
transactions of the
american mathematical society
Volume 326, Number 1, July 1991

CROSSED SIMPLICIAL GROUPS
AND THEIR ASSOCIATED HOMOLOGY

ZBIGNIEW FIEDOROWICZ AND JEAN-LOUIS LODAY

Abstract. We introduce a notion of crossed simplicial group, which generalizes
Connes' notion of the cyclic category. We show that this concept has several
equivalent descriptions and give a complete classification of these structures.
We also show how many of Connes' results can be generalized and simplified
in this framework.

A simplicial set (resp. group) is a family of sets (resp. groups) {Gn}n>0 to-
gether with maps (resp. group homomorphisms) which satisfy some well-known
universal formulas. The geometric realization of a simplicial set is a space and
the geometric realization of a simplicial group is a topological group.

We define a crossed simplicial group as a simplicial set 6\ = {Gn}n>0 such
that the Gn 's are groups and the faces and degeneracies are crossed group ho-
morphisms, that is, satisfy a formula like

f(gg') = f(g)(g-f)(g')
(see §1 for the precise definition). A simplicial group is thus the particular case
of a trivial action. The geometric realization of a crossed simplicial group is
still a topological group.

The reason for introducing such objects comes from cyclic homology whose
definition, as given by Connes in [C], relies on the existence of a certain category
A (denoted AC in this paper ) satisfying some special properties. In fact these
properties are equivalent to the following assertion: the standard simplicial
circle can be endowed with the structure of a crossed simplicial group Ct -
{Cn}n>0 with Cn = Z/n + l (cyclic groups). In [L] we remarked that the family
of dihedral groups {Dn+l}n>0 (resp. quaternion groups {ô„+1}„>o ) forms a
crossed simplicial group (but not a simplicial group). The notion of crossed
simplicial group provides a useful conceptual framework for studying these basic
examples.

In this paper we investigate the existence of other families of groups bearing
a crossed simplicial group structure. In particular we show that it is the case
for the family of symmetric groups St - {Sn+l}n>0. Then in 3.6 we give a
complete classification theorem:
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For any crossed simplicial group G„ there exists a (unique up to isomorphism)
exact sequence of crossed simplicial groups

1 -> G', — G, -» G" -+ 1

such that G't is a simplicial group and G" is one of the following crossed sim-
plicial groups: {1}, C,, Sm, {Z/2}, Dt, Z/2xSt and Ht. In this result HH
denotes the hyperoctahedral group (Z/2)" x Sn . The geometric realizations of
these seven particular crossed simplicial groups are respectively a point, S , a
contractible space, Z/2, 0(2), Z/2, a contractible space.

As in cyclic homology theory, a crossed simplicial group Gt determines a
small category denoted AG which bears the same special properties as AC,
with Cn replaced by Gn . We define a Gt -space as a functor Xt : AGop -* Top.
In particular it is a simplicial set. So there should be a relation between its
geometric realization as a simplicial set \XJ and its geometric realization as a
G^-space hocolimAGXt. It is given by Theorem 5.9:

For any Gt-space Xt there is a natural fibration sequence

\XJ -> hocolimAGXt —> BAG.

This is the topological analogue of the periodicity exact sequence relating cyclic
homology with Hochschild homology.

Cyclic homology is obtained through the functor A®: ACop —► (fc-Mod),
[n] -» Am+l, where A is a ¿:-algebra, as HCn{A) = Tor*c'(jfc, A®). More
generally any functor M: AGop —> (/c-Mod) gives rise to homology groups
HGn(M) = ToT^G(k, A/), and we show that most of the properties of cyclic
homology (like existence of spectral sequences) carry over to these new homol-
ogy theories. Finally we prove that the homology of a A5op-module considered
as a simplicial module does not change in characteristic zero after taking the
coinvariants by the symmetric group at each level (cf. 6.17).

The contents of this paper are as follows.
§ 1 contains the definition of a crossed simplicial group Gt and some exam-

ples.
In §2 we show that the true structure underneath is a double category. This

explains why spectral sequences arise naturally in this framework.
§3 contains the description of the crossed simplicial group structure of St

and of Ht together with the classification theorem.
In §4 we introduce Gt -spaces and free Gt -spaces.
In §5 we prove that the geometric realization \GJ of Gt is a topological

group and that there is a homotopy equivalence hocolimAGXt ~.E|C7Jx|G AXJ
and a fibration \XJ -* hocolimAGX\ -* BAG for any G^-space Xr.

§6 deals with the homology of AGop-modules generalizing what is known for
cyclic homology. We prove the existence of spectral sequences abutting to these
new homology groups.
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The second author is indebted to M. Zisman for several helpful comments.

1. Definitions and first examples

Let [«] = {0, ... , n} be a set with n + 1 elements. The category A is
the category of nondecreasing maps [n] —> [m] where [n] is equipped with
its natural ordering. The morphisms of A are generated by the face maps
<$,-:[/!- 1] —► [n] (misses i ) and the degeneracy maps at■ : [n + 1] —> [«] (hits
i twice), i = 0,..., n. The only automorphism of [n] in A is the identity
idw. Recall that a simplicial set X is a functor X : Aop -> Sets. The image of
<j> G HomA is usually denoted <j>*, but we put ó* = d¡ and a* = s¡.

1.1. Definition. A sequence of groups {Gn}, n > 0, is a crossed simplicial
group if it is equipped with the following structure. There is a small category
AG, which is part of the structure, such that

(a) the objects of AG are [n], n > 0,
(b) AG contains A as a subcategory,
(c) AutAG([«]) = G°p (opposite group of Gn),
(d) any morphism in AG can be uniquely written as a composite <f> • g

where <f> G HomA([ra], [«]) and g G G^p (whence the notation AG).

A morphism of crossed simplicial groups Gt -> G[ is a morphism of cate-
gories AG —> AG' which is the identity when restricted to A.

Multiplication in Gn is denoted by gg and composition in AG is denoted
by g ■ g (hence gg = g' ■ g).

Axiom (d) implies that for any g G Gn and any cf> G HomA([w], [«]) there
exist a unique <t>*{g) G Gm and a unique g*((f>) G HomA([m], [«]) such that

(1.2) g-<t> = g\<i>)'<t>\g).
Lemma 1.3.  G, is a simplicial set.
Proof. The functor [n] t-> Gn which sends <f> e Hom4([m], [«]) to (f>* : Gn —>
Gm   is well defined because of associativity in AG; therefore  (<j> ■ y/)*(g)
= v*(<f{g)).   a
Proposition 1.4. A simplicial group is a particular case of crossed simplicial group.
Proof. In order to construct the category AG associated to the simplicial group
G„, we need only to tell what the composite g-(f) is for g e Gn and 4> G HomA,
and to show that associativity holds. We put g ■ <j> = 4>- (¡>*(g) where 4>*{g) is
given by the simplicial structure of Gt. Associativity in AG follows from the
simplicial structure. Axiom (c) is fulfilled because the only automorphisms in
A are identities.   D

So this is a first example of crossed simplicial group.

1.5. Example 2. Let Gn = Z/2 with generator yn+x and put y , •ôj = ôn_i-yn
and yn+x ■ al = crn_j-yn+2. One easily checks that this gives a crossed simplicial
group, whose geometric realization is Z/2.
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60 ZBIGNIEW FIEDOROWICZ AND JEAN-LOUIS LODAY

Example 3. Let Gn = Z with generator tn+x. The composition in AG is
defined by the following formulas:

tn+l-ôi = ôi-rtn   îoT\<i<n,    and   tn+rô0 = ôn,

tn+l-oi = oi_x-tn+2   for 1 <i<n,    and   tn+x ■ cj0 = an ■ t2n+2.

The geometric realization of this crossed simplicial group is homeomorphic to
R. The category AZ associated to this crossed simplicial group Z% is closely
related to the duplicial category of [D-K].

Example 4. In [C] A. Connes has described a category A which satisfies the
conditions of 1.1. In this case Gn = Z/{n + 1), the cyclic group of order n + 1.
This category A will be denoted AC in this paper. It is described by the same
relations as in the preceding example but with (tn+x)n+i = id^ . Its geometric
realization is homeomorphic to S because the only nondegenerate simplices
are tx and t2. The category AC is a subcategory of the category AS which
will be constructed in §3.

Example 5. Let Dn = {x, y\x" = y = 1 and yxy~l = x~1} be the dihedral
group and let Qn = {x,y\xn = y , yxy~l = x-1} be the quaternion (or
binary dihedral) group. Crossed simplicial groups {Gn} with Gn = Dn+X or
ôfi+i were described in [L] (see also §3). The geometric realization of Dt (resp.
Qt ) is the orthogonal group 0(2) (resp. the normalizer of 51 in S ).

Example 6. There exist crossed simplicial groups {Gn} with Gn = Sn+X, the
symmetric group, Gn — Hn+{ , the hyperoctahedral group, and also Gn = Bn+X ,
the braid group. These examples will be studied in detail in §3; their classifying
spaces are contractible by the following argument. Let h be the inclusion of
Sn (resp. Hn , Bn) in Sn+X (resp. Hn+X, Bn+X ) obtained by letting it act on
the n first points. This inclusion satisfies d¡h = hdi for 0 < z < n and
dn+xh — id, so this is a homotopy from the identity to the trivial map. The
geometric realization of St (resp. Ht, Bt ) is a simply connected space with
trivial homology; therefore it is contractible.

Example 7. Let Gt be one of C_, Dt or Qt. Define a new crossed simpli-
cial group GJ,fc) by G),*5 = Gk,n+X)_x. It is easily checked that this is still a
crossed simplicial group whose geometric realization is a subdivision (and so
homeomorphic to that) of Gt.

Proposition 1.6. In the crossed simplicial group G„ the functions

g* : HomA([w], [«]) -► HomA([m], [«])

for g g Gn and </>*: Gn -> Gm for <f> g HomA([m], [«]) satisfy the following
relations:

î.h. (0-0T(s) = A<As)),
i.v. (gg )*(<!>) = g'*(g*(4>)),

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CROSSED SIMPLICIAL GROUPS 61

2.h. g*(<t>-4>') = g*(<j>)-(<t>*(g)) {<(>'),
2.v. t¡>*{gg) = 4>'(g){g*m*(g'),
3,h.  (idnr(g) = g andtf(\n) = ln,
3.v.  (1„)> = 4> and s*(id„) = id„ .

Conversely, a family of groups {Gn}n>0 with two sets of functions g* and <f>*
satisfying the relations above defines a crossed simplicial group.
Proof. Relations 1 and 2 are deduced from formula (1.2) and from associativity
in the category AG. Relations 3 are deduced from formula (1.2), the property
of the identities and the fact that id^ = 1^ in AG.

Conversely, define the morphisms of AG to be the pairs g • <fi and let the
composition be given by formula (1.2), composition in A and composition in
Gn , i.e., (g • (f>) ■ (h ■ y/) = (g ■ (f>* (h)) • (h* (<f>) • y/). Formulas 1, 2 and 3 prove that
AG is a well-defined category. The axioms of 1.1 are immediate to verify.   D

Proposition 1.7. A crossed simplicial group is a simplicial set Gt such that Gn
is a group, together with a group homomorphism Gn -* Sn+X = Aut[«] for each
n, such that

I- d¡{gg') = d¡(g)dg-t{i)(g), s¡{gg) = s;(s)V(,)(s') - and
2. the following set diagrams are commutative:

[n-l]-Ä[/j]       [n + l]-3Ä[„]
d¡(g) s,(g)

[n-l] -► [n]      [n + \] -> [n]
s, °,

Proof. Starting with a category AG we already know that the family {Gn} is
a simplicial set and that Gn is a group.

The element g*(o¡) has to be a face map ôj and the set map p(g) : [n] -* [n]
which sends / to j is a bijection. From relation l.v of 1.6 we deduce that
p:Gn-* Sn+X is an antihomomorphism, so composition with g i-> g~l gives
a homomorphism. If we were dealing with degeneracies instead of faces we
would have found the same representation (see [A] for detailed proofs of these
facts).

Formulas 1 follow from l.v of 1.6 and from g*(o¡) - í,,,.) = ö -iU)
Formulas 2 are translations of particular cases of the identity (1.2).
On the other hand in order to construct AG we use Proposition 1.6. The

function 4>* is given by the simplicial structure of Gt. The function g* is
constructed from g*(<$,-) = S -i... and g*(ai) = og-u» by using the rule 2.h of
1.6. To prove that this is well defined we need to verify the compatibility with
the relations between faces and degeneracies. We will only do the verification
for the relation <5 • 5l = ôj • ¿ _, when i < j.

On one hand we have g*(SJ ■ r5() = S -¡U) ■ ôd , .-i., and on the other hand

g*(si'sj-i) = sg-l{i)-ödi{g)~lu-i)- Put a = g~l{i) and b = g~\j). If b < a,
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then by property 2 ¿((g)_1(; - 1) = b and dj(g)~\i) = a - 1. So we need to
have ôa • ôb = ôb • ôa_x, which happens to be true because b < a .

If b > a, then by property 2 d¡(g)~l{j- 1) = b- 1 and dj(g)~](i) = a . So
we need to have Sa ■ ôb = ôb • öa_x, which happens to be true because b > a .

The other relations are proved analogously.
Relations 1, 2 and 3 of 1.6 follow from the definition of g* and <f>*.   D

Remark 1.8. If the representations are trivial, then condition 2 is automatically
fulfilled and condition 1 shows that Gt is a simplicial group.

2. Interpretations in terms of double categories
2.1. A small double category (cf. [ML]) is a set of objects, a set of horizontal
morphisms Mor , a set of vertical morphisms Morv and a set of bimorphisms
Bimor, together with the following structure. To any bimorphism a there are
associated two horizontal morphisms: its horizontal source / and its horizontal
target g, and also two vertical morphisms: its vertical source /' and its vertical
target g . To any horizontal (resp. vertical) morphism is associated two objects
(like in an ordinary category): the source and the target. The sources and the
targets of the morphisms associated to a bimorphism a are such that they fit
into a diagram

A —^—» B

4    y
C —$—> D

(which means A = source of horizontal source = source of vertical source and
so on).

Moreover a double category is equipped with two composition laws: a hori-
zontal one

|     a     |     a'     |      i->      I    a •   a    I

and a vertical one

H»       |     ß -V Q     I

such that the horizontal (resp. vertical) composition makes (Bimor, Morv )
(resp. (Bimor, Mor ) ) into a category. The last requirement is the interchange
law between vertical and horizontal compositions: given four composable bi-

l     a     Ï

l     ß     Î
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morphisms like below

I     a     I    a     I

l     ß     i    ß'    i

then one has the formula
/ ' h   \(a •  a) (ß1 -h ß) = (ß' .v a') -h (ß .v a),

Exercise. Let G be a group. Put Bimor = G, Mor = Morv = Ob = * (i.e.,
one element). Show that if horizontal and vertical compositions are given by
the group law, then this is a double category if and only if G is abelian.

2.2. Any small category gives rise to a simplicial set called its nerve. Similarly,
a small double category gives rise to a bisimplicial set (X ), p > 0 and q >
0, still called its nerve. It is obtained as follows. The set X is the set of
all rectangles of p x q bimorphisms which are composable according to the
following picture:

The horizontal (resp. vertical) simplicial structure is obtained as in the nerve
of a category. The compatibility of the two simplicial structures follows from
the interchange law in the double category. The geometric realization of this
bisimplicial set is the classifying space of the double category (cf. for instance
[B-K] for more details).

Exercise. In the example above the classifying space is an Eilenberg-Mac Lane
space of type K(G, 2).

2.3. We will now consider a special type of double category, those which satisfy
the star condition:

(*) Any pair (<j>, g) where <¡> is a horizontal morphism and g a vertical
morphism with the same target object determines a unique bimorphism a.
Hence

B A   Ä    B
I g <t>"{g)i        a       ig

C   -►    D    determines C      —>      D
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64 ZBIGNIEW FIEDOROWICZ AND JEAN-LOUIS LODAY

As a result this pair determines a new horizontal morphism g*(4>) and a new
vertical morphism 4>*(g).
Proposition 2.4. Let B be a small double category which satisfies (*). Then the
functions horizontal source {<l>, g)<-> g*(<t>) and vertical source (</>, g) (->• <¡>*(g)
satisfy formulas 1, 2 and 3 of 1.6.
Proof. Horizontal composition and the star condition imply formula l.h and
2.h. Composition with the identity of the horizontal law implies 3.h. Sim-
ilarly formulas l.v, 2.v and 3.v are implied by the properties of the vertical
composition.   D

All the examples given in the previous section give rise to a double category
of the following kind. The objects are [n], n > 0, the horizontal morphisms
are those of A, the vertical morphisms are such that Homv([m], [«]) = 0 if
n t¿ m and Homv([«], [n]) = Gn (as a group), and the Dimorphisms satisfy
condition (*).
2.5. Let B be a small double category satisfying (*). To B we associate canon-
ically a category B as follows. The objects of B are those of B. A morphism
of B from A to C is a pair of morphisms

aJ^c-^b
where h is a vertical morphism and (f> a horizontal morphism in B. Compo-
sition in B is defined by the following diagram:

F    -,   E    -,    C F -, c
; I
D    -,    B ~
I
A A

The star condition ensures that the composition is associative and has an iden-
tity.
Proposition 2.6. Let B be a small double category satisfying (*). Then the
classifying space of B is canonically homotopy equivalent to the classifying space
of B.
Proof. The classifying space of B is the geometric realization of nerve B, which
is a bisimplicial set. By a classical lemma (cf. [Q, Chapter 1]) this space is
homotopy equivalent to the geometric relaization of the diagonal of nerve B.
This last simplicial set is in fact, thanks to the star condition, the nerve of B_.
As a result the classifying spaces of B and B_ are homotopy equivalent.   G

2.7. Remark. The construction of B looks like the ß-construction of Quillen
[Q]. In fact any exact category E determines a double category QE whose
bimorphisms are commutative bicartesian squares with monomorphisms
(resp. epimorphisms) as horizontal (resp. vertical) morphisms. Quillen's Q-
construction is the category QE associated to the double category QE (see p.
201 of loc.cit).
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Proposition 2.8. A crossed simplicial group Gt is equivalent to a double category
which satisfies the (*) condition, whose category of horizontal morphisms is A
and whose category of vertical morphisms is the groupoid \Jn Gn .
Proof. We start with the characterization of a crossed simplicial group given in
Proposition 1.6. A bimorphism in AG is of the form given in 2.3. Horizontal
(resp. vertical) composition is forced by the composition in A (resp. in Gn ),
it is associative thanks to formula l.h and 2.h (resp. l.v and 2.v) and has an
identity thanks to formula 3.h (resp. 3.v).   D

Proposition 2.9. The classifying space of the double category AG associated to
the crossed simplicial group Gt is homeomorphic to the classifying space B\GJ
of the topological group \GJ.
Proof. The nerve of AG is the bisimplicial set of rectangles (cf. 2.2). Its classi-
fying space can be obtained by taking first the horizontal geometric realization
(which gives a simplicial space) and then taking the vertical geometric realiza-
tion. In the case at hand, for fixed q , the horizontal simplicial set is the nerve
of the category associated to the functor Aop —► Sets, [n] >-> (Gn)q (its objects
are ([«], x) with x G (Gn)q). The classifying space of this category is homeo-
morphic to \GJ9 , which is a topological group (cf. Theorem 5.3). Under these
homeomorphisms the simplicial structure of [q] >-> |GJ? is identified with the
simplicial structure of nerve |GJ , whence the assertion.   D

Remarks. The simplicial structure of [n] i-> (Gn)q is not the product of the
simplicial structure for q — 1, unless G_ is a simplicial group. Bisimplicial
sets lead naturally to spectral sequences; this is why it is interesting to know
that the classifying space of B is homotopy equivalent to the classifying space
of a bisimplicial set. This will be used in Theorems 6.9 and 6.16 below.

3. Examples and classification of crossed simplicial groups

3.1. The symmetric group Sn+X acts on [n] = {0, 1,...,«} by permutations.
It will be helpful to think of a permutations g as a graph linking points of [n]
to the points of another copy of [n] :

0      12     3      4

g = (02341)

0      12      3      4

The hyperoctahedral group Hn+X = (Z/2)"+ x Sn+X is a semidirect product
where Sn+X acts by permutation of variables on (Z/2)"+1 . It is often denoted
S { /Z/2 (wreath product). An element g of Hn+X can be viewed as a graph
with labels. The edge abutting at i is labelled by 1 or y (generator of Z/2 )
according to whether the ith component of g in (Z/2)"+ is the identity or
the generator.   We will refer to elements of //   ,   as labelled permutations.

y>A\

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



66 ZBIGNIEW FIEDOROWICZ AND JEAN-LOUIS LODAY

Accordingly it is helpful to think of elements of HomA, which are set maps
which preserve the order, as graphs linking elements of [m] to their image in

3 3
2 2'
1 1
0 0'

o, Oi

Our aim is to describe a crossed simplicial group structure on Hn+X.
Description of g*((f>). A map (¡> e HomA is completely determined by the

sequence of numbers #<p~ (/) for i = 0, ... , n ( # means number of elements
of). Consider g as a permutation of the set [«] and define a new sequence of
numbers by i >-» #4>~ (g(i)). This, in turn, determines a morphism in A that
we denote by g*(<j>) G HomA([w], [«]).

Description of (f>*(g). We consider g e Hn+X as a labelled graph. <f>*(g) is
a labelled graph constructed from g as follows. If i is not hit by g we delete
the edge abutting to /. If #<f>~ (/) — k (with k > 1) we replace the edge from
g~x(i) to i in g by k edges. If the label of the former edge was 1, then
these k new edges are all parallel and adjacent, with labels 1. If the label of
the former edge was y , these k new edges are as in the following picture, with
labels y.

Example.

4>*(g)

(40
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In other words the permutation (f>*{g) sends the subset g*((f>) (j) to the
subset <j>~l(g(j)). If the label of the edge from g to g(j) has label 1 then
(f>*(g) respects the order (and the labels are 1). If the label is y then (¡>*(g)
inverts the order (and the labels are y ).

Lemma 3.2. Let <f> be in HomA([m], [«]) and g in Hn+X. Then (j>*(g) and
g*(4>) are the only elements such that the set diagram

[m] J^L [n]

4>'(g)

[m] -    -» [n]

is commutative and that <t>*(g) preserves (resp. inverts) the order of the subsets
í?*(0)_1(7) for j = 0,1,... ,n if the corresponding label is 1 (resp. y).
Proof. The description of g*((¡>) follows immediately from the following three
conditions:

(a) the set diagram is commutative,
(b) g*((j>) is a nondecreasing map,
(c) <t>*(g) is a bijection.
The description of <f>*(g) follows from conditions (a)-(c), and the order

condition on g*(<f))~ (j).   D

Theorem 3.3. The family of hyperoctahedral groups {Hn+X}, n > 0, is a crossed
simplicial group.
Proof. We remark that a picture like the example above is geometric description
of a bimorphism in the double category AH.

Formulas l.h and 2.h of 1.6 come from horizontal composition in AH. For-
mally these formulas are proved as follows. By Lemma 3.2 (<f> • <j>')*(g) and
g*(4> • 4>') are the only elements which make the set diagram (with g and
<f> • (j>) commute and which verify the order condition. So it suffices to check
that 4>'*(4>*(g)) and g*((f>) • (<t>*(g))*(<t>') also do. The commutativity of the
square is immediate as a composite of two commutative squares. If the or-
der of g*((f>)~ (i) is preserved (resp. inverted) then the labels of the corre-
sponding edges are 1 (resp. y). Therefore the order of 4>*(g)*(<f>')~ (j) (for
j G g*((j>)~ (/)) is also preserved (resp. inverted). The nontrivial part in this
last statement comes from the following point. If Ax, ... , Ak are ordered sub-
sets of consecutive elements of [n] (U,■Ai = [«]) then the global involution
on [n] is obtained by performing the involution among the subsets Ai (which
gives Ak, ... , Ax) and then performing the involution inside the A;'s.

The labels of 4>'*(<p*(g)) are determined by the labels of g via (t>-4> ; there-
fore they are the same as the labels of (</> • 4>')*(g).

Formulas l.v and 2.v come from the vertical composition in AH and they
are proved similarly.
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Formulas 3.h and 3.v are immediate to verify.   D

Proposition 3.4. The family of groups Ct = {Z/n + 1}, St = {Sn+X}, {Z/2},
D„ = {Dn+X} and Z/2 x St are crossed simplicial groups.
Proof. All these groups are subgroups of H   x as follows.

Let Cn+l be the product of all the Z/2-generators in (Z/2)"+1, let xn+x be
the cycle (01 ... n) in Sn+X and let con+x be the involution

(0«)(l«-l)(2«-2).-.

in  S»+l ■
In Hn+X we verify easily that
— (1 > T„+i) generates Z/n + 1,
— Sn+X is naturally a subgroup,
— (C„+1, con+1) generates Z/2,
— (1, Tn+1) and (C„+1, <uB+1) generate Dn+X.
We check that these families of subgroups of Ht are stable under the action

of <f>, <f> G HomA .
For St it is immediate because if all the labels of g are 1, then so are all

the labels of 4>*(g).
For Ct we compute cj>*{g) for (p - ôi and <p = ai and for g = xn+l .

Formula 1.2 for these cases gives

Xn+l'Ôi = Ôi-rXn>      !<'<"> Xn+l-ô0 = ôn>

which shows that 4>*(Tn+x) is always in C„.
For {Z/2} we compute

(Cn+1, con+x) ■ ôi = ôn_t ■ (C„ , œn),        0 < i < n,
(Cn+i, o)n+l) ■ a, = on_, ■ (Cn+2, œn+2),        0 < i < n,

which shows that 0*(Ç„+1, <y„+1) is always in {Z/2}.
The case Dt is a consequence of the cases Ct and {Z/2}.
The case Z/2 x St is a consequence of the cases {Z/2} and St.   O

Proposition 3.5 (R. Aboughazi [A]). The subcrossed simplicial groups of H% are
{I}, Ct, St, {Z/2}, Dt, Z/2x5t and Ht itself
Sketch of the proof. First, if G„ c 51, contains a nontrivial permutation then
we certainly have G, = Z/2 = S2. Then by looking at a* we see that Gt
contains Ct.

Second, if Gt contains a permutation which is not in Cr then certainly it
contains (01) in G2 c 53. Then it contains (01) in Gn c Sn+X for any n.
As Sn is generated by (01) and (01 ... n) it follows that Gn contains Sn+X .
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For Ht we use the result for Sr and a similar argument for (Z/2)"+1 where
the role of the cyclic permutation is played by Çn+X and the role of the permu-
tation (01) in S3 is played by the trivial permutation in S2 with labels 1 and
y.   D

Theorem 3.6 (Classification of crossed simplicial groups). For any crossed sim-
plicial group G„ there exists an exact sequence (unique up to isomorphism) of
crossed simplicial groups

1 — Gl -» G, — G" — 1
such that G't is a simplicial group and G" is one of the following crossed sim-
plicial groups: {1}, Ct, St, {Z/2}, Dt, Z/2 x 5^ and H^.
Proof. First we prove that Gt determines a unique homomorphism Gt -*
Ht. The image of Gn in S , has already been determined in 1.7. We now
determine the (Z/2)"+1 part.

Let g G Gn and consider the action of s^g)"1 on the subset {i, i + 1}.
If st(g)~l respects (resp. inverts) the order, then the label of the edge of g
abutting at i is 1 (resp. y ).

Hence the map Gn —► Hn+X is well defined and this gives a morphism of
crossed simplicial groups (see [A] for details).

By definition kernel G't is such that g G G'n acts trivially on [n]. Therefore
g*(<f>) = (j) for any 0 g HomA. This proves that G't is a simplicial group (cf.
Remark 1.8). Finally the theorem follows from Proposition 3.5.   □

For example, the exact sequence associated to Qt (Example 5 in 1.5) is

1 — Z/2 — Qt -» D, — 1.
3.7. The example of braid groups. Let Bn be the braid groups on n braids.
We denote by ß: Bn —> Sn the canonical surjection and we denote by Tn the
coloured braid group Ker/z. Let (f> be in HomA([m], [«]) and let g be in
Bn+\ ■ We put g*(<f>) — ß(g)*(<t>), using the definition for the symmetric group.

An analogue of Lemma 3.2 with Bn+X in place of Hn+l can easily be proved.
Hint: use the following picture.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



70 ZBIGNIEW FIEDOROWICZ AND JEAN-LOUIS LODAY

Explicitly the order preserving condition about the restriction of 4>*(g) on
g*(4>)~ (i) is replaced by:

—the restriction of cf>*(g) considered as a braid from g*((j))~\i) to (f>~\g(i))
is the identity braid. The same argument as in the case of the symmetric (and
hyperoctahedral) group proves the following.

Theorem 3.8. The family of braid groups {Bn+X}n>0 is a crossed simplicial group
5.. a

The extension given by the classification theorem is

i_r -+B, -s.-i,
where Tm is a simplicial group.

Remark 3.9. The inverse image of Ct c St in Bt is the duplicial crossed
simplicial group Zt described in Example 3 of 1.5. The extension provided by
3.6 is

1 — Z -» Zt — C. -» 1,
where Z stands for the trivial simplicial group Z. The geometric realization
of this extension is the fibration Z —► R —> S .

Let K be a group and Sn+X f K = Kn+ x Sn+X be the wreath product of
S„+l by*.
Theorem 3.10. The family of groups {Sn+X / ^}„>0. is a crossed simplicial group
(SfK)t.
Proof. Let /x: Sn+X JK —> Sn+X be the natural projection. We put g*(<f>) =
ß(g)*(cj>). To define 4>*(g) we consider the geometric definition of <j>*(g) in
the symmetric case. An element in Sn+X JK is given by {(/c0, ... , kn+x), g}
with kf G K and g e Sn+X . We label the vertex going from i to g(i) by k¡.
Therefore the braids of the permutation 4>*(g) are also labelled, and thus it
defines an element in Sn+X f K (still denoted (¡>*(g)). The rest of the proof is
as in the hyperoctahedral group case.    D

Remark 3.11. The kernel of the map (S J K)t -, St is the simplicial group
W(K). The simplicial structure of (S JZ/2)t is different from the simplicial
structure of Hm.

4. Objects over crossed simplicial groups
The main justification for studying the simplicial category A is to give a

succinct interpretation of the notion of a simplicial object in a category W,
that is a functor Aop ->?. In this section we define the analogous notion for
crossed simplicial groups.

4.1. Definition. Let G„ be a crossed simplicial group, let AG be its associated
category and let £? be any category. By a G„- object lin 'ío we shall mean a
functor X : (AG)op —* fê. As in the case of simplicial objects we will denote such
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a functor simply as Xt with Xn denoting the image of [n]. If A: [m] -, [n] is
a morphism in AG we will denote by X* : Xn -> Xm the associated morphism
X(k). If g G Gn, then noting that AutAG([«]) = G°p we will denote by íh
gx (instead of g*x ) the associated action on Xn and we will abusively write
Gn x Xn -+ Xn . By a morphism of Gt-objects (or simply Gt-map) we will
mean a natural transformation between functors (AG)op -> W and we will use
the notation f0 : Xt -, Y, and fn : Xn -» Yn .

In most of our considerations below we will take f to be either the category
of sets or of topological spaces and will refer to the corresponding G„-objects as
G„-sets or Gt -spaces with the former case being subsumed within the latter by
regarding a set as a space with the discrete topology. In §6 we will consider the
case when W is a category of modules and we will then speak of Gt -modules.

In the case when AG = AC, the cyclic category, our definition reduces to
Connes' notion of a cyclic object. As in that particular case, it is useful to give
another interpretation of a G.-object as a simplicial object with some additional
structure.

Lemma 4.2. The notion of a Gt-object in & is equivalent to the notion of a
simplicial object Xt in W with the following additional structure:

(a) left group actions Gn x Xn —> Xn ,
^6) face relations (cf. 1.7) d¡(gx) = dt(g)(dg-t¡x),
(c) degeneracy relations (cf. 1.7) st(gx) = s¡(g)(sg-l{¡)x) .
In fact it suffices to specify the face and degeneracy relations for the generators

of Gn. A Gt-map fm : X, -+ Yt is the same thing as a simplicial map such that
each fn : Xn -» Yn is Gn-equivariant.
Proof. The inclusion A ç AG defines for each Gt-object Xt an underlying
simplicial object which we also denote Xt. The stated equivalence follows
readily from the characterization of crossed simplicial groups given in Proposi-
tion 1.7.    D

It is now easy to define a free functor from simplicial spaces to Gt -spaces
which is adjoint to the forgetful functor going the other way.

Definition 4.3. Let Xt be a simplicial space. Define a Gt-space FG (Xt) whose
space of «-simplices is Gn x Xn with Gn-action specified by left multiplication
on Gn and with faces and degeneracies specified by the formulas

d,(g,x) = (í/,(£),í^-i(/)(x)),
s:(g,x) = {s¡{g),sg-i[n(x)).

We define a simplicial map »„: X% —» FG (XJ by x —► (1, x) and a Gt-map
/V FGJG^Xt) -» FG{Xt) by (gx ,g2,x)-> (gxg2, x). If AT, is a G,-space
define a G^-map evt : FG (XJ -, Xt by (g, x) -> gx .

It is an easy exercise that we leave to the diligent reader to verify that
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Proposition 4.4. (i) FG (XJ as specified above is a Gt-space, (ii) FG is left
adjoint to the forgetful map from Gt-spaces to simplicial spaces, with adjunction
specified by it and coadjunction specified by evt, (iii) (FG ,/*,,/„) specifies
a monad on the category of simplicial spaces whose algebras are precisely the
G ̂ -spaces,    u

Exercise 4.5. The G„ «-simplex A"(GJ: (AG)op -» Sets is the functor specified
by HomAG(-, [«]). Show that Ant(GJ = FG (A") where A" is the «-simplex.

5. Geometric realizations of crossed simplicial groups
When A. Connes defined the cyclic category AC and the notion of a cyclic

object, he showed that in some sense he was codifying combinatorially the no-
tion of an action of the circle group Sl and he showed that the classifying
space BAC was equivalent to the classifying space of the circle BS ' = CP°° .
In this section we extend Connes' results to arbitrary crossed simplicial groups
and strengthen them even for the cyclic case. We show that for any crossed
simplicial group Gt, the geometric realization of the underlying simplicial set
is a topological group |GJ , that the geometric realization of a Gt-space is a
|GJ-space, and that the homotopy colimit of a Gt-space Xt regarded as a
functor AGop -» Top is equivalent to the Borel construction E\GJ x,G , \XJ.
Finally we prove a theorem which severely restricts the kinds of topological
groups which can arise in this way.

Proposition 5.1. Gt be a crossed simplicial group and X^ be a simplicial space.
Then there are projection maps px : \FG (XJ\ -* |GJ and p2: \FG (XJ\ -> \XJ
having the following properties:

(i) (px, p2): \FG (XJ\ -, \GJ x \XJ is a homeomorphism.
(ii) For any simplicial map £: X% -> Yt the following diagrams commute:

\FG (*,)l

Pi

\FG (f.)\

f.

liv (Y_._

Pi

\Fa.(f.

I*. I
(iii) p2: \FG (XJ\ -, \XJ defines an action of the monad (FG , ßt, /J on

the geometric realization functor; i.e. the following diagrams commute:

\FGSFGSX.))\
Pi

\FG (^)l
Pi

Wg {X.)\       \X.

IX

\FG.(X*

Pi

\x.
(iv) The composite \GJ = \FG (*) \G \ is the identity.
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(v) The following diagram commutes:

\X.\ -^ \FG (XJ\

{1}
To prove this we first need the following lemma.

Lemma 5.2. Let G+ be a crossed simplicial group. Then there are affine actions
Gn x An -» A" such that for any morphism <j>: [m] -> [«] in A and any g e Gn
the following diagram commutes:

Am ^^ A"

i>'{g)

Am    g*W> A"

Proof. The defining representations Gn -, Sn+X of a crossed simplicial group
extend obviously to affine actions Gn x An —► A" . The result now follows from
Proposition 1.7.   D

Proof of Proposition 5.1. There is a simplicial projection pu: FG (XJ —> Gt
given by pXt(g,x) = g. We take px = \pu\. We define p2: \FGJxj\ -, \XJ
by the following prescription:

p2[(g,x), u] = [x, g-u].

Here m G A" and g - u refers to the action constructed in Lemma 5.2. The
following calculation shows that p2 is well defined:

p2[(<(>*(g,x), u)] = p2[((p*(g), (g*((p))*(x)),u]

= [(g '(«'W, 4>*(g)u] = [x, g*(<f>) ■ <f(g)u]
= [x, g • <p(u)) = p2((g, x), 4>(u)]

where g G Gn, x G Xn   u G Am and <p: [m] —► [«] is in A.
It is straightforward to check that properties (ii)-(v) hold. To prove (i) we

first construct a homeomorphism «: \G x X | -> \FC (X )\ by defining*

h[(g,x), u] = [(g~l ,x), g-u]

A similar calculation as above shows that h is well defined, and it is obviously
a homeomorphism. In the case when Xt is a point we get a homeomorphism
i:\GJ-* |GJ given by

i[g, "] = [£"', g-u].
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We deduce (i) by noting that the following diagram commutes:

IG. x X \FG (X.)

:!<?,. u«2. i (P\ >p2)

IG J x |X ix id IG J x IX

where qu : Gt x Xt —> Gt and q2if : Gt x Xt —» Xt are the standard simplicial
projections.   D

Theorem 5.3. (i) If G„ is a crossed simplicial group, then |GJ is a topological
group.

(ii) If X, is a Gt-space, then there is an induced action |GJ x |XJ —► |XJ -
(iii) (px, p2): \FG (XJ| —> |GJ x \XJ is an equivariant homeomorphism.

Proof. If X, is a Gt-space, then there is an evaluation map ev^: FG (XJ —►
X, > and we define a map Ç: |GJ x |XJ —> |XJ as the following composite:

\GJx\XJ^L^\FG(XJ\^l\XJ.

In particular |GJ = |.FG (GJ| is a Gt-space (via /*, ), and so we get a map
C * : | Gt | x | Gt | —> | G, |. We first note that for any simplicial space X, we have
the following commutative diagram:

\FG {FG (XJ)|

(p,,p2)

|G.|x|Fc(*,)|

idx(p, ,p2)

IG J x IG J x X.

I«.

Cf;'xid

WG (*.)l

(p, >p2

\G.\x\X,

This follows from parts (ii), (iii) and (iv) of Proposition 5.1, the naturality of
p.t, and the fact that for Xt = * the diagram commutes by definition of Ç • .
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On the other hand the diagram
\Fr  (evjl |ev   I

\FG (FG (XJ)|    -^-►   \FG (Xt)\   ±-± \X.

(p, .p2) (p, .p2)

\G.\ x \FG (XJ|   -UïiM |GJ x IXJ —Z-+ \XJ
idx(p,,p2)

IG J x IXI id x r        . r-►    \GJ x |XJ -► |XJ
commutes by part (ii) of Proposition 5.1 and the definition of £ . It then follows
from the associativity of the monad action of FG   on X» mat

|G J x |G J x XJ ^^i IG J x IX

idxi

\G,\ x XI IX
commutes. In particular taking Xt = G„ we obtain that Ç * : |GJ x |GJ —► |GJ
is an associative multiplication.

Now it follows from part (iii) of Proposition 5.1 that

IX

{l}x|XJ

I'.l IV*.)I
(p. .p2)

G J x XJ
commutes, which together with the unit diagram for the action of the monad
FG   on X implies that

commutes. In particular, taking Xt = G, we obtain that 1 G |GJ is a left unit.
By part (ii) of Proposition 5.1 and the definition of Ç the following diagram
also commutes:

\FG (*)l \FG (OJI   -^- \G.

(p, ,p2)

|OJ = |GJx|G,|{l}^|GJx|GJ
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and by inspection the composite across the top is the identity. Hence 1 G |GJ
is also a right unit.

We also claim that the homeomorphism /: |GJ —> |GJ constructed in the
proof of Proposition 5.1 is the inverse. To see this, note that according to
the proof of Proposition 5.1 and the definition of ÇG, the following diagram
commutes:

IG. IG. x G. \FG (OJ
k«.l

IGJ x |G

Í1.I.I«2.D

ixid

(Pi >P2)

x|G | ■

and by inspection the composite across the top is the constant map at 1. Hence
i is a left inverse. The fact that i  = id implies that i is also a left inverse.

Part (iii) follows readily from the constructions above. This completes the
proof.   G

The following fundamental example illustrates the above results.

Example 5.4. Let Gt = C„. Then the free cyclic set Fc (Slt ) corresponds to
the following triangulation of the torus

a     as opposed to   a

which corresponds to S1 x Sl , the standard simplicial product. The multipli-
1 1 2cation map St x St = I /'

(s,t)

S   given by

S + t if 5 + t < 1
S + t-l     if 5 + t > 1

is simplicial with respect to the first triangulation (corresponding to evt : Fc (St )
-> Slt ) but is not simplicial with respect to the second triangulation.

The following example illustrates the kind of group actions which can be
codified in the context of crossed simplicial groups.

Example 5.5. The action of S1 on S given by quaternionic multiplication can
be realized as a geometric realization of a cyclic set. One first notes that 53
with this Sl action is equivariantly homeomorphic to the join 5'1*5'1 with S1
acting on both factors of the join. This in turn is the realization of the cyclic
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set X» obtained by taking the pushout diagram

FCm(0)xSllFcß)xSl^   FcyjxSl
Pri.-U-P^,

S'il sl->xm
where prlt denotes projection onto the first factor Fc (0) = Sj and pr2„
denotes projection into the second factor.

Several of our subsequent results will require an explicit formula for the
action of |GJ on the geometric realization |XJ of a Gt -space. Such a formula
is furnished by the following lemma.

Lemma 5.6. Let Gt be a crossed simplicial group and let X, be a G^-space.
Then

(i) For any g G Gm, (s0, sx, ... , sm) e Am, (t0,tx, ... , tn) G A" there are
surjections k: [p] -> [m], y: [p] —► [«] in A andan element (u0, ux, ... , u ) e
A such that X(u0, ux, ... , up) = (sQ, sx, ... , sj and yX*(g)(uQ ,ux,...,up)
= (t0, tx, ... , tn).

(ii) For any g eGn, x G X, and (/0 ,tx, ... , tn) G A"

[g,(t0,tx, ..., tn)] ■ [x, g(t0,/,,..., tn)] = [gx,{t0,tx,..., tn)].

Proof. By the shuffle algorithm we can find surjections a: [p] —» [m], y:\p\-*
[«] in A and an element (v0, vx, ... , v ) G Ap such that a(v0 ,vx,... ,v ) =
g(s0,sx, ... ,sj and y(v0, vx, ... , vp) = (t0, tx, ... , tn). Let X = (g~l)*{a).
It then follows from Lemma 5.2 that

I - k*(g)~\v0,vx, ...,vp) = (sQ,sx,... ,sm).

If we let (m0 , ux, ... , u ) = X*(g)~ (vQ, vx, ... , vp), part (i) follows immedi-
ately. Part (ii) follows from noting that

(P\,P2)~\lg, Co» h> •••»'«)]• iX'gito'ti' •••'/J])
= [(g,x),(t0,tx,...,t„)].   0

Theorem 5.7. Let Gt be a crossed simplicial group and denote by |GJ-Top,
resp. G,-Sets, the categories of \GJ-spaces and Gt-sets respectively. Then \ \.
Gt-Sets—> |GJ-Top has a right adjoint Singt: |G,|-Top -» G„-Sets obtained by
endowing the total singular complex of a \ GJ-space with the structure of a Gt-set.
Proof. Let X be a |GJ-space, let a: A" -, X be a singular simplex, and let
g G Gn. Define the singular simplex g • a: A" —* X by the following formula

(g-o)(u) = [g> u]-a(gu)

for u G A". It follows easily from Lemmas 5.2 and 5.6 that this endows the
total singular complex Singt(XJ with the structure of a G^-set. Now apply the
standard adjunction between topological spaces and simplicial sets, noting (by

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



78 ZBIGNIEW FIEDOROWICZ AND JEAN-LOUIS LODAY

Lemma 5.6) that for a G„-set Yt the unit map Y, —► SingedYJ) is a G„-map,
and that for a |GJ-space X the counit map | Singt(X)| —► X isa |GJ-map.   D

Remark. In the paragraph below we prove various results about homotopy co-
limits over the category AG. For the convenience of the reader we first recall
the definition of hocolimX where X is a functor from a small category f
to Sets or Top. Let Wx be the category whose objects are (C, x) where C is
an object of W and x e X(C). A morphism (C, x) to (C', x) in ^ is a
morphism C —► C' in ^ such that /„(x) = x'. The nerve of this category is
a simplicial set whose geometric realization is, by definition, hocolimX (cf.
[B-K]).
Proposition 5.8.  Q.BAG S |GJ .
iVoo/". Consider the inclusion functor i : A —► AG and apply Quillen's Theorem
B [Q]. For any object [m] of AG consider the category [m] \ i. This has as
objects all arrows of the form /: [«] —► [m] in AG and as morphisms all
commutative diagrams of the form

["].

[n'y

f

[m

7'

in AG with X required to be in A. We can identify the classifying space
B([m] \ i) with the homotopy colimit of the functor HomAG(-, [m]): Aop —►
Sets. But the homotopy colimit of a simplicial set is naturally homotopy equiva-
lent to its geometric realization. Thus it follows from Exercise 4.5 that B([m]\i)
is equivalent to \Fr (Am)\ = |GJ x |Am|. By naturality of this equivalence any*
morphism y: [m] —> [m] in A induces an equivalence B([m]\i) —► B([m']\i),
and since any morphism in AG is a composite of a morphism in A and an iso-
morphism, the same must be true for an arbitrary morphism /: [m] -» [m]
in AG. Quillen's Theorem B allows us to conclude that we have a fibration
sequence |GJ —> BA —> BAG. But A has a terminal object [0], so BA is
contractible. Hence Q.BAG ~ \GJ .   □

Theorem 5.9. For any G^-space X, there is a natural fibration sequence

IX,I -» hocolimAGXM -, BAG.
Proof. We first prove the theorem for G„-sets. Here ^ = AGop and we denote
by XA the restriction of X to Aop. Let ix : XA —> X denote the inclusion
functor. Now it is easy to see that for any object x of X the category x/ix is
isomorphic to the opposite of the category [m] \ i considered in the preceding
paragraph. Again by Quillen's Theorem B we obtain a natural fibration sequence

|OJ -> IXJ -> hocolimAGX^.
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Comparing this with the case of a trivial Gt-space, we get a map of fibration
sequences

|GJ -► |XJ -► hocolimAGXt

II        1 i
|GJ -►    *    -►        BAG

We conclude
IX, I -» hocolimAGXt -, BAG

is a fibration.
For the general (nondiscrete) case, we replace Xt : AGop —► Top by the com-

posite

AGop -^ Top -^, Simplicial sets

and apply the following well-known result: if Att -> Btt -» C„ is a sequence of
bisimplicial sets such that for each « , \Ctn\ is connected and Atn -* Btn -» Ctn
is a fibration sequence, then so is \AtJ -> |5,J -> |Ct<c|.   D

Corollary 5.10. // ft: Xt-+ Yt is a map of Gt-spaces such that \ft\: \Xt\ -> \Yt\
is an equivalence, then so is

hocolimft: hocolimAGXt —► hocolim^Y^.   D

Proposition 5.11. (i) For any simplicial space X, there is a natural equivalence

d:hocolimAGFG(Xt)^ |XJ.

(ii) The following diagram commutes:

hocolimAGFG(FG(Xt)) —L-+ \FGfXt)\

hocolim ß Pi

hocolimAGFG(Xt)     —^—»    |X.|.
Proof. The proof is basically an elaboration of the proof of Proposition 1.11
given in [B-K]. We first identify the homotopy colimit as a coend

hocolimAGFG(Xt)= [        FG(XJm    x B(AG/[m])

=  [ f      Xn x HomAG([m], [«]) x B(AG/[m])
J[m]€AG J[n]€A

=  f      Xnx f HomAG([m],[«])xß(AG/[m])
J[n]€A J[m]xAG

= [     XnxB(AG/[n]).
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We now construct a cosimplicial equivalence dn : B(AG/[n]) —► A" as follows:
given an element

r [m0]^[mx]^ ...^[mk] 1

in 5(AG/[«]), construct the affine map pp : A -»A by sending the ;'th vertex
of A of f ;( 1, 0, ... , 0) where f: A —> A" is the affine map defined by using
Lemma 5.2. We define dn(P) = pP(uQ, ux, ... , uk). This is easily checked to
be well defined and cosimplicial. It is also an equivalence since i?(AG/[«]) is
contractible as is A" and the equalizer of d°, dx : 5(AG/[0]) -> B(AG/[l]) is
empty. Hence we have an equivalence d = L]€Aid xdn: hocolimAGFG(Xt) —

W*. * B(AG/[n]) -, f[n]eAXn x A" = |XJ .
The commutativity of (ii) is a tedious but straightforward exercise.   D

Theorem 5.12. For any G^-space Xt there is a natural equivalence of fibration
sequences

|XJ -►   hocolimAGXt   -► BAG

\XJ -► E\GJ xiGJ \X,\ -► B\GJ

Proof. The map evt : FG(Xt) —> Xt defines a map of simplicial G„-spaces
Xt: B(FG, FG, Xm) -, Xt, where B(FG, FG, XJ denotes the monadic two-
sided bar construction whose space of ¿-simplices is the (k + l)-fold iterate

FG(FG(...FG(XJ...))

with faces given by evt and the monadic multiplication ßt and with degen-
eracies given by the monadic unit it. Moreover, the geometric realization \xt |
is an equivalence, so by Corollary 5.10 x* induces an equivalence between
hocolimAGX^ and hocolimAGB(FG, FG, XJ • But by Proposition 5.11

hocolimAGB(FG,FG,Xt) = \n •-» hocolimAGBn(FG, FG,X,)\

^|«~(|Gj"x|XI)l = £|GJxlcJ|XJ.
In particular for the trivial Gt-space we obtain ßAG ~ B\GJ . By naturality

we obtain the above equivalence of fibration sequences.   D

Proposition 5.13. (i) If Gt is a crossed simplicial group, there is for every n an
inclusion of Gn c |GJ as a discrete subgroup.

(ii) If m + 1  divides « + 1  there is a degeneracy n: [n] —> [m] in A such
that n induces an inclusion of groups Gm c Gn so that the following diagram

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CROSSED SIMPLICIAL GROUPS 81

commutes:
Gm fv

IG.

G„

(iii) U Gn is a dense subgroup of |GJ .
Proof. Define Gn c |GJ by the specification

g~[g,{l/(n + \),l/(n + l),...,l/(n + l))]-
This is easily seen to be injective with discrete image, and by Lemma 5.6 it
is a group homomorphism. The degeneracy n specified in (ii) is given by the
surjection [«] —> [m] which maps blocks of successive k elements of [«] into
successive elements of [m], where « + 1 = k(m + 1).

For (iii) note that elements of the form [g, (u0, ux, ... , un)] with rational
barycentric coordinates ui are evidently dense in |GJ. But given such an
element [g, (u0, ux, ... , un)] we can find a degeneracy X: [p] —> [«] such
that

X(l/(p + l), l/(p + l),...,\/(p+l)) = (u0, «,,...,«„).
Thus [g,(u0,ux,..., un)] = [X*(g), (l/(p + l), l/(p+ 1), ... , 1/IP+ 1))] G

Example 5.14. When Gt = Ct, the inclusion Gn = Z/n + 1 c |GJ = Sl
corresponds to the inclusion of (« + l)th roots of unity.
Theorem 5.15. // Gt is a crossed simplicial group such that the geometric real-
ization |GJ is a Lie group, then the path component of the identity of |GJ is
nilpotent.
Proof. According to a theorem of Zassenhaus, Kazdan and Margulis (cf. [R]),
in any Lie group G there is a neighborhood U of the identity such that for any
discrete subgroup T of G the intersection Tn U is contained in some nilpotent
subgroup of G. Take G = |GJ and let U be the corresponding neighborhood.

Let Nn be the minimal nilpotent subgroup of G which contains U n Gn.
Since if m + 1 divides « + 1, Gm is a subgroup of Gn, it follows that in
this case Nm c Nn . One can therefore conclude that N = IJ Nn is a nilpotent
subgroup of G containing (\JGn)r\U. But \JGn is dense in G so (\JGn)nU
is dense in U. Hence U c N. But U is a neighborhood of the identity in G,
so it follows that N contains the path component of the identity in G.   O

Remark 5.16. By using the classification theorem (Theorem 3.6) we can verify
that under the hypothesis of Theorem 5.15, the path component of the identity
of |GJ has to be either {1}, 5 or R. However, the argument above is more
general, applying to multisimplicial generalizations of crossed simplicial groups.

6. HOMOLOGY AND COHOMOLOGY OF AG-MODULES

6.1. The notions of homology and cohomology of a group can be generalized to
any small category. To define them we can use a standard resolution which is
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constructed below. It is well known that for a given group there may be a better
resolution (example: cyclic and quaternion groups admit periodic resolutions).
This is also the case for some categories (example A, see below). More inter-
esting for us is the case of AG. Taking into account the fact that AG comes
from a double category we show that there is a special biresolution which per-
mits us to compute the homology and the cohomology via spectral sequences.
This biresolution combines a resolution of A and the standard resolutions of
the groups Gn . Another type of biresolution and a generalization of periodic
cyclic homology to HG^ -theories can be found in [G].

6.2. In this section k is a fixed commutative ring with 1, referred to as the
ground ring. If X is a set, then k[X] denotes the free /c-module with basis
X. We first recall the definition and properties of homology and cohomology
of ^-modules, where ^ is a small category.

Let Mod be the category of /^-modules. A ^-module is a functor from W
to Mod. Let N be a g'-module and M be a ^op-module. The tensor product
N <8><g, M is a /c-module defined by

N^M=   ©   N{C)®kM{C)l~,
ceObg?

where the equivalence relation ~ is generated by: for every morphism /: C —►
D in W , every x G N(C) and every y G M(D) we have x<g>/*(y) ~ ft(x)®y .

The category of ^-modules is abelian and has enough projectives and injec-
tives. As the functor N®^- is right exact it admits derived functors denoted
TorJ(N, -) such that Torjf (iV, M) = N ®9 M.

Similarly, if P is another ^-module, then Hoi%,(7V, P) is a ic-module and
the derived functors of Hom^(iV, -) are denoted Ext^.(N, -).

6.3. The standard resolution. Let k be the trivial W-module; that is, every
object has image k and every morphism has image idk . We construct a free
resolution of k by ^-modules

as follows. First we construct a simplicial ^-set {(MOR ^)„}, Ln will be the
free /c-module on the set {MOR£P)n} and d = ^2(-l)ld¡ the boundary map.

Let MOR^ be the category whose objects are the morphisms /: A —► C
of W. A morphism in MOR W from / to g : B —> C (same C as in / ) is
a morphism « : A -» B in W such that g ■ « = /. This category has a nerve
which is the simplicial set {(MOR?),}. In fact {(MORW)n) is a ff-set

C^(A0^Ax^----,An^C)
and it is easy to verify that {(MORf)J is a simplicial g'-set.

Lemma 6.4. The complex Lm, where Ln = /c[(MOR^) J and the boundary is
d = YK-l)'d¡, is a project ive resolution of W-modules of the trivial W-module
k.
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Proof. Let s: (MOR8')B -» (MOR^)„+1 be the map given by

s(A0 ̂ Ax^---An^C) = (A0^Ax^---^An^C^C),
where the last arrow is the identity of C. It induces a map of k-modules on Ln
that we multiply by (-1)"+1 to get s': Ln -» Ln+X. It is immediate to verify
that ds + s'd - id, which proves that L% is an acyclic complex. Hence the
groups TorM (k, M) are the homology groups of the complex of k-modules

L0 ®g, M <— Lx ®g M <— L2 ®w M <— ■ ■ ■ .   D

6.5. Example 1. W = G. If f is the category with only one object and with
morphisms the elements of a group G, a G-module in the above sense is a left
/c[G]-module and a Gop-module is a right /c[G]-module. Therefore Tor^ (k, M)
is the homology of the discrete group G with coefficients in M, usually denoted
by Hn(G, M). The standard bar resolution described above is canonically
isomorphic to the standard resolution described in [ML] via (g0, ... , gn) —>
(gn - ■ - gQ > gn - - - g\ > • • • y gn) ■

6.6. Example 2. ^ = A. In this case there is a better resolution than the
standard one. Put (Cm)n = free /c-module on the set HomA([m], [«]). It is
immediate that Cm is a A-module and that C* is a simplicial A-module which
gives rise to a resolution of the trivial A-module k. Let M be a simplicial
module (i.e. a Aop-module). The map / ® x -» /*(x) is an isomorphism
Cm <g>A Af —► Afm and therefore the homology of the classical complex

A/q <— Mx <— Af2 <— • • • ,

where the boundary is ZX-!)'^, > is exactly Torn(k, M).

6.7. Example 3. ^ = AG. As AG is the category associated to the double
category AG it is natural to look for a biresolution of the trivial AG-module
k . We could construct a standard biresolution associated to AG. However, we
can take advantage of the existence of a simple resolution for A. For Gn we
take the homogeneous bar resolution (see Example 1).

We first construct a bisimplicial AG-set {if'9}. Let Tp 'q : AG -, Sets
be the functor which associates to [«] the set G^+[) x HomAG([#], [«]). An
element of this set will be denoted (gQ, gx, ... , g , a). Define the bisimplical
structure as follows:

dt means omit gi.
hs¡ means repeat^.

di , s¡ means apply faces or degeneracies to each component.

Next define an action of G   on k[Tp'q] as follows:

S(£o ,■■■, gp,a) = sign(g)(gg0, ... , ggp,a-g)
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where sign(g) denotes the sign of the permutation given by the action of g
on [q]. Define Cp'q to be the quotient of k[Tp'q] under this action. Now
Cp'q is no longer bisimplicial but only a bi-(chain complex). The reason is the
following formula relating the group action to the vertical faces:

-i.
(-l)'d"{g{g0, ... ,gp,a)) = (-l)g   'd^dg-i^gQ, ... ,gp,a)

which follows from the commutative diagram:

te-i] -^ [Q]
d,(g)

[ff-i] -^ M
Cp'q is in fact a biresolution of the trivial AG-module k . To see this note that
the map which sends (g0, ... , gp , a) to (g0, ... , gp, g, a), where a = (p-g
is the unique factorization of a with </> G A and g e Gq, gives rise to a
horizontal homotopy which proves acyclicity for p > 0.

Hence we have proved the following

Proposition 6.8. The bicomplex C** described above is a biresolution of the
trivial AG-module k.   O
Notation. For the small category AG and the AGop-module M we write
HGn(M) in place of Toxf(k, M) and HG"(M) in place of Ext"AG(k, Af*).
This agrees with the notation HCn used for cyclic homology and the notations
HDn and HQn for dihedral and quaternionic homologies. With this nota-
tion symmetric homology is denoted HSn(M). We also denote by M the
G -module M   with the action of G   twisted by sign.

From a bicomplex whose homology gives HGn(M) one can deduce two spec-
tral sequences. One of them reads as follows.

Theorem 6.9. Let M be a AGop'-module. There is a first quadrant spectral se-
quence

£•'   = H(G„, Ä7J => HGn(M)pq pv    q '       q> P+qy      '

whose differential d   is induced by the simplicial boundary d = 2^(_1)'^; ■
Proof. Consider the biresolution C** of k given in 6.8. It gives rise to a bicom-
plex which computes HGn(M). Horizontally the homology is the homology of
the discrete group G   with coefficients in the G -module M .   This is the
El„ term. The differential d   is induced by the vertical differential which is

pq J
precisely d.   D

Corollary 6.10. If all the groups Gn are finite and if k contains Q, the group
HGn(M)  is isomorphic to the homology group of the complex of coinvariants

Wn)Gn, d).

Proof. In the spectral sequence E    =0 for p ^ 0 and EQn = (Mn)G .   D
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6.11. (Co)-homology with coefficients in a free module. Let ^ be a small cat-
egory and X a functor from fop to Sets. The homotopy colimit of X is a
space denoted hocolim X whose definition is recalled below. If we compose
X with the functor which assigns to a set the free /c-module on this set we get
a «'""-module k[X].
Theorem 6.12. For any functor X : W°v -» Sets there are canonical isomor-
phisms

Torf (k, k[X]) = Hn(hocolimX, k)
and

Ext^ifc, (k[X])*) = H"(hocolimX, k).
Proof. To compute the homology of hocolimX with coefficients in k one can
form a simplicial module out of the nerve of Wx by taking the free module over
the «-simplices in each dimension. The complex of modules deduced from this
simplicial module has Hn(hocolimX, k) for homology groups.

On the other hand if we choose the standard resolution described in [B-K] to
compute Torn (k, k[x]) we find exactly the same complex as above. This ends
the proof of the theorem.   D

Corollary 6.13. Let Xt be a Gt-setand k[X] its associated AG0f'-module. Then
HGt(k[X]) - Hf(E\Gt\ x,G , \XJ) and the (second) spectral sequence associated
to the bicomplex 6.7 is the spectral sequence of the fibration

|G,|-*|X|^£|G lxir ,1X1-i*i i*f l*t       |Cj|'*I

Proof. This is an immediate application of 5.12 and 6.12.   D
6.14. Examples of AG-modules. Let A be an associative k-algebra (not nec-
essarily commutative) and let A®n be the «-fold tensor product of A over
k. There is a canonical structure of Aop-module on the A®n+{ 's given by
[„]^Am+l,

¿,.(a0,... ,an) = (a0,... , atal+x, ... ,an)   for 0 < /' < n - 1,
dn(a0,...,an) = (ana0,...,an_x),

Sj(a0,..., an) = (a0.a¡, 1, aM , ..., an)   for 0 < i < n.

The generator tn of Z/n + 1 acts on A®n+l by

tn(a0, ...,an) = (an,a0,...,an_x).

These actions give rise to a AGop-module as shown in [C]. The associated
homology is called cyclic homology and is denoted HCt(A) (cf. [L-Q]).

If the algebra A is endowed with an involution a >-,a~ such that ab - bä,
then [«] »-► A®n+ is in fact a ADop-module (and hence a Aßop-module). The
action of the generator x of Dn+l is as tn+x above and the action of the
generator y is given by

y(a0, ... ,an) = (-l)n{"~l)/2(ä0,än, ... ,<J,).
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This example is studied in detail in [L], where the associated homology
HDt(A) (resp. HQt(A)) is called dihedral homology (resp. quaternionic ho-
mology).

Note that [«] ■-» Am+l is nota AS^-module; however [«] n» k[Sn+x]®A®n+l
can be endowed with a structure of A5'op-module.

6.15. Symmetric homology. The comparison between cyclic homology and
Hochschild homology gives rise to the "periodicity exact sequence," which is
due to the fact that IC^I = 5"1. In the symmetric, hyperoctahedral and braid
cases we take advantage of the fact that there exists a null homotopy (cf. 1.5,
Example 6) or equivalently that \SJ, \HJ and \BJ are contractible.

Theorem 6.16. Let G, be either St, H^ or B^. If M is a AG°V -module, then
the canonical map Hn(M) -, HGn(M) is an isomorphism.
Proof. Consider the resolution constructed in 6.7. The homology HGt(M) is
the homology of the double complex W'9 ®AG M = k[(G )p] ®k M .

Let p be fixed for a moment and put X = k[(G )p]. The map X —► X   x
defined by (gx, ... , gp) ►-» (h(gx), ... , h(gp)), where h: Gq <-, Gq+X  is the
standard inclusion, is a homotopy; that is d¡h = hd¡ for 0 < i < q and
dq+l=id-

In order to compute the homology of the complex (X ® M ) >0 we consider
the simplicial modules Xt, Mt and the resulting bicomplex (Xr <2> M)r J>0 .
By the Eilenberg-Zilber-Cartier theorem the homology of the diagonal complex
(which is the one we want to compute) is the abutment of a spectral sequence.
Because of the acyclicity of Xt only EQ is nonzero and it is in fact Hs(Mt).
Therefore Hs(MJ -+ Hs((Xq ® Mq)q>Q) is an isomorphism.

This proves that the map of bicomplexes W '9 ®A M -> Wp '9 ®AG M is a
quasi-isomorphism when restricted to columns. Therefore Ht(M) —► HGt(M)
is an isomorphism.   □

Corollary 6.17. Let k be a characteristic zero field and let M be a ASop-
module. The surjection of complexes (Mn, d)n>0 —► ((Mn)s , d)n>0 is a quasi-
isomorphism (also true for Ht in place of SJ .
Proof. This is an immediate consequence of 6.16 and 6.10.   D
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