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CROSSED SIMPLICIAL GROUPS
AND THEIR ASSOCIATED HOMOLOGY

ZBIGNIEW FIEDOROWICZ AND JEAN-LOUIS LODAY

ABSTRACT. We introduce a notion of crossed simplicial group, which generalizes
Connes’ notion of the cyclic category. We show that this concept has several
equivalent descriptions and give a complete classification of these structures.
We also show how many of Connes’ results can be generalized and simplified
in this framework.

A simplicial set (resp. group) is a family of sets (resp. groups) {G,},., to-
gether with maps (resp. group homomorphisms) which satisfy some well-known
universal formulas. The geometric realization of a simplicial set is a space and
the geometric realization of a simplicial group is a topological group.

We define a crossed simplicial group as a simplicial set G, = {G,},, such
that the G, ’s are groups and the faces and degeneracies are crossed group ho-
morphisms, that is, satisfy a formula like

flgg") = flg)g- g

(see §1 for the precise definition). A simplicial group is thus the particular case
of a trivial action. The geometric realization of a crossed simplicial group is
still a topological group.

The reason for introducing such objects comes from cyclic homology whose
definition, as given by Connes in [C], relies on the existence of a certain category
A (denoted AC in this paper ) satisfying some special properties. In fact these
properties are equivalent to the following assertion: the standard simplicial
circle can be endowed with the structure of a crossed simplicial group C, =
{C,},>¢ With C, =Z/n+1 (cyclic groups). In [L] we remarked that the family
of dihedral groups {D,,,},., (resp. quaternion groups {Q,.,},,) forms a
crossed simplicial group (but not a simplicial group). The notion of crossed
simplicial group provides a useful conceptual framework for studying these basic
examples.

In this paper we investigate the existence of other families of groups bearing
a crossed simplicial group structure. In particular we show that it is the case
for the family of symmetric groups S, = {S,,,},5,- Then in 3.6 we give a
complete classification theorem:
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58 ZBIGNIEW FIEDOROWICZ AND JEAN-LOUIS LODAY

For any crossed simplicial group G, there exists a (unique up to isomorphism)
exact sequence of crossed simplicial groups

1 -G —G,—G —1

such that G. is a simplicial group and G is one of the following crossed sim-
plicial groups: {1}, C,, S,, {Z/2}, D,, Z/2x S, and H, . In this result H,
denotes the hyperoctahedral group (Z/2)" x S, . The geometric realizations of
these seven particular crossed simplicial groups are respectively a point, .S ! , a
contractible space, Z/2, O(2), Z/2, a contractible space.

As in cyclic homology theory, a crossed simplicial group G, determines a
small category denoted AG which bears the same special properties as AC,
with C, replaced by G,. We define a G,-space as a functor X,: AG™ — Top.
In particular it is a simplicial set. So there should be a relation between its
geometric realization as a simplicial set |[X,| and its geometric realization as a
G,-space hocolim,;X, . It is given by Theorem 5.9:

For any G _-space X, there is a natural fibration sequence

|X,| = hocolim, X, — BAG.

This is the topological analogue of the periodicity exact sequence relating cyclic
homology with Hochschild homology.

Cyclic homology is obtained through the functor A%: AC® — (k-Mod),
[n] — A®"' where A4 is a k-algebra, as HC, (4) = Torﬁc(k, A%). More
generally any functor M: AG®™ — (k-Mod) gives rise to homology groups
HG,(M) = TorﬁG(k, M), and we show that most of the properties of cyclic
homology (like existence of spectral sequences) carry over to these new homol-
ogy theories. Finally we prove that the homology of a AS®-module considered
as a simplicial module does not change in characteristic zero after taking the
coinvariants by the symmetric group at each level (cf. 6.17).

The contents of this paper are as follows.

§1 contains the definition of a crossed simplicial group G, and some exam-
ples.

In §2 we show that the true structure underneath is a double category. This
explains why spectral sequences arise naturally in this framework.

§3 contains the description of the crossed simplicial group structure of S,
and of H, together with the classification theorem.

In §4 we introduce G_-spaces and free G, -spaces.

In §5 we prove that the geometric realization |G,| of G, is a topological
group and that there is a homotopy equivalence hocolim,.X, ~ E|G,|x 6.1 |X,|
and a fibration |X,| — hocolim, X, — BAG for any G, -space X, .

§6 deals with the homology of AG*-modules generalizing what is known for
cyclic homology. We prove the existence of spectral sequences abutting to these
new homology groups.
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The second author is indebted to M. Zisman for several helpful comments.

1. DEFINITIONS AND FIRST EXAMPLES

Let [n] = {0,..., n} be a set with n + 1 elements. The category A is
the category of nondecreasing maps [n] — [m] where [n] is equipped with
its natural ordering. The morphisms of A are generated by the face maps
d;: [n— 1] — [n] (misses i) and the degeneracy maps o, : [n + 1] — [n] (hits
i twice), i =0,..., n. The only automorphism of [n] in A is the identity
id, . Recall that a simplicial set X is a functor X: A® — Sets. The image of
¢ € Hom, is usually denoted ¢", but we put §; =d, and o] =s5,.

1.1. Definition. A sequence of groups {G,}, n > 0, is a crossed simplicial
group if it is equipped with the following structure. There is a small category
AG, which is part of the structure, such that

(a) the objects of AG are [n], n>0,

(b) AG contains A as a subcategory,

(c) Aut,;([n]) =G} (opposite group of G,),
(d) any morphism in AG can be uniquely written as a composite ¢ - g

where ¢ € Hom,([m], [n]) and g € G;’: (whence the notation AG).

A morphism of crossed simplicial groups G, — Gi is a morphism of cate-
gories AG — AG' which is the identity when restricted to A.

Multiplication in G, is denoted by gg  and composition in AG is denoted
by g'-g (hence gg' =g’ g).

Axiom (d) implies that for any g € G, and any ¢ € Hom,([m], [n]) there
exist a unique ¢*(g) € G,, and a unique g'(¢) e Hom, ([m], [#]) such that

(1.2) g d=¢8(8)-9(g).

Lemma 1.3. G, is a simplicial set.

Proof. The functor [n] — G, which sends ¢ € Hom,([m], [n]) to " G, —
G,, is well defined because of associativity in AG; therefore (¢ - v)"(g)

=y (¢°(g). O

Proposition 1.4. A simplicial group is a particular case of crossed simplicial group.

*

Proof. In order to construct the category AG associated to the simplicial group
G, , we need only to tell what the composite g-¢ is for g € G, and ¢ € Hom,,
and to show that associativity holds. We put g-¢ = ¢ - ¢"(g) where ¢*(g) is
given by the simplicial structure of G, . Associativity in AG follows from the
simplicial structure. Axiom (c) is fulfilled because the only automorphisms in
A are identities. [

So this is a first example of crossed simplicial group.

1.5. Example 2. Let G, = Z/2 with generator y, , andput y, ,-6,=6,_,-y,
and y,, "0, =0,_;*V,.,- One easily checks that this gives a crossed simplicial

group, whose geometric realization is Z/2 .
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60 ZBIGNIEW FIEDOROWICZ AND JEAN-LOUIS LODAY

Example 3. Let G, = Z with generator ¢, . The composition in AG is
defined by the following formulas:
10, =0;_y1

(. ., forl<i<n, and ¢, -6,=9,,

. 2
for1<i<n, and ¢, ,-0,=0,-t

lyp1°0;=0,_,1 n by

n n+2

The geometric realization of this crossed simplicial group is homeomorphic to
R. The category AZ associated to this crossed simplicial group Z_ is closely
related to the duplicial category of [D-K].

Example 4. In [C] A. Connes has described a category A which satisfies the
conditions of 1.1. In this case G, = Z/(n+ 1), the cyclic group of order n+1.
This category A will be denoted AC in this paper. It is described by the same

relations as in the preceding example but with (¢, +1)"+1 =1id, . Its geometric

realization is homeomorphic to S ! because the only nondegenerate simplices
are ¢, and t,. The category AC is a subcategory of the category AS which
will be constructed in §3.

Example 5. Let D, = {x, ylx" = y2 =1 and yxy_1 = x_l} be the dihedral
group and let Q, = {x, ylx" = y2, yxy—1 = x_l} be the quaternion (or
binary dihedral) group. Crossed simplicial groups {G,} with G, = D, | or
Q,,, were described in [L] (see also §3). The geometric realization of D, (resp.
Q, ) is the orthogonal group O(2) (resp. the normalizer of S "in §° ).

Example 6. There exist crossed simplicial groups {G,} with G, = S, ,, the
symmetric group, G, = H,__, the hyperoctahedral group, and also G, = B, +1

the braid group. These examples will be studied in detail in §3; their classifying
spaces are contractible by the following argument. Let 4 be the inclusion of
S, (resp. H,, B, )in S, , (resp. H,_,, B, ,) obtained by letting it act on
the n first points. This inclusion satisfies d;h = hd, for 0 < i < n and
d,.h = id, so this is a homotopy from the identity to the trivial map. The
geometric realization of S, (resp. H,, B, ) is a simply connected space with

trivial homology; therefore it is contractible.

Example 7. Let G, be one of C,, D, or Q,. Define a new crossed simpli-
cial group Gik) by Gﬁ,k) = Gk(n -1 It is easily checked that this is still a
crossed simplicial group whose geometric realization is a subdivision (and so
homeomorphic to that) of G, .

Proposition 1.6. In the crossed simplicial group G, the functions
g : Hom,([m], [n]) — Hom,([m], [n])
for g € G, and ¢": G, — G, for ¢ € Hom,([m], [n]) satisfy the following

relations:
1.h. (¢-I¢’)*(g) = ’*(?'(g)),
Lv. (gg)(0)=¢"(g"(9)),
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CROSSED SIMPLICIAL GROUPS 61

2h. g°(¢-¢')=2"(9) (¢*(g))t(¢/),
2v. ¢"(gg)) =¢"()(&" ()" (),
3.h. (id,)"(g) =g and ¢*(1,)=1,,
3v. (1,)'¢=¢ and g(id,) =id,,.

Conversely, a family of groups {G,},s, With two sets of functions g" and ¢"
satisfying the relations above defines a crossed simplicial group.

Proof. Relations 1 and 2 are deduced from formula (1.2) and from associativity
in the category AG. Relations 3 are deduced from formula (1.2), the property
of the identities and the fact that id, =1, in AG.

Conversely, define the morphisms of AG to be the pairs g - ¢ and let the
composition be given by formula (1.2), composition in A and composition in
G,,ie., (g:¢):-(h-w)=(g-¢"(h))-(h*(¢)-y). Formulas 1, 2 and 3 prove that
AG is a well-defined category. The axioms of 1.1 are immediate to verify. O

Proposition 1.7. A4 crossed simplicial group is a simplicial set G, such that G,
is a group, together with a group homomorphism G, — S, | = Aut[n] for each
n, such that

1. d(gg) =d(8)dy-1,(&), 5,(88) =5,(8)s,-1,(8)), and

2. the following set diagrams are commutative:

0 _y [}
[n-1] == [n] [n+1] = [n]

d,-(g)l lg s,(g)l lg

[n—l]T»[n] [”+1]T’[n]
Proof. Starting with a category AG we already know that the family {G,} is
a simplicial set and that G, is a group.

The element g*(d,) has to be a face map d; and the set map p(g): [n] — [n]
which sends i to j is a bijection. From relation 1.v of 1.6 we deduce that
p: G, — S, , is an antihomomorphism, so composition with g g_1 gives
a homomorphism. If we were dealing with degeneracies instead of faces we
would have found the same representation (see [A] for detailed proofs of these
facts).

Formulas 1 follow from 1.v of 1.6 and from g(d,) = o) = %)

Formulas 2 are translations of particular cases of the identity (1.2).

On the other hand in order to construct AG we use Proposition 1.6. The
function ¢" is given by the simplicial structure of G,. The function g* is
constructed from g"(d,) = d,-1; and g (o) = .-, by using the rule 2.h of
1.6. To prove that this is well defined we need to verify the compatibility with
the relations between faces and degeneracies. We will only do the verification
for the relation éj. 6, =9, -(5j_1 when i < j.

On one hand we have g*(d;-d,) = 011 -(de(g)_l(i)

g6, _)Y=6 -0 Put a=g '(i) and b=g '(j). If b<a,
i Vi1 d

and on the other hand

¢ ') Y -1
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62 ZBIGNIEW FIEDOROWICZ AND JEAN-LOUIS LODAY

then by property 2 di(g)_l(j —1)=5 and dj(g)_l(i) =a-1. So we need to
have J,-d, = d,-d,_, , which happens to be true because b < a.
If b> a, then by property 2 d,(g)”'(j—1)=b-1 and d,(g)” (i) =a. So
we need to have J, -6, =9, -J,_,, which happens to be true because b > a.
The other relations are proved analogously.

Relations 1, 2 and 3 of 1.6 follow from the definition of g* and ¢*. O

Remark 1.8. If the representations are trivial, then condition 2 is automatically
fulfilled and condition 1 shows that G, is a simplicial group.

2. INTERPRETATIONS IN TERMS OF DOUBLE CATEGORIES

2.1. A small double category (cf. [ML]) is a set of objects, a set of horizontal
morphisms Mor" , a set of vertical morphisms Mor" and a set of bimorphisms
Bimor, together with the following structure. To any bimorphism o there are
associated two horizontal morphisms: its horizontal source f and its horizontal
target g, and also two vertical morphisms: its vertical source f* and its vertical
target g'. To any horizontal (resp. vertical) morphism is associated two objects
(like in an ordinary category): the source and the target. The sources and the
targets of the morphisms associated to a bimorphism « are such that they fit
into a diagram

A——f—-—>B

f'l lg'
c 2D

(which means A4 = source of horizontal source = source of vertical source and

SO On).
Moreover a double category is equipped with two composition laws: a hori-
zontal one
———
L a l o | w» | dfa ]
_—
and a vertical one
. —
I a | E—
. — > l ﬂ Y 07 l
I B E—
. —_—

such that the horizontal (resp. vertical) composition makes (Bimor, Mor" )
(resp. (Bimor, Morh) ) into a category. The last requirement is the interchange
law between vertical and horizontal compositions: given four composable bi-
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CROSSED SIMPLICIAL GROUPS 63

morphisms like below

I e | o |
L gL Bl

then one has the formula
@) (BB =) (B a).

Exercise. Let G be a group. Put Bimor = G, Mor" = Mor’ = Ob = * (i.e.,
one element). Show that if horizontal and vertical compositions are given by
the group law, then this is a double category if and only if G is abelian.

/v h

2.2. Any small category gives rise to a simplicial set called its nerve. Similarly,
a small double category gives rise to a bisimplicial set (Xp q) ,p>0and g >
0, still called its nerve. It is obtained as follows. The set qu is the set of
all rectangles of p x ¢ bimorphisms which are composable according to the
following picture:

! ! ! ! !
l l ! ! !
! ! l l l

The horizontal (resp. vertical) simplicial structure is obtained as in the nerve
of a category. The compatibility of the two simplicial structures follows from
the interchange law in the double category. The geometric realization of this
bisimplicial set is the classifying space of the double category (cf. for instance
[B-K] for more details).

Exercise. In the example above the classifying space is an Eilenberg-Mac Lane
space of type K(G, 2).

2.3. We will now consider a special type of double category, those which satisfy
the star condition:

(x) Any pair (¢, g) where ¢ is a horizontal morphism and g a vertical
morphism with the same target object determines a unique bimorphism o .

Hence )
B A g (¢) B
lg " (g)] a le
C ¢—> D determines C 7 D
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As a result this pair determines a new horizontal morphism g*(¢) and a new
vertical morphism ¢*(g).

Proposition 2.4. Let B be a small double category which satisfies (x). Then the
functions horizontal source (¢, g) — g (¢) and vertical source (¢, g) — ¢"(g)
satisfy formulas 1,2 and 3 of 1.6.

Proof. Horizontal composition and the star condition imply formula 1.h and
2.h. Composition with the identity of the horizontal law implies 3.h. Sim-
ilarly formulas 1.v, 2.v and 3.v are implied by the properties of the vertical
composition. 0O

All the examples given in the previous section give rise to a double category
of the following kind. The objects are [n], n > 0, the horizontal morphisms
are those of A, the vertical morphisms are such that Hom"([m], [n]) = @ if
n # m and Hom'([n], [n]) = G, (as a group), and the bimorphisms satisfy
condition (*).

2.5. Let B be a small double category satisfying (x). To B we associate canon-
ically a category B as follows. The objects of B are those of B. A morphism
of B from A to C is a pair of morphisms

h
A—c B

where h is a vertical morphism and ¢ a horizontal morphism in B. Compo-
sition in B is defined by the following diagram:

F - F — C F C
. l
D — B — l
!
A A
The star condition ensures that the composition is associative and has an iden-

tity.

Proposition 2.6. Let B be a small double category satisfying (x). Then the
classifying space of B is canonically homotopy equivalent to the classifying space
of B.

Proof. The classifying space of B is the geometric realization of nerve B, which
is a bisimplicial set. By a classical lemma (cf. [Q, Chapter 1]) this space is
homotopy equivalent to the geometric relaization of the diagonal of nerve B.
This last simplicial set is in fact, thanks to the star condition, the nerve of B.
As a result the classifying spaces of B and B are homotopy equivalent. O

2.7. Remark. The construction of B looks like the Q-construction of Quillen
[Q]. In fact any exact category E determines a double category QE whose
bimorphisms are commutative bicartesian squares with monomorphisms
(resp. epimorphisms) as horizontal (resp. vertical) morphisms. Quillen’s Q-
construction is the category QF associated to the double category QE (see p.
201 of loc.cit).
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Proposition 2.8. A crossed simplicial group G, is equivalent to a double category
which satisfies the (x) condition, whose category of horizontal morphisms is A
and whose category of vertical morphisms is the groupoid ), G,, .

Proof. We start with the characterization of a crossed simplicial group given in
Proposition 1.6. A bimorphism in AG is of the form given in 2.3. Horizontal
(resp. vertical) composition is forced by the composition in A (resp. in G, ),
it is associative thanks to formula 1.h and 2.h (resp. 1.v and 2.v) and has an
identity thanks to formula 3.h (resp. 3.v). O

Proposition 2.9. The classifying space of the double category AG associated to
the crossed simplicial group G, is homeomorphic to the classifying space B|G .|
of the topological group |G, |.

Proof. The nerve of AG is the bisimplicial set of rectangles (cf. 2.2). Its classi-
fying space can be obtained by taking first the horizontal geometric realization
(which gives a simplicial space) and then taking the vertical geometric realiza-
tion. In the case at hand, for fixed ¢, the horizontal simplicial set is the nerve
of the category associated to the functor A® — Sets, [n] — (G,)? (its objects
are ([n], x) with x € (G,)?). The classifying space of this category is homeo-
morphic to |G,|?, which is a topological group (cf. Theorem 5.3). Under these
homeomorphisms the simplicial structure of [¢] — |G,| is identified with the
simplicial structure of nerve |G,|, whence the assertion. O

Remarks. The simplicial structure of [n] — (Gn)q is not the product of the
simplicial structure for ¢ = 1, unless G, is a simplicial group. Bisimplicial
sets lead naturally to spectral sequences; this is why it is interesting to know
that the classifying space of B is homotopy equivalent to the classifying space
of a bisimplicial set. This will be used in Theorems 6.9 and 6.16 below.

3. EXAMPLES AND CLASSIFICATION OF CROSSED SIMPLICIAL GROUPS

3.1. The symmetric group §,,, actson [n]={0, 1,..., n} by permutations.
It will be helpful to think of a permutations g as a graph linking points of [#]
to the points of another copy of [n]:

0 1 2 3 4
g = (02341)

o 1 2 3 4

The hyperoctahedral group H, , = (Z/ 2)’”rl xS

n+1
where S, | acts by permutation of variables on (Z/ 2)""'. It is often denoted
S,.1J Z/2 (wreath product). An element g of H, _, can be viewed as a graph
with labels. The edge abutting at i is labelled by 1 or y (generator of Z/2)
according to whether the ith component of g in (Z/2)"+l is the identity or
the generator. We will refer to elements of H, , as labelled permutations.

is a semidirect product
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Accordingly it is helpful to think of elements of Hom,, which are set maps
which preserve the order, as graphs linking elements of [m] to their image in

[n].
/3 3\
2 2 2 2
1./-1 1&.1
0——0 00——0

8 o

Our aim is to describe a crossed simplicial group structure on H, .

Description of g"(¢). A map ¢ € Hom, is completely determined by the
sequence of numbers #qb_l(i) for i =0, ..., n (# means number of elements
of). Consider g as a permutation of the set [n] and define a new sequence of
numbers by i — #¢_l(g(i)). This, in turn, determines a morphism in A that
we denote by g"(¢) € Hom,([m], [n]).

Description of ¢"(g). We consider g € H,,, as a labelled graph. ¢*(g) is
a labelled graph constructed from g as follows. If i is not hit by g we delete
the edge abutting to /. If #¢”1(i) =k (with k > 1) we replace the edge from
g_l(i) to i in g by k edges. If the label of the former edge was 1, then
these k new edges are all parallel and adjacent, with labels 1. If the label of
the former edge was y, these k new edges are as in the following picture, with
labels y.

Example.
g7 (0)

0"(g)
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In other words the permutation ¢*(g) sends the subset g"(q&)_l( J) to the
subset qS_l(g( j)). If the label of the edge from g to g(j) has label 1 then
¢"(g) respects the order (and the labels are 1). If the label is y then ¢*(g)
inverts the order (and the labels are y ).

Lemma 3.2. Let ¢ be in Hom,([m], [n]) and g in H, . Then ¢"(g) and
g"(¢) are the only elements such that the set diagram

g (9) (1]
¢‘(g)l lg
[m] T [n]

is commutative and that ¢"(g) preserves (resp. inverts) the order of the subsets

g*(¢)_1(j) for j=0,1,...,n ifthe corresponding label is 1 (resp. y).
Proof. The description of g"(¢) follows immediately from the following three
conditions:

(a) the set diagram is commutative,

(b) g°(¢) is a nondecreasing map,

(c) ¢*(g) is a bijection.

The description of ¢*(g) follows from conditions (a)~(c), and the order
condition on g*(¢)"'(j). O

Theorem 3.3. The family of hyperoctahedral groups {H,,,}, n >0, is a crossed
simplicial group.

Proof. We remark that a picture like the example above is geometric description
of a bimorphism in the double category AH.

Formulas 1.h and 2.h of 1.6 come from horizontal composition in AH. For-
mally these formulas are proved as follows. By Lemma 3.2 (¢-¢')"(g) and
g (¢ - ¢') are the only elements which make the set diagram (with g and
$-¢') commute and which verify the order condition. So it suffices to check
that ¢ (¢"(g)) and g*(¢) - (¢"(g))"(¢') also do. The commutativity of the
square is immediate as a composite of two commutative squares. If the or-
der of g*(¢)_'(i) is preserved (resp. inverted) then the labels of the corre-
sponding edges are 1 (resp. y). Therefore the order of ¢*(g)*(¢')”'(j) (for
J € g*(qﬁ)_l(z')) is also preserved (resp. inverted). The nontrivial part in this
last statement comes from the following point. If 4,, ..., 4, are ordered sub-
sets of consecutive elements of [n] (|J, 4, = [#]) then the global involution
on [n] is obtained by performing the involution among the subsets 4, (which
gives A, , ..., 4;) and then performing the involution inside the A4.’s.

The labels of ¢"*(¢"(g)) are determined by the labels of g via ¢-¢'; there-
fore they are the same as the labels of (¢-¢')"(g).

Formulas 1.v and 2.v come from the vertical composition in AH and they
are proved similarly.
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Formulas 3.h and 3.v are immediate to verify. O

Proposition 3.4. The family of groups C, = {Z/n+ 1}, S, = {S,,,}, {Z/2},
D,={D, ,} and Z/2 x S, are crossed simplicial groups.
Proof. All these groups are subgroups of H, , as follows.

Let {, ., be the product of all the Z/2-generators in (Z/2)"+1 ,let T

the cycle (01 ... n) in S, , and let w, , be the involution

Onm)(In-1)2n-=2)---

be

n+l

inS,,,.
In H, , we verify easily that
—(1, t,,,) generates Z/n+1,
—S§,,, 1s naturally a subgroup,
—(Cn+l , wnH) generates Z/2,
—1,7,,,) and ({, ,,w,,,) generate D __, .
We check that these families of subgroups of H, are stable under the action
of ¢, ¢ € Hom,. _
For §, it is immediate because if all the labels of g are 1, then so are all
the labels of ¢"(g).
For C, we compute ¢ (g) for ¢ =4, and ¢ = ¢, and for g = 7,,,.
Formula 1.2 for these cases gives

Tyy1°0; =0, 7T,, 1<i<n, Tpey0p =0,
, 2
Tyy1°0; =0,y Tpy, 1Si<n, Tpe1 00 =0, Tpps L2 XS,
which shows that ¢*(t,,,) is alwaysin C, .
For {Z/2} we compute
(Cn+l’wn+l)'6i=5n—i'(n’wn)’ 0<i<n,

(€n+1’ C()rH—l)'O-iza.n--l"(crH—Z’ Cl)n+2)’ 0<i< n,

which shows that ¢"({,,,, ®,,,) is always in {Z/2}.

The case D, is a consequence of the cases C, and {Z/2}.
The case Z/2 x S, is a consequence of the cases {Z/2} and S,. O

Proposition 3.5 (R. Aboughazi [A]). The subcrossed simplicial groups of H, are
{1}, C,, S,, {Z/2}, D,, Z/2x S, and H, itself.

Sketch of the proof. First, if G, C S, contains a nontrivial permutation then
we certainly have G, = Z/2 = S,. Then by looking at o] we see that G,
contains C, .

Second, if G, contains a permutation which is not in C, then certainly it
contains (01) in G, C ;. Then it contains (01) in G, C S,,, forany n.
As S, is generated by (01) and (01 ... n) it follows that G, contains S, _, .
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For H, we use the result for S, and a similar argument for (Z/2)"Jrl where
the role of the cyclic permutation is played by {, ., and the role of the permu-
tation (01) in S, is played by the trivial permutation in S, with labels 1 and
y. O

Theorem 3.6 (Classification of crossed simplicial groups). For any crossed sim-
plicial group G, there exists an exact sequence (unique up to isomorphism) of
crossed simplicial groups

1 -G —G,—G —1

such that G, is a simplicial group and G. is one of the following crossed sim-
plicial groups: {1}, C,, S,, {Z/2}, D,, Z/2x S, and H,.

Proof. First we prove that G, determines a unique homomorphism G, —
H_. The image of G, in §,,, has already been determined in 1.7. We now
determine the (Z/2)"*' part.

Let g € G, and consider the action of s,(g)” on the subset {i, i+ 1}.
If si(g)_l respects (resp. inverts) the order, then the label of the edge of g
abutting at i is 1 (resp. y).

Hence the map G, — H, , is well defined and this gives a morphism of
crossed simplicial groups (see [A] for details).

By definition kernel G, is such that g € G, acts trivially on [n]. Therefore
g"(¢) = ¢ forany ¢ € Hom, . This proves that Gi is a simplicial group (cf.
Remark 1.8). Finally the theorem follows from Proposition 3.5. O

-1

For example, the exact sequence associated to Q, (Example 5 in 1.5) is
1—Z2/2—-Q,—D, —1.

3.7. The example of braid groups. Let B, be the braid groups on n braids.
We denote by u: B, — S, the canonical surjection and we denote by 7, the
coloured braid group Keru. Let ¢ be in Hom,([m], [n]) and let g be in
B,., - We put g% (#) = u(g)"(¢), using the definition for the symmetric group.

An analogue of Lemma 3.2 with B, _, in place of H, , can easily be proved.
Hint: use the following picture.
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Explicitly the order preserving condition about the restriction of ¢*(g) on
g*(¢)7'(i) is replaced by:

—the restriction of ¢"(g) considered as a braid from g*(¢)™'(i) to ¢~ (g(i))
is the identity braid. The same argument as in the case of the symmetric (and
hyperoctahedral) group proves the foliowing.

Theorem 3.8. The family of braid groups {B, |}, is a crossed simplicial group
B.. O B

*

The extension given by the classification theorem is
1—-T,—B, —S, —1,

where T, is a simplicial group.

*

Remark 3.9. The inverse image of C, C S, in B, is the duplicial crossed
simplicial group Z, described in Example 3 of 1.5. The extension provided by
3.61is

1 -Z—2 —C,—1,

where Z stands for the trivial simplicial group Z. The geometric realization
of this extension is the fibration Z > R — S' .

Let K be a group and S, [K =K ARV be the wreath product of

n+1
S, by K.
Theorem 3.10. The family of groups {S,., | K}, is a crossed simplicial group
(S[K),. i
Proof. Let u: S, [K — S, be the natural projection. We put g (o) =

u(g)" (¢). To define ¢*(g) we consider the geometric definition of ¢*(g) in
the symmetric case. An element in S, , [ K is given by {(k;,...,k,.,), &}
with k, € K and g € §,,, . We label the vertex going from i to g(i) by k;.
Therefore the braids of the permutation ¢*(g) are also labelled, and thus it
defines an element in S, ., f K (still denoted #"(g)). The rest of the proof is
as in the hyperoctahedral group case. O

Remark 3.11. The kernel of the map (S [K), — S, is the simplicial group
W(K). The simplicial structure of (S [Z/2), is different from the simplicial
structure of H, .

4. OBJECTS OVER CROSSED SIMPLICIAL GROUPS

The main justification for studying the simplicial category A is to give a
succinct interpretation of the notion of a simplicial object in a category %,
that is a functor A — Z . In this section we define the analogous notion for
crossed simplicial groups.

4.1. Definition. Let G, be a crossed simplicial group, let AG be its associated
category and let % be any category. By a G, -object lin & we shall mean a
functor X: (AG)"™ — % . Asin the case of simplicial objects we will denote such
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a functor simply as X, with X, denoting the image of [n]. If A: [m] — [n] is
a morphism in AG we will denote by A": X , — X, the associated morphism
X(A). If g € G,, then noting that Aut,;([n]) = G" we will denote by x —
gx (instead of g”x) the associated action on X, and we will abusively write
G, x X, — X,. By a morphism of G, -objects (or simply G,-map) we will
mean a natural transformation between functors (AG)® — # and we will use
the notation f,: X, - Y, and f: X — 7Y, .

In most of our considerations below we will take # to be either the category
of sets or of topological spaces and will refer to the corresponding G, -objects as
G,-sets or G, -spaces with the former case being subsumed within the latter by
regarding a set as a space with the discrete topology. In §6 we will consider the
case when % is a category of modules and we will then speak of G,-modules.

In the case when AG = AC, the cyclic category, our definition reduces to
Connes’ notion of a cyclic object. As in that particular case, it is useful to give
another interpretation of a G_-object as a simplicial object with some additional
structure.

Lemma 4.2. The notion of a G, -object in € is equivalent to the notion of a
simplicial object X, in & with the following additional structure:

(a) left group actions G, x X, — X, ,

(b) face relations (cf. 1.7) d,(gx) = dl.(g)(dg_lix),

(c) degeneracy relations (cf. 1.7) s,(gx) = si(g)(sg_l(i)x).

In fact it suffices to specify the face and degeneracy relations for the generators

of G,. A G,-map f,: X, — Y, isthe same thing as a simplicial map such that
each f,: X, — Y, is G, -equivariant.
Proof. The inclusion A C AG defines for each G -object X, an underlying
simplicial object which we also denote X, . The stated equivalence follows
readily from the characterization of crossed simplicial groups given in Proposi-
tion 1.7. O

It is now easy to define a free functor from simplicial spaces to G, -spaces
which is adjoint to the forgetful functor going the other way.

Definition 4.3. Let X, be a simplicial space. Define a G,-space F,; (X,) whose

space of n-simplices is G, x X, with G, -action specified by left m‘ultiplication
on G, and with faces and degeneracies specified by the formulas

dj(g’ X) = (d,(g)7 dg“(,')(x))a
S,‘(g’ x) = (S,'(g)’ Sg—l(i)(X)).

We define a simplicial map 1,: X, — F, (X,) by x — (1, x) and a G, -map
u,: FG'FG_(X*) — FG‘(X*) by (g, &, x) — (§,&,x). If X_ isa G, -space
definea G,-map ev,: F; (X,) — X, by (g, x) — gx.

It is an easy exercise that we leave to the diligent reader to verify that
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Proposition 4.4. (i) F; (X,) as specified above is a G,-space, (ii) F; is left
adjoint to the forgetful r;zap from G _-spaces to simplicial spaces, with aa’}‘unction
specified by 1, and coadjunction specified by ev_, (iii) (F; , u,,1,) Specifies
a monad on the category of simplicial spaces whose algebrc{s are precisely the
G,-spaces. O

Exercise 4.5. The G, n-simplex AL(G,):
by Hom, (-, [1]). Show that A"(G,) =

(AG)™ — Sets is the functor specified
F, (A]) where A, is the n-simplex.

*

5. GEOMETRIC REALIZATIONS OF CROSSED SIMPLICIAL GROUPS

When A. Connes defined the cyclic category AC and the notion of a cyclic
object, he showed that in some sense he was codifying combinatorially the no-
tion of an action of the circle group S' and he showed that the classifying
space BAC was equivalent to the classifying space of the circle BS = cp>.
In this section we extend Connes’ results to arbitrary crossed simplicial groups
and strengthen them even for the cyclic case. We show that for any crossed
simplicial group G, , the geometric realization of the underlying simplicial set
is a topological group |G,|, that the geometric realization of a G -space is a
|G, |-space, and that the homotopy colimit of a G,-space X, regarded as a
functor AG™ — Top is equivalent to the Borel construction E|G, | g1 X1
Finally we prove a theorem which severely restricts the kinds of topélogical
groups which can arise in this way.

Proposition 5.1. G, be a crossed simplicial group and X, be a simplicial space.
Then there are projection maps p,: |F; (X,)| = |G,| and p,: |F; (X,)| — |X,]
having the following properties: ) )

(i) (py,py): 1F; (X)) — |G| x |X,| is a homeomorphism.

(ii) For any simblicial map f.: X, — Y, the following diagrams commute:

(g ()] Fo, (S

IFy (X,) Fy (YDl IFs (X.) IFy (Y,)
P P,

bk N A

X, ] |7, ] G, ]

(i) p,:|F; (X,)| — |X,| defines an action of the monad (F; , u,,1,) on
the geometric realization functor, i.e. the following diagrams commute:

[, | .
g (Fg (X)) === |Fg (X)I |x,| =1 |F, (x,)

b b\ A

F (X)) 21X 1X,|

(iv) The composite |G, | = |FG_(*)| i |G| is the identity.
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(v) The following diagram commutes:

{1} — G,
To prove this we first need the following lemma.
Lemma 5.2. Let G, be a crossed simplicial group. Then there are affine actions

G, x A" — A" such that for any morphism ¢:[m]— [n] in A and any g € G,
the following diagram commutes:

AT ¢

An
l¢'(g) lg
A" g’ (¢ A"

_

Proof. The defining representations G, — S, ., of a crossed simplicial group
extend obviously to affine actions G, x A" — A" . The result now follows from
Proposition 1.7. 0O

Proof of Proposition 5.1. There is a simplicial projection p,,: F; (X,) — G,
given by p (g, x) = g. We take p, = |p,,|. We define p,: IFG‘(X*)| — X
by the following prescription:

pz[(g’x)’u]:[x’ gu]

Here u € A" and g - u refers to the action constructed in Lemma 5.2. The
following calculation shows that p, is well defined:

pl(¢" (g, x), W] =D,l(¢7(8), (87(4))" (X)), u]
=[(g"(¢)"(x), ¢ (&)ul =[x, &7 (8) - ¢"(g)ul]
=[x, g- ¢(u)) =p2((g, X) > ¢(u)]

where g € G,, x€ X, ueA” and ¢:[m]— [n] isin A.

It is straightforward to check that properties (ii)-(v) hold. To prove (i) we
first construct a homeomorphism 4: |G, x X,| — |F; (X,)| by defining

(g, x), ul=[(g"", %), g-u]

A similar calculation as above shows that 4 is well defined, and it is obviously
a homeomorphism. In the case when X, is a point we get a homeomorphism
1:1G,| = |G,| gtven by

l[gau]:[g_l9g'u]'
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We deduce (i) by noting that the following diagram commutes:

G, x X,| —— |F; (X,)]

l(lq,.l,éqz.l) l(p,,pz)

G, x |X,| =45 1G,| x |X,|

where ¢,,: G, x X, —» G, and gq,,: G, x X, — X_ are the standard simplicial
projections. O

Theorem 5.3. (i) If G, is a crossed simplicial group, then |G| is a topological

group.
(it) If X, is a G,-space, then there is an induced action |G, | x |X | — |X,|.
(iil) (p,, py): |Fg (X )| — |G, x |X,| is an equivariant homeomorphism.

Proof. If X, is a G -space, then there is an evaluation map ev,: F, (X,) —
X_, and we define a map {:|G,| x |X,| — |X,| as the following composite:

lev, |

p,.p,)""
|G, | x |X,| ——— [F; (X,)] X, |
In particular |G,| = |F; (G,)| is a G,-space (via 4, ), and so we get a map

g0 |G,| < |G,| — |G,|. We first note that for any simplicial space X, we have
the following commutative diagram:

|Fg (Fy (X)) e |Fy (X,)]
(py.p,)
G| x |[Fg (X,)] (1 p3)
id x(p,,p,)
G x1G.| x IX.| LN AP

This follows from parts (i1), (iii) and (iv) of Proposition 5.1, the naturality of
U, , and the fact that for X, = » the diagram commutes by definition of CG' .
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On the other hand the diagram
|Fg (ev,)]

lev, |

Fo (X ==L x|

l(pl,pz) l(pl,pz) H

id x| ev, |
G, % |Fg (X)) == 1G,| x [X,] —— |X,]

Josin | |
G, x |G| x |X,| %5 |G| x|X,| —— |X,|

commutes by part (ii) of Proposition 5.1 and the definition of {. It then follows
from the associativity of the monad action of F,; or X, that

Ov xid

1G,| x |G,] x |X,| ~24 16, x |X,|

J.id x{ J}
¢
G Ix X[ —— X
commutes. In particular taking X_ = G, we obtain that e |G,|x|G,| — |G,]

is an associative multiplication.
Now it follows from part (iii) of Proposition 5.1 that

It |
x|l jE ()

lé l(p,,pz)
{1} x [X,| — |G| x|X,]

commutes, which together with the unit diagram for the action of the monad

F, on X, implies that

(X, = {1} < [X,] = 1G,[ x| X,]|

N1

X, ]

commutes. In particular, taking X, = G, we obtain that 1 € |G| is a left unit.

By part (ii) of Proposition 5.1 and the definition of { “ the following diagram
also commutes:

G 1=F; ()] = [F; (G)] —— |G,

I I

G
|G.1=1G,| x|G,[{1} =G, x|G,] —— |G|
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and by inspection the composite across the top is the identity. Hence 1 € |G|
is also a right unit,

We also claim that the homeomorphism :: |G, | — |G,| constructed in the
proof of Proposition 5.1 is the inverse. To see this, note that according to
the proof of Proposition 5.1 and the definition of ¢, the following diagram
commutes:

G| —2— |G, xG,| —— |F, (G,)] -1 |G,|

H l("’"""’z") l(p, 2,) H
. G
IG,| —2— |G,| x |G,] 2% |G,|x|G,| —— |G|

and by inspection the composite across the top is the constant map at 1. Hence
1 is a left inverse. The fact that i = id implies that 1 is also a left inverse.

Part (iii) follows readily from the constructions above. This completes the
proof. O

The following fundamental example illustrates the above results.

Example 54. Let G, = C,. Then the free cyclic set F, (S)) corresponds to
the following triangulation of the torus

b b
> >
ag A2 oas opposedto a}] A2
b b

which corresponds to Sl x S: , the standard simplicial product. The multipli-
cation map S: X Si = 12/~ - S given by

s+t ifs+t<1,

s, t)— .
S {s+l—1 ifs+t>1

is simplicial with respect to the first triangulation (corresponding to ev, : F. (S, l)

*

) : ) but is not simplicial with respect to the second triangulation.

The following example illustrates the kind of group actions which can be
codified in the context of crossed simplicial groups.

Example 5.5. The action of S' on § 3 given by quaternionic multiplication can
be realized as a geometric realization of a cyclic set. One first notes that s
with this S’ action is equivariantly homeomorphic to the join S '+S! with S
acting on both factors of the join. This in turn is the realization of the cyclic
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set X, obtained by taking the pushout diagram
F. (0)xS!LF.(1)xS!— F,.(1,)xS.

C, * *
lprl&ﬂpth l
sis! S X,

where pr,, denotes projection onto the first factor F. (0) = S: and pr,,
denotes projection into the second factor.

Several of our subsequent results will require an explicit formula for the
action of |G,| on the geometric realization |X,| of a G, -space. Such a formula
is furnished by the following lemma.

Lemma 5.6. Let G, be a crossed simplicial group and let X, be a G -space.
Then

(i) Forany g € G,,, (sS4, S, .--»8,) €A™, (ty,1,,...,1,) € A" there are
surjections A: [p] — [m], y: [p} — [n] in A and an element (uy, u , ..., u,) €
A such that Mugy, u,, ..., U,) = (S, 815005 Sy) and yl*(g)(uo, Upy ooy Uy)

i
=(lgs tys e s ty).
(ii) Forany g€ G,, x€ X, and (t,,t,,...,1,)€A"

(g, (tgs tys oo 8] X, 8ty by oo s 8] = [8X, (8, 8y, .00 5 2]
Proof. By the shuffle algorithm we can find surjections a: [p] — [m], y: [p] —
[7] in A and an element (vy, v, ..., v,) € A? such that a(Vy, Vs eens vp) =
8(Sgs Sys e s Sy) and ¥(Vg, vy, ..., V) = (. 8y, .., ). Let A= ¢ H ().
It then follows from Lemma 5.2 that

* —1
A2 (8) (v, v,... ,vp)z(so,sl,...,sm).
If we let (u, u,, ..., up) = l'(g)_l(vo, (N vp) , part (i) follows immedi-
ately. Part (ii) follows from noting that
-1
(p] H pz) ([g) (t()’ [1 LA ] tn)]s [x9 g(t()’ tl LR ] [n)])
=[(g, x), (¢, 1y, ..., )} O

Theorem 5.7. Let G, be a crossed simplicial group and denote by |G |-Top,
resp. G_-Sets, the categories of |G, |-spaces and G -sets respectively. Then | |.
G,-Sets — |G, |-Top has a right adjoint Sing,: |G,|-Top — G, -Sets obtained by
endowing the total singular complex of a |G |-space with the structure of a G -set.
Proof. Let X be a |G |-space, let ¢: A" — X be a singular simplex, and let
g € G, . Define the singular simplex g-o: A" — X by the following formula

(g-0)(u)=1[g, ul-o(gu)

for u € A". It follows easily from Lemmas 5.2 and 5.6 that this endows the
total singular complex Sing (X,) with the structure of a G_-set. Now apply the
standard adjunction between topological spaces and simplicial sets, noting (by
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Lemma 5.6) that for a G,-set Y, the unit map Y, — Sing,(|Y,|) isa G, -map,
and that for a |G, |-space X the counit map |Sing,(X)| — X isa |G |-map. O

Remark. In the paragraph below we prove various results about homotopy co-
limits over the category AG. For the convenience of the reader we first recall
the definition of hocolim X where X is a functor from a small category #
to Sets or Top. Let %, be the category whose objects are (C, x) where C is
an object of & and x € X(C). A morphism (C, x) to (C',x") in &, isa
morphism C — C' in % such that f.(x) = x'. The nerve of this category is
a simplicial set whose geometric realization is, by definition, hocolim X (cf.
[B-K]).

Proposition 5.8. QBAG = |G, |.

Proof. Consider the inclusion functor i: A — AG and apply Quillen’s Theorem
B [Q]. For any object [m] of AG consider the category [m]\ i. This has as
objects all arrows of the form f:[n] — [m] in AG and as morphisms all
commutative diagrams of the form

LN

li [m]
[n']/

in AG with A required to be in A. We can identify the classifying space
B([m]\ i) with the homotopy colimit of the functor Hom, (-, [m]): A —
Sets . But the homotopy colimit of a simplicial set is naturally homotopy equiva-
lent to its geometric realization. Thus it follows from Exercise 4.5 that B([m]\{)
is equivalent to |F (A™)| 2 |G, | x |A™|. By naturality of this equivalence any
morphism y: [m] — [m] in A induces an equivalence B([m]\i) — B([m']\i),
and since any morphism in AG is a composite of a morphism in A and an iso-
morphism, the same must be true for an arbitrary morphism f: [m] — [m']
in AG. Quillen’s Theorem B allows us to conclude that we have a fibration
sequence |G,| — BA — BAG. But A has a terminal object [0], so BA is
contractible. Hence QBAG ~ |G,|. O

Theorem 5.9. For any G,-space X, there is a natural fibration sequence

|X,| = hocolim,,X, — BAG.

Proof. We first prove the theorem for G, -sets. Here € = AG™ and we denote
by X, the restriction of X to A, Let i x: X, — X denote the inclusion
functor. Now it is easy to see that for any object x of X the category x/i, is
isomorphic to the opposite of the category [m]\ i considered in the preceding
paragraph. Again by Quillen’s Theorem B we obtain a natural fibration sequence

|G,| = |X,| = hocolim,; X, .
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Comparing this with the case of a trivial G,-space, we get a map of fibration
sequences
|G,| —— |X,| —— hocolim, X,

| l l

G| —— * ——  BAG

We conclude
|X,| — hocolim,. X, — BAG

is a fibration.
For the general (nondiscrete) case, we replace X,: AG® — Top by the com-
posite

X si
AG”™ 2= Top —2= Simplicial sets

and apply the following well-known result: if 4,, — B,, — C,, is a sequence of
bisimplicial sets such that for each n, |C, | is connectedand 4,, — B,, — C,,
1s a fibration sequence, then sois |4,,|— |B,, |—|C,,|. O

Corollary 5.10. If f,: X, — Y, isa map of G, -spaces such that |f,|: |X,| — |Y,]
is an equivalence, then so is

hocolimf,: hocolim, X, — hocolim,;Y,. O
Proposition 5.11. (i) For any simplicial space X, there is a natural equivalence
d: hocolim,F,(X,) — |X,|.
(ii) The following diagram commutes:

hocolim, F(Fg(X,)) —2— |Fy(X,)|

lhocolimu lpz

hocolim, F;(X,) — |X,|.

Proof. The proof is basically an elaboration of the proof of Proposition 1.11
given in [B-K]. We first identify the homotopy colimit as a coend

hocolim, Fg(X,) = / F(X,), x B(AG/[m))

(m]EAG v

= / X, x Hom,([m], [n]) x B(AG/[m])
[m]EAG J[n]eA

= X, x / Hom,([m], [n]) x B(AG/[m])
[nl€A [m]xAG

= X, x B(AG/[n)).
[nleA
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We now construct a cosimplicial equivalence d, : B(AG/[n]) — A" as follows:
given an element

[mg] = [m]—...—[m]

P: \N\l/ ] (uo,ul,...,uk)

[n]

in B(AG/[n]), construct the affine map p,: AF = A" by sending the jth vertex
of A% of fj(l ,0,...,0) where fj A¥ — A" is the affine map defined by using
Lemma 5.2. We define d,(P) = pp(uy, u,, ..., u,). This is easily checked to
be well defined and cosimplicial. It is also an equivalence since B(AG/[n]) is
contractible as is A" and the equalizer of d°, d': B(AG/[0]) — B(AG/[1)]) is
empty. Hence we have an equivalence d = f[n]e Aldxd, : hocolim, F.(X,) =

f[n]eAXn x B(AG/[n]) — f[,,]eA X, xA"=|X,|.
The commutativity of (ii) is a tedious but straightforward exercise. O

Theorem 5.12. For any G, -space X, there is a natural equivalence of fibration

sequences
IX,| hocolim, X, BAG
|X*| E|G*| X|G‘K|X*| B'G*|

Proof. The map ev, : F (X,) — X, defines a map of simplicial G,-spaces
X.: B(F;, F;, X,) — X,, where B(F;, F;, X,) denotes the monadic two-

sided bar construction whose space of k-simplices is the (k + 1)-fold iterate

F(Fg(...Fy(X,)...))

with faces given by ev, and the monadic multiplication x, and with degen-
eracies given by the monadic unit 1. Moreover, the geometric realization |x, |
is an equivalence, so by Corollary 5.10 x, induces an equivalence between
hocolim,;X, and hocolim,,B(F;, F., X,). But by Proposition 5.11

hocolim,.B(F, F., X,) = |n— hocolim,;B, (F;, F;, X,)|
~|n— (|G*|" x |X,])| = E|G,| X6, | X,

In particular for the trivial G -space we obtain BAG ~ B|G,|. By naturality
we obtain the above equivalence of fibration sequences. O

Proposition 5.13. (i) If G, is a crossed simplicial group, there is for every n an
inclusion of G, C |G,| as a discrete subgroup.

(ii) If m + 1 divides n + 1 there is a degeneracy n: [n] — [m] in A such
that n induces an inclusion of groups G, C G, so that the following diagram

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use




CROSSED SIMPLICIAL GROUPS 81

commutes:

(iii) UG, is a dense subgroup of |G,|.
Proof. Define G, C |G,| by the specification

grlg,1/(n+1),1/(n+1),...,1/(n+ 1))}

This is easily seen to be injective with discrete image, and by Lemma 5.6 it
is a group homomorphism. The degeneracy #n specified in (ii) is given by the
surjection [n] — [m] which maps blocks of successive k elements of [n] into
successive elements of [m], where n+ 1 =k(m+1).

For (iii) note that elements of the form [g, (%, ¥,, ..., u,)] with rational
barycentric coordinates u, are evidently dense in |G,|. But given such an
element (g, (u,, u,,...,u,)] we can find a degeneracy i: [p] — [n] such
that

MU+, 1/p+1), ..., /p+1))=(uy, u, ..., u,).
Thus [g, (g, 4y, - #,)]1 = [1°(8), (1/(p+1), 1/(p+ 1), ..., 1/(p+ )] €

Gp. o

Example 5.14. When G, = C,, the inclusion G, = Z/n+ 1 C |G| = s
corresponds to the inclusion of (n + 1)th roots of unity.

Theorem 5.15. If G, is a crossed simplicial group such that the geometric real-
ization |G,| is a Lie group, then the path component of the identity of |G| is
nilpotent.
Proof. According to a theorem of Zassenhaus, Kazdan and Margulis (cf. [R]),
in any Lie group G there is a neighborhood U of the identity such that for any
discrete subgroup I' of G the intersection I'NU is contained in some nilpotent
subgroup of G. Take G =|G,| and let U be the corresponding neighborhood.
Let N, be the minimal nilpotent subgroup of G which contains UNG,,.
Since if m + 1 divides n +1, G, is a subgroup of G,, it follows that in
this case N, C N, . One can therefore conclude that N = J N, is a nilpotent
subgroup of G containing ((JG,)NU. But |JG, isdensein G so (UG,)NU
isdense in U. Hence U C N. But U is a neighborhood of the identity in G,
so it follows that N contains the path component of the identity in G. O

Remark 5.16. By using the classification theorem (Theorem 3.6) we can verify
that under the hypothesis of Theorem 5.15, the path component of the identity
of |G,| has to be either {1}, $' or R. However, the argument above is more
general, applying to multisimplicial generalizations of crossed simplicial groups.

6. HOMOLOGY AND COHOMOLOGY OF AG-MODULES

6.1. The notions of homology and cohomology of a group can be generalized to
any small category. To define them we can use a standard resolution which is
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constructed below. It is well known that for a given group there may be a better
resolution (example: cyclic and quaternion groups admit periodic resolutions).
This is also the case for some categories (example A, see below). More inter-
esting for us is the case of AG. Taking into account the fact that AG comes
from a double category we show that there is a special biresolution which per-
mits us to compute the homology and the cohomology via spectral sequences.
This biresolution combines a resolution of A and the standard resolutions of
the groups G, . Another type of biresolution and a generalization of periodic
cyclic homology to HG,-theories can be found in [G].

6.2. In this section k is a fixed commutative ring with 1, referred to as the
ground ring. If X is a set, then k[X] denotes the free k-module with basis
X . We first recall the definition and properties of homology and cohomology
of #-modules, where % is a small category.

Let Mod be the category of k-modules. A %-module is a functor from %
to Mod. Let N bea #-module and M be a #*-module. The tensor product
N ®, M is a k-module defined by

NegzM= P NC)o,M(C)/~,
CEOb®
where the equivalence relation ~ is generated by: for every morphism f: C —
D in #,every x € N(C) and every y € M(D) we have x® [ (y) ~ f.(x)®y .

The category of #-modules is abelian and has enough projectives and injec-
tives. As the functor N®.~ is right exact it admits derived functors denoted
Tor’ (N, -) such that Tor’ (N, M)=N®, M.

Similarly, if P is another #-module, then Hom (N, P) isa k-module and
the derived functors of Hom. (N, —) are denoted Ext"g(N , =)

6.3. The standard resolution. Let k be the trivial #-module; that is, every
object has image k and every morphism has image id, . We construct a free
resolution of k by % -modules

0<—k<-—L04—L1<—L2<—---

as follows. First we construct a simplicial #-set {(MOR €),}, L, will be the

free k-module on the set {MOR¥),} and d = Y (—1)'d, the boundary map.
Let MOR®& be the category whose objects are the morphisms f: 4 — C

of #. A morphism in MOR# from f to g: B— C (same C asin f)is

a morphism 4: 4 — B in % such that g-#4 = f. This category has a nerve

which is the simplicial set {{MOR¥) }. In fact {{MOR®),} isa %-set:

C—(4,—4, - —4,-0C)
and it is easy to verify that {{MOR&),} is a simplicial % -set.

Lemma 6.4. The complex L,, where L, = k[(MOR®),] and the boundary is

d= E(—l)idi, is a projective resolution of €-modules of the trivial €-module
k.
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Proof. Let s: (MOR%), — (MOR¥), , be the map given by
S(Ag— A, = A, —C)=(4yg— A4, == A4 —C—C),

where the last arrow is the identity of C. It induces a map of k-modules on L,
that we multiply by (—1)'“rl to get §': L, — L, . Itisimmediate to verify
that ds’ + s'd = id, which proves that L_ is an acyclic complex. Hence the
groups Torn%(k, M) are the homology groups of the complex of k-modules

6.5. Example 1. % = G. If % is the category with only one object and with
morphisms the elements of a group G, a G-module in the above sense is a left
k[G}-module and a G*"-module is a right k[G]-module. Therefore Torf(k, M)
is the homology of the discrete group G with coefficients in M , usually denoted
by H (G, M). The standard bar resolution described above is canonically
isomorphic to the standard resolution described in [ML] via (g, ..., g,) —
(8,---8)>8,---8&1»- 8-

6.6. Example 2. % = A. In this case there is a better resolution than the
standard one. Put (C”’)n = free k-module on the set Hom,([m], [n]). It is
immediate that C” is a A-module and that C” is a simplicial A-module which
gives rise to a resolution of the trivial A-module k. Let M be a simplicial
module (i.e. a A”®-module). The map f ® x — f*(x) is an isomorphism
C"® s M — M, and therefore the homology of the classical complex

My— M, — M, — .,

where the boundary is E(—l)idi, is exactly Torﬁ(k, M).

6.7. Example 3. % = AG. As AG is the category associated to the double
category AG it is natural to look for a biresolution of the trivial AG-module
k . We could construct a standard biresolution associated to AG. However, we
can take advantage of the existence of a simple resolution for A. For G, we
take the homogeneous bar resolution (see Example 1).

We first construct a bisimplicial AG-set {T”'7}. Let T7'%: AG — Sets
be the functor which associates to [n] the set Gé” ) Hom,([q], [#]). An
element of this set will be denoted (g, &, ---, g, «) . Define the bisimplical
structure as follows:

h .
d; means omit g, .
h

s, means repeatg, .

d}) , s:-J means apply faces or degeneracies to each component.
Next define an action of G, on k[T?] as follows:

8(&y, > 8> @) =sign(g)(g8&y, ..., 88,, " &)
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where sign(g) denotes the sign of the permutation given by the action of g
on [q]. Define C”'? to be the quotient of k[T”'?] under this action. Now
C?'? is no longer bisimplicial but only a bi-(chain complex). The reason is the
following formula relating the group action to the vertical faces:

. -1,
(-1)'d; (8(&> .- » &> @) = (-1)° 'di(g)dy-1,(g, ..., 8, )
which follows from the commutative diagram:

E
lg-1] — [q]

ld,»(g) lg

[g-1]1 —2— [q]
C”'? is in fact a biresolution of the trivial AG-module k. To see this note that
the map which sends (g,, ..., 8> a) 10 (g, -+ 8,8, a), where a=¢- g
is the unique factorization of o with ¢ € A and g € G,, gives rise to a
horizontal homotopy which proves acyclicity for p > 0.
Hence we have proved the following

Proposition 6.8. The bicomplex C** described above is a biresolution of the
trivial AG-module k. 0O

Notation. For the small category AG and the AG®™-module M we write
HG, (M) in place of Tor"%(k, M) and HG"(M) in place of Ext,.(k, M").
This agrees with the notation HC, used for cyclic homology and the notations
HD, and HQ, for dihedral and quaternionic homologies. With this nota-
tion symmetric homology is denoted HS, (M). We also denote by Vq the
Gq-module M, with the action of Gq twisted by sign.

From a bicomplex whose homology gives HG, (M) one can deduce two spec-
tral sequences. One of them reads as follows.

Theorem 6.9. Let M be a AG*™®-module. There is a first quadrant spectral se-
quence
l —_—
E, =H(G, M)=HG, (M) |
whose differential d' is induced by the simplicial boundary d = Yo (- l)'d,. .

Proof. Consider the biresolution C** of k given in 6.8. It gives rise to a bicom-
plex which computes HG, (M) . Horizontally the homology is the homology of
the discrete group Gq with coefficients in the Gq-module Hq. This is the

E; , term. The differential d' is induced by the vertical differential which is

precisely d. O

Corollary 6.10. If all the groups G, are finite and if k contains Q, the group
HG, (M) is isomorphic to the homology group of the complex of coinvariants

(M) - d).
Proof. In the spectral sequence E;q =0 for p#0 and E(;n =(M,); . D

n
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6.11. (Co)-homology with coefficients in a free module. Let & be a small cat-
egory and X a functor from Z to Sets. The homotopy colimit of X is a
space denoted hocolim X whose definition is recalled below. If we compose
X with the functor which assigns to a set the free k-module on this set we get
a Z%®-module k[X].

Theorem 6.12. For any functor X: € — Sets there are canonical isomor-
phisms
Tor’ (k, k[X]) = H,(hocolim X , k)
and
Extg(k, (k[X1)") = H" (hocolim X , k).

Proof. To compute the homology of hocolim X with coefficients in ¥ one can
form a simplicial module out of the nerve of %, by taking the free module over
the n-simplices in each dimension. The complex of modules deduced from this
simplicial module has H,(hocolim X , k) for homology groups.

On the other hand if we choose the standard resolution described in [B-K] to
compute Torf(k , k[x]) we find exactly the same complex as above. This ends
the proof of the theorem. O

Corollary 6.13. Let X, bea G, -set and k[X] its associated AG™-module. Then
HG (k[X]) = H (E|G,| X161 |X,]) and the (second) spectral sequence associated
to the bicomplex 6.7 is the spectral sequence of the fibration

G| — |X,| = EIG,| x5 | IX,].
Proof. This is an immediate application of 5.12 and 6.12. O
6.14. Examples of AG-modules. Let 4 be an associative k-algebra (not nec-

essarily commutative) and let 4®" be the n-fold tensor product of A4 over
k. There is a canonical structure of A®-module on the A®"*'’s given by

[n] — 4%,
d(ay,...,a,)=(ay,...,a4,.,,...,4a,) for0<i<n-1,
dfay,...,a,)=(a,a,,...,a,_),
s(ag,...,a,)=(ay,...,a;,1,a,.,,...,a,) forO0<i<n.

The generator ¢, of Z/n+ 1 acts on A" by
t(ay,...,a,)=(a,,ay,...,a,_,).

These actions give rise to a AG*’-module as shown in [C]. The associated
homology is called cyclic homology and is denoted HC, (A4) (cf. [L-Q]).

If the algebra A is endowed with an involution a — @ such that ab = ba,
then [n] — A®"*! is in fact a AD®-module (and hence a AQ™-module). The
action of the generator x of D, , is as ¢, , above and the action of the
generator y is given by

12, - —
y(ao,...,an)=(—1)"(" 4 (@,,a,,...,a,).
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This example is studied in detail in [L], where the associated homology
HD,_(A) (resp. HQ,(A)) is called dihedral homology (resp. quaternionic ho-
mology).

Note that [n] — A®""! is not a AS®-module; however [n] — k[S, +1]®A®"+1
can be endowed with a structure of AS**-module.

6.15. Symmetric homology. The comparison between cyclic homology and
Hochschild homology gives rise to the “periodicity exact sequence,” which is
due to the fact that |C, | =S ' In the symmetric, hyperoctahedral and braid
cases we take advantage of the fact that there exists a null homotopy (cf. 1.5,
Example 6) or equivalently that |S |, |H,| and |B,| are contractible.

Theorem 6.16. Let G, be either S,, H, or B,. If M is a AG™-module, then
the canonical map H, (M) — HG, (M) is an isomorphism.

Proof. Consider the resolution constructed in 6.7. The homology HG (M) is
the homology of the double complex 77 ®,. M = k[(Gq)” 18, M,.

Let p be fixed for a moment and put X, = k[(Gq)”]. The map Xq - Xqul
defined by (g, ..., 8,) — (h(g,), ..., h(g,)), where h: G, — G_,, is the
standard inclusion, is a homotopy; that is d,h = hd;, for 0 < i < g and
d g1 =1d.

In order to compute the homology of the complex (X &M, q) g>0 We consider
the simplicial modules X, , M, and the resulting bicomplex (X, ® M), ;.
By the Eilenberg-Zilber-Cartier theorem the homology of the diagonal complex
(which is the one we want to compute) is the abutment of a spectral sequence.
Because of the acyclicity of X, only Egs is nonzero and it is in fact H (M,).
Therefore H (M) — HS((Xq ® Mq)qZO) is an isomorphism.

This proves that the map of bicomplexes &7/ @, M - €7 ®,. M isa
quasi-isomorphism when restricted to columns. Therefore H (M) — HG (M)
is an isomorphism. 0O

Corollary 6.17. Let k be a characteristic zero field and let M be a AS*-
module. The surjection of complexes (M, ,d), 5, — (M) s » )5 IS a quasi-
isomorphism (also true for H, in place of S,).

Proof. This is an immediate consequence of 6.16 and 6.10. O
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