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ABSTRACT

We obtain a denumerable set of rigorous
inequalities on the Tro Tro - ]To partial
wave amplitudes which guarantee that the ampli-
tude is crossing symmetric. The numerical ine-
qualities presented <for the case of S and D
waves indicate that one has very little freedom

on the choice of the D waves once the S waves

are given.
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INTRODUCT ION

One of the problems encountered in the recent years is
to construct scattering amplitudes which satisfy, among other things,
the requirement of crossing symmetry and unitarity. One of the
traditional approaches, both theoretical and experimenfal is to
expand the scattering amplitude in partial wave amplitudes for which
unitarity is easy to express. This is the case, for instance, when
one wants to use the N/D formalism L . Then one has the problem
of satisfying the requirement of crossing symmetry: naturally one
would like to make sure that one gets the same result if one
expresses the scattering amplitude by a sum over partial wave ampli-
tudes in the s channel or in the t channel, in a region where
both expansions converge. The difficulty is that if one approximates
the amplitude with a finite number of partial waves the requirement
of exact crossing symmetry on the approximate amplitude cannot be
satisfied. More specifically, let us take the neutral pion-pion

case. We have

F(s &)= ) f5> Bless,

(1)
2%
s-4

F (s, t,4) 532: (2 Q-H)&(-b) ];(met

(2)

. Expansion (1) is crossing symmetric in the

(the pion mass is unity) and,

with cos Os= 1+

. — 2s
with cosut-1+ )

exchange of t and u. From the analyticity properties of the pion-

pion amplitude, we know that a common domain of convergence of both
expansions (1) and (2) is the triangle s»0, t» 0, ux»0. If we

approximate F by a finite number of partial waves:



F o~ S €Z=L2?2'ﬁ+l>r0(3) P(MGS)
- L _zza [ 2 (3)

Then the equation

F—SE_F—'(:

L L (4)

would imply that Fi is a polynomial in s and t, and, due to

the reality of £ (s) for 0<s<4, a real polynomial., Therefore,
hnF(s,t==0,4-s) is identically zero and the total cross-section,

given by the optical theorem, is zero.

What is generally done to avoid this catastrophy is to

impose sufficiently few crossing conditions, for instance to impose

the equality of FE and F; and a finite number of their deriva-

tives at the symmetry point s=t=u=4/3, However, there is no
guarantee that it is a consistent procedure and one might very well

be led into error by what might be called "unphysical intuition".

What we shall do in this paper is to use positivity to
present substitutes for the unacceptable equation (4). More speci-

fically we shall

1) show that there are subdomains inside s»0, t»0, up»O in

which one can establish rigorous inequalities between Fz and

1
FL;

2) show that for L24 one can find a bound on F'FIS_. in terms of

the last non-neglected partial wave, fL-Z(S)’ and find curves

in the s t plane along which the uncertainty in F-F; is

minimized. This again will lead to inequalities following from

. . . s t .
crossing symmetry and involving Fp, fL-Z(S)’ P, fL_2(t),



%) show that the set of inequalities thus obtained is complete
(which does not mean optimum) in the sense that an amplitude
satisfying all our conditions for increasing L—- @ is

exactly crossing symmetric.

As an illustration of the strength of these restrictions
we present optimized inequalities for L =4, i.e., involving only
S and D waves, It is seen that once the S wave is given the

arbitrariness in the D wave is very small.

One might question the usefulness of this work in view of
the existence of a new approach which avoids completely partial
wave expansions and nevertheless generates, by iteration procedure,
a crossing symmetric and unitary amplitude, namely that of
Atkinson 2 . For our defence we want to point out that Atkinson's
approach meets serious difficulties when one wants to incorporate
resonances and introduce subtractions. In fact, integrals over
single spectral functions can be replaced by integrals over the
imaginary part of partial wave amplitudes with small angular momentum
and it is therefore important to study the crossing conditions on
low partial waves. The other motivation is that by looking at the

3)

S wave alone, Wanders and his collaborators find families of
solutions which, in practice, depend only on a few parameters. The
question is then to understand why the Atkinson solution depends on
an arbitrary function of two real variables. One would like to see
what happens in the Wanders approach when higher waves are taken

into account.
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2. COMPARISON OF THE EXACT AMPLITUDE WITH
THE INCOMPLETE PARTIAL WAVE SUM

For this comparison we use two basic information which

can be now considered as consequences of local field theory:

i) for O\<s \<4 we can write fixed s dispersion relations with

two subtractions :

F-(S.t,ﬂ) = C(S')
b (0 A G0d

™ 4 tﬂ-—( t'_ t)
20
e LN CLPLL

u
™ & /
uw't(u'-w)
“4 ( (5)

Here, of course, A,c(s,x) !Au(s,x) due to . te= U symmetry;

ii) from unitarity in the t channel At(s,t,u), for t>4,

O(s (4, is positive, because it can be written as the
A

convergent series

(s &)= Seerymh D+ 2,

(6)

where Imf (t) and P (1+-22)

L e t-4

We shall prefer to use the variable cos Qs ‘and write (5)

are positive.

as



| _ / Q_Lmea ACS/ ) d=
F'(s} wes) =C(+ -~ ‘T;: = m"és)
2

(7)
4+s

where 2z
o~ %8 °

From (7) follows the Froissart-Gribov formula for0;2> 2

42>s)>0

()= 2 j Al D Q(xlz

One can then use (7) and (8) together with the second Darboux-
Christoffel formula

L-1
L - 2 (28+0@@ k)
L B)Q. (D-Q 2, (x)

2 ~-X

(8)

(9)

to write F as F: plus a rest:
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4d=L-2
F (s o= 7 (2040 (o> (e
e‘ =0
2Q,_(2)P(18)- w8 I [«DHE)
1Eﬁl:_ c:‘:>€3k‘ﬁ_- ’

’ A(S}Z‘) l’i‘

(10)

where, from Eq. (6), A(s,z) is positive. Equation (10) is the

+2L
I

Z4

basis for all what follows. First we notice that the sisn of
F-Fi is known whenever the sign of the integrand in (10) is known,

i.ce.y, whenever

ZQ (i)P(mG)-méP (m&)@_(&)
=1 L =1

(11)
has a constant sign when z varies from z0==(4+s)/(4-s) to infinity.
For cos@ real, the sign of (11) for z—m is given by PL(cosC))
since zQL_1(z)~const.(z)-L+1 while Q ~const. L Therefore,

(11) has a constant sign, equal to the sign of PL(cosO ) if for

28 %

20..(2) § eme Ry (=0)
G (=) F[’_(me)




but since QL-1/QL is an increasing function of 2z for z)1 it is
sufficient to require

E2 QL-I (2°> > o © Ii"l (60’.)6)
Ql_ (2") | B_ (60':)9)

We therefore get for -1<rcos€)<:+1 a set of intervals in which

F-Fi has a known sign. For O Ccos6 the right extremities of the
intervals are given by

(12)

the left extremities by

R (we) % Gt (%) _ 00 P (~8)=0
QL (2°) (14)

The gaps, in which the sign of the integrand in (10) changes
with 1z, are extremely narrow for s close to 4, which corresponds
to Z, very large and hence zOQL 1(zo)/QL(zo) very large. Hor
-1&cose €+1 the number of intervals with definite, alternate signs

of F-F; is L+1. Since FE is a polynomial of degree L-2 in

L
dtcoe (F F) dme =

which is easily shown from (7) to be positive. Therefore, F—Fi

vanishes at most L +times and since there are L gaps in which it

cos &

vanishes at least once, it vanishes once and only once in each gape.
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To illustrate the situation we have shown on Fig. 1 the case L =4,
ie€e, F§=f0(5)+5P2(cos Os)fz(s) . The shaded regions correspond
to definite signs of F—FE. Since the picture may be difficult to

read let us indicate as an example that for s=2 we have

F- F‘f)o ror  0,8640 o< |
F-F5¢o o 0.3439< ] (0.5

s
F-F >0 co |cr e <0.3400
(15)

The fact that the zeros of I"-FISJ are sharply fixed is not astonishings.)
In fact, this whole thing is the development of an idea of Burkhardt
who noticed that near the line PL(cos ©)= 0 the error committed

in neglecting waves with ﬁ),l» is of the order of fL+2 and not

f,@ as it would be for PL(cos Q) # 0.

- Pigure 1 -~
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So far we have only discussed the sign of F-F]s:‘. Now
we would like to put upper and lower bounds on F—Fz :in terms of
the last partial wave amplitude appearing in F;, namely fL-2(S)'
This is possible only for L>,4 since the Froissart-Gribov represent-
ation holds only for Q), 2. After some manipulations using recursion

. 8
formulas one can rewrite F-F as

F- 5= 2(L-Dwo P ()@ £)-2Q [2) fg.,?
m 2, 2% 'S

x AQG2)dz

Hence, comparing with (8) we get

-

(L-omg, ma,)é@(F - FL-S LA fl_ 2(5)

(16)

with

M (58— sup 2 Eleod) - 2D P (o

2,<2 <00 21 cate,

: 2Q,-,(3)
M (5,56 = mf o0sh (209~ DTN (k)

2,<2<00 2% cote,

Clearly, M; and m are finite for any point (s, cos Os),
such that s)» 0, D0, u%0. However, we would like to select
points where the uncertainty ML-mL is minimum. From the previous

analysis we suspect that the uncertainty is minimum in the neighbourhood



- 10 -

of the lines PL(cosOs)=(J or of the lines (14) which are very

close, at least for s not too close to zero.

We shall prove that
ML(S/ boﬁs) - ’ML (5, (&) 6;)
f-a(ee:)

is minimum along the lines (14).

Let

(F(i) = = QJ‘_.,(-E )
QL-Q_(*)

) . w8 f (w8
P2 (L)

What we have to study is

o Y(H2) - mf u(4,2)
2, <2 ¢

with

Cy(ae = A-¢(=)

2% m"'e

Of course cos@ 1is a function of :x , but since =z . is most of
the time large as compared to cos© we neglect the variation of

cos @, ﬁ(z) is easily shown to be a decreasing function of 1z, as

BL-D¢(x)m Lot + b RBYG  cay
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and it has been shown 6) that QL/QL-2 is decreasing.
We must now distinguish three cases
a) a> ¢(zo) then infy=0 and

}‘1’(%) = A= ?(EM('\))

wh .
ere ZM>/ Zg

%['}(A/i‘m(f\)>]= ,'_ — >0

%\ [5l > 2")] = ;;I:, e = °

so we make y minimum by reducing Q . Hence, we must take

p {ﬁ(zo)-
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b) #@)§A {B(z)

Ser () = g (4)
_ 0= g(ealy)  D- ()

With ¢(zM)<A and zy Bz

d [aup(y) - w4 (y)]
= l - ! < (o)

%;'." - covte 2} ‘e

Hence, we must take ) ag large as possible.

c))( B )
np(p- b (9) = - g

Here agein we must take 3 as large as possible.

The conclusion is that the optimum choice is 2 =¢(zo)
which corresponds precisely to Eq. (14). VNotice that there is a
break in the derivative of sup(y)-inf(y) at 2 =Q’(zo) which
makes the minimum sharper and which justifies a posteriori the

neglect of the variation of cos© in the denominator of y.
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Therefore the uncertainty on F-Fi, when fL—Z is given,

is minimum along the lines

f’(?kye ) 'ito qa,.(ﬁtm) - € Fi;-|(t°‘°€%a> =0

G (2-0)

or equivalently

P_, () 2,61 (20) _ (o6, P_ (tve)=0

&, -, (&)

Then, the uncertainty is given by

o F=f o
‘1 MG (ot

with

‘f>¢f5:'),== = (;) ad (5t:)
Xy (=)

(17)

(2») ¢(="=)

(18)
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INEQUALITIES FOLLOWING FROM CROSSING SYMMETRY

The first and simplest way to get interesting inequalities
following crossing symmetry consists in taking the intersection of
a region where F—Fi is, say, positive and that of a region where
t
F-FL,
inequalities will be obtained on the borders, or more precisely the

ig negative. Then we have FE,) FE. Clearly, the sharpest

corners, of such regions. A particularly simple case of such ine-

7)

qualities is the case L=L'=0 and has already been reported H

the most stringentrinequality obtained was

ﬁ(&bs)) 640 (0.2( 34> ‘Q(z.‘fé’(?»)

The same idea can be applied to a comparison of F§+2

(19)

and F;. This has the advantage of producing inequalities for the
th

L partial wave amplitude at one given energy in terms of lower
partial wave amplitudes. For instance, this has been done for
Fi and FZ as is shown on Fig. 2

- Figure 2 -
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The results are given on Table I, The inequalities are

given in pairs going in opposite direction.

The advantage of Table I is its simplicity: given any
model or suggestion for the S wave one can find the D wave in
the interval O <s<4 with an uncertainty of the order of t15%,
if one interpolates smoothly between the points where one has in-
equalities. This is already rather remarkable if we remember that
Atkinson has shown that the pion-pion amplitude depends on an ar-

bitrary function of two real variables.

However, the most stringent results are obtained by the

second method, in which one compares FE and Fz at the inter-

sections of the lines of minimum uncertainty given by Eq. (14) ana

the analogue obtained by exchanging s and t. In this way one

L(L-1)
2

equalities only the coefficients change, not the values of s

obtains ‘pairs of inequalities. In a given pair of in-
involved, so that one can very easily see whether the inequalities
are constraining or not. Table II exhibits the "complete" set of
optimized inequalities for L =4, obtained by taking the inter-

sections of the curves

P (o) B BEE) o P lns)=0
Al S A

and

A0 2,(6) Qs (2e(¢) _ p _
4( be) B (o) RN ACTNEY

At these intersections represented on Fig. 3, one applied inequa-
lity (18).
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- Pigure 3 -

We see that the double inequalities listed in Table II
can be considered as approximate equations with small uncertainties
on the coefficients of the D wave amplitudes. If we exclude the
last double inequality which is rather poor, we see that the accuracy
of the D wave coefficients varies from +0.8% to 16%. Let us
repeat that this is a rather striking fact. It would even be more
striking if we considered higher waves, but then it would be
necessary to increase the number of figures used to indicate the

various critical energies.
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COMPLETENESS OF THE SET OF INEQUALITIES

The procedure that we described in the previous Section,

which consists in comparing F; and Ft at selected points inside

L
the triangle s>0, tH»0, udP0, yields for each L }'—(-I%t)—- pairs

of inequalities. The question is then this: suppose we have a

scattering amplitude given by the sequence

120 )?a_(s) ) ﬂa(s)} (s>

suppose that the partial sums satisfy the inequalities previously
described; is the scattering amplitude thus constructed crossing

symmetric?

In fact, we have to add additional requirements which

follow from positivity and the Froissart-Gribov representation:

i) fe(s)>0 for O<s<4;

i1) £, (s) 1is at least snalytic in [s|{ 4 minus the cut s<0

and for £}2 |s| (4
| QG-

, 4-1¢l Moy
l‘f{()K e ’4"’4<e< @ (5)

(20)

which implies, in particular, for 0 {s{4, £Y)2

0 <L E

445
R +
- ( ) - (21)
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Then, one can show that Z(ZQH)f& (s)Pa_(cos Os)
converges inside the ellipse with foci at t=0 and u=0 passing
through the point t=4. At the points where the crossing conditions
are imposed Ethe intersection of the lines (14) with their homologues,
exchanging s and 13—_] the uncertainty, according to (18) and (21),
decreases exponentially with L. Therefore, we have a series of sets

of points populating the triangle s>O, t) 0, u)O where crossing

symmetry is imposed with an uncertainty exp(—CL), the number of
points being proportional to 12, It is clear, from condition (20)
that both @ (2@+1)f (s)P, (cos0.) and Z(zln)fz (+)2, (cos0,)
are analytic in | s-2 <2@ It-2|<2, which contains the triangle
s>O, t) 0, u>0. Given any point s t = of the triangle, one can
find another point arbitrarily close where one crossing condition

for arbitrarily large 1L is imposed. From the uniform continuity

of analytic functions and from the convergence of Fg(so,to) towards
Fz) (so,‘to) for L—o one can easily show that crossing symmetry

is fulfilled as well as one wishes at the point So’to’ and since

soto is arbitrary, we have

Fof (s = F: (s,t)
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MISCELLANEQUS REMARKS

We have obtained restrictions on the pion-pion partial
wave expansion which may have some importance. We have seen that
from the point of view of crossing symmetry they form a kind of
complete set. However, such a complete set is not unique. The
ideal complete set is the one in which one has the largest number
of significant independent conditions on FE for L small, and
we do not know how far we are from this goal. In fact we have put
aside a simple consistency question which is: for a given s,
what are the compatibility conditions between the f (s)'s which,
as we know, satisfy the Froissart-Gribov formula for Q>,2 |s|<4?
This question has been solved by Common 8 for the case of O<s <4,
using again the positivity of the absorptive part in the crossed

channel, and will be published shortly.

We have seen the important role of positivity thxzc'ough
all this work. Unitarity, in the form Imfe (s)), |fe(s)] -?—rg.
for s)» 4 plays no significant role. As we know that it is easy
to construct crossing symmetric models such that Im fe (b)> 0
for s> 4, we must not be astonished if such models satisfy our
crossing conditions automatically. Our conditions are interesting
for models in which each individual partial wave is built to be
exactly unitary and where crossing symmetry is not obvious. Also
let me point out that the lowest order Cini-Fubini approximation 9)

to the neutral T{ oTro_’Tro“.o amplitude, i.e.,

(a0 Cplendt g ()
= %fts—'-_s-—-*—-ﬁ' f’%"&T"’r - W

where unitarity is imposed only on the S5 wave, satisfies exactly

our conditions. However, higher order Cini-Fubini approximations

will not, a priori, satisfy our conditions because they would

imply that the Proissart-Gribov formula is not valid for ﬂ =2

0\(3(4.
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One important problem left is that of isospin. Of course,
our results apply to the physical TroTro-» Tro'n; amplitude, i.e.,
1/3(T1 =0)+2/3(T=2). The difficulty for other isospin states is to
have information on the sign of the absorptive parts involved. How-
ever, this §eneralization has been shown to be possible by
Auberson 10 and opens the very exciting possibility of having in-
equalities involving S and P waves only. In addition, we shall
show in a forthcoming paper that simple inequalities between the
values of the S and P wave amplitudes at 8=0 and s=4

can be obtained.

It is of course not clear at all, as we said already,
that our set of inequalities is optimum. To carry this programme
it might be necessary, as suggested by Wanders, to use some systematic

approach, for instance the Balachandran-Nuyts expansion 1 .

Let us discuss the relationship with Atkinson's work.
When one looks at Table II it seems hard to believe that the
N -Tn amplitude depends at least on a function of two real
variabless The fact that the low energy scattering amplitude is
sensitive only to a few parameters had already been suggested by
Wanders and seems to come out again here. The question is then to
know how far this insensitivity will propagate. Certainly not to
§>'16, t}>16, but perhaps to some rather large part of the physical
region, s) 4 Icos GSI { 1. It is certainly desirable to build
models with sufficient flexibility to investigate these questions.
It would also be useful to carry practically the Atkinson iterative
construction and see what happens when one starts with two radically
different inputs. Let me also repeat that our constraints on
individual partial waves show that it might be difficult to carry
Atkinson's programme with many subtractions, because we know that our
constraints must be satisfied and that they are necessary but most

likely not sufficient to ensure positivity.
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Finally, let us conclude with one request: could people
who compute T amplitudes publish not only phase shifts but also
the values of their amplitudes in the unphysical interval OSs $4

to allow present and future tests of crossing symmetry and positivitye.
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TABLE I

£,(0.0341 )<f0(3g839)-f°(0.0341)
£,(0.0730)» fo(3.654)-fo(0.0730)

£,(0.304) <1 (0.304)-2 (2.543)
£,(0.325) > £ (0.325)-£_(2.463)

£,(0.589) > £ (0.237)-f (0.589)
£,(0.803) <fo(0.199)-f0(0.803)

£,(0.572) < fo(0.572)-fo(1.087)
£,(0.572) > £ (0.572)-1 (1.294)

£,(0.747) < £ (3.052)-£ (0.747)
f2(0.826) > f0(2.953)-f0(0.826)
£,(2.288) £ (2.288)-1 (1.244)
£,(2.288) > fo(2.288)-f0(10091)

£,(2.857) > £ (2.857)-£(0.377)
£,(3.102) £ £,(3.102)-1_(0.296)

£,(3.106)  £,(0.0619)-f (3.106)
£,(3.536) » £,(0.0322)-£,(3.536)



3.163

3.147

3.896

1.303

1.494

4.347
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PABLE II
£,(1.168)+1.374£,(0.185) <t (0.185) -2 (1.168) <
<3.169¢,(1.168)+1.4222,(0.185)

£,(0.408)+1.632£,(3.390) {£_(3.390)-£ _(0.408) &
& 3.492£,(0.408)+1.632¢,(3.390)

£,(0.0758)+1.633£,(3.770) (£ (3.770) -2 (0.0758)
&4.3912,(0.0758) +1.633£,(3.770)

£,(0.0871)+3.073¢,(2.737) £ (0.0871) £ (2.737)
&1.380£,(0.0871)+3.073¢,,(2.737)

£,(0.537)-1.623£,(2.363) £ (0.537)-£,(2.363) £
&1.510£,(0.573)-1.622f,(2.363)

£,(0.00663)-3.0612,(3.904) £ _(3.904)-£(0.00663)
<6.503£,(0.00663) -3.061£,(3.904)



1)

2)

3)

- 27 -

REFERENCES

See for instance, G.F. Chew and S. Mandelstam, Phys.Rev. 119,

D.

G.

A,

467 (1960).

Atkinson, Nuclear Phys. B7, 375 (1968); Nuclear Phys. B8,
377 (1968).

Auberson, O. Piguet and G. Wanders, Phys.Letters 28B, 141
(1968); '
Piguet and G. Wanders, University of Lausanne preprint,

to appear in Nuovo Cimento.

Martin, Nuovo Cimento 42, 930 (1966);

Y.S. Jin and A. Martin, Phys.Rev. 135, B1375 (1964).

He

Burkhardt, Nuovo Cimento 42, 351 (1966).

See for instance, A. Martin, CERN preprint TH. 968 (Appendix),

A,

submitted to Nuovo Cimento.

Martin, Nuovo Cimento 58, 303 (1968).

A.K. Common, Private communication, to be published.

M.

G.

Cini and S. Fubini, Ann.Phys. 10, 352 (1960).

Auberson, private communication.

A.P. Balachandran, W.J. Meggs, J. Nuyts and P. Ramond,

IAEA preprint, Trieste (June 1968), tc be published.



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

