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1. — INTRODUCTION

The crozsing propertiy of amplitudes plafs a fundamental role ih relativistie
geattering. However, 1t hisa the feature of relsting all partisl weve amplitudes tc one
another. In certain cases, crossing cen te uged directly to infer some structures of
these partial wave amplitudes - a good example is the current algebra calculation of
gsecattering lengths. But, whenever unitarity becomes an important constraint, it is no
lorger simple to determine guantitetively the physical irplications of crossing, although

we know that "forces'" zre provided by crosged channel exchanges.

1)

established their practical

First implications of ecrossing alone were disccvered

3) 4)

by Balachandran snd

2)

Fuyts s, and, later on, Roskles and other authore
usefulness. In  JT T scattering, these necessary and sufficient crossing conditions
conslst in integral relations for partial wave amplitudes in the unphysicel region

1,6])
0< 8< 4mi . Ancther spproach, initiated by Martin 5”6',

consists in inccrporating
also snalyticity and uwnitarity properties. This yicldes sets of inequalities for

partial waves in the region O < s < 4m§ . However, the main disadvantage of these me-
thods lies in the fact that the crossing relations, or constraints, are written and used

in un sical regilons.

Considering experimental dats, we recall the well-lkunown "up-down" ambiguity
in the I =0 T s wesve, and the fact that, owing to experimental difficulties,
some energy regions are not well investigated - in particular o scattering lengths
are not well known. We may ask whether an appropriate use of the crossing gymmetry can-
not solve suck ambiguities end determine the unknowns, as is strongly suggested by the
work of Le Guillou, Morel and Nevelet 7) (hereafter ecalled GMN) who show that knowledge
of the I =1 p wave, and of some high energy parameters practically limits the pos-
gible X M 5 waves in & very restricted domain. In order ito do this without using a

gpecific model, ohe must express crossing dirsctly on measurable guantities.

FPiprst crossing consiraints on physical L ® partial waves have been obtained

8)

anplitudes are abgent in these relations which only constrain higher waves. Recently,

Roy 10) has written W X equations which, in connection with the above remarks, can be

by Wanders and by Hoszxies J + However, their basic drawback 1s that & and p wave

seen to have the features ¢f (a) expressing each partial wave amplivude in the physical
region (inciuding & ang p waves) as an integral over physical absorptive parts, and
{b) being well-defined up to energies arcund 1100 MeV, therefore providing direct consist-
ency tests for experimental data. Hoy uses crcssing to express the t dependent sub-
traction functions in twice subtracted fixed +t disperszion relations, and then projects
on partial waves. Similar relations have been exXxtensively studied in the XN unsub-~

11)

tracted cases by Steiner et al. in recent years.
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in this work we show that such relaticns are extremely useful in praciice,
both as constructive procedures for calculating low energy axplitudes and as consistency
checks for experimental data. We shall also re-examine the question of Martin inegual-
ities and various crossing relatinns which follew from them. Finally, we shall derive

partial wave crossing equations for arbitrary processSes.

In dsgetion 2y we discuss the properties, practical use, and paysical interest
of the KL equations. Our own derivation of these equaticns is contained in Appendix 4,
together with relevant formulas. We show how tne Chew-Kandelstanm 12) equation can ke ob-
tained as first approximations to these equations. In this respect we reesll that

13) proved that the Chew-Manaelstam eguaticns have no soclutions if the p wave

Lovelace
shsorptive part does not vanish, and therefore in order to construct s and v wave

x X amplitudes which satiefy unitarity and c¢rossing, cne must ilncorporate some inform-
ation about higher waves and asymptotic contributions. In the present framework, this
can be done in a wvery natural and systematic way. Henhce, these equations constitute &
very convenient tool to unitarize low energy amplitudes in a croesing symmetric way.-
They furthermore justify the GEN rodel in some cenge, and we show how they can he used

in practice.

In Secticon 3 we bkriefly discuss the unsuptracted case. In Section 4, we
reconsider the eguations used by Martin. Among other things, we show that Martin ine-
gualities cah be used in = muckh stronger way than has been done up to now. In definite
nodels, we show how the kigh energy information can be inserted in the computation of

low energy amplitudes.

Finally, in Zection %, we give the general method to write physical region

crossing equetions for other amplitudes than X%, for instance XL E or X N.

CROSEING EQUATIONS FOR PHYSICAL T T DARTIAT WAVES

Jur notations are explained in Appendix A.1. Tet FI(s,t,u} ke the isouspin
I total M amplitude, Al(s,t) its s channel and Di(u,-a) its u channel absorp-

tive parts, the twice-subtracted fixed + dispersion relations can be written as

O I,,
Fl(s,tiu.) = 31(!:) +Gu) l\.zft') + _{a ds' A(5¢) + %2 ”d&: -DUI(u.', k)
e S (s'-8) TJy W w-w) {2.1)

y
(we set my = 1), Roy 10} pas shown that, by using the crossing gymmetry, the t de-

pendent subtraction functions gI(t) and hI(t) can be expressed in terms of physical
atsorptive parts and & wave scatterding lengths. QOur own method ls given in Appendix
4.2. Onece the subiraction functions are explicited, one replaces absorptive parts in
the right-hand side of the dispersion relation {2.1) by their partial wave expansions,

and one projects on partial waves to obtain relations of the form
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o) E ‘T’ )
:F:(S)-f ST+ i i @B{'i)jq d,sr (5 S') Iw\-?e;( ) (2.2)

’

T=z0 p'=0

where S.T. represents polynomisl subtraction terms, present in =5 and p wave gmpli-

tudeg. The explicit forms of kg. (2.2) are givern in Appendix A.3.

In Bg. {2.2) the &' summation will converge if the partial wave expansion

of absorptive partse in (2.1) does. The convergence region can be inferred from the large
14}
*

Lekmann-Martin ellipses and ylelds

-4 55 g 60
{2.3)

Therefore, Eq. (2.2) has the important feature of relating only physical gquantities if
4 < < 60.

#e shall now explain why these equations are physically interesting.

A+ - General properties

10) : Lo derive them one

These equations are rigorous, as pointed out by Eoy
only uses results of axiomatic gquantum field theory - crossing, fixed ¢ dispersion
relations, nuwnber cf subirsctions, anelyticily domain in t. It 1s of interest to write

. 0 gl o] 02 1r=0 2 s
the eguaticn for the A X — X £ s weve, £, (s) = 3[io(sj-b2fg(szl, more expli-

eitly =

[ o +(sr4) qz' ;?f’.,(;) zj d:*[cp (4+e.r) cp(4+u’>] Tmf, (e}

ol} o g o )
t+ eI__:z(“”) il .Sq G" ("rs‘) I’"-fe (s) ds’ (2.4)

where ago is the & wave no xo scattering length, snd where

[+)
2 ) ; (._.q)(.24+i7 h)P{J-ﬁLE)
N g dk ) ElE-0s™s) stst
G, ()= 2 g L,(S,_b)(s,_b,{m_qj Y e ] )

)
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We notice that Gﬁ(s,s') igs regular at =8' = 8 for 4> 2. Although &
unitarity cut comtribution is explicit in the right-hend side of Eq. (2.4), the eguation
does not have the structure of a partial wave diaspsrsion relation ; it doeg not provide
the analytic structure of fgo(s) throughout the complex & plane [éee Eg. (2-32].
However, the contribution of the left-hand cut is given explicitly in terms of physical

absorptive parts for -4 < 5 < 60.

Since =-u symmetry (or antiaymmetry) ig ured to obtain the equations, these
are necessary crossing constraints on physicel partial wave gmplitudes. They are not
sufficient znd, in order to have full s,t,u symmetry, they muet be supplemented with
gther éonditions - for instance by imposing Bose symmetry in the & cheannel. This places
further constraints on physical absorptive parts as shown in Apperdix A.5. These supple-
nertary conditions have heen written and studied in varicus forme by Wanders 8) and
Roskies BJ, they have the important feature that they do not constrain s and p wave
amplitudes owing to the presence of subitractions in Eq. (2.1). In the unsubtracted
case, B and p waves would be constrained a® well as higher waves.

10) tket, by making use of elastic unitarity, Eg. (2.2) pro-

Roy has argued
vides a system of non-linear singular integral equations to determine the fﬁ(s) for
4« 8 < 16, given the s wave scattering lengths and the absorptive parts in the
inelastie region. In the past, there have been some attempts to write integral equations

15)

in the physical region ; Roy's equations sre different in that they are rigorously

derived from field theory.

B. - Convergence snd variocu® contributions

In Eq. {2.2), the kernels G(s,s'} decrease as 1/s'° as s’ — @ {see
also AppendiXx A4.3) therefore the s integration is rapidly convergent. A consequence
is that high energy contributicns, i.¢., Pomeron and Regge poles will be quite small at
low velues of s. The §j' summation, on the contrary, eventually diverges when =
becomes too large. Thig will come from the summation of higher partial wave amplitudes
at lLow energies since 1t arises when the angle 1 + 2t/(s'—4) iz outeide the Lehmann-
Martin eliipses, il.e., at fixed + for s' small. 4t a given value of s, below 60
{or 68 if Mandelstam analyticity holds), only a finite number of 4' values will contri-
bute significantly to the right-hand side of Bg. (2.2), and this number increases with
8 [@e have a compensation hetween the exponential decrease of Im fE' and exponential
increase of PL,(11-2t/(s'—4)) as z'-*cn]. In practice, we remark that for
' > (8-4)/2 in Eg. {2.5) the angle 1 + 2t/(s'-4} is physical. Therefore, to mgke
gaod use of these equations, we need to know ‘Im fﬂ(s'), £ > 2y 1in the wvery low energy
region s' < {s-4)/2. B8ince, experimentally, higher waves are small at low energies, we
can estimate their real parts, i.e., scattering lengths, through Eg. {2.2) neglecting

unitarity terms and ther use the approximation Im f, ~ (Re f£)2.
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C. - Comparison with the Chew-Mandelstam eguations

It is possible to build crossing symmetric smplitudes with only € and »p

wave absorptive parts ; if we set In fi =0 for £>2 in Eq. (2.2) we obtain

{see Appendix 4.7)

£2(s) = @0 + (- (220 -S0) 4 (eq) [T ! ¢°()
° 42 —“-' Y (I’-I){I’-UJ

+

é J:a ?" [Qq(%’]‘Q,{%’)][ ﬁ%f_s_") N 51f?1(‘,J +§- j,z(‘,?]

S4 e (2 ds Tog%(s) - 37l - S 7D

T e (2.6)
-ty {(2au-5ay (s-4) @ det g‘(")
S:(S) = a - (s u)(oa“ Sas) + S-E J’q (5;) e
oh ' ' | of ¢ Jpdfar i 2(5"]
P& 0 (o) - qua)]] 5 - 2 gy < 2 5]
. i Gj)joo_.éfj [ Zgo(sy) _ 354fs') - 5—;2(:')]
& Y4 iy
o (2.7)
(s-4) ds’ 8 (<)
f;(‘) ) (%‘)(la, o) TR (s7-5)(s7-4)
+ 4 J"“ d’ Q'(%') [So(si} L3 2;34(5:) _g ?z(_r,)-]
T (e-t) 9 K} 4 |
Sy [P d [ag(e) 23 sE) - 5 8%
o .}"—(?"-t;} (2.8)
where we have set
! 4
£°(s) = Tm IMON gz{s);rmgf;(r), g (s) = Tm8 ()
(2.9)
and where
. v X 2. A4 f_:_‘.;
S-y o4

{2.10)
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In this approximation, higher partial waves are real. We have, for instance

:ﬁ\:(s): f T o‘(y)[f IO RS MUY "‘rfl(“')] (2.11)

¢zd

Xy )

Since the supplementary conditions of Appendix A.H place no restrictions on the 3 I in

this approximation, the amplitude so constructed satisfies crossing identically.

If unitarity can be imposed onm 8 amnd p waves one gets a very reascnable
low energy approximation. This is the epirit of the Chew-landel stam i2) and Cini-Fubini
approximations. By using elastic unitarity for the gI(s), Egs. {(2.6)-{2.8) yield a
closed system of non-linear integral eguations for the X & and p wavesg, We note
that partisl wave amplitudes are hounded by constiants as s ~ +m , owing to unitarity,
therefore the linear term in s should cancel in Eas. (2.6)—(2.8). This will happen if

we have

ta, 50, « 4 [ A [1ple) s 2759) Y ]

el
g (z.12)

If we ingert this relation inte Eqs. {2.6)-(2.8), we obtain the Chew-Mandelstam equa-

2) notice that Egs. (2.6)-(2.8) depend on two parameters a, and while

a2
¢} 2?
the Chew-Mandelatam ones depend on only one, hence the relation (2.13) between =T and

tions

.

2

13) has shown that the Chew-Mandelstam equations do not have solu-

Lovelace
tions unless the imaginary part of the p wave vanishes identically - and hence the g
meson does not appear - with possible exceptions for imaginary parts which oscillate at

infinity. This mesans that if, as in usual models, the phase shifts are well behaved at

16)

infinity, the preblem of building unitary & and p waves which gatisfy crossing exactly

and where the f ig present has no scolution if one does net incorporate some informstion

about higher waves and asymptotic (Regge) contributions. This brings us to a very impor-

tant feature of Eq. (2.2). In fact, these egquations provide a direct estimation of higher

partial wave and asympitotic contributions. For instance, the left-hand cut contribution
of the f0 regonance can be readily computed. Also, one can cut the s' integration in
two pieces : from threshold to a large energy N, and from N to infinity, where above
N the Regge pole picture is a good approximation while below it the resconance picture is
preferable. Low energy higher partiaml waves may be estimated by BEg. (2.11) {see above
paragraph). These higher wave and asymptotic contributions would serve as driving terms

in new Chew-Mandelstam type equations for 5 and p wave amplitudes.

This procedure is particularly appesling in connection with unitarigation of

Venegziano-type amplitudes 17). In that case, a good approximation for the Im fz(s),

L>2 and & large, iz given by the > function approximation, which also contains



the asymptotic Regge contribution - note thas since we nitegrate over the Im fi’ it
is not really nccessary to aave a _oc&l description of them for £ 2> 2 1if one unitzrizes
s and p waves. Zincc the Vereziano ampiitude ie c¢rossing symmetric, the supplementary

cocnditicns of Appendix A.5 are autcmatically satisfied.

Tae lnadequacy of the criginal Chew-lMandelstan aprroximation can slso bo secn

by writing Eg. (2.12) in terms of totsl smplitudes ;3 we have

Sy 58y « & [T dr [ohlo) + SA o - A )]
LYY fifriy {2.13)
[ S-p a,s,snaxr.'ma,é‘“o"")

. . 187 ) .. . o
in contrasst with the usual sum rule Yy from fixed t Gispersion relations

ta,-Ctp » 4 [* i’ [an(e) + 347(5/0) - $AHt/0) |

By T (2.14)

If this iast relation is used zs a low energy sum rule, i.e., by retaining only s and
P weve contributions on the right-nand side, there is a clear contradiction with Egq. (2.173)
unliegs the inaginary pert of the p wave vanisnes. To render these equations compatibile,
the extra p wave contribution in %q. {2.15) shotuld be equal to the fo and asymptotic
contributisne of bg. (2.14) which is not the case in practice 7). in inecluding higher
wave contriputions in Chew-Mandelsiam equations, as suggested above, Eg. (2.12) would not
be true anymore, it ig 2 consequence o9f the pure sS-p approximation. We note also that
it is nct possible to bkuild Shew—ﬂaﬂdeLst?m—type equationg including a finite number of

14

higher waves, ag pointed out by Martin . If we et Im fB =0 for p =W, then the

supplementary conditions of Appendix 4.5 will impose that Iz fﬁ =0 for 2« §< N.

In all these respects, the Chcw-Mandelstam eguations appear as "first order
approximstions" to the exact equations (2.2) which provide further "corrections" in a

systematic way.

T. - Phenomennlcgoicz]l applications

One can insert experimental guantities - phase shifts and inelasticlties -
diretly into ®q. (2.2) since it relates physicsl amplitudes. Therefore, one can check
whether experimental amplitudes are consistent with crossing and analyticity requirements,

by comparing both sides of the equations.

For instahce, one immediate use 18 to solve the "up-down" ambiguity in the
I =0 =8 wave, or to determine T amplitudsg in regions where they are badly known -

g.5.y Scattering Iengths - starting from the intermediate region where good results are
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evailable, by performning self-consistency calculations. The high energy contributions
%0 the integrals may be estimated with bome Regge parametrization. We have already
discussed in paragraph B above, the gquestion of low energy behavicur of higher partial
waves which will be determined by 8 and p wave amplitudes, and are of fundamental

importance in practical applications.

We note that since fixed + dispersion relations have been explicited in
terms of physical gquantities (see Appendiz A.2), they may also be useful in phenomeno-

logical applicaticns.

A few words are in order about the domain where these equations can be used
in practice. A= we sSaw, axiomatic analyticity yields that they are valid up to
5 = 60m$c (Ecm ~ 1100 MeV} and Mandelstam anslyticity, s = 68“]%.’ (B, ~ 1160 MeV).
From a practical point of view this is satisfactory since it extends bheyond the f
and the KK threehold regions which are of interest at pregent. Actually, since four-
pion inelasticity seems weak, one can presumably use the eguations up to and above the
fo region - up to Ecm ~ 1400 MeV if the first important t channel singularity is

in the S region.

E. - Example of application : phenomenclogical Models

In recent years, the problem of building & and p wave 7w ¥  amplitudes
consistent with crossing symmetry has been of great interest, either in the context of

current algebra 20 or in various phenomenological models 7)’21)’22).

We believe that,
in view of the above discussion, the c¢rossing equations (2.2) constitute the correct
context for this problem.

In the phenomenclogical model of Le Guillou, Morel and Navelet 7), crossing
is imposed in the unphysical region 0 « 8 « 4. The physical input is the positicn and
shape of the 4 resonance, and some high energy and & wave informations ; and GMN
show that this practically fixes the & waves in the low energy region. It is interest~-

ing to check in the present framework :

(a) - to what extent is crossing well satisfied by the GMN amplitudes in the physgical

region, i.e., up to whail energy can their results ke believed,

(b) - if the solution is really unigue, up to small variastions as they suggest.

We have taken Eq. (2.2) and computed the left-hand side by inserting on the
right only the s and p wave absorptive parts given by the model [}his amounts to
using Eqs. (2.6)~(2.8) as they are written] ; we then compare the result (output with
the smplitudes of the model (input}. The results for the I = 0 5 wave amplitude are

shown on Fig. 1, and we notice the following.
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.=~ The two curves are very closge up to 5§ ~ QOqﬁku Above they deviate sizesbly. In fact,

sne "output" curve hag a linear behaviour as 8§ — @ Esee Eq. (2.6):[.

- This lineayr behavicur of the cutput curve will be corrected by the inclusion of higher
partisl wave contributicns as mentioned in paragraph B. We have here an I1llustration
of the fact that neglecting £ » 2 on the right-hand side of (2.2) is a good spproxi-
mation up toc & ~ 16—20mq2£ .

- In this reepect, the crossing preperties of the GMN model seem very good up to, say,

the g Mass.

Next, keeping the ssme I =1 p wave and I =2 =8 wave amplitudes (which
fit experimental data} we have computed the '"input" and "output" I =0 s wave starting
with another form for the phase shift S 2. This new phase shift £ is shown on Fig. 2,
compared with the GMN phase shift A. It is of the "down-up" type while the GMN one is

"yp-down'. Both of these phase shifts correspond to the same value of the scattering

length a . This is important, owing to the subbraction terms in (2.6). The resulting
curves for ke fg(s) are showg on Fig, 3 ?nd show a clear disagreement even at very low
energies. Therefore, given fo(s) and fT(s), crossing considerations eliminate the

E curve as oppossd to the 4L curve in Fig. 3. We deo not claim, on this exsmple, that
we have solved the "up-down" ambiguity, in particular since scattering lengths play an
important role in the discussion, however, 11t szeems clesr that this embiguity csn-be
solved, and scattering lengths determined by such considerations. Detailed work on this

subject is noew underway.

3., - UNSUBTRACTED CAEE

The combination of asmplitudes which res iscspin I = 1 in the t channel
is s-u antisymmetric ; assuming, for instance, g Regge exchange at high energy, we

may write an uwnsubtracted dispersion relation for this amplitude as

. y Your . 4 % 4 4
2Pt v 3 F e sy - 2 [T [ A [

Srrrb-y

o [ 2R ey #9A00/8) - LAY G )] (35.1)

Projecting onto partial waves, and expanding absorptive parts, we cobtain the feollowing

gum rules
Qeen  2L0) - SAY ° "
§ “ ’ = A dERlew) 2} dl (Lost-0)
Lodd Jf’;ﬁ) T4 Jye 4 g (-o)(evarb-u)
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¢ eren

i
! Ton ; ¥ 4 ek
ef;. (Mh+) 3 1 -ﬂ,’; (s} 2 { *S——,_q> j

(3.2}

We note the following.

-~ Since we cannot use Bese symmetry in the direct channel in (3.2), these relations are

2
i ly £ 0 2 .
valid only for < B 3 mTL

- Asymptotic contributions are more important taan in the subtracted case since the

kernels, here, decrease as (s')_2 instead of (s')*B.

~ The advantage is that we do net have subtraction terms in Eqg. {5.2), of which Eq.
{(2.14) is & particular case ; these relations can be used in particular to check
whether low energy date substantiiate the assumptiocns leading toc unsubtracted disper-
gion relations (not only must the Pomeranchuk theorem hold, tut the real part of the

I, = 1 samplitude must vanish at infinity).

- Otherwisge, thege relations can be used in the same spirit as discussed in the previcus

Bection. We now need 2 more accurate high energy parametrization.

PHY SICAL-UNPHYSTCAL REGION CROSSING CONSTERAINTS

Most erossing constraints used in recent years concern the unphysical

2}-6) 5)

Tegion 0 < 8« 4. The method initiated by Martin consists in using the
Froissart-Gribov formula for fi(s), Eq. {4.8)} of Appendix A, valid for p < 2 and
8« 4, and in s and p waved a subtracted version of this formula, which is derived
in Egs. (4.15-2,b). In Eqs. (4.8) and (4.15), the absorpiive parts on the right-hand

sides can be expanded in partial waves if -28 < 8 < 4, anhd we note the following.

(a) - 49 noted by Martin 5), Eq. {(4.15) shows that the s and p wave amplitudes are
completely determined in the region O < s < 4 by the physical absorptive parts
and the two s wave scattering lengths. In particular, the existence and the
position of Adler geros in the I =0, 2 I s waves are completely determined
by physical gquantities. Martin's inequalities follow when one takes inte account

positivity of absorptive parts due to unitarity.

(b) - The crossing equations discussed previously hold for -4 < s < 60, the present
formulae {A.8) and (4.15) relate partial wave amplitudes for -28 < & < 4. We

can therefore compare the two representations in 0 £ 8 « 4, since they are not



identical. Thig¢ will provide an alternative way to impose full s,%t,u crossing,
equivalent to she relations written in Appendix 4.5. We think that in theoretical
nodels this method can be useful since Martin's relations alas provide a construct-
ive procedure for parfial wave amplitudes, as We shall argue later on. Aliso, the
two sete of definitions for fi(s} are complementary in the sense that, put to-
getiner, they provide the znalyticity properties of partial wave amplitudes for

-2B < & < 60.

In usual treatments, the Martin inequaiities are used as follews., In para-

meter-free caleculations, as in the Padé approximation 23)’24), one cheecxs the viclation

of crogsing by testing whether the inequalities zre satisfied. In phencmenclogical

models 7),21),22)

the parameters are fixed by imposing the ineguairities., Although this
has proven to be very useful in practice, it is perhsrs not the optimal way 1o use these
inequalities., In fact, one wculd like to have more preciszse information abcut how well

an amplitude satisfies crossing than the "yes or no" answer =pout an inequality. We will
show that a) it is possible to refine Martin's inegqualities, and b) they are particular
cases of sum rules which may be as usefu% as the inecuslities (what we show here is
already implicit in tne werk of Martin 5J, we are interested in the practical applicaticn

of his results). This is best exemplified by writing Egs. {4.15.a,b) of Appendix & at

° » t [T ?
;L (o) = o Sda - %L K*(s,0,5") [A {s/) +34%(s'0) +SA‘(r,o}J de?

3 Fe (4.1)

] 7

0 s .4 R 0,05 A°($‘,’o) - Jﬁ"(&'jo} + Az'(s’,o)] ds
oy - § i TTLK{ ol z .
(4.2}

| f e s -Sﬂ’fr’o)]
fao-Sds _ 1 [Pxto0s)|2A (:’,0)+3A(S}DJ 1 e

silo= - 2 S [ z (4.5)

The notations are explained in Appendix 4. By the optical theorem, we see that values
of 5 and p wave amplitudes at & = 0 are related to scattering lengths snd inte-—
grals over total cross-sections.

. o 0 o _0 o0 10 2
For the ¢ ® — X T & wave f_ (s) = g[io(s) + 2fo(si1 we get

ut o4 o0 ! ’ B o .
1 - Wy - A w26 (50 - €D D] gt tabn],
o J‘* Vol ' T 2 20

and, since the integrand is positive, the Martin inecuslity

o - £y 2o (4.5)
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However, in a definite model one cah use Eg. (4.4) in g much stronger way than by its
congeqguence (4.5) since the total cross-section must be not only positive but greater
then the predicted s wave cross-section. Denoting by Zs the =8 wave contribution
to the right-hand side of (4.4) we must have the stronger condition

]{;ao/éj —A'n/oj } Z:

(4.8)

One can go further if the & waves predicted by the model are belleved t0 repregent

the physical situation. In fact, 2__ ic the largest contribution to Bq. (4.4) and

8
other contributions can be estimated. For instance, we can assume that above a certain
energy M, O;ot has reached ite asymptotlc value T while below it we retain
only the contribution of 5 and 4 waves. The fo regcnance contribution ZZfO

can be computed easily, whiile the asyuptotic contribution ,Z. © is
ekt
2 = % J § dse - )

4 35 3N (4.7)

Summing these confributions gives

L7 4 =2 I, v g Zy, (4.8)

and gince Zs and zfo are known, one deduces the value cof im end, hence, the

Nggymptoatic cross-section” through Eq. (4.7). We do not mean that Eq. (4.8) determines

(a3
ig positive and b) that it has an mcceptable order of magnitude. In other words, ine-

the true cr‘m predicted by the model, but rather that one must check a) that Z

qualities (4.5) and {4.6) must “"leave some rToom" for higher partial wave contributions ;
they cannot be satisfied too largely, given our knowledge of high energy phenomenoclogy.

In fact, the exact form of Bg. (4.4) can also be written as

27l - 4.0y = ; @4y 4,7 ()

(4.9)
and, by the positivity of fzo(o) 4= 2, the inequality
L
w- 0w - ez.z (4) 1,70) 20 YL (o

which transforms into an equality as L — ®. Turning to the I+ID - I+ IO ampli-

tude, we obtain

o - L]

4 1 £J{2@.( ff“") - (5t Q,,(f_’_ J_)} 2 (s 022 )
in .L V.?—(-_—;q- [h:.t kt J

(4-11)
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end a, + %[EE(O) - fg(OII is positive. The s and p wave contributions to the
right-hand side of {4.11), .Z:é and ;fé dominate, and we may estimate the asymptotic

contributions 2:23’ in order to get

F

a, + 5*.'[7{70) 'ff:?@Jj ¥ Z; rz,: r 2,

(4.12)

from which the value of a new "asymptotic cross-~section g'kD can be deduced. We now
have & further test of crossing in checking to what extent these two asymptotic erosgs-

sections are compatible, i.e., T ™ U'Im'

It is interesting to see how definiie models fare when tested in this spirit.
We exazmine the G model 7 where Martin inequalities are iwmposed, and the Padé approxi-
mgtlion fo the A-‘f4 thecry 23) where they are satisfied in their original form 4J.
The results are given in the Table. In all cases, the 8 and p waves dominate the

integrals. We note the following as relevant :

(a) - in the Padé approximation, it is at step (4.6) that the inegualities are violated ;

the g waves "over—-saturate" them ;

(b} - in the GMN model, the inegualities are satisfied at every stmge ; also not only
do the M"asymptotic cross-sectlons" have reasonable values, but they are guite
cloge to each other (NBO%) despite the fact that they represent very small frac-
tions of the right-hand sides of (4.8) and (4.12) (a few percent) ; in this

respect, the crossing properties of the GMN model are gquite satisfactory.

EBquation (4.3) cennct be transformed into an inequality. However, it csan
be used a5 a gum rule ; again the & and p waves will dominate the integral, and
asymptotic contributions are very small since Pomeroh exchange is absent. We rotice

that it is the combination of the two relations

lo-so, = A, [T d [l 230l T 0%)]
vty ey (4.13)

« T~ - ° J..f - ﬂ"
2y - :‘8-%[1/'{0“/6 a(£ 1) [ 2% *;‘r/) sr¥)] (4.14)

which converge if the usual Regge pole pictures are assumed. In the GMN model,
Eq. (4.714) has a central role in defining the p wave amplitude, and Eg. (4.13) is

closely satisfied.
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The arguments we have developed are applicable to all Martin inegualities.
Qur basic remark is that in definite models, the total absorptive parts are certainly

cregter than their 5 or p  wave contributions as computed by the model, and not only

positive as is assumed in the derivation of Martin. Furthermore, in many instances, and
in particﬁlar near ¢ = 0, the variation of 5 and p wesve amplitudes in the unphy-—
gical region should roughly be obtained by approximating absorptive parts in Egs.
(4-15.8,b) by their s and p wave contributions, since these are dominant and since

the integrals converge rapidly.

A5 in Section 2, we see that in principle, if we are gilver the absorptive

parts for 4 » 2, the 5 and p waves should be egntirely determined by Egs. (A.15.a,b)

through a self-consistency calculation, once the scattering lengths are known. This
could be done =& follows
{(a) - use a K matrix representation for the & and p waves ;

(b} ~ parametrize the K matrix as a function of the energy with a given functional

form, e.g., & rational function ;

(¢} - fix the parsmeters in order ¢ obtain equality between right snd left-hand sidese
of Has. {(4.15.a,b).

The extension of our remarks to models where other waves than ¢ = 0 and

g = 1 are included is straightforward.
Equations (A.15.a,b) are speclal cases of more genersl equations which are

written in Appendix B, In studying thece eguaticns, one obtains further constraints

from crossing on physical ahsorptive parts, they are described in Appendix B.

PHEYSICAL REGION CROSSING EQUATIONS FOE OTHER AMFPLITUDES

Crossing equations for partial wave amplitudes above thresholds can be
written, quite generally, for any amplitude ; we now outline the method to obtain them.
We have in mind the case of other meson-mescn asmplitudes, and meson-baryon amplitudes,
in particular % N = A HN. We shall treat the very simple cage of I’2 - TZ scatter-

ing ; the ineclusion of spin and isospin is only an algebralc complication.

We denote by F(s,t,u) the X — Tf  total amplitude where s 1is the
pguare of the total ¢.m. energy. This amplitude is s-u symletric

Flntw) = Fl4 &) (5.1)
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The physical =xTx — ZZ amplitude is given by the value of

- 22 e.m. energy. COwing to
dispersion relatlons for 7/2

F(s,t,u) when 0 is
the sguare of the XTI

s-u symmetry, the fixed ¢

—*-’CZ are written with two sutbttractions as

ad
a’.r" {_r-.f < -Je 2 7 .
Flebu) = wl€) « £ Al TR CEL N VST S
(46 4f /4 x 4,,_,/‘}6 5 )* S-r g r )
{(5.2)
where /ﬂ, is the X mass, m the E nass, gnd we have
T= ImPe 2pd s srbre (5.3)

In Eq. (5.2), s is some subtraction point,

$(t) is a subtraction function as yet
undetermined, and A the absorptive part of the Iit - 2’2 amplitude which can bhe
expanded, for + physical, as
o IE*I{,
7 (s844) Ten {s)? 4+ _E
A[s} f:jI-S—L') = E—p( ) }De. e ( Pyel (5.4)

where

92 =[5l s bop)] S s

(5-5)

The partial wave expansion (5.4) csn be inserted in tae dispersion relation {5.2) providead
it gonverges. Thig happens if we have

¢t 2 b

P (5-6)

is well defined in terms of physical masses,
theory (see for instance Martin 14)).

tudes from Eq. (5.2) as
:;EIL-QJUL

=]
= P4 £ ) 4 _a_/._r” el PRy
¢ (1) 4—;4 40 db S f *"f‘)lf 24 g~ j(m:,«)" Tyt gTj:-l fif—}-_‘i'“_) x
oD _ Tp-2TH ) “*
/&!ﬁ/ L im // {_:v _}7/ A & j
X e,{-:zt; ) {4 / £ / (J'—é”’/‘)yffl'é"y")y) (5.7)

where t
o)

as proven from axiomastic field

We now calculate the z,‘t partial wave ampli-

Thisg equation is well defined for

47t = - Lo (5.8)
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I — I
and it will relate the fﬂf (4 (s} in the physical region provided cjo(t) can be

explicited.

In order to determine l{(t) we remark that we have from (5.2)

L[ ,
¢le) = Flso, b, X-5%0-) ~ (I -2s.-t) ds’ Als't  T-5"€)
T me:, (F8)" s+t +5% -Z

{5.9)

We calculate F(so,t, Z-s -1%) by weiting a fixed s dispersion relation

o]

_ PR o y ’
Flstu) = flo + & hlo + £ /&“ X

,»(u )T A gy geee]s) (5109
(s )t (Gt -

where s] is some subtracticn point, and where E(t,s) 18 the absorptive part of the

T - z& amplitude

T 4

o 2
8ts) 2 (Ut) Img,(p) " 5[ wib) ¢z gut (5.11)

-1

wle = _ _Joa
V- 4pe) WE- 4 m

{(5.12)

Particularizing Bg. (5.10) at s = s,» we see that (%} is completely determined
in terms of partial wave absorptive parts up to two constants ‘-h(so} and “,”2(90)
which eean further be expressed in terms of the s and p wave =§ -~ T4  scattering

lengths 2, and ay.

Inserting the value of Cf(t) inte Bg. (5.7) we obtain
e —»

Ty --:'Il?_ * 22
Uy (.s s) Tamg (&) s’
{ j‘, . 2, de

g!
- §

o0 my Ty (5.13)

tm;*)az:; Yo Tofols) oo



_17_

(wi‘th subtraction terms in & and p waves). We note that the only reguirement thaet

we place on Bo in Eg. (5.9) is that it must be such that the partial wave expsnsions

of A and B in Eg. (5.10) gonverge for & = =

(a) -

(e) -

(4) -

0"
The following remarks are in order.

Equation (5.13) does not relate only physieslly accessible guantities since it
contains the T — {4 imaginary parts in the region 4 2 <tz 4 ne.
This was expected ; unitarity only gives us the phase of Xx —~ £ 4 partial
waves for 4}&2 < t < 16}4,2 as equal toc the X X phase in that region. This
may turn out to be very useful in praciice 5 we can exploli cur knowledge of
752 - IZ (or Ty - X N) amplitudes in Bo. (5.13) in order to obtain

some information on ®T —~ 24 (or XX — WN) for 4 2 <t <4 n°. We
remark that one can alsc write equations similar to (5.13) for g:[_’ te {(t),

by starting with Eq. (5.10) instead of (5.2).

In order to relate the constants ‘-}’1(50) and "P?(so) to a, end a,, the
simplest way ig to note that since these constants appear only in the subtraction
terms of & and p wave amplitudes in Egq. (5.13), one can impose on the £ = O

and £ = 1 equations written in terms of LPj[so} and L|)2(so)

17 77
lim s (€)= a, bm , 7 1<) = a, (5-14)
J-—»(ﬁny)" ..r-a(m;a./ (_-—“r'(;";"’)z)

The generalization of Hq. (5.13) toc Z K and T ¥ is obvious. The validity

of the resulting equations is the following 14}, in twc cases of interest
K : 40° = -t~ 34.9 m° E_ ~ 1080 MeV
TE P 4a7 = 7, 040 My em
W : 4g° = ~t ~ 18 m° E  ~ 1320 MeV
’ o - 7 cm

Mandelstam analyticity would give us slightly larger domains (for instance
Ep ~ 1400 MeV for T ),

In cases where for physical reasons one can write ursubtracted dispersion
relations (owing to Pomeranchuk theorem for instance) one does not have to
bother with a subtraction function. As & consequence, 1) the XTT — 22

(TT ind NN_) amplitudes do not appear, one has direct relations between physical
Tg - TP (XN ~ AH) ones ; 2) the kernels are mcre slowly convergent than
in Eq. {5.13), they decrease as (s')_2 instead of (s')_3 and asyeptotic
(Regge) contributions are more important at low energies. This case has been

11}

extensively studied by Steiner et al. in TN scattering ; we refer to

these authors for further details.
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We note finally that one cen in prineiple write crossing equaticns for a

general process A+ 2~ C + IJ. Denoting the various casnnels of tails rezction as

W
=
+
L
!
!
+
Ly

wo o would have

3, =0 fﬁf ; l_r"
Yl T [ E K 0 A0

7=/ 4 {5.15)

There ia no difficulty in chtaining this equatiorn which cxprosses the ¢rossing property

ct the total amplitvuce. However, =t present we Gco nol have snough results fron axiomatic
figld thaory - validity of fixed variaole digpersion reistionsz and numter of subtrazcetions -
to deiermine tae region where (5.15) ig well defined. In prectice, che can assume the

Mardel ater represenitation o estimsvc tals region.

CONCLASTON
It is of fundamertal importance that the implicaticns of cressing can he
written systematieslly on partial wave amplitudes in $he physica! regisn. Tn W
pbyeics, the interest of the physical regicn crossing ecustions is tweiold. First,
from a prastiecsal point of view, one may directly wse thege egusiions ag a2 stccthing
procedure in order io rendsr experimeantal data compatlible with crossing sand snalylicity
regulrements. Secondly, from a theoreticzal point of wview it is c¢lear that these egqua-
tilong corstituie the corrcet Tremeworlk to build low energy ampiitudes. In these two
reapects we bellieve that these equaticns represent an imporsant step forward in the

study of X =cattering.

A8 dynamical equations, they arc more profound than, ssy, N/T eguations,
girce the contribution of M"left-hand singulsrities" ig explicitiy given in terms of
phyeical absorptive parts. They uprovide & systematic way to implemeni crossing In low
energy anplitudes whick satisfy unitarity. However, they sre not complets in the sense
that in order to use thegfe equations, one must in principle know all partial wave absorp-
tive parts zsbove o certain energy. In practice this is not = ssrious problem sitce
a) the integrals are rapidly convergent and high energy contribuiions are small, and
bj it is guite easy to incorporzte the contributions cf higher partial wswves and fegge
poles. In order %o cbtain the imaginary parts at higher energieg, one could think of
considering similsar eguations for other reactions and performing some coupled channel

T . . . :
calculations, e.g., in order to obtain Im I“I in the inelastic regicn, one could
X
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consider the reaction WK — Kf, and hence X K — LK, etc. However, this cannct be done
in a systematic way and one cannot go to high energies, as is d¢bvious from the conver-
gence domaina of these eguations : they are tasically low energy equations, and, in

their present version, give no information on high energy axplitudes (these have to be

inserted as driving terms).

The high energy driving terms can be inferred from a phenomenclogicsl ana-
lysis. 1In this respect, we think that these eguations give strong support to the GMN
model where it was found thaet ihe TX 5 waves are practically determined once the
I =1 p wave and some asymptotic contributions are given. We have explained how these
equations could he used in order 1o unitarize & and p wave amplitudes in the

Veneziano model. Thenomenological duality can also be incorporated guite naturally.

We have seern that in crder to nave necessary znd sufficient conditions for
crossing end analyticity properties fo pe satisfied, these eguations have to be supple-—
mented with extra conditicns. The supplementary conditions can be expressed in Several
ways, and in theoretical analyses we believe that the Martin inegualities and sum rules
are well sulted for this. Furthermore, we have shown that these inequalities and sum

ruleg can be used in a much stronger way than hasg been dcne up to now.

We have written similar egquations for arbitrary processes, the main problem
there lying in the deriwvation of the convergence domain of the relations. In ¥ N
scattiering, this domain can be determined, and the resulting equations should he useful
in particular in the determination of the XX — J R amplitude below the KN thresh-

old.

Finally, from a theoretical point of view, it seems that the last unsettled
point about croseing and partial wave amplitudes ig the problem of incorporating the
crossing condition on complex angular momentum plane centinuations of partial wave sm-—
plitudes. If this could be done in & non-trivial way - i.e., not simply equivalent to
writing crossing on the sequence of fz(s) for £ = 0,1,25.4. - this might give

further insight on the relation between the high energy and low energy regilons.
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APPENDIX A ¢ X EQUATIONS
Avl. — Neotations and conventions
We set my = 1 1n whet feliows. The XX total amplitudes with isospin

I are denoted by ¥ (s,%,u) where 5, t ard u are the ususl Mandelstam invariants.

The = c¢hannel partial wave expaneiorne are writior as

Z
FP (st - Z () ) B f 1+ 24
y I=0L ? o Su "

I=r Lodd o
fur convention for unitarity is suen tast ia the elastic regicn

J'J-I/f‘) , z
s )2 e s o

(a2
Therefore we nave
(0) ( a,
L
F (zf; 5 0) = @,

{4.3)
wrers a, and a, are the s wave scattering lengths. Our optical theorem is
therefore

I I
Tm 7 (5040 « Yolo-v) & (<)
ok (A-‘f-)

441

and tota’ cross-secticns for defirite charge corfigurations sare

Tz’ 2z E'z° 4 2
07;0& = < U-f.‘aé' ; t.‘:rt-‘:m‘:' = 023(' * Tiot
X'r- : Z v ROE® 0
. 2 z
U}t - 5' UZﬂf' +‘§J 02'95' *a_éac" J GZaé‘ - é-z gz'aﬁ' * _.é '5206‘
J

The sbsorptive part of Fl(s,t,u) 1in the s channel is dencted by A (s,t). The 1
and u chanaels absorptive narts are dencted by Di(t,s] and Di(u,t} 3 they are

related to the = channel absorpiive parts by crossing matrices, we have

o1 %
dg = V-

4/3 ) Z Ve

{(4.5)
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“{su---}/z Z %

% ,4 V; (4.6)

In what follows we shall ftake an operator notation for integrals in the following way

plot) AT(E) - i—’[m/b/‘?h:y #2(5]8) dss (4.7)

A.2. - FPixed t dispersion relgtions

We want to express the + dependence of subtraction functions in twice-
subtracted fixed +t diepersion relatione in terms of the scattering lengths and of the
imaginary part of the forward amplitude. This can be done by using the crossing relation
at s =0, i.e., FI(t,O,4—t) = o giIFI'(O,t,4—t) ag shown by Roy 10). e give here
our own derivation which, although more complicated formally, leads directly to the re-
sult and gives as by-product the subtracted Frolssart-Gribov formula for & and p
waves, which we will need later on ; our method consists in subtracting s and p
waves from the total amplitude. For ¢ > 2, the Froissart~Gribov formula converges,

we have

o0
.7{2/:) - _# /y CP;/*/Q‘—Q 2 (5}5) & (4.8)

X6y
Inserting Bq. (4.8) in the expansion {A.1) and making use of the Darboux—Christoffel

formuls

2 - (A-9)

(=]
5 ey Rl 9, (2 - L B0 Py ()= Ba(0) Pl
I=4

we obtain, using our convention {A.7),.

(ﬂ} /30/ e &) Dfﬂf}
£l /,ge)_—;{ lc) » (s, ¢

(4.10.8a)
) 4
Pl - X AL ) e X 54 2,1t

(4.10.%)



~23_

where the kernels K° and X' are

ot o A [ A - )]

Sy 22 -2+ (A.11.8)
Alct,s) = zm[_:'._ -3 0]
! (st ) 34 L ai-xr 1 (4411.b)
with
7
o A + _éé: Z = A +'§£J£'
J-y -4
(he12)
The twice subtracted forward dispersion reletions c¢an be writien as
0o 4
I
Tl e o b [ eyl V0 A @ Ty
A.13
a, .%
where we have introduced the kernels
s) - s(s-t)
Viss)= s{s-4 c(s z ] ik, /.
* §7(s"-4)™S) sy (s%1-9) (a.14)

If we write Egs. (A.10.a,b) at t =0 and compare with (A.TB) we obtain

the subtracted versions of the Froigsart-Gribov fdrmula for 8 and p waves :

/] S, 2
Py . (2) () )ve A condin-Whoti, .

0y J/l ¥

] 4 y 4
3 #4(_9) . (s (zﬁo_.gg_;) LU Ale) +C6)D, [0 -K f5,°)me($)u_15_b)
1 2 ¢ 3

We now ude these expressions for the s and p wave amplitudes in Egs.
{4.10.8,b) in order to obtain the twice-subtracted fixed & dispersion relations ;

taking into account the definiticns of k° end XK' in {(Ad11.8,b) we get

F(g)(‘:bﬁ (::) v (14)(%)( 2%'—:-“‘) + Ule) A(g)(o) + C(s) CD&E) (o)

ol (?)
+ E(tee-w) | oot (L% s-y) - :D: (s)
T ¢ (5-8) s/(s"s-4)(srs by

(£.16)
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Flsb) < (4045 {(%:q)(m“fa‘) L Ule) A o) w Cls) DY (o)

F eyt (b9 (700 ] (os) _
T Y SYS7-b) (ks by) EHI-Y) (4.17)

By the crosgsing relation

rr’ _z/
F~ rEe
o{ré- // ) (4.18)

Me

FJ(J}&) =
ra

LN

-]

wg then obtain the fixed t dispersion relations where the subtraction functions have

been explicited.

A.3. = Partial wave eguations

Owing to t-u symmetry (or antisymmetry in I = ‘I), we project out partial

waves by

I !
f&/:) . / dwid F b)) £, (o8]

(4.19)
and Fg} obtain s / 4 12 ca ; o
) - Qa" "
y (5] = [/a) *K@/ v'/(—r‘"i// ¢ ” J.—";;/‘/’f Bl At
o b
{ [uie) + (8] :Df.‘)(o) + (TU ﬁ Joter 4oy + e MY
f
Slest-y) Y L Jtatie) A fee ). /’/;3 ;,fé)j
? r Y s (T Ee) o ar g ) "Z ¢ A ] (4.20)

C/m)

1 o
_ 4
f& /”= /J‘;-“// g:;' :al) J.ej +J‘-‘%9’ ‘/;;_4' * % /4:%5){ fut) -¢ (é)] $é fe)
2

s S Ty atle) v Cr&) ﬁa"/o)]
iy

. .rﬁr+é-¢//°o i [/ &% é-y) /,’4/:{’4-) -.p;/.r,’e-)]j (a.21)
y S OREy iy

v
r s

(4 odd )
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in the right-hand side of Egs. (4.20)-(4.21)}, we cen replace the absorptive parts by

their partisl wave expansions

Wlsjers I () Tm ) () B[ 4 =y
¢’ Sy

(a.22)
This expansion converges if 1t lies in the Lehmann-Martin large ellipses 14) ; 8ince &'
ranges from 4 t¢ +@, we must have
o2t 4y (A.23)

Since the t integration ranges from {4-s)/2 1o zero, =& must therefore be in the

interval

-4 45 & 60
(A.24)

Hotice the importance of using t-u symmeiry to reduce the integration range ; using the
interval 4-s ¢ t « 0 would give us 0 < & < 32 instead. Assuming Mandelstam analyti-

city gives us =4 < s < 68.

We now write the partial wave equations in zome detail.

-Jr: (s) = [ a, + ({é_{r)(e_c_:f_«_&)_] F?.o
Qe o ol ) 2 N
" Tjr ‘Ld’d‘:{ ,?;' @hay [ ¢, (5,5) I»L’PQ,(:’) v Gypr(57) Tin f‘;( )}

£ wen
(a.25)

+ I (U G:éj (55") I"‘f:’ ({!)JZ
2 odd

. 1
The kernels GL'%. are obtained easily from (A.20)

L2
o8 7 ; ’ 2 C(f‘-f)
Cpprle5)= £ e /J;f)gz[ww) » CCks)] - .:EW
<

2 S(Cet-0) _?/ 4’9&‘)[ _r/J - 'f/f (4.26)

(s o) PrrE-e)
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|-
Q”,{rr% é, ./t_.: de B[t “)/ SV + Ctoen] +5 5 CltsY
-

7y
;J/J‘!“"‘"} .ﬁ; 4 e
+J J’Kr'?é-&}éré.r#é-y !'J'T) _;
(a.27)
ai
& 1)e 2 ? Uttfe’) recer’)f + 2 Julbs) st coer)i
eer (559 J:_f/*fy_;-f #;f(/,:rg,:) zf[ fe’) _/+é_¢[ ):: V/
2
Slrvé-y SRR .zé)j
SrU b rrir by
{4.28)

where U{t,s') and C(t,s') are defined by Bg. (A.14).

A R ] e 6l

2 T (Y @c‘c, (5c) .I'M{Z:(n)}

todd (h.29)

with

{0 v . '
e 4 ? ¢ LRlE s + CrE ) vd £ Clery
o= A [ i) ol

+ L s(s+t-Y 2 4«24- .
SOl 4 (1959 by / )-; (2-30)
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G N /44 ) 24 ¢-4 ]j
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A.d. - Analytic expregsions for the kernels

The various functions which appesr above can be expressed in terms of two
bagic integrals ; we notice that the amgle 3z' = 1 + 2t/(='-4) can be expressed in
terms of z = 1 + 2%/(s-4) as

2/ . 4 4o (2-1)

(4.36)
with
e Sv
37 (4.37)
The two bhasic integrals of interest are
' +! :
It = 4 [ R(2) R(Y 42 o
and
: / I Y A 4 ey di
T (4 e, %)= f_,. e(2) S(¥) (4.39)

z - 2
where we gee immediately that for g' < £ I1(£, 2', o ) vanishes, while for £' < £

we have

(8 d2) s Qux) Fr( A4+ (2-0)
e’g € (4.40)

This provides us with explicit expressions for 4' ¢ 4 terms in the kernels, In prac—
tical caleulations, it is presumably preferable to compute all other kernels directly
on the computer, however, for theoretical purposes it is interesting to have expliecit
forms for the integrals I1 and I_,. We start with the expression of lLegendre poly-

2
nomials 25)

€
g
Py = Z -y B! (4_2)1
2

Azo (AN*@-2)! (a.41)
and with the formula
+|
‘Lf P (2) (4'_1‘)%01% et a)?
L < (-2} (o r4)] (4.42)

Prom Eqs. (4.41) and (4.36) we get

Y A
Lyt L)) -
- & "¢ # . /-2
3’/67 = Aze v (}t‘../ 2-A) ! {a. ) (4.43)
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Eence, from Eq. (4.42)

v em
.?e’(y) = j: (Zm-rd-) 2’"’ (%) b( ™ Trm, (90
T O (4.44)

=TT ! =
wherc tee polynomial || i ey is defined as

2-m ¢ A-m

Wm [4) = 2 ) ¢+ D)

Aadb
Az m [e"1)-1(1'h).l(l+m+uli ( )
From the usugl definition of Jacobl polynomials
«, -
.?h P{%) - (_'}}:f__)_l F(—%fffl.+o(+}3+'i; ord J_L_‘.L)
e (4.46)
we see that we have
tim Lmed, 4
T, (- 2 % [4-%
- leme oa

Hence, the integrals 11 and I2 of Zge. {A.38) and (4.39) can be expressed in terms

of Jacobi polynomials and Legendre funections of second kind, since we have

4f Dol Pam(2) d2 = Gp () B (o0
-2 €2 m

. m ,
We note that owing to the presence of the factors & on the right-hand side of

(a.48)

{#.44), the diagonal term in Eg. (A.38) is

T, (68 <) = (:,_9) (4.49)

hence providing us with the correct threshold factor. It is easy to see that this
will happen in all kernels and therefore the crossing equations (4.25), (4.29), {A.33)
cen directly be written for amplitudes regulsrized at threshold, i.e., for fﬂ(s)/(s—4)£.

4.5, - Bupplenentary conditicns

These are obtained by imposing t-u symmetry {or antisymmetry) on total
Jo ;r smplitudes. They can be written in several ways. The simplest, formally, is to

impose that

2 e
>« TI {E:.r) = z o{ Fly-s-t,5)
To st T/eo (a.50)
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where Fl(s,t) is understood to be defined by Bqs. (A4.16) and (A.17) 5 this will there-
fore be an integral constraint on absorptive parte, in regions where the integrals are

defined. For instance, in the x° g° ocase F°O(s,t) = %(Fofs,t) + 2F2(s,t)) one gets

Jdr’(sz L (-0 . _ulwd :} A% (o)

¥ sty f—&)(ﬂ-é 4 (57w (¢ u-4)

(4 - -¢) J:u_(z.si{:-%) AT ke (auew) AW ] _ o (a0
§ g/(sht ru-t) L{g7HEG (5w (s+w-4 ) (s'-€)

Another way is to impose that the odd {even) partial waves of P (t,s) and F-(t,s)
1
(r*{ty8)} vanish identically. Again in the g ° x° case we would have

T B ) Zeewy [T Ty le) JLEABTY

=0 y $/(cu)(s-E) (r4t-4%)

[4 "weh.

» slob-(E3EY  Fy 442 )}

S8y (5%t (e R (4. 52)

which must hold for all wvalues of ¢ and 8 for which the partial wave expansion
converges (note that here we must use the full interval [;—s, @I hence we have

C< &g 32). Crossing conditions such as (4.50)-(4.52) nave already been studied by
Wanders 8) and Rosikies 9 . The important point is that = and p wave contributione
cancel out gxplicitly from these relations which therefore place no restrictions on

them.
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AFPENDIX B : RELATIONS BETWEEN THE PHYSICAL AND THE UNPHYSICAL REGIONS
Thig method was introduced by Martin. We shall briefly show some further

aspects, first concentrating on xoro for simplicity. We follow the notations of

Appendix 4.

B.9. - X2T° scattering

Using the Froissart-Gribov formula for higher partial wave amplifudes, and

making use of the Darboux-Christoffel identity E}ee Egs. (A.‘!Oﬂ we Obtain

E(st) = fole) + k(&) A(s)
(B.1)

Eve uge the cperater notalion of Eq. (A.?ﬂ. Using the crossing symmetry F(e,t) = F(t,s)

we can write

fols) - .Y,(L-) = K°(t,s)AlE)- U°(s, € AR(s)

(B.2)

of which Eq. (A.15) ie a particular example. Equation {B.2) is the starting point for
deriving Martin inequalities for the a_a xo 5 wave, a5 1s obvious from its structure ;
in the region 0 < 8 < 4, 0« t < 4, the abscrptive parts on the right-hand side can
be expanded in partial waves and unitarity can be used to show that these absorptive

parts are positive. This equaticon alse has the structure

;o (5) - {u(&) = "f(:fl')

(B.3)

By subtracting &t an intermediate point to we also obtain

E.(SJ - go“:) = "?(Sxt“') - ‘?(txb“)

(B.4)

and equating (B.3) and (B.4), we obtain, after inserting the expression for \? (s,t)
of Eq. (B.2)

Kls,6) Als) - Ko(bss) ALE) = K50 Als) - K(tys) Alte)
— Wolbka) Atk) + U°(be,t) Albe) (B.5)

which can glso be written as

Dok )- w0 Ly toll Als) + [Ko( £s Eo) - Holbi)] Ak) + LW At9s) - K°(6, £)] Alt)=01s. )
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This equation is a thres-peint crossing constraint on absorptive parts 3 if =, T and
to are all between O and 4, this will be a constraint on physical amplitudes since
Legendre sxpansions will converge. Equation (B.6) is essentially equivalent to the

supplementery conditions (A.50)-(4.52) previously discussed.

Particularizing Eq. (B.4) at t = 4, t, =0 we obtain the following

. 9 0
expression for the x X B wave

ob
foleyz g 4 S(ew [ de (°Y) A(s]0)
™ 4 s (s (87

o [ Gol 4+ 2) - (s'ss-0Q MENAES) 5.0

" S {s'+s -8)

[at!

This form is interesting in that the last term is a "slope" term, responsible for the
Martin inegquality (4.5) while the second term on the right-hand side, which vanisghes
at =0 and at s =4, is & "curvature" term (which by itself would give a positive

curvature to the s wave amplitude).

B.2. - Charged pions

The main difference lies in the fact that we now have a crossing matrix.
We first write the total isospin amplitudes in the s channel as in Eqs. (4.10.a,b).
We now consider combinations of amplitudes which are eigenvectors of the s-t crossing

matrix, i.e., which have definite &-% symmetry properties, these can be chosen as

F°(s,t) + £ F!(S,E) S-t J%MMQMC, (B.8.a)
JFleey + I F'(s0) - % F“(.r,f,—) s-& fgh-m.tur.. (B.8.D)

2F° (e ey - 3 Fiee) -3 F‘(-:,L-) s-E antirsy mmebise (B.8.c)

using the same methods as above, we obtain

[+ 2§l (0] - [se¥] - Kols,0) De (s + 204 ()] - [se=t]

(B-9.a)
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Lt [0l ~eoglo] +9x e o0}

g4 2 ) Filo 5] fseot]
o a .[ 55—_-:!:‘} (B+9.%)

(0] + [ser€] = {-KToD[2 0 () -5 DF f0) ] 3K e AT S
+-E Séab}

where the symbol [éd* {] meane that the same exrression should be taken after inter-

=S )l

changing s sand t%. We note that in Eg. (B.9.c) we can immedistely set s = 1+ in

order to obtain

; “ o _ o, 209)_.[.94&)
- 9(38) fior -5 Lor = HTa Ol WMo 20T

{(.10)

As in Egs. {B.5)}, (B.6), we can write crossing constraints ok imaginary parts, equivalent
to gur previcus eguations (A.50)-(4.52), we shall not repeat this. From these equations
we can get a new and amusing relation : if we add Eg. {B.10) to BEg. {B.9.b) and subtract
it after changing s inte + in it, we directly obtain sn expressicn for the p wave

amplitude :

L s ot-5] £ flw]
sy -

4 o
Jheltys) - w6 £)][ 28,7 (&) - So2re)] + 3kl e)+3 K (6r)] D4 (8 (5.11)

this expresgion is formally similar to Egq. (B.2), but it is for the p wave regularized
at threshold. DMNore interesting is that for 8 + t = %, l.g.y, u = the left-hend side
4

of Eq. (B.11) vanighee identically. Therefore, on the line u = 31 one must have

WH R

= D
(B.12)

| 4,.
JKe(t,0)- u“(e,&)j[w‘,;(a)—rvice)j +3 [W(g, ) +3%'(58]D () - [sent
.;fL E = %é -5

and for all & where these integrals are defined. Onece agein, we noie that the s and
p wave absorptive parts satisfy identically Eq. {B.12), but not the higher waves, which

are therefore constrained by this eguation.

Finally, let us mention another set of crossing constreints on the abscrptive
part in the forward direction, that has been written by Martin in the x;)mp case and
can easily be generalized. In Eg. (B.B.a) for instance, one can eliminate the left-hand
gide by taking the derivative once with respect to t, and once with respeect to s, if
one then derives a third time with respect to either of these variables, upon setting
8 =1t =0 the right-hand side gives an integral crossing relation invelving the first

and second derivatives with respect to angle of the forward amplitude. This can be done
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in Bq. (B.9.¢) by teking 0%/ Ds2Dt? and setting 5=t = 0. On Dg. (B.9.b) as it
stands one would have to take a fifth order derivative, however, if one conslders a
different combination of amplitudes, for instance Fo(s,t) - F2(s,t) which crosses

into F1(t,s) + Fz(t,s), the p wave amplitude will only sppesr on ohe side and second

order derivatives in each variabkle will be sufficient.
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[v]n] oo
£5°(4) - £,°(0) 7 Zfo
P4 3.6177 1072 3,6177 1072 0.003 1072
- -2 -2
M 1.551 10 1.461 10 0.017 10
2[=2 _ 0 1 '
a2+3!:1‘0(0) £o(o]] = zZ
¥4 1.74 1072 1.82 1072 0.05 1072
MY 0.962 107° 0.313 10°° 0.437 1072
r
o 0w o T
1?4 < 0 < 0 -
GUN 50 mb 70 mb 0.72

Values of various contributions to sum rule {4.4), in the two cases of the

Padé approximation to the lﬁ4 theory k?qj end of the central solu-

tion of Ref. 7) (GMN). The fo contribution I:fo is calculated aes given
by the model in 2434, and in terms of physical mass and width for GMV.

Same as above for the sum rule {4.11) ; here ‘215 is calculated as given

by these models.

Values of "asymptotic cross-sectlons" deduced from these sum rules, and

their ratio.
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FPIGURE CAPTIONS

figure_ 1

Figure 3

Real part of the I =0 & wave XX amplitude in the GMN model.
Solid curve : as given by the model ; dashed curve : s computed by
Bg. (2.6) with imaginary parts given by the model. The corresponding

phase shift is curve 4 of Fig. 2.

Two poSeibilities for the I =0 8 wave ZA phase shift.

Curve 4 & central solution of the GMN model ;

Qurve B fits the "up" solution above the 5 and corresponds to the

same gcsttering length as curve A.

Experimental data are from : E. Malamud and P. Schlein ("up-down" solution),
Proceedings of the Argonne Conference on r and W E Interactions,
asrgonne (1969) ; and J.P. Baton, . Laurens aund J. Reignier - Phys.Letters
338, 526 (1970).

Real part of the I =0 & wave T amplitude as computed starting
from curve B of Fig. 2. Solid curve : direct calculaticn (HE%Z cos;-sing.).
Dashed curve as computed through Eg. (2.6).
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