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Abstract

Many medical image processing problems require enhancement of crossing elongated struc-
tures. This problem can not easily be solved by commonly used coherence-enhancing diffusion
methods. Therefore we propose a method for coherence-enhancing diffusion in the invertible
orientation score of an image. In an orientation score, the local orientation is made an ex-
plicit dimension, ensuring that crossing curves are separated from each other in this extra
dimension. We consider the group structure of the orientation score domain, which is the
Euclidean motion group SE(2), and impose left-invariant evolution equations yielding the
appropriate scale space representations of the orientation score. We describe how we can cal-
culate regularized left-invariant derivatives, and use the Hessian to estimate three descriptive
local features: curvature, deviation from horizontality, and orientedness. These local features
steer a non-linear coherence-enhancing, crossing-preserving, diffusion equation on the orienta-
tion score. We propose two explicit finite difference schemes to apply the non-linear diffusion
in the orientation score and provide a stability analysis. The experiments show that preser-
vation of crossing curves is the main advantage compared to standard coherence enhancing
diffusion. The use of curvature leads to improved enhancement of curves with high curvature.
Furthermore, the use of deviation from horizontality makes it feasible to largely reduce the
number of sampled orientations while still preserving crossings.

1 Introduction

Medical image processing problems often demand enhancement of elongated structures, such as
ridges, edges, and oriented texture patterns in noisy images. Consider for example blood vessels,
catheters, neural fibers, and contours of organs in noisy medical image data.

Many methods for enhancing elongated structures are based on non-linear anisotropic diffu-
sion equations on the image, i.e. non-linear anisotropic scale spaces1. This idea was pioneered
by Nitzberg et al. [28] and Cottet et al. [7]. Later on, Weickert proposed edge- and coherence-
enhancing diffusion filtering [38, 39], which uses the structure tensor to steer the diffusion. Af-
terwards, various publications appeared inspired by these methods, for example Manniesing et al.
[26] who propose to steer the diffusion using the vessel resemblance function.

A lot of (medical) image processing problems require the algorithm to appropriately handle
crossing and bifurcating line structures. This is for example important in High Angular Resolution
Diffusion Imaging (HARDI) [32], which is an extension to Diffusion Tensor Imaging (DTI) where a
richer representation for angular data is used, such that crossing fibers can be distinguished. Other
examples include microscopy images of for instance collagen structures, X-ray fluoroscopy images
with catheters [20], and bifurcating blood vessels. At a position with a crossing, the anisotropic
diffusion equation is not appropriate since one would like to diffuse in the directions of the different
orientations, independent on the angles and number of crossing elongated structures. However,
this is impossible to model with non-linear anisotropic diffusion equations on the image space.
The straightforward, though non-optimal, solution is to inhibit the entire diffusion at crossings.

1Note that we do not consider non-linear diffusion of the Perona and Malick type [29] to be anisotropic diffusion,
since it uses a scalar diffusivity.

1



Other authors try to resolve the problem of crossing oriented structures by introducing an
object that is usually called orientation space, in this paper further on referred to as orientation

score2, where the local orientation is made an explicit dimension (so creating a 3D volume out
of 2D image). The main advantage is that crossing curves are torn apart, meaning that it is not
needed anymore to take special care for crossing e.g. by explicitly detecting them. This concept
first occurs in the field of perceptual grouping / biomimicking of the biological visual system
[36, 23, 27, 41, 42]. The concept is also applied for segmenting crossing structures [5, 2, 35] and
estimating local orientation [16].

Kalitzin [25] was the first to propose invertible orientation scores, which means that it is pos-
sible to reconstruct the original image from the orientation score in a well-posed way. Duits et
al. [11, 8, 9] developed a theory on the robustness of this transformation. Both authors empha-
size that this invertibility is essential in order to use orientation scores (OS) for image process-
ing/enhancement, in the following way

Transform image to OS −→ Process OS −→ Transform OS to image.

Kalitzin et al. pioneered with processing the orientation score by taking a certain power or tak-
ing non-linear combinations of Gaussian derivatives in the orientation score of an image before
transforming the orientation score back to image, leading to some enhancement of lines.

Later, the authors of this paper established a neat mathematical framework for processing
orientation scores [9], by considering the orientation score domain as the Euclidean motion group,
making it possible to use results from the field of harmonic analysis on Lie groups. We studied
sophisticated processing operations in the orientation score domain, namely linear convection-
diffusion equations on the orientation score domain, corresponding to stochastic processes for
contour enhancement [6] and completion [27]. Similar to stochastic completion fields [42] we take
a product of a forward and a backward direction process to fill gaps in line structures [9, 34]. The
major differences to earlier work in this field is that we use the invertibility of the orientation
score and we solve these linear evolution equations by means of a special convolution (the SE(2)-
convolution) on the orientation score with the corresponding Green’s function, where we were the
first to find the exact solutions to these equations [15, 13, 14].

This paper goes one step further as it describes a non-linear diffusion equation on the two-
dimensional Euclidean motion group to enhance crossing elongated structures. Rather than a
product of a linear forward process and a backward process, we describe how to make the diffu-
sion tensor adaptive to three features that describe the local structure in the orientation score:
orientedness, which determines whether we locally diffuse isotropic or anisotropic, and curvature
and deviation from horizontality, which establish a gauge frame for the diffusion. The features
are estimated using a non-symmetric Hessian matrix. The method is comparable to edge- and
coherence-enhancing diffusion, with the difference that the orientation is explicitly encoded in the
domain on which diffusion is applied. This paper is a companion paper of [13], written by the same
authors. Here we focus in full details on the applied image analysis and algorithmic part of our
work, whereas in [13] we focus on the mathematical theory and underlying differential geometry of
both linear (with exact solutions) and non-linear left-invariant diffusion equations on orientation
scores.

There exist several other methods that are designed for preserving or enhancing oriented struc-
tures while reducing noise. A well-known alternative approach emerges from the wavelet literature:
Candès et al. proposed the curvelet transform [4, 3, 31]. This is a multi-scale and multi-angle
generalization of the wavelet transform, where thresholding of coefficients in the curvelet domain
is performed in order to achieve noise reduction while preserving (crossing) oriented structures.
Our work has two major differences: rather than applying soft thresholds on the curvelet domain
we employ the group structure in the wavelet domain and impose left-invariant evolution equa-
tions in the wavelet domain, yielding the appropriate scale space representations in the wavelet
domain. Furthermore, our orientation score domain is a wavelet domain without scaling. Besides

2In this paper we would like to make a distinction between the function and the domain of a function. So the
domain of an orientation score could be called an orientation space.
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Original CED-OS t = 2 CED-OS t = 30 CED t = 30

Figure 1: Example of coherence enhancing diffusion on orientation scores. The image is constructed
from two rotated 2-photon images of collagen tissue in the heart. At t = 2 our method achieves
a good enhancement of the image. Comparing the result at t = 30 with standard coherence
enhancing diffusion, we can clearly see the superior performance for crossing structures.

a reduction of storage requirements, an important reason to leave out scaling in our orientation
score transform is that admissibility conditions for wavelet transforms including scaling require
the oriented wavelet to oscillate along its radial direction, which is not desirable for our diffusion
equations later on. Note that we can still obtain a stable image reconstruction from a fixed scale
orientation score, whereas in standard wavelet theoretical approaches it is not possible to obtain
a stable image reconstruction from a fixed scale layer in the wavelet domain.

Another interesting approach for handling crossing curves is proposed Scharr [30], where instead
of the gradient, the second order jet operator is used to both calculate a structure tensor and for
the gradient and divergence of a diffusion-like PDE. However, the drawback of this method is that
the order of the PDE high, and gets even higher if one wants to deal with crossings of more than
two curves. Furthermore, it is only suitable to handle “X-junctions” (2 crossing curves with a
large angle). Our approach is more general, in the sense that the number of sampled orientations
nθ determines the amount of crossing curves we can deal with (upper bounded by nθ/2) and the
minimum angle between them.

1.1 Structure of the paper

This paper starts with introducing orientation scores in details, providing and the necessary theory:
group structure, left invariance, the tangent space at group elements, the left-invariant diffusion
equation, and the gauge frame. Then we describe how to construct invertible orientation scores in
practice, and how to operationalize regularized derivatives in orientation scores. All these results
are used for the next step: estimating local features in the orientation scores. These features are
used next to come to a non-linear diffusion model, which corresponds to edge/coherence-enhancing
diffusion, but then in the orientation score domain. Then we describe the numerical schemes that
are used, including an analysis on stability. Finally we end with experimental results on the quality
of curvature estimation and results of the coherence-enhancing diffusion in the orientation score.

The paper is extended work of our conference publications [18] and [19] with new results, par-
ticularly the gauge frame, stability bounds of the numerical schemes, and the concept of deviation
from horizontality.

2 Theory of Orientation Scores

In this section we will describe the theory that is essential for the rest of the paper. We will start
with introducing invertible orientation scores in more detail. Then we will explain the essential
parts of the group theory and differential geometry that we will need to describe the algorithm. The
theory is written in such a way that it should be understandable without too much prerequisites
from these fields. For more theoretical underpinning and mathematical details we refer to our
other publications [15, 11].
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Figure 2: (a) Example of an image with concentric circles. (b) The structure of the corresponding
orientation score. The circles become spirals and all spirals together span a helicoid-shaped plane.
(c) Real part of the orientation score Uf displayed for 4 different orientations. (d) The absolute
vale |Uf | yields a phase-invariant response displayed for 4 orientations. (e) Real part of the kernel
with θ = 0 and parameter values k = 2, q = 8, t = 400, s = 10, nθ = 64. (f) Imaginary part. (g)
Fourier transform of the kernel depicted in (e)+(f). (h) Mψ (equation (5)), which can be seen as
the Fourier transform of the net operation if no correction is applied (i.e. if reconstruction equation
(10) is used).

2.1 Orientation Scores

In mathematical terms, an image f is a mapping f : R
2 → R, which has compact support on the

image domain Ω = [0, X] × [0, Y ], with image dimensions X,Y ∈ R
+. If one considers oriented

structures (e.g., lines, edges, oriented texture patterns) in images, the position in the domain R
2 is

not very descriptive, one only knows the position relative to the horizontal and vertical axes. The
codomain is not very descriptive either, since a single grayvalue itself does not give any information
on orientation. In an orientation score (which in most literature is called orientation space), we
add an additional dimension to the domain, namely orientation, meaning that an orientation score
U is defined as a function R

2 ×T → R or C, where R
2 corresponds to the spatial (image) domain

and T is the orientation domain. As a result, the position in the new domain contains the three
essential features to locally describe an oriented structure, namely orientation and horizontal and
vertical position, see Figure 2a-b.

Instead of extending the domain one could think of extending the codomain to describe oriented
features, e.g. U : R

2 → T × R. The latter approach is substantially different, since then each
spatial position only maps to a single orientation, while in an orientation score each combination
of spatial position and orientation maps to a number. The practical advantage is manifest: one
can transparently handle crossings and bifurcations.

On the image domain, it is straightforward to develop image processing operations that are
translation invariant 3, i.e. operations which commute with a translation of the image. One can
also create rotation invariant operations, meaning that the operator commutes with rotation of
the image. However the number of possible rotation invariant operations on images directly is
limited to, for example, isotropic filtering or gauge coordinates [17]. With invertible orientation

3The word “covariant” would actually be better than “invariant”, however we “invariant” since it is more
common in literature
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scores, however, it is possible to develop operations that are sensitive to oriented structures and
at the same time both translation and rotation invariant, i.e. Euclidean invariant.

The observations on invariances lead to an important consideration in our framework: the
domains of both images and orientation spaces are Lie group manifolds. An image f is a mapping
from the group elements of the translation group R

2 to the real numbers. Analogously, an orienta-
tion score U is a mapping from the group elements of the Euclidean motion group SE(2) = R

2
⋊T.

The properties of this group will be treated in the next subsection.

2.2 The Euclidean Motion Group

The Euclidean motion group SE(2) = R
2

⋊ T is parameterized by the group elements g = (x, θ)
where x = (x, y) ∈ R

2 are the two spatial variables that label the domain of the image f , and
θ mod2π is the orientation angle that captures the orientation of structures in image f . We will
use both short notation g and explicit notation (x, θ) for group elements. The group product and
group inverse of elements in SE(2) are given by

g g′ = (x, θ) (x′, θ′) = (x + Rθx
′, θ + θ′ mod2π),

g−1 = (−R−1
θ x,−θ).

(1)

The Euclidean motion group is not commutative, i.e. in general g g′ 6= g′ g. Note that the transla-
tion and rotation part are not independent of each other as a rotation matrix Rθ appears in the
translation part. In the notation R

2
⋊ T this is reflected by the symbol “⋊” for the semi-direct

product, rather than the symbol × that denotes the direct product.
To map the structure of the group to orientation scores and images, we need a so-called

representation. A representation is a homomorphism of the form R : G → B(H) where H is a
Hilbert space and B(H) is the space of bounded linear operators A : H → H. A representation
maps a group element to an operator, i.e. R = (g 7→ Rg), such that e 7→ I (identity element maps
to identity operator), gh 7→ RgRh (group product is preserved), and consequently g−1 7→ (Rg)

−1

(inverse is preserved).
Two group representations of SE(2) are important in this work: on images L2(R

2) and orien-
tation spaces L2(SE(2)). They are defined by

(Ugf)(y) = f(R−1
θ (y − x)), f ∈ L2(R

2), g = (x, θ) ∈ SE(2), y ∈ R
2,

(LgU)(h) = U(g−1h), U ∈ L2(SE(2)), g, h ∈ SE(2).
(2)

The representation Lg is the left-regular representation, since the multiplication takes place on the
left side.

2.3 Invertible Orientation Scores

An invertible orientation score is obtained by correlating the image with an anisotropic kernel4

Uf (x, θ) = (Wψf)(x, θ) = (ψθ ⋆ f)(x) =

∫

R2

ψ(R−1
θ (x′ − x))f(x′)dx′, (3)

where ψ ∈ L2(R
2) is the correlation kernel with orientation θ = 0 (i.e. aligned with the hor-

izontal axis in our convention), which is related to the convolution kernel by ψ̆(x) = ψ(−x).
The overline denotes complex conjugate, and ψθ(x) = ψ(R−1

θ x) where Rθ is the rotation matrix
Rθ =

(
cos θ − sin θ
sin θ cos θ

)
. The accompanying exact reconstruction formula is given by

f̂ (x) = F−1

[

M−1
ψ F

[

x 7→
∫ 2π

0

(

ψ̆θ ⋆ Uf (·, θ)
)

(x) dθ

]]

(x), (4)

4We use correlations instead of convolutions since this is consistent with earlier work by Duits [9] on invertible
orientation scores. Furthermore this is common in wavelet literature.
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where Mψ : R
2 → R

+ is calculated by

Mψ (ωωω) =

∫ 2π

0

F
[

ψθ
]

F
[
ψθ
]
dθ =

∫ 2π

0

∣
∣F
[
ψθ
]
|2dθ . (5)

This function can be seen as a measure for stability of the inverse transformation: the number
Mψ(ωωω) specifies how well frequency component ωωω is preserved by the cascade of construction and
reconstruction, if the “compensation term” M−1

ψ would not be included in the reconstruction
equation (4). It can be verified that the construction/reconstruction equations (3) and (4) fulfill
the following Plancherel’s formula

‖f‖2
L2(R2) = ‖Wψf‖2

Mψ
, (6)

where the norm ‖ · ‖Mψ
on the orientation score domain is defined as

‖Wψf‖2
Mψ

=

∫

R2

∫ 2π

0

|(FWψf)(ωωω, θ)|2dθ 1

Mψ(ωωω)
dωωω, (7)

where F denotes the Fourier transform on the spatial coordinates only. Note that we have L2-norm
preservation, i.e. ‖f‖2

L2(R2) = ‖Wψf‖2
Mψ

= ‖Wψf‖2
L2(SE(2)), if and only if MΨ = 1.

Theoretically, reconstruction is well-posed as long as 0 < δ < Mψ (ωωω) <∞ where δ is arbitrarily
small. In practice, to prevent numerical problems, it is better to aim at Mψ(ωωω) ≈ 1 for ‖ωωω‖ < ̺,
meaning that all frequency components within a ball of radius ̺ are preserved. The latter is a
natural choice for bandlimited images: because of finite sampling it is reasonable to assume images
to be bandlimited anyway, where the bandwidth coincides with the well-known Nyquist frequency.
If Mψ(ωωω) ≈ 1 we can approximate the reconstruction by

f̂ (x) ≈
∫ 2π

0

(

ψ̆θ ⋆ Uf (·, θ)
)

(x) dθ. (8)

We can even further simplify the reconstruction for a special class of filters ψ that satisfy

Mψ(ωωω) =

∫ 2π

0

∣
∣F
[
ψθ
]
(ωωω)|2dθ ≈

∫ 2π

0

∣
∣F
[
ψθ
]
(ωωω)|dθ . (9)

where the reconstruction formula simplifies to integration over the orientation dimension

f̂ (x) ≈
∫ 2π

0

Uf (x, θ) dθ. (10)

Notice that a kernel ψ with (nearly) perfect reconstruction using equation (8) can be transformed
into a kernel ψ̃ with a perfect reconstruction using (10) as follows: ψ̃ =

(
ψ ∗ ψ

)
(x). However, this

does not always lead to a useful kernel ψ̃.
Invertible orientation scores were first proposed by Kalitzin et al. [24], where he proposes a

specific choice for an oriented wavelet which falls in class of proper wavelets [11]. This kernel,
however, has practical disadvantages, which are explained in detail in [9, p141, subsection 4.6.2].
The oriented wavelets we use in this paper are also proper wavelets, but are of an essentially
different type [9, p141, subsection 4.6.1]. A more mathematical treatment of invertible orientation
scores can be found in the work by Duits et al. [11] who developed a generalization of the wavelet
theory. He also first proposed the so-called “cake kernels”, a more practical class of kernels with
the advantage that reconstruction equation (10) can be used. We introduce this type of kernel in
more detail in Section 3.

2.4 Left-invariant Operations in Orientation Scores

We want to perform image processing operations on orientation scores. Analogously to the fact
that the Gabor transform of a signal makes it easier to perform operations that “manipulate”

6



(a) Left-invariance of tangent vectors to curves:

ex

ey

eθ

Te(SE(2))

Tg(SE(2))

eξ(g)

eη(g)

eθ(g)
Xg

γ

g γ

γ(0)=e

g γ(0)=g

T

Xe

R
2

θ

(b) Left-invariance of tangent vectors considered as differential operators:

R

e

g
Ωe

Ωg

Lg φ

φ ◦ Lg

Xg(φ) = Xe(φ ◦ Lg) = ((Lg)∗Xe)(φ) ∈ R
R

XgXe
(Lg)∗

(Lg−1)∗

φ(g) =

(φ ◦ Lg)(e)

Figure 3: Illustrations of the concept of left-invariance, from two different perspectives: (a)
considered as tangent vectors tangent to curves, i.e. Xg = cθeθ(g) + cξeξ(g) + cηeη(g) for all
g ∈ SE(2), and (b) considered as differential operators on locally defined smooth functions, i.e.
Xg = cθ∂θ

∣
∣
g
+cξ∂ξ

∣
∣
g
+cη∂η

∣
∣
g

for all g ∈ SE(2). The push forward (Lg)∗ : Te(SE(2)) → Tg(SE(2))

connects the tangent space at the unity element Te(SE(2)) to all tangent spaces Tg(SE(2)). See
text (Section 2.4) for details.
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local frequencies, the orientation score transform makes it easier to apply anisotropic operations
on locally oriented structures, in such a way that each orientation on each position can be “ma-
nipulated” separately.

A lot of choices for operations on orientation score exist, but not all of them are sensible.
As already mentioned in Section 2.1, we want to ensure that the net operation on the image
is Euclidean invariant. It can be shown [9, Theorem 2.1, p.153] that this is only the case if
the operator operator Υ : L2(SE(2)) → L2(SE(2)) that is applied to the orientation score is left-

invariant. Operator Υ is left-invariant iff LgΥU = ΥLgU , for all g ∈ G and for all U ∈ L2(SE(2)),
where Lg is defined in (2). In other words, left-invariance means that the operator commutes with
the left-regular representation L of the group.

Figure 3 illustrates left-invariance in two different ways: for tangent vectors and for differential
operators. In Figure 3a, it is shown how a tangent vector Xe = cθeθ + cξex + cηey ∈ Te(SE(2))
which is tangent to a curve γ : R → SE(2) at unity element e can be “transported in a left-invariant
way” to a tangent vector Xg ∈ Tg(SE(2)) which is tangent to the curve gγ (i.e., the original curve
γ is left-multiplied with g = (x, θ) ∈ SE(2) so that the curve is translated over x and rotated over
θ) at position g. The tangent space at the unity element is spanned by Te(G) = span{eθ, ex, ey}.
By transporting this basis vectors in a left-invariant way (i.e., Xg = (Lg)∗Xe is the push-forward

of left-multiplication, as illustrated in the figure) we get the following basis for the left-invariant
vector fields at group element g

span{eξ(g), eη(g), eθ(g)} = span{cos θ ex + sin θ ey,− sin θ ex + cos θ ey, eθ} = Tg(SE(2)). (11)

This basis for tangent vectors in g has the property that Xg = cθeθ + cξeξ + cηeη for all g, so the
vector components (cθ, cξ, cη) of Xe and Xg for all g are the same. Furthermore, the basis vectors
have a clear interpretation: eξ is always tangent to the orientation θ and eη is always orthogonal
to this orientation. For notational simplicity the dependency on g is usually omitted further on,
but it is important to realize that eξ and eη do depend on θ of the group element g = (x, θ).

In Figure 3b it is shown how Xe and Xg can also be viewed as differential operators, acting
on a function φ : SE(2) → R (e.g. an orientation score). In the figure, the codomain of φ is the
vertical R-axis. Xg can be viewed as an operator that calculates the derivative of φ at g, i.e.

Xg(φ) = (cθ
∂θ

∣
∣
g

+ c
ξ
∂ξ

∣
∣
g

+ c
η
∂η

∣
∣
g
)φ =

✏
c

θ
∂θ + c

ξ(cos θ∂x + sin θ∂y) + c
η(− sin θ∂x + cos θ∂y)

✑
φ (12)

gives a scalar on the horizontal R-axis on the bottom of the figure. The same result can also be
obtained by first translating and rotating φ over g, i.e. φ◦Lg, such that the original neighborhood
Ωg is shifted to neighborhood Ωe. So

Xg(φ) = Xe(φ ◦ Lg) = (cθ∂θ + cξ∂x + cη∂y)(φ ◦ Lg). (13)

So the direct relation between Xe and Xg is established by the push-forward operator: Xg =
(Lg)∗Xe. Intuitively, the push-forward operator allows to move tangent vectors to tangent spaces
at different group elements.

An important set of left-invariant operations are the linear left-invariant operations. All linear
left-invariant operations that are bounded from L2(SE(2)) to L∞(SE(2)) can be expressed as a
SE(2)-convolution [9, p.113–114] of the orientation score U with a kernel Ψ ∈ L1(SE(2))

(Ψ ∗SE(2) U)(x, θ) =

∫

R2

∫ 2π

0

Ψ(R−1
θ′ (x − x′), θ − θ′)U(x′, θ′) dθ′ dx′, (14)

Note that the SE(2)-convolution is a straightforward generalization to SE(2) of the usual convo-
lution on R

n.

2.5 Tangent Spaces and Dual Tangent Spaces

For the subsequent theory in the paper we need to introduce the tangent spaces Tg(SE(2)) and
dual tangent space T ∗

g (SE(2)) in more detail. We will define an inner product and norm on
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these spaces that we need later on. A vector in the tangent space Tg(SE(2)) is denoted in a
basis-independent way by cθ∂θ

∣
∣
g

+ cξ∂ξ
∣
∣
g

+ cη∂η
∣
∣
g
∈ Tg(SE(2)), with cθ, cξ, cη ∈ R. We will

always use this basis further on, therefore we will work with the vector components and use the

notation c =
(
cθ, cξ, cη

)T
. The physical dimensions of the vector components are (1, length, length)

respectively.
Similarly a covector is denoted by cθdθ

∣
∣
g
+ cξdξ

∣
∣
g
+ cηdη

∣
∣
g
∈ T ∗

g (SE(2)), where dθ, dξ, and dη

span the basis of the dual tangent space T ∗
g (SE(2)). The relation between the tangent space and

the dual tangent space is established by the Kronecker product

〈dp
∣
∣
g
, ∂q
∣
∣
g
〉 = δpq with p, q ∈ {θ, ξ, η}, (15)

so for example 〈dθ, ∂ξ〉 = 0 and 〈dθ, ∂θ〉 = 1. For the basis-dependent covector components we use

the notation b̂ = (bθ, bξ, bη) where the “hat” allows to distinguish between vectors and covectors.
The physical dimensions of the vector components are (1, 1/length, 1/length) respectively.

The Kronecker product on covector components ĉ and vector components b is defined by

〈b̂, c〉 = bθc
θ + bξc

ξ + bηc
η, (16)

where the resulting number is dimensionless.
In R

n, vectors and covectors coincide, since an inner product on vectors is defined as (c,b) =
∑n
i=1

∑n
j=1 δijc

ibj where δij is the Kronecker delta function (δij = 1 if i = j and 0 otherwise). In

the case of Tg(SE(2)) it would be wrong to use the same inner product, since the components cθ,
cξ, and cη are dimensionally not the same. To correct for this we introduce a parameter β with
physical dimension 1/length and define as inner product

(c,b)β = cθbθ + β2cξbξ + β2cηbη, (17)

The parameter β now ensures the result is dimensionless. From this inner product we can calculate
the Grammian matrix

Gβ =





(∂θ, ∂θ)β (∂θ, ∂ξ)β (∂θ, ∂η)β
(∂ξ, ∂θ)β (∂ξ, ∂ξ)β (∂ξ, ∂η)β
(∂η, ∂θ)β (∂η, ∂ξ)β (∂η, ∂η)β



 =





1 0 0
0 β2 0
0 0 β2



 . (18)

The Grammian matrix establishes the relation between the components of vectors and covectors
by ĉ = Gβc and thus also between the inner product and Kronecker product

(c,b)β = 〈Gβc,b〉 = 〈ĉ,b〉. (19)

Consequently, the inner product between two covectors is given by

(ĉ, b̂)β = 〈ĉ,G−1
β b̂〉 = cθbθ + β−2cξbξ + β−2cηbη. (20)

From the inner product on Tg(SE(2)) we can now induce a norm on vectors and covectors in the
regular way, i.e. by

‖c‖β =
√

(c, c)β and ‖ĉ‖β =
√

(ĉ, ĉ)β . (21)

For a theoretical motivation of this left-invariant (and not right-invariant) inner product on each
tangent space Tg(SE(2)) see [13].

2.6 Left-invariant Derivatives

As mentioned in Section 2.4, {∂θ, ∂ξ, ∂η} are left-invariant differential operators, and are therefore
appropriate to use instead of the set {∂θ, ∂x, ∂y}. They also have a clear interpretation, since ∂ξ
is always the spatial derivative tangent to the orientation θ and ∂η is always orthogonal.
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When constructing higher order left-invariant derivatives, it is important to note that the order
of applying the derivatives matters, i.e. not all the left-invariant derivatives {∂ξ, ∂η, ∂θ} commute.
The nonzero commutators (definition [A,B] = AB −BA) are given by

[∂θ, ∂ξ] = ∂η, [∂θ, ∂η] = −∂ξ. (22)

An important elementary left-invariant derivative operations is the gradient of an orientation
score, which is given by

dU =
∂U

∂θ
dθ +

∂U

∂ξ
dξ +

∂U

∂η
dη. (23)

Note that this is a covector field, where the components are obtained by the nabla operator

∇U =

(
∂U

∂θ
,
∂U

∂ξ
,
∂U

∂η

)T

. (24)

2.7 Horizontality

A curve q : R → SE(2) in the orientation score, denoted by its components as q(t) = (x(t), y(t), θ(t))
is horizontal iff

θ(t) = ∠(
d

dt
x(t),

d

dt
y(t)), ∀ t ∈ R. (25)

where ∠(x, y) = arg(x+ i y). In words, horizontal curves have the property that the direction of
the curve PR2q (i.e. the curve projected to the spatial plane R

2) coincides with the orientation θ of
the curve in SE(2). Therefore all tangent vectors over the curve do not contain an eη component,
i.e. an equivalent formulation for horizontality of q is

(
d

dt
q(t), eη(q(t))

)

β

= β2

(

− sin θ
d

dt
x(t) + cos θ

d

dt
y(t)

)

= 0, ∀ t ∈ R. (26)

On a horizontal curve, ∂ξ is always the spatial derivative tangent to the curve and eη is always
orthogonal to the curve.

By construction, curves in an image give approximate horizontal curve responses in the corre-
sponding orientation score. It is only approximate since the oriented filters create some uncertainty
in the orientation response, i.e. a curve in the image with orientation α will not render a perfect
δ-spike response δ(α− θ) in the orientation score.

2.8 Exponential Curves

An exponential curve is a curve γ : R → SE(2) for which the components of the tangent vector
are constant over the entire parametrization, i.e.

d

ds
γ(t) = cθeθ(γ(t)) + cξeξ(γ(t)) + cηeη(γ(t)), for all t ∈ R. (27)

Note that these curves are analogous to straight lines in R
n, which also have a constant tangent

vector. An exponential curve passing through point g0 ∈ SE(2) at t = 0 can be written as

γc,g0(t) = g0 exp
(

t(cθ∂θ
∣
∣
g=e

+ cξ∂ξ
∣
∣
g=e

+ cη∂η
∣
∣
g=e

)
)

. = g0 exp
(
t(cθ∂θ + cξ∂x + cη∂y)

)
. (28)

The expression for exponential curves in global {eθ, ex, ey} coordinates is given by (if cθ 6= 0)

γc,g0(t) =






x0 + cξ

cθ
µ(tcθ, θ0) + cη

cθ
ν(tcθ, θ0)

y0 + cξ

cθ
ν(tcθ, θ0) + cη

cθ
µ(tcθ, θ0)

tcθ + θ0




 ,

with µ(tcθ, θ0) = sin(tcθ + θ0) − sin(θ0),

ν(tcθ, θ0) = cos(tcθ + θ0) − cos(θ0),

(29)
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Figure 4: Horizontal exponential curves in SE(2) for a range of different curvature values, shown
from two different perspectives. The left-sided image shows that these curves are circular arc when
projected onto the spatial plane.

which are spirals in SE(2). The exponential curves for the special case cθ = 0 are

γc,g0(t) =





x0 + tcξ cos(θ0) − t cη sin(θ0)
y0 + tcξ sin(θ0) − t cη cos(θ0)

θ0



 , (30)

which are straight lines in SE(2) with constant orientation θ.
Horizontal exponential curves form a subset of all exponential curves with cη = 0, see Figure 4.

2.9 Curvature and Deviation from Horizontality

From the tangent vector c = (cθ, cξ, cη) of an exponential curve we define two features with a clear
geometrical interpretation: curvature and deviation from horizontality, see Figure 5.

The curvature of an exponential curve in SE(2) that is projected onto R
2 is given by

κκκ(s) =
d2

ds2
(PR2γ(s)) =

cθ

(cη)2 + (cξ)2

(
−cη cos(s cθ + θ0) − cξ sin(s cθ + θ0)
cξ cos(s cθ + θ0) − cη sin(s cθ + θ0)

)

(31)

where s is the arc length parametrization in the spatial plane, that is || dds (PR2γ(s))|| = 1. The
signed norm of the curvature vector is

κ = ||κκκ|| sign(κκκ · eη) =
cθ sign(cξ)

√

(cη)2 + (cξ)2
. (32)

This scalar value can be intuitively interpreted: the curvature is equal to the slope at which the
curve in the orientation score meets the spatial plane, see Figure 5. For a horizontal exponential
curve we know that cη = 0 and the curvature expression simplifies to

κ =
cθ

cξ
. (33)

Together with g0 ∈ G, the curvature κ fully describes a horizontal exponential curve γc,g0(t)
∣
∣
cη=0

.
For a non-horizontal exponential curve, we also need the deviation from horizontality dH which is

dH = arctan(
cη

cξ
), (34)

i.e. dH is the angle that the exponential curve, which is projected onto R
2, makes with the hori-

zontal direction eξ, see Figure 5.
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eξ eη

eθ

dH

dH

arctan κ

cθ

c

PR2c

∂a

∂b ∂c

κ = cθ sign(cξ)√
(cη)2+(cξ)2

dH = arctan( c
η

cξ
)

(∂c, eθ)β = 0

Figure 5: Illustration of curvature and deviation from horizontality (Section 2.9) and of the gauge
frame (Section 2.11). Note that for visualization reasons, the lengths of the vectors are arbitrary.
The true lengths are given by ‖c‖β = ‖eθ‖β = ‖eξ‖β = ‖eη‖β = 1 and ‖∂a‖β = ‖∂b‖β = ‖∂c‖β =
β.

2.10 Left-invariant Diffusion Equation on SE(2)

In scale space theory, one usually considers the diffusion equation on R
n as generating equation

for a scale space of f : R
n → R, yielding for the linear case

{

∂tU(x, t) = ∇ · D∇U(x, t),

U(x, t = 0) = f(x), x ∈ R
n, t ≥ 0,

(35)

where the ∇ operator is with respect to the spatial coordinates and the diffusion tensor D is a
positive (semi)definite matrix of size n × n. This diffusion equation is left-invariant with respect
to the translation group.

In the same way, we construct the left-invariant diffusion equation for SE(2).






∂tU(g, t) = ∇ · D∇U(g, t) =
(

∂θ ∂ξ ∂η

)






Dθθ Dθξ Dθη

Dξθ Dξξ Dξη

Dηθ Dηξ Dηη











∂θ

∂ξ

∂η




U(g, t),

U(g, t = 0) = Uf (g), g ∈ SE(2), t ≥ 0

(36)

where ∇ is defined in (24) and the diffusion tensor D a positive (semi)definite 3 × 3 matrix. In
the linear case D is a constant matrix independent on g and t. The solution can be written as
U(·, t) = et(∇·D∇)Uf .

This equation generates a scale space on SE(2), so it satisfies all scale space axioms as described
in [12], except for the requirement of isotropy, which does not make sense in our inherently
anisotropic setting. Furthermore, we have left-invariance instead of translation invariance.

Although there is no inherent notion of isotropy in SE(2), we can define an artificial (but
practically useful) notion of β-isoptropic diffusion , which is defined as

∂tU(g, t) =
(
β2∂θ∂θ + ∂ξ∂ξ + ∂η∂η

)
U(g, t). (37)

The equation is “β-isoptropic” since (β∂θ, β∂θ)β = (∂ξ, ∂ξ)β = (∂η, ∂η)β = β2.
In the next section we will discuss useful choices for the diffusion tensor D for diffusion on

SE(2).

2.11 Gauge Frame for Anisotropic Diffusion in SE(2)

The idea of gauge coordinates in image processing [17] is to define a data-dependent orthogonal
coordinate frame (the gauge frame) for the tangent space Tx(RN ) at each position x, such that
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(a) (b)

x

yΘ

x

y

Θ

(c)

x

y

Θ

x

y

Θ

x

y

Θ

Daa = 0 Daa = 0 Daa = 0.1 Daa = 0.7

Figure 6: Illustrations of Green’s functions for different parameter values, obtained using an
explicit iterative numerical scheme (Section 7.2) with end time t = 70. (a) Shows the effect of
nonzero κ. Parameters κ = −0.04, Daa = Dcc = 0, Dbb = 1, and β = 1. Left: Greens functions in
the spatial plane (i.e. all orientations are summed) where the superimposed circular arc shows the
expected curvature, Right: isosurface in 3D. (b) Shows the effect of a nonzero Daa. Parameters
Daa = Dcc = 0.003, κ = 0, Dbb = 1, and β = 1. (c) Shows the effect of varying Daa = Dcc.
Parameters κ = 0.06, Dbb = 1, and β = 0.1. As Daa increases from 0 to 1, the resulting Green’s
function becomes more and more isotropic.

the basis vectors are in alignment with some local feature of interest in the image. The advantage
of gauge coordinates is that operations described in gauge coordinates are automatically rotation
invariant. The most commonly used gauge coordinates are determined by the gradient of a 2D
image, where one basis vector is fixed tangent and one is fixed orthogonal to the direction of the
gradient.

We apply the same idea in orientation scores. We want to establish a β-orthogonal gauge frame
{∂a, ∂b, ∂c}, where β-orthogonality is defined as

(∂p, ∂q)β = β2δpq, p, q ∈ {a, b, c}. (38)

Since exponential curves provide a local description of the structures we are interested in (i.e.
curved elongated structures), one of the components of the gauge frame should be established by
the tangent vector c(g) of exponential curve γc(g),g at each position g ∈ SE(2) with ‖c(g)‖β = 1,
i.e. (omitting dependence on g)

∂b = β(cθ∂θ + cξ∂ξ + cη∂η). (39)

The other two components ∂a and ∂c should span the plane orthogonal to ∂b, and therefore can
not be uniquely defined. We make an arbitrary by unique choice by ensuring that {∂a, ∂b, ∂c}
coincide with the left-invariant coordinate frame {∂θ, ∂ξ, ∂η} for the case of straight horizontal
lines (κ = 0 and dH = 0), i.e.

∂a = β∂θ, ∂b = ∂ξ, ∂c = ∂η iff c = (0, 1, 0). (40)
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In terms of κ and dH (as defined in Section 2.9) this renders the following Gauge frame





∂a
∂b
∂c



 = QT
κ,βR̃

T
dH





β∂θ
∂ξ
∂η



 , (41)

where

R̃dH =





1 0 0
0 cos dH − sin dH

0 sin dH cos dH



 , Qκ,β =







β√
β2+κ2

−κ√
β2+κ2

0

κ√
β2+κ2

β√
β2+κ2

0

0 0 1






. (42)

This gauge frame is illustrated in Figure 5. Note that it actually involves two rotations, since Qκ,β

is also a rotation matrix.
The class of SE(2)diffusions that are of our interest can now be expressed in the gauge coor-

dinates as a diagonal diffusion equation (that is, no mixed terms)







∂tU(g, t) =

(

∂aDaa∂a + ∂bDbb∂b + ∂cDcc∂c

)

U(g, t),

U(g, t = 0) = Uf (g).
(43)

Note that it is only correct to choose Dcc = Daa since ∂a and ∂c are arbitrarily chosen β-orthogonal
to the tangent ∂b. In left-invariant derivatives this equation can now be written as

∂tU(g, t) =
(
β∂θ ∂ξ ∂η

)






R̃dHQκ,β





Daa 0 0
0 Dbb 0
0 0 Daa



QT
κ,βR̃

T
dH











β∂θ
∂ξ
∂η



U(g, t). (44)

This diffusion equation will be used in the rest of the paper, where we will make Daa dependent
on the local differential structure of U . Figure 6 shows examples of Green’s functions of linear
evolutions of this type, for different values of Daa, Dbb and κ.

3 Design of an Invertible Orientation Score Transformation

The previous section introduced the essential theory of orientation scores. The forthcoming sec-
tions will be more practical, and describe how the basic concepts are used in the algorithm. In
this section we describe the practical design of an invertible orientation score transformation.

The invertibility conditions described in Section 2.3 still allow for a lot of freedom in choosing
kernels Ψ. To restrict the possible choices, we first formulate some practical requirements that
our transform needs to fulfill:

1. A finite number (nθ) of orientations. This requirement is obvious from an implementational
point of view.

2. Reconstruction by summing all orientations, i.e. f(x) =
∑nθ−1
i=0 Uf (x, isθ), where sθ is the

orientation sample distance in radians, i.e. sθ = 2π
nθ

if the periodicity of the orientation score
2π.

3. Polar separability in the Fourier domain, in order to design the radial and angular part
separately: ψ(x) = f(ρ)h(ϕ) where f is the radial function and h the angular function, and
ωωω = (ωx, ωy) = (ρ cosϕ, ρ sinϕ).

4. The kernel should be strongly directional, i.e. the kernel should be a convex cone in the
Fourier domain [1].

5. The kernel should be localized in the spatial domain, since we want to pick up local oriented
structures.
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6. The kernel should have the quadrature property [22]. More details can be found in Section 3.1

These requirements are similar to the requirements in [35], except for the reconstruction.
Based on these requirements we propose the following kernel

ψ(x) =
1

N
F−1

[

ωωω 7→ Bk
(

(ϕ mod 2π) − π/2

sθ

)

f(ρ)

]

(x)Gs(x) (45)

where N is the normalization constant, ωωω = (ρ cosϕ, ρ sinϕ), Bk denotes the kth order B-spline
given by

Bk(x) = (Bk−1 ∗B0)(x), B0(x) =

{

1 if −1/2 < x < +1/2

0 otherwise
. (46)

Function f(ρ) specifies the radial function in the Fourier domain, chosen as the Gaussian divided
by its Taylor series up to order q to ensure a slower decay, i.e.

f(ρ) = Gt(ρ)

(
q
∑

i=0

(

d

dρ′
Gt(ρ

′)

∣
∣
∣
∣
ρ′=0

)

ρi

i!

)−1

, Gt(ρ) =
1

2
√
πt
e−

ρ2

4t . (47)

Function Gs in (45) is a Gaussian kernel with scale s, which ensures spatial locality. Figure 2
shows an example of this orientation score transformation.

3.1 Quadrature Property and Hilbert Transform

The kernel ψ defined in equation (45) is a quadrature filter, meaning that the real part contains
information about the locally even (symmetric) structures (e.g. rigdes) and the imaginary part
contains information about the locally odd (anti-symmetric) structures (e.g. edges),

ψ(x) = ψeven(x) − i ψodd(x) (48)

where ψeven and ψodd are related to each other by the Hilbert transform

ψodd = Hey

R2 [ψeven] , (49)

where the Hilbert transform Hv

R2 is defined as

Hv

R2 [U ](x, θ) = F−1[ωωω 7→ i sign(ωωω · v)F [U(·, θ)](ωωω)](x), (50)

where v specifies the direction in which the (in principle 1D) Hilbert transform is performed. In
an orientation score, this direction is uniquely determined by v = eη, leading to the following
definition for the Hilbert transform on SE(2):

HSE(2)[U ](x, θ) = Heη(θ)

R2 [U(·, θ)](x) (51)

Because of the quadrature property of the filter, the orientation score has the same properties
and, consequently, the imaginary part does not supply any additional information that is not
contained in the real-valued part. Therefore, to save memory we only need to store the real-
valued part from 0 to π, i.e.

Re{Uf}(x, θ) = (f ∗ ψθeven)(x). (52)

The complex-valued orientation score is simply found by Uf = (ψθeven ⋆ f) − i(ψθodd ⋆ f)) =
Re{Uf}(x, θ) − iHSE(2)[Re{Uf}]. Moreover since ψθeven = ψθ+πeven and ψθodd = −ψθ+πodd , we have
the relation Uf (x, θ + π) = U∗

f (x, θ).
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4 Regularized Derivatives

In Section 2.6 we described left-invariant derivatives. It is well known in image processing that
taking derivatives is an ill-posed problem, which is made well-posed by adding regularization.
Gaussian derivatives are the most commonly used regularized derivative operators. In our ori-
entation score framework we also need well-posed derivative operations, where the left-invariant
diffusion described in Section 2.10 acts as regularizer. Left-invariant regularized derivatives on the
orientation score are operationalized by DetAW where D is a derivative of any order constructed
from {∂ξ, ∂η, ∂θ} and etA accounts for diffusion. The order of the regularization operator and
differential operators matters in this case, i.e. the diffusion should come first.

The exact and approximate analytic solutions for all heat kernels given by etA are described in
[13]. In this paper, for simplicity and computation efficiency we restrict ourselves to the β-isotropic
of equation (37), which can be written as

∂tW =
(
β2∂2

θ +
(
∂2
ξ + ∂2

η

))
W =

(
β2∂2

θ +
(
∂2
x + ∂2

y

))
W. (53)

Since the operators ∂θ, ∂x, and ∂y commute, this equation is the same as the diffusion equation in
R

3 except for the 2π-periodicity of the θ dimension. Therefore the Green’s function is a Gaussian

Gts,to(x, y, θ) =
1

8
√

π3t2sto
e−

x2+y2

4ts
− θ2

4to , with ts = t and to = β2t (54)

In this special case we can use standard (separable) implementations of Gaussian derivatives, but
we have to be careful because of the non-commuting operators. A normal (i, j, k)th order Gaussian
derivative implementation for a 3D image f adheres to the right side of the following equation

∂ix∂
j
y∂

k
z e
t(∂2

x+∂
2
y+∂

2
z)f = ∂ixe

t ∂2
x∂jye

t ∂2
y∂kz e

t ∂2
zf. (55)

This equation is essential for the separability along the three dimensions. We want to use the
same implementations to construct Gaussian derivatives in the orientation scores, meaning that
we have to ensure that the same permutation of differential operators and regularization operators
is allowed. By noting that

∂iξ ∂
j
η ∂

k
θ e

to∂
2
θ+ts(∂

2
ξ+∂

2
η) = ∂iξ∂

j
η e

ts(∂
2
x+∂

2
y) ∂kθ e

to∂
2
θ ,

∂kθ ∂
i
ξ ∂

j
η e

to∂
2
θ+ts(∂

2
ξ+∂

2
η) 6= ∂kθ e

to∂
2
θ ∂iξ ∂

j
η e

ts(∂
2
x+∂

2
y),

(56)

we conclude that we always should ensure a certain ordering of the derivative operators, i.e. one
should first calculate the orientational derivative ∂θ and then the commuting spatial derivatives
{∂ξ, ∂η}, which are calculated from the Cartesian derivatives {∂x, ∂y} using (12). The commutator
relations of (22) allow to rewrite the derivatives in this canonical order. For instance, the derivative
∂ξ∂θ can be calculated directly with Gaussian derivatives, while ∂θ∂ξ must be operationalized with
Gaussian derivatives as ∂ξ∂θ + ∂η.

5 Local Features in Orientation Scores

In order to make the diffusion in the orientation score adaptive to local line structures in the
orientation score, we need to measure the local properties at each location (x, θ). In our method
we distinguish three local features (i.e., scalar values) at each position g ∈ SE(2) to which the
diffusion is adapted. The two features curvature κ(g) and deviation from horizontality dH(g) were
already introduced in Section 2.9. The third important feature is orientedness s(g): a scalar
number indicating how oriented the local structure is. This means that a low value indicates that
the local neighborhood is isotropic, and a high value indicates the neighborhood is anisotropic. In
Figure 7 we show an example of these three local orientation score features.

For curvature and orientedness we need an estimate for the tangent vector c(g) at each position
g. Therefore, after discussing what orientation score to use for feature estimation, in the next
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: Example of feature estimation in an orientation score. (a) Input image f . (b) |Uf | at
θ = 0, used for feature estimation. (c)+(d) estimated tangent vectors at orientations θ = 0 and
θ = 5π

32 . The tangent vectors are displayed as circular arcs to show the estimated curvature as well
as the deviation from horizontality. Note that the orientation and curvature estimation is isotropic
regions in the orientation score, since the features are not well-defined there. (e) Orientedness s
cf. (67) at θ = 0. (f) Daa calculated using (71). In this artificial image it leads to very sharp
boundaries between isotropic diffusion (white area) and strongly anisotropic diffusion (black areas).
(g) illustration of κ, where the curvature values are only indicated by the grayvalue in the region
where Daa ≈ 0, since outside of this region the values are irrelevant. Clearly, the displayed iso-
κ-contours, are situated on circular arcs. (h) dH, where the deviation from horizontality values
are again only indicated in the region where Daa ≈ 0. Clearly, the displayed iso-dH-contours, are
orthogonal to the concentric circles in the image, and the vertical line is the dH = 0 line.

subsection we will propose a method to estimate the tangent vector using first and second order left-
invariant regularized derivatives. This estimate can be used to calculate curvature and deviation
from horizontality with equation (32) and (34) respectively. Then, we will introduce a measure
for orientedness.

5.1 Obtaining a Phase-Invariant Feature Orientation Score

For the feature estimation, we do not directly use the complex-valued orientation score Uf nor the
real-valued orientation score Re{Uf}. We rather aim to treat edges and ridges in a uniform manner,
i.e. curvature, deviation from horizontality, and orientedness should be estimated in the same way
and with the same quality independent on the local phase of the orientation score. Therefore,
we use the real-valued orientation score W = |Uf |, yielding a phase invariant orientation score
responding to both edges and ridges, see Figure 2d.

There is one drawback of this approach: a very regular goniometric pattern in an image, e.g.
simply sin(x) (such as the image in Figure 2a), results in a flat plane response inW (see Figure 2d).
This means that the tangent vector ∂b tangent to the curves is locally not well-defined. For this
kind of images, the problem is solved by forcing the deviation from horizontality to zero, as will
be described in Section 5.2.1, or by using a different orientation score for feature estimation.

5.2 Tangent Vector Estimation

To estimate the tangent vector c(g) for all g ∈ SE(2), we find the (horizontal) exponential curve
that locally at point g fits best to the data. This local fit should not only be feasible at the
centerlines of curves, but also if we shift a bit away from the centerline. At positions g in the
orientation score Uf where there is no orientation, however, the tangent vector c(g) is not well
defined, and we should design the non-linear diffusion process such that it does not take unreliable
estimates of c(g) into account.
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If we follow an oriented structure in the orientation score, the left-invariant gradient ∇W =
(∂θ, ∂ξ, ∂η)

TW at all positions should remain constant. For example on the centerline of a curve
the gradient remains zero, while the gradient will have a small constant η-component if we are
a little bit off from the centerline. In other words, we formulate a minimization problem that
minimizes over the “iso-contours” of the left-invariant gradient vector, leading to

c∗ = arg min
c

{∥
∥
∥
∥

d

ds
(∇W (γc,g0(s)))

∣
∣
s=0

∥
∥
∥
∥

2

β

∣
∣
∣
∣
‖c‖β = 1

}

, (57)

where c =
(
cθ, cξ, cη

)
, the norm ‖·‖β is defined in Section 2.5, and γc,g0 = g0 exp

(
t(cθ∂θ + cξ∂x + cη∂y)

)
,

recall (27).
The minimizing equation in (57) is a norm of a covector and can be rewritten as

∥
∥
∥
∥

d

ds
(∇W (γc,(s)))

∥
∥
∥
∥

2

β

= ‖∇(∇(γc,(s))) γ̇c(s)‖2
β

= ‖HWc‖2
β = (HWc,HWc)β = (MβHWc,MβHWc)1 = (c, (HW )TM2

β(HW )c)1

(58)

where Mβ = diag{1, 1/β, 1/β} and (·, ·)1 denotes the normal R
3 inner product (i.e. with β = 1).

The Hessian H on W is defined by

HW = ∇(∇W ) =





∂2
θW ∂ξ∂θW ∂η∂θW

∂θ∂ξW ∂2
ξW ∂η∂ξW

∂θ∂ηW ∂ξ∂ηW ∂2
ηW



 . (59)

The side condition ‖c‖β = 1 can be rewritten as

‖c‖β = (M−1
β c,M−1

β c)1 = (c,M−2
β c)1 (60)

By Euler-Lagrange minimization (∇c‖(HW )c‖2
β − λ(1−∇c‖c‖β) = 0 we get for the optimum c∗:

(HW )TM2
β(HW )c∗ = λM−2

β c∗ (61)

This can be rewritten as
(MβHWMβ)

T(MβHWMβ) c̃
∗ = λ c̃∗ (62)

where c̃∗ = M−1
β c∗ which amounts to eigensystem analysis of the symmetric 3 × 3 matrix

(MβHWMβ)
T(MβHWMβ), where one of the three eigenvectors gives c̃∗. The eigenvector with

the smallest corresponding eigenvalue is selected as tangent vector c̃∗, and the desired tangent
vector c∗ is then given by c∗ = Mβ c̃

∗.
Optionally, an increased noise-robustness can be achieved by component-wise blurring of the

matrix (MβHWMβ)
T(MβHWMβ) before performing eigensystem analysis, i.e. (63) is replaced

by
(
Gρs,ρo ∗ (MβHWMβ)

T(MβHWMβ)
)
c̃∗ = λ c̃∗ (63)

where ρs and ρo are the spatial and orientational scales respectively. The post-blurring ensures
that matrices that describe the local structure inaccurately, become more consistent with the
surrounding. This approach is similar to the structure tensor where one applies post-blurring on
the matrices formed by the dyadic product of the gradient with itself.

5.2.1 Enforcing Horizontality

An alternative is to force the curves to horizontality, which is more robust in case of regular
oriented texture patterns. On non-horizontal curves, however, the expected results will be worse.
Horizontality is imposed by forcing cη to zero in (57). In the minimization term, (HWc) can now
be rewritten as

HWc
∣
∣
cη=0

= HhorWchor =





∂2
θW ∂ξ∂θW

∂θ∂ξW ∂2
ξW

∂θ∂ηW ∂ξ∂ηW





(
cθ

cξ

)

(64)
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Now the Euler Lagrange equation gives

(MβHhorW Mβ,hor)
T(MβHhorW Mβ,hor) c̃

∗
hor = λ c̃∗hor (65)

where c̃∗hor = Mβ,horc
∗
hor and Mβ,hor = diag{1, 1/β}. This amounts to eigensystem analysis of

a symmetric 2 × 2 matrix. The eigenvector corresponding to the smallest eigenvalue should be
selected and the curvature is given by (33). The deviation from horizontality is inherently zero in
this case. The fact that we have 2 × 2 matrices instead of 3 × 3 is a practical advantage of this
approach.

5.2.2 Structure Tensor Approach

An alternative approach to the tangent vector estimation described above, is to use the structure
tensor instead of the Hessian, as was proposed by Van Ginkel [35] for the purpose of curvature
estimation. In this approach one simply replaces the Hessian by the structure tensor, defined by

SW = R̃θ







Gρs,ρo ∗










∂θW
∂xW
∂yW



 ·





∂θW
∂xW
∂yW





T











R̃T
θ , (66)

where the derivatives (note: not the left-invariant ones) are implemented by Gaussian derivatives,
and Gρs,ρo denotes the Gaussian smoothing kernel that is applied componentwise to the structure

tensor. R̃θ denotes the rotation matrix of equation (42) that makes the structure tensor left-
invariant. On the resulting structure tensors we apply eigensystem analysis in exactly the same
manner as described above for (H̃W )T(H̃W ).

5.3 Orientedness

In a 3D image, an often used measure for orientedness is the sum of the two second order derivatives
orthogonal to the orientation of the elongated structure, which amounts to the sum of the two
largest absolute eigenvalues of the Hessian matrix. In fact, this corresponds to the Laplacian in
the 2D subspace formed by the plane orthogonal to the line structure.

In the orientation score we adopt the same approach. As measure for orientedness s we take
the Laplacian in the plane orthogonal to the line, which is calculated by

s = −∆orthW = −(eT
o1HWeo1 + eT

o2HWeo2) (67)

where eo1 and eo2 are the two vectors that are orthonormal to the tangent vector c with respect
to the inner product defined in equation (17), i.e.

(c, eo1)β = 0, (c, eo2)β = 0, (eo1, eo2)β = 0, (eo1, eo1)β = 1, (eo2, eo2)β = 1. (68)

The minus sign in (67) is included in order to get a positive response for oriented structures: an
oriented structure in W = |Uf | always renders a convex hill in the intensity landscape of the
orientation score, yielding a negative second order derivative.

Note that one can also use the two other eigenvectors of the matrix (MβHWMβ)
T(MβHWMβ).

If ẽo1 and ẽo2 are the eigenvectors orthonormal to the selected eigenvector c̃∗ (with respect to the
(·, ·)1 inner product) then the orientedness is given by

s = −
(
ẽT
o1MβHWMβ ẽo1 + ẽT

o2MβHWMβ ẽo2
)
. (69)

19



CED-OS step

image f
OS

transformation

U(·; 0)

= Uf

inverse OS

transformation
enhanced image

U(·; tend)CED-OS

step

repeat tend

τ
times

U(·; t) Abs

calculate

calculatecalculate
Hessian

W (·; t) HW (·; t)
features

κ(·; t)

s(·; t)

dH(·; t)

diffusion tensor
SE(2) diffusion step

D(·; t)

U(·; t + τ)

Figure 8: Flow chart of the CED-OS (Coherence Enhancing Diffusion in Orientation Score)
method.

6 Non-Linear Diffusion in the Orientation Score

This section describes how to apply non-linear coherence-enhancing diffusion in the orientation
score. The evolution equation we consider is the SE(2) diffusion equation expressed in Gauge co-
ordinates, equation (43), where the coefficients Dbb = 1 and Dcc = Daa are non-linearly dependent
on the features,







∂tU(g, t) =

(

∂aDaa(U)(g, t)∂a + ∂b∂b + ∂cDaa(U)(g, t)∂c

)

U(g, t),

U(g, t = 0) = Uf (g).
(70)

where it should be emphasized that the derivatives ∂a, ∂b, and ∂c are dependent on U(g, t),
although this is not explicitly indicated in the equation.

At positions in the orientation score with a strongly oriented structure, i.e. higher orientedness
s, we only want to diffuse tangent to this structure, so Dbb should be large and Daa = Dcc should
be small. If there is no strong orientation, the diffusion should be β-isotropic, so Daa = Dbb = Dcc

should be large. Notice that in the resulting β-isotropic diffusion tensor for the latter case, the
variables κ and dH drop out, which is desirable since on non-oriented positions these local features
are not defined.

For the conductivity function Daa(U) we have different choices. We propose to use

Daa(U)(g, t) =

{

exp
(

− s(U)(g,t)
c

)

s(U)(g, t) ≥ 0;

1 otherwise
(71)

where the non-linear function is always between zero and one, such that low values of s give
Daa ≈ 1 and large values give Daa ≈ 0. The parameter c controls the behavior of the non-linear
function.

Figure 8 shows how all different parts are connected together. The details of all building blocks
are explained in the preceding sections, except for the “SE(2) diffusion step”. The next section
will describe how we will numerically solve this step.
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Exact Scheme 7.1 Scheme 7.2 AOS LSAS

Figure 9: Comparison of rotation invariance of different numerical anisotropic diffusion schemes.
The input to all algorithms is an image with dimensions 60 × 60 with a single Gaussian blob
with scale 0.9 pixels, linear diffusion is applied with diffusion tensor D = Rθ diag(Dxx, Dyy)R

−1
θ ,

τ = 0.25, and end time t = 35. The exact solution is found simply by convolving the input image
with the anisotropic Gaussian kernel. Top row: θ = 0, Dxx = 1, Dyy = 0.0025. Middle row:
θ = π/4, Dxx = 1, Dyy = 0. Bottom row: Dxx = Dyy = 1 (isotropic diffusion).

7 Numerical Scheme for Non-Linear Diffusion

In this section we will propose two explicit finite difference schemes to solve diffusion equation
(70). We restrict to explicit schemes since implicit schemes are generally very expensive for
our 3-dimensional anisotropic case. Furthermore, our anisotropic PDE requires good rotational
invariance. Many efficient (semi)-implicit schemes with operator splitting, e.g. the AOS (additive
operator splitting) scheme [39], are therefore discarded due to their poor rotation invariance (see
Figure 9). The LSAS scheme [40] has good rotational invariance and can be performed in 3D,
however it is inherently designed for isotropic grids, which is problematic in our case since we do
not have a natural notion of isotropy. One could use the artificial notion of β-isotropy and use
LSAS but then one would be restricted to the case sθ = β, and there is no good reason for this
restriction.

7.1 Simple Explicit Finite Difference Scheme

A simple scheme for solving the non-linear diffusion PDE (70) is obtained by rewriting the PDE
to ∂x, ∂y, and ∂θ derivatives, and using centered finite differences to calculate the first order
derivatives, e.g. for second order accurate finite differences this yields

∂xU(x, l) ≈ 1

2
(U(x + ex, l) − U(x − ex, l)) ,

∂yU(x, l) ≈ 1

2
(U(x + ey, l) − U(x − ey, l)) ,

∂θU(x, l) ≈ 1

2sθ
(U(x, l + 1) − U(x − ex, l − 1)) .

(72)
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where l ∈ [0, nθ − 1] denotes the sampled orientation axis where θ = l sθ with orientation sample
distance sθ. In time direction we use the first order forward finite difference (Uk+1 −Uk)/τ where
k ∈ N is the discrete time and τ the time step. The advantage of this scheme is the efficiency and
good stability since the effective stencil size is 5 in each dimension rather than 3 in most other
simple explicit schemes. The drawback, however, is that oscillations at the Nyquist frequency
can occur, caused by the fact that a concatentation of two first order centered differences gives
∂2
xU = 1

4 (U(x + 2ex, l) − 2U(x, l) + U(x − 2ex, l)), i.e. the closest neighboring pixels are not taken
into account. The latter problem can be resolved by adding some additional coupling between
neighboring pixels, for instance by using a 3-pixel scheme to perform the isotropic part of the
diffusion [37].

7.1.1 Stability Analysis

For the stability analysis, we consider the linear diffusion equation (70) assuming constant Daa

and find an upper bound for time step τ such that the equation remains stable for all applicable
cases. We restrict to the cases that can occur in the non-linear diffusion equation of Section 6, i.e.
Daa = Dcc ≤ Dbb = 1. In {∂θ, ∂x, ∂y} coordinates, the diffusion tensor components are given by

Dθθ =
1

q2
(
Daa cos2(α) + sin2(α)

)

Dxx = cos2(α) cos2(θ) +Daa

(
cos2(θ) sin2(α) + sin2(θ)

)

Dyy = Daa cos2(θ) +
(
cos2(α) +Daa sin2(α)

)
sin2(θ)

Dθx =
1

q
(Daa − 1) cos(α) cos(θ) sin(α)

Dθy =
1

q
(Daa − 1) cos(α) sin(α) sin(θ)

Dxy = (1 −Daa) cos2(α) cos(θ) sin(θ)

(73)

where q = sθ
β , sinα = κ√

β2+κ2
, and cosα = β√

β2+κ2
. The first order finite differences are defined

in (72), rendering the following stencils for the second order finite differences that are applied in
all three dimensions

Sii =
1

4

(
1 0 −2 0 1

)
, Sij|i 6=j =

1

4





−1 0 1
0 0 0
1 0 −1



 . (74)

One numerical iteration can be written as

Uk+1 = Uk + τA(Uk)Uk = (I + τA(Uk))
︸ ︷︷ ︸

M(Uk)

Uk (75)

where M(Uk) is a square matrix with size equal to the total number of “voxels” in the orientation
score. The numerical method is stable as long as the absolute values of all eigenvalues of M are
≤ 1. Using the Gershgorin circle theorem [21] we find that all eigenvalues are situated in a circle
with center C and radius R

C = 1 − τ

2
(Dθθ +Dxx +Dyy)

R =
τ

2
(|Dθθ| + |Dxx| + |Dyy| + 4|Dθx| + 4|Dθy| + 4|Dxy|).

(76)
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Stability requires −1 ≤ C −R and C +R ≤ 1. The first inequality gives as bound for τ

τ ≤ 4q2
{

(1 + q2) +Daa(1 + 3q2) + cos(2α)(Daa − 1)(1 − q2)

+ 2q |(Daa − 1) sin(2α)| (| cos θ| + | sin θ|)

+ q2 |(1 −Daa) sin(2θ)(cos(2α) + 1)|
}−1

(77)

Note that the second inequality C +R ≤ 1 never holds as (76) shows that C +R ≥ 1. However it
can safely be discarded since A(Uk) is negative definite i.e. σ(A(Uk)) < 0, where σ denotes the
spectrum of the matrix, implying σ(M(Uk)) = σ(1+ τA(Uk)) = 1+ τσ(A(Uk)) < 1 for all τ > 0.

We want to find the case for which we get the lowest upper bound for τ , to guarantee stability
in all circumstances. For the sine and cosine terms in the denominator, these worst case values
are

cos(2α) = 1 for α =
π

4
,

sin(2α) = 1 for α = 0,

(| cos θ| + | sin θ|) =
√

2 for θ =
π

4
.

(78)

Furthermore, for Daa we have to set Daa = 0 to get the “worst case” for τ , since degenerate
anisotropic diffusion is most critical concerning stability. So, we find the following upper bound
for τ , which guarantees stability for all θ, α, and 0 ≤ Daa ≤ 1

τ ≤ 4q2

1 + 2
√

2q + 3q2 − |1 − q2|
. (79)

For a typical value of q = sθ
β = π/32

0.1 this yields τ ≤ 0.60, which is a fairly sharp upper bound if
we consider our practical observations.

7.2 Left-invariant Explicit Scheme with Spline Interpolation

The important property of the differential operators ∂ξ, ∂η, and ∂θ is their left-invariance. The
performance of a numerical scheme should therefore be more optimal if this left-invariance is
carried over to the finite differences that are used. To achieve this we should define the spatial
finite differences in the directions defined by the left-invariant eξ, eη tangent basis vectors, instead
of the sampled ex, ey grid. In effect, the principal axes of diffusion in the spatial plane are always
aligned with the finite differences as long as we do not include dH 6= 0. The reason that we do not
consider deviation from horizontality is that this scheme becomes very expensive and complicated
in that case.

For the numerical scheme we apply the chain rule on the right-hand side of the PDE (70)
expressed in left-invariant derivatives cf. (44) with dH = 0 (i.e., analogue to 1D: ∂x(D∂xU) =
D∂2

xU + (∂xD)(∂xU)). The left-invariant derivatives are replaced by the finite differences defined
in Figure 10. In time direction we use the first order forward finite difference. Interpolation is
required at spatial positions x±eξ and x±eη. For this purpose we use the algorithms for B-spline
interpolation proposed by Unser et al. [33] with B-spline order 2. This interpolation algorithm
consists of a prefiltering step with a separable infinite impulse response filter to determine the
B-spline coefficients. The interpolation images such as Uk(x ± eξ) can then be calculated by a
separable convolution with a shifted B-spline. The examples in Figure 6 and all experiments in
the next section are obtained with this numerical scheme.

The main advantage of this scheme is the improved rotation invariance Figure 9. The drawback,
however, is the computational speed and the some additional blurring caused by the interpolation
scheme.
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Figure 10: Illustration of the spatial part of the stencil of the numerical scheme. The horizontal
and vertical dashed lines indicate the sampling grid, which is aligned with {ex, ey}. The stencil
points, indicated by the black dots, are aligned with the rotated coordinate system cf. (11) with
θ = l sθ.

7.2.1 Stability Bound

We derive a stability bound for this numerical scheme in the same fashion as for the previous nu-
merical scheme. Again we restrict to the cases Daa = Dcc ≤ Dbb = 1. In {∂θ, ∂ξ, ∂η} coordinates,
the diffusion tensor is given by

Dθθ =
1

q2
Daa cos2(α) + sin2(α)

Dξξ = cos2(α) +Daa sin2(α)

Dηη = Daa

Dθξ =
1

q
(Daa − 1) cos(α) sin(α)

Dθη = Dξη = 0

(80)

where q = sθ
β . The used stencils for the second order finite differences are

Sii =
(
1 −2 1

)
Sij|i 6=j =

1

4





−1 0 1
0 0 0
1 0 −1



 (81)

In this scheme, all off-center stencil positions are obtained by second order spline interpolation,
which has to be taken into account in the stability analysis. In the matrix M (with Uk+1 =
M(Uk)Uk) this interpolation leads to more nonzero off-diagonal terms since interpolation amounts
to a linear combination of a number of voxel values. Second order B-spline interpolation does not
preserve the global maximum m = maxg∈SE(2)(U(g)), but we can find a factor 1 < χ <∞ which
gives an upper bound such that Uinterpolated(g) ≤ χ ·m for all g i.e. for an arbitrary interpolation.
This factor χ is found as follows

χ = max
∆∈{−1/2,+1/2}

+∞∑

x=−∞

|C2(x+ ∆)| =
√

2 (82)

where C2 is the cardinal spline [33] corresponding to the second order B-spline, which is in fact
the net convolution kernel that is used for spline interpolation.
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(a) (a)+noise (b)

Figure 11: Curvature estimation test images.

Using Gershgorin circle theorem and taking into account χ =
√

2 we find for the circle center
C and circle radius R

C = 1 − 2τ

((
Daa

q2
+ 1

)

cos2(α) +

(

Daa +
1

q2

)

sin2(α) +Daa

)

,

R = 2τ

(√
2Daa +

√
2

∣
∣
∣
∣

(Daa − 1) cos(α) sin(α)

q

∣
∣
∣
∣
+

(

Daaq
−2 +

√
2
)

cos2(α) +
(

q−2 +
√

2Daa

)

sin2(α)

)

(83)

stability requires −1 ≤ C −R and C +R ≤ 1. The first equation renders as bound for τ

τ ≤ q2
{(

1√
2

∣
∣
∣
∣

(1 −Daa) sin(2α)

q

∣
∣
∣
∣
+

1

2

(

1 +
√

2
)

(3Daa + (1 −Daa) cos(2α) + 1)

)

q2

+Daa + (Daa − 1) cos(2α) + 1

}−1 (84)

By inserting the “worst case values” for all sine and cosine terms, see (78), and by setting isoptopic
diffusion Daa = 1, which in this case is the worst-case for stability since it gives most off-diagonal
components in matrix M, we find the following a upper bound for τ , which guarantees stability
for all θ and α and 0 ≤ Daa ≤ 1

τ ≤ 2q2

4 + 4(1 +
√

2)q2
. (85)

For a typical value of q = sθ
β = π/32

0.1 this yields τ ≤ 0.15, which coincides with practical observa-
tions.

8 Results

This section is divided in two parts. First we will quantitatively evaluate the quality of the curva-
ture estimation, using a set of artificial test images. Then we will show results of the coherence-
enhancing diffusion in orientation score (CED-OS) algorithm. We will qualitatively show the
differences between including curvature and/or deviation from horizontality, and compare CED-
OS with standard coherence-enhancing diffusion on the image.

8.1 Curvature Estimation Experiments

For our experiments, we apply curvature estimation on an image containing concentric circles
(Figure 12). This is a useful test image since it contains a wide range of circle radii (in this case
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Image (a)+noise
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Figure 12: Curvature estimation results on image (a) and image (a)+noise for the three methods.
For both images, the first row shows the density plot of true curvature κtrue against estimated
curvature κest, and the second row shows the relative ℓ2-error cf. (86) as function of the different
curvatures.
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Image (a), deviation from horizontality
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Figure 13: The effect of deviating from horizontality on image (a). For these graphs, the curvature
estimation results are obtained at orientation θtrue + π/8.

Image (b), crossing structures
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Figure 14: Shows curvature estimation results on image (b) (see Figure 11) with crossing elongated
structures.
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from 0 to 50). The image is converted to an orientation score by (45) using parameter values
sθ = π/32, k = 2, q = 8, t = 300, and s = 50. For the Hessian we use ts = 9, ρs = 0.04, and
β = 0.08. We compare our method (with and without enforcing horizontality) with the structure
tensor approach (see Section 5.2.2 and [35]), with parameters ts = 2.5, ρs = 7.5, and β = 0.08.
The parameters are chosen such that the total amount of Gaussian blurring is the same in both
methods, i.e. the same neighborhood is taken into account.

For the test images (Figure 11) we do know the ground truth orientation θtrue and curvature
κtrue. To evaluate the results, we take for each spatial position the curvature estimate κest for the
known orientation and compare it to the ground truth curvature. In all experiments we display a
density plot showing 1/κest (vertical) against the true curvature 1/κtrue (horizontal), and we show
the error as function of 1/κtrue where the relative ℓ2-error is defined as

Error =

√
√
√
√ 1

N

N∑

i=1

(
κest,i − κtrue

κtrue

)2

(86)

where i enumerates over all N estimates κest,i, i ∈ {1, 2, . . . , N}, for which κtrue is the real
curvature.

Figure 12 shows the results on an image with concentric circles. Clearly, the estimates of
the structure tensor approach are too small over a wide range of the highest curvature values.
This causes a quite large error for higher curvatures. Both of our approaches do not have this
problem. Comparing the two Hessian-based approaches, we observe that the Hessian with enforced
horizontality performs better. This is caused by the fact that on this test image the gauge frame
{∂a, ∂b, ∂c} is not always well defined on W = |Uf |. In images where lines do not occur in such
regular sine-like patterns, it is expected that both methods perform comparable.

Figure 13 shows the effect of measuring the curvature at positions where the deviation from
horizontality is nonzero. Instead of taking the curvatures at the true orientation θtrue we take the
curvatures at θtrue + π/8 to study the quality of the curvature estimation if we are not exactly at
the right orientation. Clearly, since in this case the curves are not exactly horizontal, the Hessian
approach that does not enforce horizontality works best.

Figure 14 shows the curvature estimation in an image with crossing curves. A slight decrease
in performance can be seen since the orientation score transform can not entirely separate the
responses of the different curves.

8.2 Coherence-enhancing Diffusion in Orientation Scores

In this section we compare the results of coherence enhancing diffusion in the orientation score
(CED-OS) cf. (70) with results obtained by the normal coherence enhancing diffusion (CED)
approach [39] where we use the LSAS numerical scheme [40].

The following parameters are used for the orientation score transformation (Section 3): k = 2,

q = 8, t = 1.6
(
X
2π

)2
where X is the number of pixels of the image in x-direction, and s = 200.

These parameters are chosen such that the reconstruction is visually indistinguishable from the
original. All orientation scores have a periodicity of π. The original images all have a range of pixel
values from 0 to 255. To ensure numerical stability, in the experiments where we use numerical
scheme of Section 7.1 we use τ = 0.25 and for the numerical scheme of Section 7.2 we use τ = 0.1.
Note that the resulting images we will show of CED-OS do not represent the evolving orientation
score, but only the reconstructed image (i.e. after summation over all orientations).

Figure 15 shows the effect of CED-OS compared to CED on artificial images with crossing line
structures. The upper image shows an additive superimposition of two images with concentric
circles. Our method is able to preserve this structure, while CED can not. The same holds for
the lower image with crossing straight lines, where it should be noted that our method leads to
amplification of the crossings, which is because the lines in the original image are not superimposed
linearly. In this experiment, no deviation from horizontality was taken into account, and the
numerical scheme of Section 7.2 is used. The non-linear diffusion parameters for CED-OS are:
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Original +Noise CED-OS t = 10 CED t = 10

Figure 15: Shows the typical different behavior of CED-OS compared to CED. In CED-OS crossing
structures are better preserved.

Original +Noise CED-OS t = 30 CED t = 30

Figure 16: Result of CED-OS and CED on microscopy images of bone tissue. Additional Gaussian
noise is added to verify the behaviour on noisy images.

nθ = 32, ts = 12, ρs = 0, β = 0.058, and c = 0.08. The parameters that we used for CED are (see
[39]): σ = 1, ρ = 1, C = 1, and α = 0.001. The images have a size of 56 × 56 pixels.

Figure 1 at the beginning of the paper shows the results on an image of collagen fibres obtained
using 2-photon microscopy. These kind of images are acquired in tissue engineering research, where
the goal is to create artificial heart valves. All parameters during these experiments were set the
same as the artificial images mentioned above except for CED parameter ρ = 6. The image size
is 160 × 160 pixels.

Figures 16 and 17 show examples of the method on other microscopy data. The same param-
eters are used as above except for ts = 25 in Figure 17. Clearly, the curve enhancement and noise
suppression of the crossing curves is good in our method, while standard coherence enhancing
diffusion tends to destruct crossings and create artificial oriented structures.

Figure 18 demonstrates the advantage of including curvature. Again, the same parameters and
numerical scheme were used. Clearly, at t = 30 the circle with highest curvature is blurred if no
curvature is taken into account. If curvature is taken into account, the diffusion process adheres
much better to the spiral-shape of the circle in the orientation score. For the circles with smaller
curvature, however, there is no noticeable difference.

The effect of including deviation from horizontality is especially visible if we significantly lower
the number of orientation nθ, because with a low number of orientations and without dH, the
elongated structures in the resulting images show strong biases towards the angles l πnθ with l ∈ Z,
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Original CED-OS t = 30 CED t = 30

Figure 17: Result of CED-OS and CED on a microscopy image of a muscle cell.

Original +Noise CED-OS t = 30 with κ CED-OS t = 30 no κ

Figure 18: Shows the effect of including curvature on a noisy test image in CED-OS. At t = 30 the
effect is visible: the circle with highest curvature is blurred if no curvature is taken into account.

while with dH this problem does not occur. In Figure 19 this is illustrated. We set nθ = 4, ts = 5,
ρs = 0, β = 0.058, and c = 0.1 and use the numerical scheme of Section 7.1. Clearly we observe
that 4 orientation is not enough without using dH, since the orientations of the curves strongly
bias towards the sampled orientations. This problem is solved if we include dH, showing that even
with only 4 orientations, we can appropriately handle crossing of two lines. Figure 20 shows the
same effect on a microscopy image of bone tissue, where the parameters were set to nθ = 4, ts = 2,
ρs = .5, β = 0.11, and c = 0.01.

This means that including deviation from horizontality can make the algorithm much more
efficient, since we can get good results with a very low number of orientations. Note, however that
if one wants to handle crossings of more than 2 lines, or if the angle between the crossing lines is
small, it is still necessary to increase the number of orientations.

9 Conclusions

In this paper we introduced non-linear diffusion on invertible orientation scores. Starting from a 2D
image, we constructed a three-dimensional orientation score using rotated versions of a directional
quadrature filter. Since an orientation score is a function on the Euclidean motion group SE(2),
we considered left-invariant diffusions adhering to the structure of this group. Then, we introduced
a Gauge coordinate frame that is used to formulate an anisotropic diffusion that is aligned with
exponential curves in SE(2).

We showed how one can use normal Gaussian derivatives to calculate regularized derivatives in
the orientation score. These Gaussian derivatives are used to estimate a tangent vector, which is
tangent to the locally best fitting exponential curve, on each position in the orientation score. Using
this tangent vector we calculate three features describing the local structure in the orientation
score: curvature κ, deviation from horizontality dH, and orientedness s. The features κ and dH
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Original +Noise CED-OS t = 24 with dH CED-OS t = 24 no dH

Figure 19: Shows the effect of including deviation from horizontality on a noisy test image in
CED-OS. At t = 24 the result without deviation from horizontality clearly shows that the lines
bias towards the sampled angles 0,π/4, π/2 and 3π/4. If we include deviation from horizontality
this problem does not occur, and even with nθ = 4 we are able to handle crossing correctly.

Original CED-OS t = 24 with dH CED-OS t = 24 no dH

Figure 20: Shows the effect of including deviation from horizontality on a microscopy image of
bone tissue. Clearly, with dH we are able to handle crossings correctly even with nθ = 4.

uniquely determine the optimal Gauge frame. The non-linear diffusion is then aligned with this
optimal Gauge frame and the orientedness s controls whether locally the diffusion is isotropic or
anisotropic.

We proposed two explicit numerical schemes to apply the non-linear diffusion on the orientation
score, and derived sharp stability bounds for both of these schemes. The simple explicit finite
difference scheme is efficient but is not optimal concerning rotational invariance and oscillations at
the Nyquist frequency. The left-invariant explicit finite difference scheme with spline interpolation,
on the other hand, improves the left-invariance, but becomes very inefficient if deviation from
horizontality is included.

The experimental results show that the curvature estimates are reliable and that we are indeed
able to enhance elongated structures in images and that including curvature helps to enhance
lines with large curvature. Especially at crossings our method renders a more natural result than
coherence enhancing diffusion. Furthermore, deviation from horizontality dH helps to get sharper
results without orientational biases towards the sampled orientations, especially if we lower the
number of orientations nθ. Therefore, including dH enables a large reduction in computations and
storage. The diffusion shows the typical non-linear scale-space behavior when increasing time:
blurring occurs, but the important features of images are preserved over a longer range of time.

Some issues could still be addressed in future work. The numerical schemes that are proposed
should be improved concerning computational speed and quality. Furthermore, it would be in-
teresting to use the same approach to other groups [10] such as the Heisenberg group (for the
purpose of image enhancement via the Gabor domain), or the similitude group to use multi-scale
and multi-orientation simultaneously to resolve the problem of selecting the appropriate scale. Fi-
nally, it is interesting to apply the same techniques in the 3D Euclidean motion group, to enhance
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elongated structures in three-dimensional images. This would be especially useful for enhancing
and segmenting fibers in High Angular Resolution Diffusion Imaging (HARDI) data.
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