit in ß (with its
relative topology) is homeomorphic to G. Thus the action is regular in the sense of
Green [11, §5], and induction gives a homeomorphism of Tonto PruruM X a G) by
[11, Theorem 24 and the subsequent remark]. Every irreducible representation of
A X a G factors through (A/I) X G, for I the ideal associated to some orbit in ß,
and an application of [11, Theorem 17] to this algebra shows that the crossed
product is type I. Thus T is homeomorphic to (yl X a G)A. If it g Â and / g Ch(T),
a simple calculation shows that for b g Cc(G, A),

Indw(/&)=/(/>(ir))Indir(6).

This immediately gives the last part of (1).
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12 IAIN RAEBURN AND JONATHAN ROSENBERG

(2) There is an isomorphism * of A ® 3f(L2(G)) onto E = (C0(G) ® ̂ ) X X8a G
which carries the action a ® Ad p into p ® id; further, the proof of this fact in [12,
§2] shows that the isomorphism carries the representation 77 ® id of A ® 377 into the
representation of the imprimitivity algebra E induced from m. We shall show there
is an equivariant isomorphism

(E,p ® id) = (C0(ß) »CilT)(A X „ G), t ®C6(r) id) =M{p*(A X a G),/>*id),

where r is the canonical action of G on C0(ß) and p ® id acts through its natural
action on C0(G) ® A, which commutes with X ® a and so passes to an action on E.

We can view A as the algebra ro(f ) of sections vanishing at infinity of a
continuous field F of elementary C*-algebras over ß [4,10.5.2]. Let

A = ßXrß=def{(x, v)Gß xß; p(x)=p(y)}.

Then if qx: A -» ß and q2: GXÖ^ii in each case denotes projection on the
second factor, we may identify C0(ß) ®Ch(T)A with T0(q*F) and C0(G, A) with
Y0(q^F). Since p: ß -» T is a Cartan principal bundle, the map v: A^Gxö
defined by v(g ■ y, y) = (g~\ y) is a homeomorphism. We define an isomorphism
$ of C0(G, A) onto C0(ß) ®C/,(d ̂  by $(/) = f" *> /G ^(qifF); this makes sense
since q2°v = qx. Each automorphism as induces isomorphisms a : ^-î -» F
and a calculation shows

*(>, ® as(f))(g-y,y) = «^(/(.-y1,^)) = (id ® cts){^(f))(gy,y).

Thus $ extends to an isomorphism

*,: C0(G, A) X X8a G - (C0(ß) ®C/;(r,^) X ¡d®„ G = />*U X a G).

It is easily checked that $t is our desired isomorphism E -» />*(^ X a G), so $j ° ^
is an isomorphism of A ® JT with />*(^1 X a G) which sends a ® Adp into /7*id.
Since v~x(e,Ti) = (77,77), the induced map on spectra is

77 -» Ind^77 -» 77 ® lndÁA™cTT,

which via the identification of T with (A X G)A in (1) is the natural homeomor-
phism of ß onto p*(A X 0 G)A. This establishes (2).

(3) is an immediate consequence of (2) together with a special case of the
following lemma.   D

Lemma 1.2. Let ß and T be locally compact Hausdorff spaces and p: ß -» T a
continuous and open surjection. If B is a C*-algebra with spectrum T and p*B has
continuous trace, then so does B.

Proof. We may suppose B = Y0(E), where £ is a continuous field of (elemen-
tary) C*-algebras over T. Then p*B = Y0(p*E). Choose t G T, x g p~l(t), and U
some compact neighborhood of x in ß. Choose a continuous self-adjoint section b
of E which is a rank-one projection at t. Then for t' close to /, \\b(t')2 - b(t')\\ will
be small, hence, modifying b by spectral calculus if necessary, we may assume b(t')
is a selfadjoint projection for all t' G V, V some neighborhood of t. Since p was
assumed open, without loss of generality we may assume p(U) 3 K. Now if E does
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not have a local section of rank-one projections at t, there must be a net t¡ -» t in V
with rk b(tj) > 2 for all i. Choose x¡ g U with t¡ = p(x¡). Since U was compact,
passing to a subnet we may assume x, converges to some x0 g U, and by continuity
of p, p(x0) = r. Now b° p is a continuous section of p*E over U, and if /?*ß has
continuous trace, we must have

trbo p(x.) = trb(t¡) -* trb° p{x0) = trb{t) = 1.

(Although it may not be immediately obvious that b ° p is a "continuous-trace
element" near x0, this follows by approximating by another section of p*E, agreeing
with b ° p at x0 and equal to a rank-one projection everywhere in a neighborhood.)
Since we assumed rk b{t¡) > 2 for all i, this is a contradiction. Thus E must have a
local section of rank-one projections around every point of T. By [4, Proposition
4.5.4] or [24, Theorem 6.1.11], B has continuous trace.   D

We have completed the proof of Theorem 1.1. In the case of stable algebras, the
following corollary is slightly more convenient.

Corollary 1.3. //, in addition to the hypotheses of Theorem 1.1, A is stable, there
is an isomorphism of A onto p*{A X a G) which takes a into an action exterior
equivalent top*id.

Proof. This follows immediately from the theorem and the next lemma, since
a ® Ad p and a ® id are exterior equivalent.   D

Lemma 1.4. If a: G -* AutA is a group action on a stable C*-algebra A, there is
an isomorphism v: A -* A ® 3t such that v'1 °{a ® id)° v is exterior equivalent to a.

Proof. Choose a rank-one projection e g 377 and an isomorphism 0 of A ® M2(C)
with A ® 377 such that 0(a ® en) = a ® e for a g A. Then define v by

— (9
A ^ A ® e22^A ®(1 - e)377{l - e) = A ® Jf((l - e)(jf)).

Note that a ® id^(jr) leaves A ® Jr"((l - e)J(7) invariant, and

$-lo(a9idjriJn)o8

is an automorphism of A ® M2 which is equal to a on the upper left-hand corner
and to v'1 °{a ® idk«, _,,).#»))° v on the bottom right. The result follows from [24,
8.11.2].    D

Remark. The hypothesis that G act properly on ß is automatic if G is compact or
if the bundle p: ß -» ß/G is locally trivial. Conversely, if G is a Lie group, any free
proper action yields a locally trivial bundle by [23, Theorem 4.1]. (The case of a
compact Lie group is much easier and may be found in [6].)

Suppose that A is a separable continuous-trace C*-algebra with A = ß and a:
G -* AutA is an action such that the orbit map p: ß -* T is a principal G-bundle.
In light of [28, Proposition 1.4], our theorem asserts that 8{A) = 8{A ®Jf) belongs
to the range of p*\ H3(T, Z) -» //3(ß, Z), and then A ® Jf= />*5 whenever B is a
stable continuous-trace algebra with p*8(B) = 8(A). Now we know that in at least
one such realization a ® id is equivalent to p*id, but this only works if we have
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14 IAIN RAEBURN AND JONATHAN ROSENBERG

made the correct choice A X a G for B, and this may well not be the obvious one.
For example, if A = p*C and a = p*y for some y: G -* Autc IT)C, examples are
given in [28, Corollary 3.6] with p*C X/,»y G not Morita equivalent to C. In such
cases, the necessary B is not the algebra C we started with. So Theorem 1.1 suggests
two problems:

(a) First of all, given A = p*B and a: G -* AutA inducing the bundle p on
spectra, when is a equivalent to p*y for some reasonable automorphism group y of
BI

(b) Secondly, can we describe the isomorphism class of a crossed product
p*B X  ,y G in terms of topological data associated with p, B, and yl

Our next result is an answer to the second question in the case where y is locally
unitary, which by [32, Theorem 2.5] is less of a restriction than one might think. We
shall later show how (b) helps with (a)—for further discussion, see also [32, §4].

We intend, then to give a formula for the Dixmier-Douady class of p*B X » G
for G abelian and y locally unitary. To state it, we need to set up some notation and
a pairing <-,->: Hl(T,G)X Hl(T,G) -» H3(T,Z). If G is an abelian locally
compact group and y: G -* AutB is locally unitary, let f(y) be the class of the
corresponding bundle (/? X y G) A-> f? (as in [27] and our Theorem 0.16) in
Hl(B,G). If p: ß -> T is a principal G-bundle, write [p] for its class in Hl(T,G).
To construct the pairing, let c g H*(T, G) and d g H*{T, G). Then the cup product
cud (defined in [8, §11.6.6]) lies in H2{T,G ® G) which maps to H2(T,J) under
the map G ® G -» T induced by the dual pairing G X G -» T. We let (c, d) be the
image of c U d in H2(T, J), transported to H3(T,Z) via the usual isomorphism
H2(T,J) -* H3(T,Z). In terms of Cech cocycles, if c and d are represented by
cocycles y,y: Ntj -» G, g(J: N¡j -* G relative to some cover {Nj} of T, (c,d) is
represented by the cocycle in Z2({Nj),J)

h.jA Nijk - T    where h,jk(t) = (y,j(t), gjk(t)).

Theorem 1.5. Let B be a continuous-trace algebra with paracompact spectrum T, let
y: G -» Aut B be a locally unitary abelian automorphism group, and let p: ß -> T be a
locally trivial principal G-bundle. Then the crossed product p*B X , G has continuous
trace and

8(p*B x p,yG) - 8{B) + <£(y),[/>]>.
Proof. We have already seen that p*B X G has continuous trace (Theorem

1.1(3)). In [28, Theorem 2.5], it was shown that the crossed product is strongly
Morita equivalent to an algebra there denoted GC(Yl, B)a/I. Here a = t ® y where
t is the translation action of G on C0(ß), and GC(Yl, B) is a certain algebra of
bounded continuous functions ß -> B. It will be enough to calculate
8(GC(iï, B)a/I). To this end, we fix a covering of T by open sets M,, whose
closures Ni are compact, with the following properties:

(1) There are continuous fields of Hubert spaces //, over N¡, isomorphisms 0, of
B | N onto r(3i (//,)), and isomorphisms vl} of H} \ N¡ onto //, | ̂    such that

Ad(v,J(t)) = ei(t)oer1(t)   for/e/V,.,..
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Then there is a Cech cocycle ¡i g Z2((Nt), T) with

Vij{t)vjk{t) = HiJk(t)vik{t)    for / G Nijk,

and 8{B) g H2{T, J) is by definition the class of this cocycle [4,10.7.11-10.7.14].
(2) There are G-bundle isomorphisms h¡: p~l(N¡) -» N¡ X G and a cocycle X g

Z:((W,), G) with h¡ ° ä:V. g) = (t, g^ijit)), and [/>] g H\T, G) is the class of this
cocycle.

(3) There are strictly continuous homomorphisms u' of G into M(T(21 (//,))) such
that Ad{ug) = 6¡°yg°0rl. It follows that Ad(u,7w¿) = Ad(w^0) on A//y, so that
there are also continuous maps x,/ Ny ~» G satisfying

M'K(') = xi7(0(«)«¿(0M0  for 'G %
(Recall M(T( 31 (//,))) consists of fields over N¡ of bounded operators on //,.) The x ¡j
form a cocycle which realizes f(y) g H\T,G). (See [27, pp. 223-224]; the «' there
are slightly different.)

As in the proof of [28, Proposition 3.3], for each trivialization h¡ of p the map %:
GC(Q, B)a ^ B\N defined by

%(b){t) = b(h;*{t,e)){t)
induces an isomorphism of [GC(Ü, B)a/I] \ N onto B | N. It is routine to verify that
*/(0 = Yx, (t) ° *<(0- We now define $, = (9¿ ó ̂ ., So that 0, trivializes GC(Yl, B)a/I
over A^. More calculations give

4>,(r)o<Dy(0-1 = Ad(M^(O(0^(0),

so that <5(GC(ß, B)a/I) is represented by the cocycle r with

«y/)(i)ei;(0<(o(0",*(') = ty*('Mrt<»)('K(0.        ' G ̂ V
A gory calculation shows that

"y*(0-<X/y(0.V(0>/»Vt(').
and the result follows.   D

Corollary 1.6. Suppose that Bx, B2 are stable separable continuous-trace C*-alge-
bras with the same spectrum T, that G is a second-countable locally compact abelian
group, that y¡: G -» Aut B¡ (i = 1,2) are locally unitary, and that p: ß —> T is a
locally trivial principal G-bundle. Then p*yx is exterior equivalent to v~l ° p*y2 ° v, for
some C b(Yl)-isomorphism v ofp*Bx onto p*B2, if and only if

t{Bl)-9(B2)~(S(yl)-S(y2),[p]).
Proof. First suppose that the condition holds. Then

8(p*Bx) - 8{p*B2) = p*{8(Bx) - 8(B2)) g (p*H2(T,Z), p*[p\),
but p*[p] = 0 (since p*p is a trivial bundle over ß), so 8(p*Bx) = 8(p*B2) and
p*Bx and p*B2 are C^ßJ-isomorphic. Furthermore, the theorem and the condition
give

8(P*BX xp.y¡G) = 8(p*B2xp.y2G),
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16 IAIN RAEBURN AND JONATHAN ROSENBERG

and since both crossed products are stable (say by Lemma 1.4) and have spectrum
canonically isomorphic to T, we also have a C^T^isomorphism of p*Bx X^»^ G
onto p*B2 >* p*y2 G. Thus there is a C/,(ß)-isomorphism between their pull-backs,
sending p*id to p*id, and the exterior equivalence of />*y1 with a conjugate of
p*y2 follows from Corollary 1.3 (applied twice).

The necessity of the condition is an immediate consequence of Theorems 0.10 and
1.5.    D

Remark 1.7. This corollary gives a topological criterion for distinguishing auto-
morphism groups of the form p*y modulo the equivalence relation generated by
exterior equivalence and conjugacy under spectrum-fixing automorphisms. (Recall
the discussion accompanying Theorem 0.10.) This equivalence relation is strictly
weaker than exterior equivalence; in fact, it is shown in [32, Proposition 4.2] that if
/?, = B2 in the situation of Corollary 1.6, then p*yx is exterior equivalent to p*y2 if
and only if f(y,) = f(y2), whereas we have shown that p*yx is exterior equivalent to
a suitable v ° p*y2 ° p'1 if and only if (¿"(y^ — f(y2), [/>]) = 0.

To understand this distinction, note that if a is an action of G on a C*-algebra A,
and if j» g Autc (/4-, A, then a and v ° a ° v~l will be exterior equivalent exactly when
the cocycle from G to Autc ^ A (for the action given by g • y = agya~gl):

c: g •-» vagv~la~gl

is implemented by a continuous map u: G -* U(M(A)) which is a cocycle for the
action given by g • v = otg(v). There are two possible obstructions to the existence of
such a cocycle u:

(a) c need not take values in Inn A, and
(b) c can map into Inn .4 without lifting to U(M(A)).

We shall show by example that both (a) and (b) are genuine obstructions, even when
G is an abelian Lie group and A is a continuous-trace algebra.

For our first example, we take G = Z, so we might as well be looking at single
automorphisms a. The problem is then whether the commutator vav'xa'1 is inner.
Let A = C(S2, 377), let v be a C(S2)-automorphism of A which is not inner, and let
a be the automorphism induced by the antipodal homeomorphism of S2 with itself.
By Theorem 0.5 and Remark 0.6,

Out(A) = H2{S2,Z) X Homeo(S2).

Since the antipodal map acts by -1 on H2{S2), conjugation by a in Out(A) sends
¡¡(v'1) = -Ç(v) to Ç(v), and so Ç(vav~1a~l) = Ç(v2) =7 0 and vav'xa'1 is not inner
by Theorem 0.5. Thus (a) happens in this case.

For our second example, we take G = T2, A = C(T2, jT(Jé")), a to be the
translation action of G on A (i.e., ag{a){z) = a(g'1z)). An outer C(T2^automor-
phism v of A is given by a continuous map ip: T2 -> PU(3^7) which does not hft to
U(377). (Note that since PU(377) is a ^(Z, 2)-space if 377 is infinite-dimensional,
[T2, PU(3Í7)] = H2(J2, Z), and -p lifts if and only if it represents the trivial element
of H2.) Then vagv~*a~~g* is given by the continuous map z -* ■p(z)\p{g~1z)~1. If «:
GxT2-»t/(JÉ") were a continuous map with

Ad u(g,z) = •p(z)xp{g'lz)~l    for g G G and z G T2,
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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then in particular g •-» u(g, 1) would be a continuous lifting of g <-* ̂ (l)uV(g-1)"1,
which cannot exist since \p does not lift. So such a u cannot exist and obstruction (b)
occurs here. Note that in this example, if p: T2 -» pt, then A = p*3#~ and a = p* id,
so this is the situation that arises in Corollary 1.6.   D

Let B and p: ß -» T be as in Corollary 1.6. We turn now to the question of
whether a given automorphism group a: G -* Aut p*B which induces the bundle p
on ß = (p*B)A is equivalent to one of the form p*y for some locally unitary group
y: G -» Aut B. (Here "equivalent" is in the sense just discussed; if equivalence were
to mean exterior equivalence, the answer is different and is discussed in [32].)
Corollary 1.6 and Theorem 1.1 show that this is equivalent to asking whether

8{B)-8{p*BxaG) = (!;{y),[p])

for some such y. Now by Theorem 0.5(b), f(y) can be any class in H*(T, G), while
by Theorem 1.1,

p*{8{p*B Xa G)) = 8{p*(p*BxaG)) = 8{p*B)=p*8(B).

Hence a will always have the required form if the map c •-» (c, [/?]) carries
H^'T,^) onto the kernel of p*: H3(T,Z) -» H3(Ü,Z). This criterion quickly gives
some positive answers to our question (for example, when G = R", all principal
bundles are trivial and p* is an isomorphism), and can also be used to show that the
answer in general is negative.

Proposition 1.8. Suppose that B is a separable stable continuous-trace C*-algebra
and that T acts freely on a locally compact space ß with ß/T = T homeomorphic to B.
If cc.Y —» Aut p*B is an automorphism group which induces the bundle p: ß —» T on
ß = (p*B)A, then there is a locally unitary automorphism group y: T -» Aut B and
av g Autc (r) p*B such that a is exterior equivalent to v ° p*y ° p'1.

Proof. Recall that p is automatically locally trivial by Gleason's Theorem [6], so
our theory applies. Furthermore, under the usual identification of Hl(T,J) with
H2(T, Z), ( • , • ) becomes just the ordinary cup product in Cech cohomology

U: H\T,Z) X H2(T,Z) - H3(T,Z).

But tne Gysin exact sequence for the bundle p: ß -* T (see for instance [36,
Theorem VII.5.12] or [33, Theorem VII.7.11]—this works in Cech cohomology just
as for singular cohomology on finite complexes, via [8, §11.4.17])

• •• ^ h*(t,z)u^]h3(t,z)Ch3(íi,z) ^ ■••

says the image of (•,[/>]) is exactly the kernel of p*.   D
Remark. The Gysin sequence shows at the same time that there can be many y 's

with p*y equivalent to a. For the indeterminancy in ce AutCo(í¡)p*B, see [32,
Theorem 4.4].

Example 1.9. We shall now construct a stable continuous-trace C*-algebra A
with (compact) spectrum ß, a principal T2-bundle p: ß -» T, a stable continuous-
trace algebra B with spectrum T such that p*B = A as C(ß)-algebras, and an
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automorphism group a: T2 -» Aut A which induces the given T2-action on ß but is
not equivalent to p*y for any locally unitary y: T2 -» Aut B.

We begin by observing that it is enough to construct p: ß -* T and an element
rj g H3(T,Z) with p*r¡ = 0 which does not have the form (c,[p]) for any c G
Hl(T,Z2). For given such a cohomology class r/, we can take A = C(ß, Jf(JÉ"))
and C to be the separable stable continuous-trace algebra over T with 8(C) = r¡.
Then there is a C(ß)-isomorphism \p of A onto /?*C (since p*r\ = 8(A)) and we can
define a = \p~x ° p*idc° \p. The algebra yl is also C(ß)-isomorphic to p*B, where
B = C(F, JT( Jé")), and if a were equivalent to p*y, y a locally unitary action on B,
we would have

p*B*p.yG = A XaG = jp*CX/,,idcG=C
(by the dual version of Theorem 0.17). By Theorem 1.5, this would imply

r, = 8(C) = 8{p*B Xp,y G) = (l;(y),[p]),

contradicting the hypothesis on tj.
To obtain a specific example with the desired properties, let T = PU(2) X PU(2)

= UP3 X RP3, and let ß = U{2) X 1/(2), with p: ß -» T the usual quotient map.
Since ir1{PU{2)) = Z2 and 7r1(t/(2)) = Z, we have

//1(/>i/(2),Z) = 0,    H2{PU{2),Z) = Z2,   and    H3(PU(2),Z) = Z,

while

Hl{U(2),Z) = H3(U(2),Z) = Z    and    H2{U{2),Z) = 0.

By the Künneth Theorem,

f^'(r,z) = 0,
< H3(T,Z) s Z2 eTor(//2(/'i/(2),Z), H2(PU(2),Z)) = Z2 e Z2,and

(//3(ß,Z)s Z2.

Let r/ be the nontrivial torsion element of H3(T,Z). Since Z/3(ß, Z) is torsion-free,
/>*tj = 0. On the other hand, r\ cannot be of the form (c,[p]) with c g Hl(T,Z2) =
H'(T, Z)2, since Z/1^, Z) = 0.    D

2. Automorphism groups with a fixed isotropy group for the action on the spectrum.
Let a: G -» Aut/I be an action of an abelian group G on a C*-algebra A with
Hausdorff spectrum, and suppose that the isotropy group of every 77 g Â is a fixed
closed subgroup H of G. The first step in understanding A X a G is to describe its
primitive ideal space. This can be done fairly generally using Green's version of the
Mackey machine [11, 12], assuming the action of G is sufficiently well behaved.
Specifically, we shall assume that Â is a principal G///-bundle over A/G and that
a\ i, is locally unitary. Neither hypothesis is really that restrictive; the first follows
from [23, Theorem 4.1] when G/H is a Lie group acting properly on Â, and the
second follows from [32, Theorem 2.5] when G and A are separable, H is compactly
generated and all the Mackey obstructions vanish in H2{H,J). In these cases, the
spectrum of A x a G is a principal bundle for the dual action of H = G/H ^ , and
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we have once again the possibility of obtaining information about A X a G in terms
of topological invariants associated with A, a\ H, and the quotient map A -* A/G.
For simplicity of notation, we shall write A X a H for A X aX   H.

Proposition 2.1. Let G be a locally compact group acting on a C*-algebra in such a
way that the isotropy group of each primitive ideal is the same closed {normal)
subgroup H. Suppose that (G, A) is regular in the sense of [11, p. 223], and that
Prim A is Hausdorff. Then restriction of representations defines a continuous surjection
Res: Vrim(A X o H) -* Vrim(A) and induction defines a continuous surjection Ind:
PrnruM X a H) -» ?rim{A X a G). Let p: YrimA -* (Prim^)/G be the quotient
map and let q be the map sending some J G Prim(/4 X a G) to the G-orbit on which the
restriction of J to A lives. Then we have a commutative diagram

Prim (/I Xa//)
Ind / \ Res

Prim(^ Xa G) Prim,4
q \ / p

{?úmA)/G

and Ind passes to a homeomorphism of the space Q of G-quasi-orbits in Prim(A X a H)
onto PrinwM X a G).

Proof. We first observe that since H acts trivially on Prim A, the quasi-orbit
space for this action is just Primal itself. Thus in particular (H, A) is quasi-regular
[11, Corollary 19] and restriction maps Prim(.4 X a H) into Prim A; it is continuous
by [11, Proposition 9] and surjective since Res(IndZ) = I for trivial group actions
[11, Proposition 11].

To get the properties of Ind we wish to apply [11, Theorem 24] on essentially free
actions, so we use the isomorphism R: A X a G -» C*(G, A X a H, 77TH) of [11,
Proposition 1] to reduce to that case. By [11, Proposition 20] every primitive ideal of
A X a G is induced from A X a H, and the isomorphism R respects induction [11,
Proposition 7], so it follows that every primitive ideal J of C*(G, A X a H, $~H) is
induced from some primitive ideal / of C*(H, A X a H, ^H) = A X a H. By [11,
Proposition ll(ii)] we have

Res/= Res(IndZ) =   f] s ■ I,
.VGG

which says in particular that J lives over a quasi-orbit and (G, A X a H, 77T") is
quasi-regular. In the notation of [11], the action of G on A X a H is given by

(s-f){t) = t\c,H{s)as(f(s-lts)),

and a simple calculation shows

i -(ker(77 X U)) = ker(i • m x(l/°Ads"1)),

where Adsx(t) = s~lts. If s g H, note that

ker(s - 77 x(U°Ads~1)) = ker(rr X U),
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whereas if s <£ H, then ker(s ■ it) # kerw. So the isotropy group of each point in
Prim(^ X a H) is H, or, in other words, (G, A X a H, 7TH) is essentially free. We
have already checked that (G, A X „ H, 77TH) is quasi-regular and £/7-regular, which
is enough to make the proof of [11, Theorem 24] go through (see the remark
following its proof). We deduce that Ind maps Yrim{A X a H) continuously onto
Prim(A X a G), and induces a homeomorphism of the quasi-orbit space Q onto
PrinuM X a G).

By [11, Proposition 9 and Proposition 11], restriction defines a continuous map of
Prim(y4 X a G) into the set GJ(A) of G-invariant ideals of A. The regularity of
(G, A) implies that the range of this map is in the image of the canonical map
(Prim A)/G -* CJ:(A), and therefore it defines a continuous map of Prim(^4 X a G)
into (Prim^4)/G by the lemma on p. 221 of [11]. The map p is continuous by
definition of the quotient topology, so it only remains to check that the diagram
commutes.

Let J = ker(77 X U) be a primitive ideal of A X a H. Its image going down the
right-hand side of the diagram is the G-orbit of ker 77 in Prim A. On the other hand

Ind/ = ker(lnd£(77 X U)),
so going down the left-hand side gives the orbit on which Ind^(77 X U)\A lives.
This representation can be realized on a completion of CC(G, A) ® 3^v, and for
a g A,
Ind£(77 X U)(a)=0 « ((a*<p)®t,-p® rj> = 0   V£,r, G JÉ"„; <p, -p G Cc(G,^t)

« <(77 X U)((>p,a*cp)CAHiA))t,n) = 0   V¿,i,,(p,^.

We can rewrite this last inner product as a double integral, which clearly vanishes if
Tr(as(a)) = 0 for all s g G. However, using approximate identities, one can see this
condition is also necessary, hence

ker(lnd£(77 X U)\A) = G-(ker77),
and the diagram commutes as claimed.   D

Remark. The condition that Prim A is Hausdorff was only used to ensure that
(A,H) is quasi-regular, and this is automatic if everything is separable. Although
quasi-regularity presumably is automatic even in many cases with A nonseparable
and Prim A only T0, the Hausdorff case will be more than enough for our purposes.

Theorem 2.2. Let A be a C*-algebra with Hausdorff spectrum ß, and let a:
G -* Aut A be a locally compact abelian automorphism group such that the isotropy
groups for the action of G on ß are all equal to a fixed subgroup H. Suppose that the
quotient map p: ß -> T = ß/G is a locally trivial principal (G/H)-bundle, and that
the restriction of a to H is locally unitary. Then all the maps in the commutative
diagram

(AXaH)A
Ind    / ^v-    Res

(AXaG)'
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of Proposition 2.1 are principal bundles, Res with respect to the dual action of H, Ind
for the action of G/H inherited from the action of G on A X aH defined by
s ■ v(t) = as{v{t)), and q for the dual action of H s G/H± on A X a G. The actions
on {A X a H) A of G/H {with quotient {A X o G)A) and of H {with quotient ß)
commute. Further, A X a H is isomorphic to Res* A and strongly Morita equivalent to
lnd*(A X a G). The diagram is involutive with respect to Takai duality, which
interchanges the roles of G and G, G/H and H.

The proof of this will use two lemmas. The first is stated separately merely for
future convenience, but the second may be of some independent interest in that it
provides many concrete examples of locally unitary actions.

Lemma 2.3. If a: G -* Aut^4 is an action of a locally compact abelian group on a
C*-algebra A, H is a closed subgroup of G, and (~t,U) is a covariant representation of
(A,H,a\H), then

Ind£(7rXy|Hi/)=(lnd£(77X [/)).«;'    for y G G.

Proof. If L is any representation of A X a H on JÉ"L, then Ind^ L acts on the
completion VL of CC(G, A) ® 377L  for the inner product

<x®£, v®tj> = (L((y,x)CAH,A))¿,ri).

Note that W: x ® £ <-* &y(x) ® £ defines a unitary operator from V„xu onto
V„Xy]llU, and for z g CC(G, A), we have

[lnd(vXy\HU)(z)W](x9t)= [z*ày(x)\ ® t = ây[â;'(z)*x] ®¿

= W[lnd{-7X U){à-yl(z))]{x®H).    D

Lemma 2.4. Suppose A is a C*-algebra with Hausdorff spectrum, G is a locally
compact abelian group, and a: G -* Aut A has G„ = H for all tr G A. If the action a
makes A into a locally trivial principal G/H-bundle over A/G, then the dual action à
of H x c G on A X a G is locally unitary.

Proof. Since the property we wish to prove is local, we claim it is enough to show
that if p: Â -» Â/G is actually a trivial G/H-bundle, then â\ H± is implemented by
some u: Hx -* U(M(A)) -» U(M(A X a G)). For if I is the G-invariant ideal in A
corresponding to an open G-invariant subset of A over which p is trivial, then
/ X a G is an â-invariant ideal in A X a G. If m: H1 -» U(M(I)) implements &\ H±
on / X a G, then shrinking / a little we can embed the image of u into M(A X a G),
and varying the / we see â | H ± is locally unitary.

So suppose 77: G/H X T -* A is a G-equivariant homeomorphism. For ye//1,
define uy: A -* J by

uy(ir{sH,t)) = y(s)        (s e G, r e T),

and view uy as a central unitary in M(.4) using the Dauns-Hofmann Theorem [24,
§4.4]. It is clear that y •-> uy is a strictly continuous homomorphism. Let i; be the
canonical image of uy in M(A X a G); recall that this means

(vyz)(s) = uy(z(s)),    (zvy)(s) = z(s)cts(vy)        for z^Cc(G, A).
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Since m(rH, t)°as = tt(s lrH, t), there is a unitary W such that

Tr(rH,t){as(a))= W-r(s-1rH,t)(a)W*    for all a g ^1.

Then for z g Cc(G,A),

rr(rH,t)((vyzv*)(s)) = 7T(rH,t)(uyz(s)as{u*))

= yJ7j^(rH,t)oas{a-l{z(s))u*)

= yjr~) rV-r(s-lrH,t)(a:1{z{s))u*)w*

= y(r) y{s-1r)W-r{s-1rH, t) ° a~l{z{s))W*

= ~yj¡) TT(rH,t){z(s)) = -r(rH,t)(ây(z)(s)).

Thus vyzv* = ày(z) for all z g CC(G, A), hence for all z g A X a G by continuity.
The result follows.   D

Proof of Theorem 2.2. We first observe that in this situation, we may replace the
primitive ideal spaces in Proposition 2.1 by spectra. This is elementary in the case of
A X a H (Theorem 0.16), and in the case of A X a G it follows by an application of
Green's Mackey machine. In fact, since the G-orbits in A are closed, every
irreducible representation of A X a G factors through (A/I) X a G, where I is the
ideal corresponding to some orbit G • P in Primal = Â. By [12, Theorem 2.13],
(A/I) X G is stably isomorphic to (A/P) X H. However, a\ H is locally unitary,
and in particular pointwise unitary, so (A/P) X H = C0(H, A/P). This is a con-
tinuous-trace algebra, so each irreducible representation is determined by its kernel,
as we claimed.

By Theorems 0.16 and 0.17, Res: (A Xa//)A^ß is a locally trivial //-bundle
for the dual action of H, which is given byy-(77Xi/) = (7rX yU). Since G acts
on (yl X a H) A by s ■ (it X U) = (s ■ m) X U, every point has stabilizer H for this
action, and furthermore, the action commutes with the action of H and Res is
(G///)-equi variant. Thus p°Res is a locally trivial (H X G///)-bundle over T.
Dividing first by the G///-action therefore gives a locally trivial G/H-bundle
/?,: (A Xa//)A->Ar, with q-,: I->ra principal //-bundle. Note that qx ° px =
p ° Res.

We can identify X with the quasi-orbit space Q of Proposition 2.1, so that by the
last part of that proposition Ind induces a homeomorphism h of X onto (A X a G)A.
By Lemma 2.3, induction is equivariant for the dual action of H, so q: (A X a G)A
-* / may be identified with qY and so is a principal //-bundle.

It remains to establish the last part of the theorem. As in the proof of Proposition
2.1, we have an isomorphism R: A X a G -» C*(G, A xaH, $~H) given by [11,
Proposition 1], and it is easy to see that R carries the dual action of Hx s (G/H)A
on A X a G to the action of (G/H)A described in [11, p. 235]. Thus by [11,
Corollary 31], (A X> aG)X &HX is strongly Morita equivalent to yl X a H, and in
particular their spectra are homeomorphic. (This gives part of the Takai duality that
reverses the two sides in the diagram of the theorem.) This equivalence is demon-
strated in [11, pp. 235-236] by exhibiting an isomorphism

S: C*(G, AX>aH,7TH)^ (C0(G/H) ® (yl X a H)) X G,
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where the algebra on the right is the imprimitivity algebra for inducing representa-
tions from (A,H)to(A,G). Examining the constructions of R and S shows that the
homeomorphism

(ylXa//)A-((ylXaG)Xa//^)A

sends a representation 77 X U to (Ind(7r X U))xV, where F is a natural action of
H -*■. Thus the diagram

(AXaH)A   "   {{AXaG)xàH^y

Ind \ / restriction

{AxaG)A

commutes. By Lemma 2.4, à\H± is locally unitary, and thus by Theorem 0.17,
yl X aH is strongly Morita equivalent to Ind*(yl X a G), and isomorphic to Res* A.

Finally, we have seen that if (A, G, a, H) is replaced by (yl X a G, G, â, H x) then
all the hypotheses of the theorem are again satisfied, and we get back the mirror
image of our original diagram via Takai duality [11, Corollary 31].   D

Corollary 2.5. Let A be a C*-algebra with Hausdorff spectrum Yl, G a locally
compact abelian group, and H a closed subgroup of G. Suppose a: G -* Autyl makes
ß into a locally trivial principal G/H-bundle and that a\ H is locally unitary. Let Ind,
Res, p, q be as in Proposition 2.1 and Theorem 2.2. Then

(l)^(à\HA = q*([p])A(a\H)=p*([q});
(2) if A has continuous trace, so does A X aG, and its Dixmier-Douady class

satisfies Ind* 5(yl X „ G) = Res*5(yl).

Proof. (1) follows immediately from the theorem since the actions of H and of
G/H on {A X a H)A commute. (2) follows from the last part of the theorem,
Lemma 1.2 and Theorem 0.17.    D

Remark. Part (2) of Corollary 2.5 is not usually sufficient to determine S(yl X a G)
uniquely. In the important special case when G = R and H = Z, we shall give a
more precise result in §4 below.

3. Examples and applications.
(a) Induced C *-algebras. Let D be a C *-algebra with spectrum T, and let H be a

closed subgroup of a locally compact group G. Given an action 6 of H on D we can
form the induced C *-algebra

yl = lndGHD = {/e C(G,D): f(sh) = 6b1{f(s)) for s g G, h g H,

and||/||GC0(G//Z)}.

(Note that since 0h is isometric, ||/(s)|| only depends on the coset sH.) There is a
natural induced action a of G on A given by left translation: ag(f)(s) = f(g~1s). A
fundamental fact about such actions, due essentially to P. Green but by now folklore
(cf. [29, Situation 4]), is that yl X a G is strongly Morita equivalent to D X e H. For
the case of most interest to us, we have given a more precise statement and a formal
proof as Lemma 3.1.
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Induced actions provide interesting and tractable examples of the theory of §2. If
T is Hausdorff, G is abelian and 6 is locally unitary, it turns out a | H is also locally
unitary, and Â is isomorphic as a (G///)-space to (G/H) X T. In these examples
the bundle q: (A XaG)A-> T can be nontrivial, and if D has continuous trace,
8(A X a G) = q*8(D). This result when G = R will be used and amplified in §4
below.

Lemma 3.1. Let G be a locally compact group, H a closed subgroup and 6 an action
of H on a C*-algebra D which fixes Prim/) (pointwise). Let a be the induced action
of G on A = Ind^, D. Then A X a G is strongly Morita equivalent to D X e H, and the
corresponding homeomorphism of spectra is given by

77 X I/e (Z)Xfl//)A~Ind£((77oec)x U) g (yl X a G)A,
where ee is the homomorphism a •-» a(e) of A onto D.

Proof We define M: G X D -» Â by M(g,-r)(a) = m(a(g)). The proof of [28,
Lemma 2.6] shows that M induces a bijection of G/H X D onto Â, and the proof of
[28, Proposition 3.1] shows that this bijection is a homeomorphism. (In the language
of [28], lndGHD is GC(G, D)ß for the action ß of //defined by ßh(f)(s) = 6h(f(sh)).
The overriding assumption in [28] that D have Hausdorff spectrum is not used here,
and the change to right translation by H clearly does not matter.) This gives us a
homeomorphism <p of G/H X Prim D onto Prim yl defined (for s g G, / G Prim D)
by

cp(sH,J)= {a Gyl: a(s) g/}.
Clearly <p is G-equivariant, so the composition of <jd_1 with the projection onto G/H
gives a G-equivariant map 77 of Primyl onto G/H. If we write / = kerir~l{eH),
then by [11, Theorem 17] yl X a G is strongly Morita equivalent to yl X a H/I X a H.
Further, the imprimitivity bimodule X implementing this equivalence is a quotient
of the module which induces representations of A X a H to A X a G, so the
corresponding homeomorphism of spectra is given by this induction. It is easy to
verify that / is the kernel of ee, and that this map intertwines a\ H with 0, so the
result follows from the isomorphism

(yl X „//)/(/ XaH) = (A/I) X H s D XeH.    D
Proposition 3.2. Let G be a locally compact abelian group, H a closed subgroup, D

a C*-algebra with Hausdorff spectrum T and 0: H-* Aut D a locally unitary
automorphism group. Denote by a the action of G by translation on the induced
C*-algebra A = Ind D. Then a\ H is locally unitary, and A is G/H-isomorphic to the
product space (G/H) X T. The algebra A X aG is strongly Morita equivalent to
D X eH, and the H-bundle q: (A X a G) A-> T of §2 is isomorphic to the bundle
qx: (D X g //) A-> T given by restriction.

Proof. Suppose u: H -» M(D) implements 0 over an open set V in T, so that for
p g V, h >-> p(uh) is a representation of H which implements 0 in the representa-
tion p. We then have p(Bh(uk)) = p(uk) for p g V and h, k g H. If / is a
continuous function which is identically 1 on an open set U and 0 off V, then
wk = fuk implements 6 over U and is invariant under 8. Pointwise multiplication by
wk therefore defines a multiplier vk of A. For 77 G U, s G G let M(s,tt) denote the
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representation a >-* ir(a(s)). Then
M{s,-T){ah(a)) = *r(a{h~1s)) = ir{6h{a{s)))    (since G is abelian)

= 7r(wha{s)wk*) = M{s,TT)(vhav%).

But {M(s,77): s G G,77 g t/} is open in yf (see the proof of Lemma 3.1), so this
proves that a \ H is locally unitary. The statement about yl was also established while
proving Lemma 3.1, and by that result A X aG is Morita equivalent to D X e H.
The dual action of H on (D X 9 H)A is given by y • (77 X U) = 77 X (y ® U), so
the description of (yl X a G)A follows from the last part of Lemma 3.1 and from
Lemma 2.3.    □

Remark. Since any //-bundle over T can be realized as (D X e H)A (provided T
is paracompact) by Theorem 0.16(b), this shows that q could be any //-bundle. It
follows from Theorem 0.17 that yl X a G is strongly Morita equivalent to the
pull-back q*D.

When the algebra D in Proposition 3.2 has continuous trace, so do A, A X a H
and A X a G. It follows from the proposition that ô(yl X a G) = q*8(D), and in
many cases we can also calculate 8(A) and 8(A X a H). We suppose in addition
that r: G -» G/H has local cross-sections (this is automatic if H is a Lie group, by
the corollary to Theorem 4.1 of [23]).

Lemma 3.3. Suppose G is a locally compact abelian group, p: ß -» /, is a (locally
trivial) principal G-bundle, B is a continuous-trace C*-algebra with spectrum T2 and
ß: G -* Aut B is a locally unitary automorphism group. Also assume 7\, T2 para-
compact. Then if trf. Tx X T2 -> Ti (i = 1,2) are the projections and ott(f\x) =
ß,(f(t~lx)), we have

8{GC(Sl,B)a) = -r2*{8(B)) + <*2*tt(j8)),<[/>]>
(with notation as in §1).

Proof. We could proceed as in the proof of Theorem 1.5, but it will be faster
merely to quote the calculation done there. Let Bx = C0(/,, B), px = p X id:
ß X T2 -» /, X T2, and ß, = ß x T2. Define y: G -» Aut^ by yg{f){t) =
ßg(f(t)). Then if we view B as the algebra of sections of a field over T2,

Hf)(x)(t2)-=f(x,t2){p(x),t2)
gives an isomorphism of a quotient of GC'Yl, By)"1 onto GC(Yl, B)a. The result
follows from the calculation in the proof of Theorem 1.5.   D

Proposition 3.4. Let G be a locally compact abelian group, H a closed subgroup, 0:
H -> Aut(D) a locally unitary action on a continuous-trace algebra with paracompact
spectrum T,(A,a)= lndGH(D,6). If r: G -> G/H is locally trivial and b-x: G/H X T
-» G/H, ir2: G/H X T -» T are the two projections, then

|5(yl) = 772*(S(Z)))-(7T2*(f(e)),771*[r]>,

¡8(AXaG) = q*8{D),

{8(AXaH) = {q*-T2)*°q*8(D).

Here q: (A X a G) As (/> X 9 //) A-> Tby Proposition 3.2 has [q] = f(0).
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Proof. Since G is abelian, yl = GC(G, D)\ where ys(f)(t) = 0;l(f(s-lt)), and
f(0_1) = -f(0). The formula for 8(A) thus follows from Lemma 3.3, whereas the
formula for <5(yl X a G) follows from Proposition 3.2. Now A is (G///)-isomorphic
to G///X /, and by Theorem 2.2, (yl Xa//)A is (G/H) X //-isomorphic to
(G/H) X (D X g H)A. Since A X a H is isomorphic to the pull-back of yl under
-r2*q, we have

8(AXaH)A={TT2*q)*[v*{8{D))-(-r2*{!;{e)),<[r])}

= (<7*772)* o q*8{D) G H3(G/H X(DX6H)\Z),

since

(The pull-back of any bundle along itself is canonically trivial.)   D

Corollary 3.5. With notation as in Proposition 3.4, ifG = U and H = Z (so that
both G/H and H may be identified with J, and [p] and f((9) may be viewed as
elements of H2(T, Z)), we have a commutative diagram of J-bundles

J X X
q*p \7 \ p*q
X J XT

q \ i/ P = ir2

T
where X= (D XflZ)A.  Furthermore,  if 1 and z are the standard generators of
H°(S\Z) andH\S\T), we have

[?W(*),        [p] = 0,
8(A) = 1 X 8(D) + z X Ç(6),        8(A X a G) = q*8(D),

8(A XaH) = 1 Xq*8(D).

Proof. We need only make explicit all the terms in the formulae of Proposition
3.4. It is standard that r: R -» R/Z is the covering corresponding to z G Hl(S1, Z).
Since (-,-> was defined in terms of the cup product H\-,T) X H*(-,Z) -»
H2( ■, T), which is ««/¿commutative,

(vf(t(8)),ir?[r]) = <1 X !(ê),«t(z)) = -77*(z) u(l X Ç(0)) = -z X f(ô),

and the result follows.   D
Remark. Corollary 3.5 will be greatly generalized in Theorem 4.12 below, but the

proof of the more general formula there depends on knowledge of this special case.
(b) Actions on certain twisted transformation group C*-algebras. We shall now look

at a class of examples where the Dixmier-Douady class S(yl) and the bundles, p, q
are all nontrivial, generally with torsion. Let H be a finitely generated discrete
subgroup of a locally compact abelian group G, and suppose tp is a homomorphism
of H into a finite abelian group K (actually, it is enough that H goes into the center
of a finite group). We suppose there are commuting actions of G and K on a space
X which are consistent with <p (i.e., the actions of h g H ç G and of <p(h) & K
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coincide), and also that K acts freely on X and G/H acts freely on X/K. (We shall
give a typical example shortly.) Let yl be the twisted crossed product C*(K, X, w)
for some multiplier u on K; by definition, yl is generated by formal products fuk,
f g C0(X), k g K, where the «¿'s are unitary elements of M(yl) and the generators
are to satisfy the multiplication rules

(ukfut G C0(X),       {ukfu*k)(x) = f(k-hc),
\uku, = <¿{k,l)uk¡.

A theorem of A. Wassermann ([35, Theorem 5]; see also [28, §4]) asserts that yl is a
continuous-trace algebra with spectrum ß = X/K, whose Dixmier-Douady class is
the pull-back of

[w] G H2{K,1) = H3{K,Z) = H3(BK,Z)
under the classifying map ß -» BK for the K-bundle X -* ß. We may define an
action a of G on yl by

ag(f)(x)=f(g-*x),        ag{uk) = uk,

since the relations (*) are preserved.
We want a \ H to be locally unitary. Since H is finitely generated, this will happen

whenever it is pointwise unitary [27, Proposition 1.1]. We shall use the following
description of the spectrum of yl: for x g X, define px = irx X U G yl, where 77,. and
U act on L2(K) according to

/(»,(/)«)(/)-/(&)€(/),
\{U{k)i)(l) = u(k,k-*l)t(k-*l).

In fact, px is the w-representation of (C0(X), K) induced from evaluation at x. It is
straightforward to check that the unitary W¡ on L2(K) defined by

{w,i){k) = !4kJ) t(ki)
satisfies

(*•) W,PxW,* = plx,

and the map x ►-» px gives rise to a homeomorphism of X/K onto Â. One checks
that / •-» W[ is an ¿ö-representation of K, and that

Px ° ahl(a) = pvlh)x(a) = WvWpx(a)W*(h)    for a g yl,

so a | H will be pointwise unitary precisely when u°(tp X <p)isa trivial multipher on
H. We therefore suppose w is trivial on <p(H), and adjust it so it is identically 1
there. Then we can define a continuous map \p of H X X onto (yl X a H)A by

iP{y,x) = pxx[y®(W°<p)].
It follows from (**) that

pkxx[y ®{W°<p)] = (WkPxW*) X[y ®{Wo<p)]

= Wk(psx[y9Z(k)9{Wo9)])Wk*,
where E: K -» // is given by

H(*)(*)-w(^(A))cû(9(A),ik).
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Thus \p gives a homeomorphism of the fiber product H X K X (defined via H) onto
(yl X a H) A, and \p is in fact an isomorphism of principal //-bundles over X/K.
The locally unitary group a \ H will be unitary precisely when this //-bundle is trivial,
by Theorem 0.16.

Example 3.6. We shall now present a concrete example where we can calculate all
these invariants. (It will be clear that the parameters involved can be altered to
produce a large stock of similar examples.) Let Ar=SsXS5cC3xC3, K =
Z 2 X Z 2, G = R, and H = Z. We let K and G act on X by

(m,n) -(z,w) = ((-l)mz,(-l)"w)    îor(m,n) G Z X Z (mod2Z X 2Z),

s -(z,w) = (e"hz,w)    for 5 g R,

and define the multiplier to by

o>{(m,n),(s,t)) = (-!)"".

Note that the actions of H and K are compatible with the obvious homomorphism
<p defined by

<p(m) = {m + 2Z,0),        m G Z c R.
ß = X/K is homeomorphic to RP5xRP5 and « defines a nonzero class in
H2(K,J) = Z2. A classifying space for Z2 is RP00, so we can take BK = RP°° X
RP°°. For large k the embeddings UPk X UPk ^> BK induce isomorphisms on
low-dimensional cohomology, so the map

H2{K,J) = H3(K,Z) = H3(BK,Z) -► //3(RP5 X RP5,Z)
is  an  isomorphism, and  8(A) =7 0 since  u   is nontrivial. The multiplier co   is
identically 1 on <p(//) = Z2 X {0}, so a\ z is locally unitary. It remains to identify
the bundles p and q of Theorem 2.2.

The homomorphism H: K -» T = Z is given by ¿(w, «) = (-1)" ((m, n) G Z X Z
mod 2Z X 2Z), so T X K X is therefore isomorphic to RP5 X £, where E -> RP5 is
the T-bundle corresponding to the generator of //2(RP5,Z) = Z2. (E comes from
the map //1(RP5,Z2) -» //^RP5,!) coming from the inclusion Z2 = { + 1} ■-» T.
The image is nontrivial as one can see from the exact cohomology sequence

• •■ -> //°(rp5,t) -^//°(rp5,t) -^//'(rp5,z2) -^//'(rp5,t) -> •■■

associated to the squaring map T -> T. Since r/'(RP5,Z)= 0, every continuous
function RP5 -* T has a square root; hence a is surjective and c is injective.) One
can see now that the diagram of Theorem 2.2 becomes in this case

RP5 X E
q*p / \ p*q

CP2jX E RP5 X RP5-
q \ \7 p
T = CP2 X RP5

Formulae for the various Dixmier-Douady classes may be deduced from the fact
that

8(A) g //3(RP5 X RP5,Z) s Tor(//2(RP5,Z), H2(UP5,Z)) = Z2
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is the nontrivial element of this group and from the formulae to be given in Theorem
4.12 below.   D

(c) Actions on continuous-trace algebras over the 3-sphere. We shall show, as a
concrete example of the theory of the next section, how to construct an action of R
on any stable continuous-trace algebra yl with spectrum S3 so that each point in yl
has stabilizer Z and the quotient map yl -* A/M. is the Hopf fibration S3 -* S2. At
first sight, this is somewhat surprising, since there could be no corresponding action
of T unless 8(A) = 0 (see Remark 4.7 below). A more general existence theorem for
R-actions will be given later as Theorem 4.8; however, the present construction is
more explicit.

Example 3.7. Let ß = S3, realized as the unit sphere in C2, and let r g R act by
scalar multiplication by e2"", so that ß -» ß/R is the Hopf fibration S3 -» S2. Let

ß + = {(w,z)Gß: |w|>|z|},    ß_= {{w, z) g ß: |w|<|z|},

so that ß = ß + Uß_,ß±are invariant under R, and

ß + nß_= {{w, z) g ß: |w| = |-z|= v^"}

is homeomorphic to the torus T2. Given a continuous map <p: T2 -» PU(377) =
Aut 377(377), where JÉ" is an infinite-dimensional separable Hilbert space, set

Av = {(/,g): /e C(ß + ,Jf(JE")), g g C(ß_, jT(jé")),

andf{x) = <p{x){g(x))îorx^T2}.

It is not hard to see that every stable continuous-trace algebra with spectrum ß is
isomorphic to one of these. (In fact, the homotopy class of <p in [T2, PU] =
H2(T2,Z) may be identified with 8(AV) g //3(ß,Z) via the boundary map in the
Mayer-Vietoris sequence for (ß+,ß_) [30, §6].) We shall define an action of R on
yl,, by setting

[«,(/, g) = (/„«,),   where
f(w,z) = f(e-2w"w,e-2,niiz),

[g,(w,z) = ■P(t,w,z){g{e-2"'w,e-2^'z)),

for some map \p: R X ß_-> PU such that

(1) xp(t,w,z) = (p(w,zy\(e'2,,i'w,e-2,Ti'z)    for (w, z) <e T2,

(2) -p{r + s,w,z) = -p(r,w,z)-p(s,e-2,'irw,e-2"rz)    for {r,w, z) g R x ß_.

Condition (1) ensures that each a, is an automorphism of yl^, and condition (2) that
t >-* a, is a homomorphism.

It remains to show that such cocycles \p exist. Let

r={(£//i+m2,i/v/i+m2):m < i
which meets each R-orbit in ß_\ T2 exactly once, and let X = Y U T2. We define
\p on R X T2 by condition (1). The restriction of \p to [0,1] X T2 is null-homotopic
(take \p {t, x) = \p(st, x)), so by the homotopy extension theorem we can extend \p
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(viewed itself as a homotopy of functions \p(t, ■): T2 -» PU) over the 2-cell 7 to a
continuous function (which we will again call \p) [0,1] XI-» PU with \p(0, •) = 1
g PU. Now extend \p to a map R X X -> PU by

(3) *(*,*)=*(i,*)w*(í-[a*),
where [t] denotes the greatest integer < t. It is easy to check that this is a
well-defined continuous function.

We shall now extend \p to all of R X ß_ so that the cocycle condition (2) is
satisfied. Let

•p{s,w,e-2ni,\z\) = yp{t,e2,,itw,\z\)'l-p{t + s,e2ni,w,\z\).

This makes sense since the right-hand side only involves \p | „ x x, and since (3) shows
that replacing t by t + n (n g Z) does not change the formula. If we write an
arbitrary z as e'27T"\z\, then

4>(r + s,w,z) = \P{t,e2,"'w,\z\yl\p{t + r + s,e2,ri'w, \z\)

= \^{t,e2lu'w,\z\y\{t + r,e2'"w, \z\)]

■[¡P{t + r,e2lri'w, \z\)~lip{t + r + s,e2""w, \z\)\

= ip{r,w,z)[-p(t + r,e2"i(,+r)e-2,"rw, |z|)_1

■•p((t + r)+s,e2"i(, + r)e-2,Tirw, \z\)]

= xP(r,w,z)xp(s,e-2",rw,e-2"'r{e-2,,,'\z\))

as required.    □

4. Actions of R. Among locally compact groups, the real line R is unique both in
the frequency with which it occurs in applications and in special properties not
shared by other continuous groups. For these reasons, we devote this section to the
detailed study of actions of R on C*-algebras in general and continuous-trace
algebras in particular. Then we discuss some applications to the study of C ̂ alge-
bras of solvable Lie groups.

One special feature of the real line is that it turns out to be feasible in some cases
to classify all the actions of R on a given C *-algebra, up to exterior equivalence. The
key tool is the following vanishing theorem for Moore cohomology, which effectively
answers a question raised in [14, Remark 2.10]. For similar results regarding groups
other than R, see [32].

Theorem 4.1. Let X be a compact metrizable space (or more generally, a second-
countable locally compact space with H°(X,Z) and HX(X,Z) countable—recall
Lemma 0.3), equipped with a continuous action of R by homeomorphisms. Give
C(X, T) the topology of uniform convergence on compacta and the action of R by
translation of functions. Then the Moore cohomology groups H"(U,C( X, T)) vanish for
n>2.
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Proof. We have the short exact sequences of R-modules:

(*) l^C{X,J)0^C{X,J)^Hl{X,Z)^l

and

(**) 1 -^ H°(X,Z) -» C(X,U) -> C(yY,T)0-> 1,

where (**) arises from the long exact sheaf cohomology sequence associated to the
exact sequence 0->Z->R-»T->0of sheaves over X. Here C(X, T)0 denotes the
connected component of the identity in C(X, T), and (*) and (**) are in fact
topological exact sequences of Polish modules when H°(X,Z) and H1(X,Z) are
given the discrete topology, by the same argument used in the proof of Theorem 0.8.

Now since H°(X,Z) and Hl(X,Z) are countable and discrete, R acts trivially on
them. But for yl a countable discrete R-module, Theorem 4 of [37] shows H"(U, A)
= H"(BU, A) = 0 for n > 1. Using this together with the long exact cohomology
sequences coming from (*) and (**) gives

Hn{U,C(X,J)0) = H"{U,C(X,J))    for« > 2

and

H"{U,C(X,R)) = H"{U,C{X,J)0)    for« > 1.

Hence, to prove our theorem, it suffices to show H"(U,C(X,R)) = 0 for n ^ 2.
Since C( X, R) is a topological vector space (in fact a Fréchet space), we may work
with the "continuous cochain" cohomology theory by [37, Theorem 3]. Then by [13,
Corollaire III.7.5], a form of the Van Est Theorem applies and gives

H"{U,C(X,U)) = //^(R.C^RU,

where C( X, U)x is the space of functions on X which are C°° in the direction of the
flow, and on the right-hand side we use Lie algebra cohomology. But for any Lie
algebra g and g-module V, H"($,V) = 0 for H>dimg, so this proves the
theorem.   D

Corollary 4.2. Let A be a unital, separable C*-algebra all of whose bounded
derivations are inner. Let a,ß: R -» Aut(yl) be two one-parameter automorphism
groups of A such that \\a, — ßt\\ < 2 for all t with \t\ < C for some C. Then a is
exterior equivalent to ß.

Proof. Use the same proof as for Theorem 2.9 of [14], substituting Theorem 4.1
for [14, Theorem 2.6].   D

Corollary 4.3. Let X be a second-countable locally compact space with H"(X, Z)
countable for n < 2 ( it suffices for X to have the homotopy type of a compact metric
space ), and let A be a separable continuous-trace algebra with spectrum X. Then given
any continuous action of R on X, there is at most one action (up to exterior
equivalence) of U on A inducing this action on the spectrum.

Proof. Combine Corollary 0.13 with Theorem 4.1.   □
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Corollary 4.4. Let X be as in Corollary 4.3 and let A be a trivial continuous-trace
algebra over X, i.e., C0(X,Mk) for some finite k or C0(X,3f). Then given any
continuous action of R on X, there is exactly one action of R on A (up to exterior
equivalence) inducing this action on the spectrum.

Proof. All we need besides Corollary 4.3 is the existence of hftings of R-actions
on C0( X) to R-actions on yl, which is obvious.    D

Curiously, Corollary 4.4 may be combined with Corollary 3.5 to give an
interesting result on the transformation group C*-algebras which is a little hard to
see directly. In particular, we obtain a negative answer to a question of P. Muhly
and D. Williams [22], who asked if C0( X) X R always has vanishing Dixmier-Douady
invariant when R acts on a space X with constant (or continuously varying) isotropy
groups, so that the crossed product has continuous trace by [39, Theorem 5.1].

Proposition 4.5. Let X be a second-countable locally compact space with H"( X, Z)
countable for « < 2, equipped with an action ß of R for which every point has stability
group Z. Let T = X/U, so that p: X -> T is a principal J = U/Z-bundle. Then
C0(X) X ß R is a continuous-trace algebra with spectrum T X T and Dixmier-Douady
class z X [p], where [p] G H2(T,Z) and z is the standard generator of //^S1, Z).

Proof. Let 0 be a locally inner automorphism of C0(T,3f) with Ç(0) = [p] in
H2(T, Z), and let (A, a) = Ind?(C0(F, 3T), 8) as in §3(a). By Corollary 3.5, yl X a R
has spectrum the total space of the principal T-bundle over T with characteristic
class f(0), so (yl X a R) A-> T may be identified with p: X -> T. Furthermore, that
corollary also gives

8(A) = z x[p],       S(ylXaR) = 0.

Since yl X a R is stable, yl X a R s CQ(X, 3(7), and the dual action â of R on
A X aU induces the bundle map p. Thus by Corollary 4.4, â is exterior equivalent
to ß ® id (acting on C0(X) ®3f). It follows that we have strong Morita equiva-
lences

C0{X)xßU - (A XaR)XaR -yl

(the last of these by Takai duality), and so (C0(X) X ß R) A= Â = T X / and
8(C0(X) X ß R) = S(yl) = z X [p], as asserted.   D

Example 4.6. For instance, suppose X = S3, viewed as the unit sphere in C2, and
ß is given by t ■ (w,z) = (e2n"w,e2,ri'z). Then p: X -» T is the Hopf fibration
S3 -» S2, and [p] is the standard generator of H2(S2,Z). Thus C(X) Xß R is a
continuous-trace algebra with spectrum S1 X S2 and Dixmier-Douady class z X [p],
which generates H3(S* X S2,Z) s Z.

Actually, one could have predicted this by other means. By [39, Theorem 5.1], we
knew C(X) X ß R has continuous trace, and by [38, Theorem 5.3], (C(X) X ß R) A =
S1 X S2. But by Connes' Thom isomorphism theorem [3], we must have

(K0{c(X)xßu) = K,{C(X)) = Kl(S3) = Z,

\Kl{c{X)xßU) = K0{C(X)) = K°{S3) = Z.
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Since K°(S* X S2) = K\SX X S2) = Z2, this shows 8(C(X)xßM) cannot be
zero. In fact, if yl is a continuous-trace algebra with spectrum S1 X S2 and
Dixmier-Douady class 8, one easily sees from [30, Theorem 6.5] that if K0(A) =
KX(A) = Z, then 8 must be a generator of H3(S* X S2, Z).   D

In order to extend Corollary 4.4 to the case of nontrivial continuous-trace
algebras, we shall show below (Theorem 4.10 and Theorem 4.12) that it is often
possible to lift an R-action on a space X to an action on a nontrivial continuous-trace
algebra yl over X, in spite of the fact that the group extension

1 -» Autc (X)A -» Aut(A) -» Homeo^yY)

of Theorem 0.5(c) usually does not split. This once again is due to very special
properties of the real line.

First, however, let us discuss the implications of our work with respect to a
problem discussed in [31], namely that of describing the topology on (yl X a R)A or
Prim(yl X a R) when a is an action of R on a separable type I C*-algebra yl. This
had been expected to be a tractable problem, at least when A/M is T0, because of
the fact that H2(G,J) = 0 for every closed subgroup G of R, so that "Mackey
obstructions" never arise. Thus one of us has conjectured in [31] that results of D.
Williams [38, Theorem 5.3] regarding the topology of Prim(C0(ß) X a G),(G, ß) any
separable locally compact transformation group with G abelian, could be carried
over to this setting. The precise conjecture was that if ß = Â and one defines an
equivalence relation on R X ß by

(4.7) {y,x)~ (x,y)~ R^= R-^    and    yx g (StabJ^ ,
then Prim( A X a R) should be homeomorphic to R X ß/~ . (When A/M is T0, the
crossed product will be type I and one can replace Prim(yl xaR)by(ylXaR)A
and delete the closure signs over R • x and R • v in (4.7).) The homeomorphism (say
in the case A/M is /0) was to be given by the map <p:Rxß->(ylXaR)A defined
by

cp(y,x) = Ind!?tabx(y|stabi ® x),

where x is an extension of x g yl to the crossed product of yl by the stabilizer of x.
(The existence of Jc comes from vanishing of the Mackey obstruction at x.)

Unfortunately, we see now that this conjecture is false, the problem being that
even if the Mackey obstruction vanishes, there is generally no canonical way of
extending x to jc. For a specific counterexample, suppose ß = Â is Hausdorff and
every point of ß has stabilizer Z c R. Then (4.7) simplifies greatly and R X ß/ ~
is just ZX T, where T = ß/R. (The map ß -> T is a locally trivial T-bundle by
[6].) However, specializing the remark following (3.2) to our setting shows that
(yl X a R) A-> 7 can be arranged to yield any T-bundle over /, not just the trivial
bundle. Similarly, the analogue of this conjecture for actions of Z is false, since a
noninner locally inner automorphism 8 yields a nontrivial T-bundle (Ae X Z)A-> Â.

If however, we require yl to be a continuous-trace algebra with trivial Dixmier-
Douady invariant, then by combining Corollary 4.4 with Williams' theorem, we can
prove the conjecture of [31] after all.
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Theorem 4.8. Let A be a separable continuous-trace algebra with spectrum Yl, and
with 8(A) = 0 in Z/3(ß,Z), and assume //"(ß, Z) is countable for « < 2. Let a:
R -» Aut(yl) be any one-parameter automorphism group of A. Then Prim(yl X a R)
(or (A X a R)A, ;/ ß/R is T0) is homeomorphic to (R X ß)/~ with the quotient
topology, where ~ is defined by (4.7). In fact, this homeomorphism is equivariant for
the dual action of R.

Proof. Since (yl ® 377) X al8id R = (yl X a R) ® 377 (equivariantly for the dual
action of R), it is no loss of generality to assume yl is stable. Then yl is isomorphic
to C0(ß) ® 377, and by Corollary 4.4, a is exterior equivalent to t® id, where t is
the action of R on C0(ß) associated to the action induced by a on Â. Thus (by
Theorem 0.10) there is an R-equivariant isomorphism of yl X a R with (C0(ß) X T
R) ® 37f. Now apply [38, Theorem 5.3] to C0(ß) X T R.   D

Remark 4.9. In spite of the fact that the groups Z and T also have the property
that all their closed subgroups G satisfy H2(G, T) = 0, the analogue of Theorem 4.8
fails for these groups, as one can see by considering locally unitary actions and using
Theorem 0.16.

Furthermore, the need for the hypothesis that 8(A) = 0 in Theorem 4.6 may be
attributed to the fact that only in this case is there a natural lifting of homeomor-
phisms of ß to automorphisms of yl. To see that

1 -» AutCo(Q)A -* Aut(A) -» HomeooM)(ß)

usually does not split when ô(yl) # 0, note that if //3(ß, Z) is countable, any action
of a connected locally compact abelian group G (T, for example) on ß must
preserve 8(A). If the action were free and proper and lifted to an action a:
G -» Aut(yl), then by Theorem 1.1, 8(A) would have to be the pull-back of a class
in //3(ß/G, Z), which is often not the case. (For instance, if ß = S3 and G is T
acting by the Hopf map, then 0 is the only element of //3(ß, Z) which is a pull-back
from H3(S2, Z), hence the free T-action on ß can be lifted to an action on yl only if
8(A) = 0.)    D

We come now to an existence theorem for R-actions on nontrivial continuous-trace
algebras. A special case was proved in Example 3.7.

Theorem 4.10. Let M be a smooth manifold, not necessarily compact, and let A be
any stable continuous-trace algebra with spectrum M. Let cp: M -* Diff(M) be any
smooth action of M on M. Then there is a continuous action a: R —> Aut(A) inducing
<p on M = A. (By Corollary 4.3, this action is unique up to exterior equivalence if
H"(M, Z) is countable for n < 2.)

Proof. Without loss of generality, we may assume M connected (otherwise work
one component at a time). Let 8 = 8(A) g H3(M,Z). Then 8 is represented by a
homotopy class of maps M —> K(Z, 3). It will be convenient to note that if
(7? = <W/T, where °U is the unitary group of an infinite-dimensional separable Hubert
space with the norm topology, then 'S is a Banach Lie group with Lie algebra

q = (selfadjoint bounded operators}/{scalar operators}.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CONTINUOUS-TRACE C'-ALGEBRAS 35

Furthermore, since ^ is contractible by [18], 'S is a A^(Z,2), and 8 may be viewed
as the classifying map for a principal ^-bundle over M. In fact, from the exact
sequences

1 -» T -» <f-> f-> 1,
0^Z->R-»T->0

of sheaves of germs of C00 functions over M, we have H1(M,'S) = H2(M,J) =
H3(M,Z), so that 8 corresponds to a class in H\M,S), hence to a smooth
principal ^-bundle p: E -> M. We claim it is enough to lift y to a smooth
one-parameter group q> of ^-bundle automorphisms of E. For indeed, we may
realize yl as Y0(M, S), where S= E Xp3t is the bundle of elementary C*-algebras
associated to £ via the standard map p: ^-»Aut(Jf), and then a may be
constructed out of y in the obvious fashion (since by assumption, <p, on E
commutes with the ^-action on E and so passes to 77).

Hence we are reduced to the problem of lifting <p to the principal bundle E. If 'S
were a (finite-dimensional) Lie group, it would be standard (see, for instance, [17,
Chapter 2]) that one can do this by choosing a connection on the bundle, lifting the
vector-field <p that generates <p to a horizontal vector field Y on E, and then taking
the integral curves of Y. The same method works here except for the minor
complications due to the fact that 'S is infinite dimensional. Here is a brief summary
of the main points. At any point e g E with p(e) = m g M, the vectors tangent to
the Sorbit through e define the vertical tangent space Ve c TeE. Since E is locally
diffeomorphic to M X ^, Ve = a, is of finite codimension in TeE, and one can
choose a horizontal space He complementary to it so that dp: He -» TmM is an
isomorphism. Once He is chosen at one point e G p~l(m), there is a unique
^-equivariant choice of horizontal spaces at the other points in the same fiber. Thus
one can choose a connection, i.e., a smoothly varying ^-equivariant choice of
horizontal spaces in E. This is done as follows: a trivialization of E over some open
set U in M gives a local product structure p~x(U) = U X S and thus an obvious
connection over U. Then connections can be patched globally using a partition of
unity, due to the fact that the connections over U form an affine space modeled on
T*U ® a, the 1-forms with values in a. Once one has a connection on E, tp may be
lifted by integrating the linear first-order differential equation

{-ry,(e) = horizontal lift of -r (p,(p(e)),

<p0(e) = e.   □

We do not know whether or not Theorem 4.10 still holds if M is replaced by an
arbitrary space ß and <p by any continuous flow on ß. However, the theorem is
more powerful than it looks, since it gives liftings in any situation where both yl and
the R-action on A are pulled back from a smooth action on a manifold. This is the
basis of our next main result, Theorem 4.12. However, we pause first to mention
another application of Theorem 4.10.
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Corollary 4.11. Let M be any smooth manifold equipped with a free, minimal
(i.e., every orbit is dense), smooth action of M. Then for each 8 G H3(M,Z), there is
an associated simple stable (nuclear) C*-algebra As. If H"(M,Z) is countable for
« < 2, then As is uniquely determined. In general, the As's corresponding to different
values of 8 will be nonisomorphic.

Proof. Let Cs be the stable continuous-trace algebra with spectrum M and
Dixmier-Douady class 8, and use Theorem 4.10 to construct an action a8 of R on Cs
inducing the given flow on M. Of course as is not unique, but under the countabil-
ity hypothesis of Corollary 4.3, it is unique up to exterior equivalence. Let As =
Cs X ae R, stabilized if necessary. This algebra is simple by the Gootman-Rosenberg
proof of the generalized Effros-Hahn conjecture [9], and only depends on the
exterior equivalence class of as. By [3], AT0(ylo) s Ä",(C0) and K^Ag) s K0(CS),
and the ^-theory of Cs usually varies as 5 varies (as partially explained by [30,
Theorem 6.5]).

To obtain a specific example of Corollary 4.11, one may take M = T3 with a
Kronecker flow on it. In this case, K^(AS) varies with |<5|.   D

Theorem 4.12. Let T be any second-countable locally compact space with the
homotopy type of a finite CW-complex, and p: ß -» T any principal 1-bundle over T,
A a stable continuous-trace algebra with spectrum ß. Then there is an action a of M on
A, unique up to exterior equivalence, such that every point in Yl = A has stabilizer Z
and the M-action on ß factors through the R/Z = 1-action defining p.

Furthermore, (A XaR)A together with the dual action of M defines another
principal 1-bundle it; (A X a R) A-> /, and the characteristic classes [p] and [it] of
the bundles p and tt are related to the Dixmier-Douady classes by the equations

[tt]=p,8(A),       [p] = TT,8(A XaR),

where p,: //3(ß,Z) -> H2(T,Z) and 77,: H3({A X aM)A,Z) ^> H2(T,Z) are the
Gysin maps of [36, Theorem VIII, 5.12]. The class 8(A X a R) may be computed from
[p] and 8(A) in a manner to be specified below.

Proof. First we will show that p: ß -* T is pulled back from a smooth T-bundle
over a manifold, in such a way that S(yl) is pulled back from a class in H3 of the
total space. This will prove existence of a because of Theorem 4.10. Then uniqueness
will follow from Corollary 4.3. The formulas for [77] and 8(A X a R) will be
obtained by deriving them first in the case of " universal examples" and then pulling
back.

Let X be the homotopy fiber of the map K(Z,2) X K(Z,2) -» K(Z,A) corre-
sponding to the cup product. The space X will have the universal property that
given a space W with the homotopy type of a CW-complex, and given classes a,
b g H2(W, Z) such that a U b = 0 in H4(W, Z), the pair (a, b) is pulled back from
a map W -» X. (More precisely, there is an /: W -> K(Z, 2) X K(Z, 2), unique up to
homotopy, such that a = f*(ii), b =/*(t2), where t1 and t2 are the canonical
generators of H2(K(Z,2) X K(Z,2),Z) = Z X Z, and / may be hfted to a map
W -» X.) An easy calculation with the homotopy sequence and Serre spectral
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sequence of the fibration

X     -*     K(Z,2) X K(Z,2)
Ï

K{Z,A)

shows that X is simply connected, and that

H2{X,Z) = Zßl(BZß2,    H3{X,Z) = 0,    H4{X,Z) = Zß2G>Zß22.

Here ßx and ß2 are the images of i, and i2, and by construction, ßx U ß2 = 0. Then
let q: E -* X be the principal T-bundle with [q] = /3,. The Gysin sequence

0 = H3{X,Z) Ch3(e,z) * h2(x,z)1"^H4(X,Z)

shows that H3(E,Z) is infinite cyclic, with a unique generator a such that
q,(o) = ß2.

Now let us return to our given p: ß -> T. From the Gysin sequence

//3(r,z)^//3(ß,z)^//2(7',z)t^u//4(r,z),

we have [p] U p,(8(A)) = 0. Thus there is a map /: T -» X such that ([p], p,8(A))
= f*{ßvß2).Sincc[p]=f*ßl,p=f*q,andpJ*{o) = f*q,(o) = f*ß2 = Pl8(A),
where /: ß -» £ completes the diagram

ß       ^       £

7      ^       A'

Rewriting this, we have p,(8(A) -f*(o)) = 0, hence (by the Gysin sequence)
fi(/l) - f*(o) G p*(H3(T, Z)). In other words, there is a map g: T ^ K(Z, 3) such
that if we form the pull-back diagram

q        -^        £xâ:(z,3)
I p I q X id

r       -»       xx/c(z,3),

then (with t3 the standard generator of H3(K(Z, 3), Z))

[P] = (/X g)*(^,0),    o(yl) = (/Xg)*((a,0) +(0,h)).
This shows that all the given data is pulled back from the "universal example"
q X id: £ x A:(Z,3) -^Ix A:(Z,3). Now if T has the homotopy type of a finite
complex, there is a finite subcomplex Y of X X K(Z, 3) (which can be chosen to
have the same cohomology through degree 4) such that / X g factors (up to
homotopy) through Y. We may " fatten" Y to an open manifold M, by embedding Y
in some Euclidean space and taking a regular neighborhood. Let M be the total
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space of the T bundle over M coming from q X id. Then M -> M may be chosen to
be a smooth bundle, so that M is the quotient of M by a smooth free action of T.
By construction, yl is the pull-back of a continuous-trace algebra over M. So
applying Theorem 4.10, we get an R-action a on A inducing the bundle p. It is
essentially unique by Corollary 4.3.

Having established existence and essential uniqueness of the action a, we proceed
to compute yl X a R. By Theorem 2.2, the restriction of representations to yl defines
another principal T-bundle 77: (yl X a R) A-> T (since T = R/Z = Z) and we have
the commutative diagram of principal T-bundles

(Axalzzy
ir*p 1/ \ p*ir

(ylXaR)A Â
IT  \ ¡/ p

A/M
We begin by establishing the identity [77] = p,8(A). This is done by considering two
cases.

Case 1. [p] = 0 in H2(T,Z). To handle this case, note that if p is trivial, so
ß s T X /, then H3(Ü,Z) = p*H3(T,Z) e z X H2(T,Z), where z is the standard
generator of HlÇT,Z). By definition, p, = 0 on p*H3(T,Z), while p,(z X x) = x if
x g H2(T, Z). Now given any continuous-trace algebra yl with spectrum ß, we have
a unique decomposition of 8(A) as

8{A)=p*(y) + zXPl{8{A)),       y g H3{T,Z).

Yet D be the stable continuous-trace algebra with spectrum T and Dixmier-Douady
class v, and using Theorem 0.5, let 8 be a locally inner automorphism of D
associated to p,(8(A)). By Corollary 3.5, together with the uniqueness result
Corollary 4.3, (yl,a) = Ind"(/),8), up to exterior equivalence of the actions, and if
77: (yl X a R) A-> / is the restriction map, then [77] = p,(8(A)). The same calcula-
tion also shows that 8(A X a R) = tt*8(D) = ir*(y).

Case 2. The general case. By the existence part of the proof, (yl,a) was pulled
back from M (notation as above), so we may assume ß = M, T = M, where M and
M are simply connected manifolds with torsion-free cohomology through degree 4,
coinciding with that of £ X A:(Z,3) and X X #(Z,3), respectively. Recall that by
construction, H2(M,Z) s Zßl + Zß2, H3(M,Z) = Zí3, H4(M,Z) = Zß2 © Zß\,
and [p] = ßv From the Gysin sequence for p, H3(M,Z) = Zp*t3 © Za, where
p,a = ß2, and H2(M,Z) = Zp*ß2. We are supposing that S(yl) = p*t3 + a, so that

p,8(A) = ß2.
Claim. [77] = ß2, and ô(yl X a R) = 77*i3 + p, where 7r,p = ßx. In other words,

(yl X a R, â) is obtained from (yl, a) by reversing the roles of ß1 and ß2 and keeping
all else the same.

Proof. Let [77] = nß2 + mßx, so that [p*ir] = np*ß2. First of all, we observe that
« = 1. For this we use Case 1. Since (by construction) 772(M) is free abehan of rank
2 and we may take dim M > 5, the homology class dual to ß2 may be represented by
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a smoothly embedded 2-sphere S. (By Hurewicz, this homology class is represented
by a map S2 -* M, which can be approximated by an embedding by [15, Theorem
2.13].) Since [p] = ßu p\p'*(S) is trivial and p~l(S) = T X S. Restricting a to
yl | p-i,S), we may apply Case 1 to see that the characteristic class of

-Ts:(A\p-Hs)XR)A^S
is i*(ß2), where i: S -* M is the inclusion. Since % = tt\tt~1{S), [tts] = í*[tt],
which establishes our claim.

Next we show that m = 0. For this let Q = (A X a M)A, P = (A X a|z Z)A. By
Corollary 2.5, (p*tt)*8(A) = (ir*p)*8(A X a M). From the exact Gysin sequences

-> H2{M,Z)  i^~H4(M,Z)P^H4(M,Z)^ ,

(p*n)* (P*ir)r />*&U-0 = Hl{M,Z)^H3{M,Z)   ->   H3{P,Z)    -»   H2{M,Z)    ->    H4{M,Z),

we see that p*ß2 generates an infinite cyclic summand in H4(M, Z), so that (p*-r),:
H3(P,Z) -» H2(M,Z) is zero and (p*tt)*: H3(M,Z) -> H3(P,Z) is an isomor-
phism.

Now if m + 0, the cup product with [77] = ß2 + mßx is injective from H2(M,Z)
to H4(M, Z), so from the exact Gysin sequence

0 -» //3(M,Z)^ H3{Q,Z) ^ H2{M,Z) '-Z~H4{M,Z),

we see that H3(Q,Z) = tt*H3(M,Z). This is impossible, since then the Dixmier-
Douady class of yl X a R would have to be pulled back from M. This would give
yl XaR = tt*D, D some continuous-trace algebra with spectrum M. By Corollary
4.3 again, this would imply â was exterior equivalent to 77* id (lifted to an action of
R), and (viewing yl by duality as being essentially (yl XaR)XaR)we would have
to have [p] = 0, which is not the case. Thus, m = 0, i.e., [77] = ß2.

Now by the Gysin sequence for 77 when [77] = ß2, there is a unique class
p g H3(Q, Z) with 77,(p) = ßx = [/>]. By the relation that

{p*tt)*8(A) = {tt*p)*8(A X a R)    in H3(P,Z),

we obtain 5(yl X a R) = 77*t3 + p. As required by symmetry, 77,(yl X a R) = 77,(/?)
= ß = [p]- This completes the proof in the case Â = M, and by naturality of the
Gysin maps, the relations

[■r]=p,8(A),    [p] = tr,8{AXaM)

hold also in general. To compute 8(A X a M) in the general case, we repeat the
recipe implicit above: choose f:T^>X such that [p] = /*/?,, px8(A) = f*ß2, and
choose g: T -> K(Z,3) such that 8(A) = f*a + (g°p)*t3. Then <5(yl X a R) -
(g°77)*i3 is the class in H3(Q,Z), where 77: Q -» T has characteristic class
[77] = p,8(A), which is pulled back from p.   D

Example 4.13. Using Theorem 4.12, we may complete the calculations of what
happens in Examples 3.6 and 3.7. In Example 3.6, ß = RP5XRP5, T=CP2X
RP5, and 77: (yl X a R) A-> T is the bundle CP2 X £ -> CP2 X RP5 (there called
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q). If x is the standard generator of //2(CP2, Z) = Z and v is the generator of
//2(RP5,Z) = Z2, then[/>] = 2x X 1, [77] = 1 X v.

Furthermore, 5(yl) is the nontrivial element of //3(ß, Z) = Z2. As required,
/>,<5(y|) = [77], because

(1 X v) u[/>] = 2x Xy = x X 2v = 0,

and so 1 X v is in the image of p,. To compute S(yl X a R) = 17, note that
^liv) — [p] = 2jc X 1. Now a calculation with the Runneth Theorem shows
H3{T,Z) = 0, hence 77,: H3(E,Z) -> H2(T,Z) is injective and this determines rj
uniquely. (In fact, HX(E, Z) is infinite cyclic with some generator w, and tj = x X w
generates H3(E,Z).) Finally, 8(A X a Z) is the common pull-back of 5(yl) and of
8(A X a R) to //3(RP5 X £), which is y X w.

In Example 3.7, ß = S3, 7 = S2, [p] = x, the standard generator of H2(S2,Z),
and 8 can be any multiple nu of the standard generator u of H3(S3,Z). Since
p,(u) = x, [77] = p,(nu) = nx, and (yl X a R)A is the total space of the circle bundle
77: X -> S2. Since H3(T,Z) = 0, S(yl X a R) = 17 is uniquely determined by the
condition 77,(tj) = [/?] = x. Since //2(ß,Z) = 0, the bundle (ylxaZ)A^ß is
trivial, so (yl X a Z) A= S1 X S3, and <5(yl X a Z) is just 1x8.    D

To show how the above fits into a broader context, let us say a few words about
computation of yl X a R, where yl is a separable continuous-trace algebra and
a: M -* Aut(yl) is an essentially arbitrary action with A/M countably separated.
Then we discuss some related problems in the structure theory of C *-algebras of Lie
groups. Of course the problem of computing yl X a R will be unmanageable in
general, but the following is true.

Theorem 4.14. Let A be a separable continuous-trace algebra, a an action of M on
A such that A/M is T0. Then there exists an M-invariant essential ideal B = 5, © B2
© B3 in A, such that B,, B2, and B3 are M-invariant, and

(1) R acts freely and properly on Bx,
(2) M acts trivially on B2,
(3) each point x G B3 has cyclic stability group c(x)Z, where c: B3 —> (0, 00) is a

continuous function.
Furthermore, for any Bj satisfying condition (j) (j = 1,2,3), BX a R has continu-

ous trace.

Proof. By [7, Theorem 3], yl contains an R-invariant dense open subset on which
stability groups are continuous. This open set will correspond to an R-invariant
essential ideal of yl, so without loss of generality we may assume stability groups are
continuous.

Lemma 4.15. Suppose ß is a second-countable locally compact space equipped with
an action of M for which ß/R is T0. Define an M-invariant function c: ß -* [0, 00] by

0    if M ■ x = x,
00    // R acts freely on the orbit M ■ x,
that number > 0 such that Mx = c(x)Z,

if the action of M on M • x is periodic.

c(x)-
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77ie« continuity of the stability groups in the sense of [7] is equivalent to continuity of
the function c.

Proof. If c is continuous, it is easy to see that stability groups are continuous.
Conversely, if one has continuity of the stability groups in the sense of Ghmm, then
given x„ -> x and jeR^ there exist sn g Rx with sn -* s. If c(x) = oo, this says
nothing, but on the other hand c(xn) must tend to oo since otherwise one could pass
to a subsequence and assume c(x„) -* c < oo, and one could choose sn g R^ with
sn -* s =7 0, which would force s ■ x = x, a contradiction. If 0 < c(x) < oo, the
condition of Glimm guarantees that one can choose sn divisible by c(xn) with
sn -* c(x), so lim inf c(xn) < c(x), but again if c(x„) ■+* c(x), Mx would properly
contain c(x)Z. Finally, if c(x) = 0, the Ghmm condition forces lim inf c(x„) = 0,
and if c(xn) -** 0, one can pass to a subsequence on which c(xn) -* c > 0 and
obtain a contradiction.   D

Proof of 4.14 (cont'd). Assuming the stability groups are continuous, c is a
continuous function by the lemma. Thus we may choose B3 so that B3 — A -
c~\{0, oo}), B2 so that B2 = intc_1(0). If we let B1 = intc_1(oo), then in general
the action of R on Bx will not be proper; however, we can remedy this by passing to
some dense open set, by [10, p. 95]. Then BY X a R has continuous trace by Theorem
1.1. Since R acts trivially on B2, the action of R on B2 will be unitary by Corollary
0.14 and Remark 0.15, so that B2 X a R = B2 ® C0(R), which obviously has con-
tinuous trace. Finally, the action of R on B3 has all isotropy groups isomorphic to Z
and varying continuously. If the isotropy were actually constant, we could deduce
from Theorem 2.2 that B3 X a R has continuous trace, and assuming the spaces
involved are nice enough we would even determine the crossed product explicitly by
Theorem 4.12. Thus the proof of the theorem is completed by the following lemma.
□

Lemma 4.16. Let A be a C*-algebra with Hausdorff spectrum ß, and suppose
A = ro(£), where E is a continuous field of elementary C*-algebras over ß. Let a:
M —> Aut(yl) be a continuous action such that for x G fi, the stabilizer M x of x in M is
c(x)Z, where c: ß -» (0, oo) is continuous. Define a new action ß: M —* Aut(yl)
(having all stability groups of points in ß equal to Z) by

(ßsf)(x) = (ac(x)sf)(x),    fors g R, x g X, /g T0(£).
777e« yl XaR = yl X^R.

Proof. We think of yl X a R and A X ßM as completions of CC(R, ro(£)), where
this space has two different convolution multiplications, * and *, and two different
involutions, * and *, respectively. Define

*:Cc(R,r0(£))-»Cf(R,r0(£))   by   (•*)(*)(*) = c(x)h(c{x)t)(x).
Then i> is a *-algebra homomorphism from the (*, *)-structure to the (*, ^-struc-
ture, since (viewing a and ß as acting on both T0(£) and £)

(#A) *(/)(*)-A((«A)(-/)*)(x)

= aelx)l{{*h)(-t)*)(x) = ac{x)l{c(x)h(-c(x)ty{x))
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(using the fact that c is constant on R-orbits in X) and

*(A*)(f,x) = c(x)h*{c(x)t)(x)

= c{x)ai,x)t{h{-c(x)ty){x) = {^h)*{t){x),

and also

{{mi)*{<¡>h2)){í)(x) = / [(*A,)0)A((<l>A2)(/ - *))](*) A

= / (*A1)(*)(*)ae(x),((*A2)(i - *))(*) A

= J c(x)«1(c(x).s)(x)ac(;t)j(c(;0«2(c(x)r - c(x)s))(x)<fc

= ( c(x)«1(r)(x)ar(«2(c(x)r - r)){x) dr    (where r = c(jc)s)

= c{x){hlich2){c{x)t)(x) = $(A,*A2)(0(*).

Since 0 is clearly invertible (with ($_1«)(/)(jc) = c(x)"1«(c(x)"1r)(x)) and isomet-
ric for the L^norm on LX(R, T0(£)), it extends to an isomorphism of the ^-com-
pletions yl X a R and A XßM.   D

We conclude this section with a few remarks about the C *-algebras of Lie groups,
especially of solvable Lie groups. The main motivation for the discussion of dual
topologies in [31] came from the old problem of trying to determine if, for G a
connected, simply connected exponential Lie group, the Kirillov-Bernat bijection

g*/G->G
(here g is the Lie algebra of G and g * is its dual, on which G acts by the coadjoint
action) is always a homeomorphism. For N a normal connected subgroup of
codimension 1 in such a G, C*(G) = C*(N) X a R, hence one could hope to solve
this problem if one had good control over the dual topology for crossed products by
R.

Now as we have seen, the general conjecture in [31] about the topology of
(yl X a R)A fails even when yl has continuous trace, unless 8(A) = 0, in which case
Theorem 4.8 applies. Furthermore, algebras yl with 5(yl) + 0 can arise themselves as
crossed products B X M with B stably commutative (see Example 4.6), provided R
has (at least some) periodic orbits on B. So we are naturally led to the following
problem and conjecture.

Problem 4.17. If G is a Lie group and yl is a continuous-trace subquotient of
C*(G), when is 8(A) + 0 possible?

Conjecture 4.18. If G is an exponential solvable Lie group and A is a
continuous-trace subquotient of C*(G), then necessarily 8(A) = 0.

The answer to Problem 4.17 is definitely "sometimes", as will be clear from the
following two examples. Thus even if Conjecture 4.18 is correct, one probably could
not prove a similar result for any larger nice class of Lie groups, except perhaps for
those where the semisimple part acts trivially on the radical.
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Example 4.19. We shall construct a (disconnected) solvable Lie group G with
abelian identity component, whose group C *-algebra has continuous-trace quotient
with nonzero Dixmier-Douady invariant. Let Q be the quaternion group of order 8,
and let G = C 4 X Q, where Q acts onC4 = C2©C2by the linear action in which
the center Z(Q) of Q acts trivially and the quotient Q/Z(Q) = Z2 X Z2 acts by
sending the generators of the 2 copies of Z2 to multiplication by (-1,1) and (1, -1),
respectively. Then if S3 is the unit sphere in (C2)A, S3 X S3 is a closed Q-invariant
subset of (C4)A and so gives rise to a quotient of C*(G) isomorphic to C(S3 X S3)
X Q. This crossed product is a direct sum of two ideals (corresponding to the two
possible actions of Z(Q) in an irreducible representation), namely C(S3 X S3) X
(Z2 X Z2) and C*(C(S3 X S3), Z2XZ2,w), where the latter is the twisted crossed
product associated to the cocycle u g H2(Z2 X Z2,Z2) defining the group exten-
sion 1 -» Z(Q) -><2->Z2XZ2-»l. As shown in [35], the Dixmier-Douady in-
variant of the twisted crossed product is a nonzero torsion-class.

Example 4.20. Here is a simple example of a connected, simply connected
(nonexponential) solvable Lie group G whose group C*-algebra contains an essen-
tial continuous-trace ideal with 8 # 0. Merely let G = C2 X ß R, where ß,(w, z) =
(e2'r"w,e2'n"z). This is a solvable Lie group of dimension 5, and from the /?-equi-
variant decomposition C2 = {0} U (0, oo) X S3, one sees that C*(G) is an extension

0- C0((0,oo))®(c(,S'3)x)8r) - C*{G) - C0(R)^0.
By Example 4.6, C(S3)X ßM is a continuous-trace algebra with spectrum S1 X S2
and Dixmier-Douady class a generator of H3, so that if / = C0(R) ® (C(S3) X R),
/ is a continuous-trace ideal of C*(G) with spectrum (0, oo) X S1 X S2 and
Dixmier-Douady class a generator of H3. Incidentally, the extension cannot split
even stably, since by the Thorn isomorphism theorem of [3] or by [16, §16],
#,(C*(G)) = Z and K0(C*(G)) = 0, whereas by Example 4.6, K0(I) = K¿I) = Z.
Thus the connecting map Kl(C0(M)) -» K0(I) must be an isomorphism. (Compare
the similar analyses in [30, §7].)   D

In spite of all this, there seems to be definite evidence for Conjecture 4.18. If G is
exponential and we write as before G = N X M, where AT is a subgroup of codi-
mension 1, then by [2, Chapter I, 3.3], every point in Ñ has stability group {0} or R.
(Unfortunately, however, the action of R on the complement of the fixed points in
Ñ need not be proper.) And as we have seen in the proof of Theorem 4.14, if R acts
on a continuous-trace algebra B with 8(B) = 0, and if the action on B is either
trivial or free and proper, then the crossed product A = B X M will again be a
continuous-trace algebra with 8(A) = 0. This suggests that Conjecture 4.18 could be
proven by induction on dimG, provided one could control behavior at places where
the orbit type of R on N changes. However, this seems difficult to do, so probably
Conjecture 4.18 is about as difficult as the problem about bicontinuity of the
Kirillov-Bernat bijection.
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