
Crossing Reduction in Circular Layouts?

Michael Baur1 and Ulrik Brandes2

1 Department of Computer Science, University of Karlsruhe (TH), Germany.
baur@ilkd.uni-karlsruhe.de

2 Department of Computer & Information Science, University of Konstanz, Germany.
Ulrik.Brandes@uni-konstanz.de

Abstract. We propose a two-phase heuristic for crossing reduction in
circular layouts. While the first algorithm uses a greedy policy to build
a good initial layout, an adaptation of the sifting heuristic for crossing
reduction in layered layouts is used for local optimization in the second
phase. Both phases are conceptually simpler than previous heuristics,
and our extensive experimental results indicate that they also yield fewer
crossings. An interesting feature is their straightforward generalization
to the weighted case.

1 Introduction

In circular graph layout, the vertices of a graph are constrained to distinct posi-
tions along the perimeter of a circle, and an important objective is to minimize
the number of edge crossings in such layouts. Since circular crossing minimization
is NP-hard [7], several heuristics have been devised [6, 2, 13]. Moreover there is
a factor O(log2 |V |) approximation algorithm [12].

We propose a two-phase approach for obtaining circular layouts with few
crossings. In the first phase, vertices are iteratively added to either end of a linear
layout. This leaves three degrees of freedom: the start vertex, the insertion order,
and the end at which to append the next vertex. For the different strategies tried,
empirical evidence suggests that a particular one outperforms both the others
and previous heuristics.

For the second phase, we adapt a local optimization procedure for layered
layouts, sifting [8], to the circular case. Note that, similar to 2-layer layouts, the
number of crossing is completely determined by the (cyclic) ordering of vertices.
The thus related one-sided crossing minimization problem in 2-layer drawings of
bipartite graphs is NP-hard as well [4], but significantly better understood. It
turns out that circular sifting reduces the number of crossings both with respect
to our first phase and previous heuristics.

After defining some terminology in Section 2, we describe our greedy append
and circular sifting algorithms for the phases in Sections 3 and 4. Both are
evaluated experimentally in Section 5.

? Research partially supported by DFG under grants Wa 654/13-2 and Br 2158/1-2.

2 Preliminaries

Throughout this paper, let G = (V,E) be a simple undirected graph with n = |V |
vertices and m = |E| edges. Furthermore, let N(v) = {u ∈ V : {u, v} ∈ E}
denote the neighborhood of a vertex v ∈ V . A circular layout of G is a bijection
π : V → {0, . . . , n− 1}, interpreted as a clockwise sequence of distinct positions
on the circumference of a circle. By selecting a reference vertex s ∈ V we obtain
linear orders ≺π

s from π by defining

u ≺π
s v ⇐⇒ (π(u)− π(s) mod n) < (π(v)− π(s) mod n)

for all u, v ∈ V , i.e. u is encountered before v in a cyclic traversal starting from
s. We say that u, v ∈ V are consecutive, denoted by u yπ v, if π(v)− π(u) ≡ 1
mod n. A subset W ⊂ V is consecutive, if there is an ordering of the vertices of
W so that w0 yπ w1 yπ . . . yπ w|W |−1, wi ∈ W .

Let

χπ({u1, v1}, {u2, v2}) =

{
1 if u1 ≺π

u1
u2 ≺π

u1
v1 ≺π

u1
v2

0 otherwise .
(1)

for all {u1, v1}, {u2, v2} ∈ E and w.l.o.g. π(ui) < π(vi). We say that e1, e2 ∈
E cross in π, iff χπ(e1, e2) = 1, i.e. the endvertices of e1, e2 are encountered
alternately in a cyclic traversal. The crossing number of a circular layout π is

χ(π) =
∑

e1,e2∈E

χπ(e1, e2)

and χ(G) = minπ χ(π) is called the circular crossing number of G. We will omit
π from our notation whenever the circular layout is clear from context.

Theorem 1 ([7]). Circular crossing minimization is NP-hard.

On the other hand, a graph has a circular layout with no crossings, if and
only if it is outerplanar. A linear time recognition algorithm for outerplanar
graphs [10] is easily extended to yield a crossing-free circular layout [13].

Since, in particular, trees have circular layouts with no crossings, it is pos-
sible to consider the biconnected components of a graph separately, and insert
their circular layouts into a crossing-free layout of the block-cutpoint-tree with-
out producing additional crossings. See Fig. 1 for an illustration. Hence, only
biconnected graphs are used in the experimental evaluation summarized in Sec-
tion 5.

3 Initial Layout

Our approach for an initial layout is inspired by a heuristic algorithm for the
minimum total edge length problem in circular layouts [6]. This problem is some-
what related to crossing minimization, since shorter edges tend to cross few other
edges.

Fig. 1. The circular crossing number of a graph is the sum of those of its biconnected
components (cutpoints shown in lighter color)

The basic idea is simple: start with a layout consisting of a single vertex and
place the other vertices, one at a time, at either end of the current (linear) layout
(see Algorithm 1). After all vertices are inserted, the final layout is considered
to be circular. This method leaves us with three parameters to choose:

– the start vertex s,
– the processing sequence, and
– the end to append the next vertex at.

Note that the processing sequence need not to be fixed in the beginning, but
may be determined while the algorithm proceeds. Since, in our experiments,
the rules for choosing a start vertex had little influence on the final result, it is
chosen at random. In the following we describe instantiations for the other two
parameters.

Algorithm 1: Greedy-Append Heuristic

place start vertex s ∈ V arbitrarily;
V ← V \ {s};
while V 6= ∅ do

greedily choose v ∈ V ;
append v at either end of the current layout;
V ← V \ {v};

During the algorithm some vertices are already placed while others are not.
An edge is called open, if it connects a placed vertex with an unplaced one, and
closed, if both its vertices have been inserted.

Four rules for determining an insertion order are investigated. The rationale
behind these heuristics is to keep the number of open edges low, because they
tend to result in crossings later on.

1. Degree. Vertices are inserted in non-increasing order of their degree.
2. Inward Connectivity. At each step, a vertex with the largest number of al-

ready placed neighbors is selected, i.e. a vertex which closes the most open
edges.

3. Outward Connectivity. At each step, a vertex with the least number of un-
placed neighbors is selected, i.e. a vertex which opens the fewest new edges.

4. Connectivity. At each step, a vertex with the least number of unplaced neigh-
bors is selected, where ties are broken in favor of vertices with fewer unplaced
neighbors.

The other degree of freedom left is the selection of an end of the current layout
at which to append the next vertex. Again, four rules of choice are investigated.

1. Random. Select the end at which to append randomly each time.
2. Fixed. Always append to the same end.
3. Length. Append each vertex to the end that yields the smaller increase in

total edge length.
4. Crossings. Append each vertex to the end that yields fewer crossing of edges

being closed with open edges. In Fig. 2, there are eight such crossings for the
left end and only six for the right end. Note that crossings with closed edges
not incident to the currently inserted vertex need not be considered because
they are the same for both sides. It should also be noted that crossings with
open edges are independent of the positions at which the unplaced vertex
will eventually be placed.

v v

Fig. 2. Incident edges of v cross open edges

The experiments outlined in Section 5 show that the combination of the
Connectivity insertion order with Crossings outperforms all other combinations,
and it can be implemented efficiently.

Theorem 2. The Greedy-Append heuristic with Connectivity insertion order
and end-to-append selection based on Crossings can be implemented to run in
O((n + m) log n) time.

Proof. The insertion sequence can be realized by storing all unplaced vertices
in a two-dimensional priority queue, in which the first key gives the number of
already placed neighbors and the second the number of unplaced neighbors. With
an efficient implementation, update and extract operations requireO(log n) time.

Since each vertex is extracted once, and each edge triggers exactly one update,
the total running time for determining the insertion order is O((n + m) log n).

The number of crossings with open edges can be determined from prefix
and suffix sums over vertices already in the layout. These can be maintained
efficiently using a balanced binary tree storing in its leaves the number of open
edges incident to a placed vertex, and in its inner nodes the sum of the values of
its two children. The prefix sum at a vertex is the sum of all values in left children
of nodes on the path from the corresponding leaf to the root. The suffix sum is
determined symmetrically. Insertion of a vertex thus requires O(log n) time to
determine the crossing numbers from prefix and suffix sums and O(d(v) log n)
for updating the tree. The total is again O((n + m) log n). ut

Note that the heuristic is easily generalized to weighted graphs. In the next
section we show how to further reduce the number of crossings, given an initial
layout.

4 Improvement by Circular Sifting

Sifting was originally introduced as a heuristic for vertex minimization in or-
dered binary decision diagrams [11] and later adapted for the one-sided crossing
minimization problem [8]. The idea is to keep track of the objective function
while moving a vertex along a fixed ordering of all other vertices. The vertex is
then placed in its (locally) optimal position. The method is thus an extension of
the greedy-switch heuristic [3].

For crossing reduction the objective function is the number of crossings be-
tween the edges incident to the vertex under consideration and all other edges.
The efficient computation of crossing numbers in sifting for layered layouts is
based on the crossing matrix. Its entries correspond to the number of crossings
caused by pairs of vertices in a particular linear ordering and are computed eas-
ily in advance. Whenever a vertex is placed in a new position only a smallish
number of updates is necessary.

It is not possible to adapt the crossing matrix to the circular case, since two
vertices cannot be said to be in a (linear) order generally. Thus we define the
crossing number

cuv(π) =
∑

x∈N(u)

∑
y∈N(v)

χπ({u, x}, {v, y}) (2)

only for pairs of consecutive vertices u y v ∈ V and use the following exchange
property, which is the basis for sifting and holds nevertheless.

Lemma 1. Let u y v ∈ V be consecutive vertices in a circular layout π, and
let π′ be the layout with their positions swapped, then

χ(π′) = χ(π)− cuv(π) + cvu(π′)

= χ(π)−
∑

x∈N(u)

|{y ∈ N(v) : y ≺π
x u}|+

∑
y∈N(v)

∣∣∣{x ∈ N(u) : x ≺π′

y v}
∣∣∣

Proof. Since u and v are consecutive, edges incident to neither u nor v do not
change their crossing status. The first equality follows immediately. For the sec-
ond equality, observe that the sums are obtained from (2) by inserting (1). See
Fig. 3 for an illustration. ut

u1v2
v1u2

u1v2
v1u2

Fig. 3. After swapping consecutive vertices u y v, exactly those pairs of edges cross
that did not before

Based on the above lemma, the locally optimal position of a single vertex can
be found by iteratively swapping the vertex with its neighbor and recording the
change in crossing count, which is computed by considering only edges incident
to one of these two vertices. After the vertex has been moved past every other
vertex, it is placed where the intermediary crossing counts reached their mini-
mum. Repositioning each vertex once in this way is called a round of circular
sifting.

If adjacency lists are ordered according to the current layout, the sums in
Lemma 1 are over suffix lengths in these lists. Updating the crossing count
therefore corresponds to merging the adjacency lists, where the length of the
remaining suffix is added or subtracted.

Theorem 3. One round of circular sifting takes O(nm) time.

Proof. Sorting the adjacency lists according to the vertex order is easily done in
O(m) time (traverse the vertices in order, and add each to the adjacency lists of
its neighbors). If adjacency lists are stored cyclically, a head pointer yields ≺v

for arbitrary v, i.e. the adjacency lists need not be reordered before a swap. The
final relocation of u takes time O(1).

When swapping u with neighbor vk the adjacency lists are traversed in time
O(dG(u) + dG(vk)). Since∑

u∈V

∑
v∈V

(
dG(u) + dG(v)

)
=

∑
u∈V

∑
v∈V

dG(u) +
∑
u∈V

∑
v∈V

dG(v) = 2 · n · 2m

the total running time is in O(nm). ut

At the end of the outer loop each vertex is placed at its locally optimal
position, so that circular sifting can only decrease the number of crossings. Our
experiments outlined in the next section suggest that a few rounds of sifting
suffice to reach a local minimum.

Algorithm 2: Circular sifting
for (u ∈ V) do

let v0 = u ≺u v1 ≺u . . . ≺u vn−1 denote the current layout;
for (v ∈ V) do

sort adjacency list of v according to the current layout;

χ← 0; χ∗ ← 0; v∗ ← vn−1;
for (k ← 1, . . . , n− 1) do

let x0 ≺vk . . . ≺vk xr−1 denote the adjacency list of u without vk;
let y0 ≺vk . . . ≺vk ys−1 denote the adjacency list of vk without u;
c← 0; i← 0; j ← 0;
while (i < r and j < s) do

if (xi ≺vk yj) then
c← c− (s− j); i← i + 1;

else if (yj ≺vk xi) then
c← c + (r − i); j ← j + 1;

else
c← c− (s− j) + (r − i); i← i + 1; j ← j + 1;

χ← χ + c;
if (χ < χ∗) then χ∗ ← χ; v∗ ← vk;

move u so that v∗ y u;

Note that in edge-weighted graphs we can define the weighted crossing number
by counting each crossing with the product of the two edge weights involved. If
suffix cardinalities are replaced by suffix sums of weights, Lemma 1 generalizes
to the weighted case. Modifying the algorithm accordingly is straightforward.

5 Experimental Evaluation

We performed extensive experiments to determine the relative behavior of the
different variants of our heuristics. As a base reference we use CIRCULAR [13],
the currently most effective heuristic for circular crossing minimization. CIR-
CULAR consists of two phases as well: an initial placement (CIRCULAR 1)
derived from a recognition algorithm for outerplanar graphs [10], and a sub-
sequent improvement phase (CIRCULAR 2) that probes alternative positions
for each vertex and relocates if the number of crossings is reduced. While the
second phase appears to be similar to circular sifting, it differs in that a vertex
is moved to fewer candidate positions and may thus miss good positions. Note
also that CIRCULAR 2 actually counts crossings (rather than just changes) so
that its running time depends on the number of crossings. When restricting re-
placements to a subset of positions, circular sifting simulates CIRCULAR 2 with
an improved worst-case performance, but in our experiments we rather imple-
mented an improved method for counting crossings, since realistic graphs have
relatively few crossings anyway.

All algorithms have been implemented by the same person in C++ using
LEDA [9]. Our experiments were carried out on a standard desktop computer
with 1.5 GHz and 512 MB running Linux. Each data point is the average of
10 runs with different internal initializations (in particular, permuted adjacency
lists).

The experiments were run on three families of undirected, biconnected graphs
(recall from Section 2 that crossings between edges in different biconnected com-
ponents can be avoided altogether):

– Rome graphs. A set of 10 541 biconnected components with 10 to 80 vertices
used in [1]. These are sparse real-world graphs with m ≈ 1.3n.

– Fixed average degree. Three sets of random graphs with 10 to 200 vertices
and variable edge probability of 3

n−1 , 5
n−1 , and 10

n−1 , resulting in graphs with
expected average degree of 3, 5, and 10.

– Fixed density. Three sets of random graphs with 10 to 200 vertices and fixed
edge probability of 0.02, 0.05, and 0.1, resulting in graphs with expected
density of 2, 5, and 10 percent.

A comprehensive selection of results is given in the appendix. We here summarize
our conclusions and show a layout computed by the combination of greedy-
append and circular sifting for a sample graph (see Fig. 4).

Fig. 4. Random circular layout and our result for a sample graph

5.1 Initialization using Greedy Append

The performance of various combinations of insertion orders for greedy append
is shown in Fig. 5 relative to CIRCULAR 1. While for some rules of choice
the results depend on number of edges in the graph, the Connectivity variant
consistently outperforms all others, including CIRCULAR 1.

The results in Fig. 6 indicate that appropriate placement is indeed important,
but has a much smaller effect than the insertion order. On random graphs, the
combination of Connectivity insertion with Length or Crossings perform almost
equally well, with a slight advantage for Crossings.

The two best combinations, Connectivity with Length or Crossings, com-
pare favorably with CIRCULAR 1, both in terms of the resulting number of

crossings and running time (see Figs. 8, 9, and 13). Note that the running time
of the initialization methods is negligible when compared to the improvement
strategies.

5.2 Subsequent Improvement using Circular Sifting

Circular sifting reaches a local minimum in few rounds. As can be expected,
the improvement is larger in early rounds, and the number of rounds required
depends on the initial configuration (see Fig. 7). It can be concluded that the
improvement algorithms (circular sifting and CIRCULAR 2) should not be used
by themselves, but only in combination with a good initialization method.

With any of the good initialization strategies identified in the previous sub-
section, circular sifting is able to further reduce the number of crossings produced
by CIRCULAR 2 as can be seen in Figs. 8 and 11 and is also confirmed by an
independent study of He and Sýkora [5]. This suggests that the additional posi-
tions considered for relocation indeed pay off. However, there is a slight runtime
penalty if sifting is run until there is no further improvement (Fig. 12).

Conclusion

We have presented an approach for circular graph layout with few crossings. It
consists of two phases: in the first phase, we greedily append vertices to either
end of a partial (linear) layout according to some criteria, and in the second we
further reduce the number of crossings by repeatedly sifting each vertex to a
locally optimal position.

Our experimental evaluation clearly shows that the method of choice is to
initialize circular sifting with a greedy-append approach using the Connectivity
insertion order with the Crossings placement rule and that this combination
consistently outperforms previous heuristics. They also shows that both phases
are necessary. While circular sifting yields a substantial improvement over the
initial layouts, a good initialization significantly reduces the number of rounds
required and thus the overall running time at essentially no extra cost.

References

1. G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and F. Vargiu.
An experimental comparison of four graph drawing algorithms. Computational
Geometry: Theory and Applications, 7:303–326, 1997.

2. U. Doğrusöz, B. Madden, and P. Madden. Circular layout in the Graph Lay-
out Toolkit. Proc. 4th Intl. Symp. Graph Drawing (GD ’96), LNCS 1190:92–100.
Springer, 1996

3. P. Eades and D. Kelly. Heuristics for reducing crossings in 2-layered networks. Ars
Combinatoria, 21(A):89–98, 1986.

4. P. Eades and N. C. Wormald. Edge crossings in drawings of bipartite graphs.
Algorithmica, 11:379–403, 1994.

5. H. He and O. Sýkora. New circular drawing algorithms. Unpublished manuscript.
6. E. Mäkinen. On circular layouts. International Journal of Computer Mathematics,

24:29–37, 1988.
7. S. Masuda, T. Kashiwabara, K. Nakajima, and T. Fujisawa. On the NP-

completeness of a computer network layout problem. Proc. IEEE Intl. Symp.
Circuits and Systems, pages 292–295, 1987.

8. C. Matuszewski, R. Schönfeld, and P. Molitor. Using sifting for k-layer straight-
line crossing minimization. Proc. 7th Intl. Symp. Graph Drawing (GD ’99),
LNCS 1731:217–224. Springer, 1999.

9. K. Mehlhorn and S. Näher. The LEDA Platform of Combinatorial and Geometric
Computing. Cambridge University Press, 1999.

10. S. L. Mitchell. Linear algorithms to recognize outerplanar and maximal outerplanar
graphs. Information Processing Letters, 9(5):229–232, 1979.

11. R. Rudell. Dynamic variable ordering for ordered binary decision diagrams. Proc.
IEEE Intl. Conf. Computer Aided Design (ICCAD ’93), pages 42–47, 1993.

12. F. Shahrokhi, O. Sýkora, László,L. A. Székely, I. Vrto. Book embeddings and
crossing numbers. Proc. 20th Workshop on Graph-Theoretic Concepts in Computer
Science, WG ’94, LNCS 903:256–268, Springer, 1995.

13. J. M. Six and I. G. Tollis. Circular drawings of biconnected graphs. Proc. 1st Work-
shop Algorithm Engineering and Experimentation (ALENEX ’99), LNCS 1619:57–
73. Springer, 1999.

A Experimental Results

1

2

3

4

5

6

7

8

10 20 30 40 50 60 70 80

cr
os

si
ng

s
(r

el
at

iv
e

to
 C

IR
C

U
LA

R
 1

)

number of nodes

Rome graphs.

Degree
Outward

Inward
Connectivity

CIRCULAR 1

1

2

3

4

5

6

7

8

10 20 30 40 50 60 70 80

cr
os

si
ng

s
(r

el
at

iv
e

to
 C

IR
C

U
LA

R
 1

)

number of nodes

Rome graphs.

Degree
Outward

Inward
CIRCULAR 1
Connectivity

1

2

3

4

5

6

7

8

20 40 60 80 100 120 140 160 180 200

cr
os

si
ng

s
(r

el
at

iv
e

to
 C

IR
C

U
LA

R
 1

)

number of nodes

Graphs with an average degree of 3.

Degree
Outward

Inward
CIRCULAR 1
Connectivity

1

2

3

4

5

6

7

8

20 40 60 80 100 120 140 160 180 200

cr
os

si
ng

s
(r

el
at

iv
e

to
 C

IR
C

U
LA

R
 1

)

number of nodes

Graphs with an average degree of 3.

Degree
Outward

Inward
CIRCULAR 1
Connectivity

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

20 40 60 80 100 120 140 160 180 200

cr
os

si
ng

s
(r

el
at

iv
e

to
 C

IR
C

U
LA

R
 1

)

number of nodes

Graphs with an average degree of 10.

Degree
Outward

CIRCULAR 1
Inward

Connectivity

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

20 40 60 80 100 120 140 160 180 200

cr
os

si
ng

s
(r

el
at

iv
e

to
 C

IR
C

U
LA

R
 1

)

number of nodes

Graphs with an average degree of 10.

Degree
CIRCULAR 1

Outward
Inward

Connectivity

2

4

6

8

10

12

20 40 60 80 100 120 140 160 180 200

cr
os

si
ng

s
(r

el
at

iv
e

to
 C

IR
C

U
LA

R
 1

)

number of nodes

Graphs with a density of 5%.

Degree
Outward

CIRCULAR 1
Inward

Connectivity

1

2

3

4

5

6

7

20 40 60 80 100 120 140 160 180 200

cr
os

si
ng

s
(r

el
at

iv
e

to
 C

IR
C

U
LA

R
 1

)

number of nodes

Graphs with a density of 5%.

Degree
Outward

Inward
CIRCULAR 1
Connectivity

Fig. 5. Greedy append: insertion orders combined with Fixed (left column) and Cross-
ings (right column) placement rules

.

0

1

2

3

4

5

6

7

8

10 20 30 40 50 60 70 80

cr
os

si
ng

s
(r

el
at

iv
e

to
 C

IR
C

U
LA

R
 1

)

number of nodes

Rome graphs.

Random
Fixed

Length
Crossings

CIRCULAR 1

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

10 20 30 40 50 60 70 80

cr
os

si
ng

s
(r

el
at

iv
e

to
 C

IR
C

U
LA

R
 1

)

number of nodes

Rome graphs.

Random
Fixed

CIRCULAR 1
Length

Crossings

0

1

2

3

4

5

6

7

8

20 40 60 80 100 120 140 160 180 200

cr
os

si
ng

s
(r

el
at

iv
e

to
 C

IR
C

U
LA

R
 1

)

number of nodes

Graphs with an average degree of 3.

Random
Fixed

Length
Crossings

CIRCULAR 1

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

20 40 60 80 100 120 140 160 180 200

cr
os

si
ng

s
(r

el
at

iv
e

to
 C

IR
C

U
LA

R
 1

)

number of nodes

Graphs with an average degree of 3.

Random
CIRCULAR 1

Fixed
Length

Crossings

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

20 40 60 80 100 120 140 160 180 200

cr
os

si
ng

s
(r

el
at

iv
e

to
 C

IR
C

U
LA

R
 1

)

number of nodes

Graphs with an average degree of 10.

Random
Fixed

Length
Crossings

CIRCULAR 1

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

20 40 60 80 100 120 140 160 180 200

cr
os

si
ng

s
(r

el
at

iv
e

to
 C

IR
C

U
LA

R
 1

)

number of nodes

Graphs with an average degree of 10.

Random
CIRCULAR 1

Fixed
Length

Crossings

0

2

4

6

8

10

12

14

20 40 60 80 100 120 140 160 180 200

cr
os

si
ng

s
(r

el
at

iv
e

to
 C

IR
C

U
LA

R
 1

)

number of nodes

Graphs with a density of 5%.

Random
Fixed

Length
Crossings

CIRCULAR 1

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

20 40 60 80 100 120 140 160 180 200

cr
os

si
ng

s
(r

el
at

iv
e

to
 C

IR
C

U
LA

R
 1

)

number of nodes

Graphs with a density of 5%.

Random
CIRCULAR 1

Fixed
Length

Crossings

Fig. 6. Greedy append: placement rules combined with Degree (left column) and Con-
nectivity (right column) insertion orders

0.5

0.6

0.7

0.8

0.9

1

20 40 60 80 100 120 140 160 180 200

cr
os

si
ng

s
(r

el
at

iv
e

to
 in

iti
al

is
at

io
n)

number of nodes

Graphs with an average degree of 3.

Round 1
Round 2
Round 3
Round 4

Final

0.75

0.8

0.85

0.9

0.95

1

20 40 60 80 100 120 140 160 180 200

cr
os

si
ng

s
(r

el
at

iv
e

to
 in

iti
al

is
at

io
n)

number of nodes

Graphs with an average degree of 10.

Round 1
Round 2
Round 3
Round 4

Final

(a) Sifting without initialization.

0.5

0.6

0.7

0.8

0.9

1

20 40 60 80 100 120 140 160 180 200

cr
os

si
ng

s
(r

el
at

iv
e

to
 in

iti
al

is
at

io
n)

number of nodes

Graphs with an average degree of 3.

CIRCULAR 1
Round 1
Round 2
Round 3

Final

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

20 40 60 80 100 120 140 160 180 200

cr
os

si
ng

s
(r

el
at

iv
e

to
 in

iti
al

is
at

io
n)

number of nodes

Graphs with an average degree of 10.

CIRCULAR 1
Round 1
Round 2
Round 3
Round 4

Final

(b) Sifting in combination with CIRCULAR 1.

0.5

0.6

0.7

0.8

0.9

1

20 40 60 80 100 120 140 160 180 200

cr
os

si
ng

s
(r

el
at

iv
e

to
 in

iti
al

is
at

io
n)

number of nodes

Graphs with an average degree of 3.

Greedy-Append
Round 1
Round 2
Round 3

Final

0.75

0.8

0.85

0.9

0.95

1

20 40 60 80 100 120 140 160 180 200

cr
os

si
ng

s
(r

el
at

iv
e

to
 in

iti
al

is
at

io
n)

number of nodes

Graphs with an average degree of 10.

Greedy-Append
Round 1
Round 2
Round 3
Round 4

Final

(c) Sifting in combination with greedy append.

Fig. 7. Circular sifting: improvement after various rounds

0.
7

0.
8

0.
91

1.
1

1.
2

1.
3

1.
4

1.
5 10

20
30

40
50

60
70

80

crossings (relative to CIRCULAR 1)

nu
m

be
r o

f n
od

es

R
om

e
gr

ap
hs

.

C
IR

C
U

LA
R

 1
Le

ng
th

C
ro

ss
in

gs

05010
0

15
0

20
0

25
0

30
0

35
0

40
0 10

20
30

40
50

60
70

80

number of crossings

nu
m

be
r o

f n
od

es

R
om

e
gr

ap
hs

.

C
IR

C
U

LA
R

 1
Le

ng
th

C
ro

ss
in

gs

0.
7

0.
8

0.
91

1.
1

1.
2

1.
3

1.
4

1.
5 10

20
30

40
50

60
70

80

crossings (relative to CIR1 & CIRC2)

nu
m

be
r o

f n
od

es

R
om

e
gr

ap
hs

.

C
IR

C
U

LA
R

 1
G

re
ed

y-
A

pp
en

d
C

IR
C

1
+

C
IR

C
2

C
IR

C
1

+
S

ift
A

pp
en

d
+

C
IR

C
2

A
pp

en
d

+
S

ift

05010
0

15
0

20
0

25
0

30
0 10

20
30

40
50

60
70

80

number of crossings

nu
m

be
r o

f n
od

es

R
om

e
gr

ap
hs

.

C
IR

C
1

+
C

IR
C

2
C

IR
C

1
+

S
ift

A
pp

en
d

+
C

IR
C

2
A

pp
en

d
+

S
ift

F
ig

.
8
.
R

es
u
lt

s
o
n

th
e

“
R

o
m

e
g
ra

p
h
s”

,
a

co
m

m
o
n
ly

u
se

d
b
en

ch
m

a
rk

d
a
ta

se
t

0

500

1000

1500

2000

2500

3000

3500

20 40 60 80 100 120 140 160 180 200

nu
m

be
r o

f c
ro

ss
in

gs

number of nodes

Graphs with an average degree of 3.

CIRCULAR 1
Length

Crossings

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

20 40 60 80 100 120 140 160 180 200

nu
m

be
r o

f c
ro

ss
in

gs
number of nodes

Graphs with a density of 2%.

CIRCULAR 1
Length

Crossings

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20 40 60 80 100 120 140 160 180 200

nu
m

be
r o

f c
ro

ss
in

gs

number of nodes

Graphs with an average degree of 5.

CIRCULAR 1
Length

Crossings

0

20000

40000

60000

80000

100000

120000

20 40 60 80 100 120 140 160 180 200

nu
m

be
r o

f c
ro

ss
in

gs

number of nodes

Graphs with a density of 5%.

CIRCULAR 1
Length

Crossings

0

20000

40000

60000

80000

100000

120000

20 40 60 80 100 120 140 160 180 200

nu
m

be
r o

f c
ro

ss
in

gs

number of nodes

Graphs with an average degree of 10.

CIRCULAR 1
Length

Crossings

0

100000

200000

300000

400000

500000

600000

20 40 60 80 100 120 140 160 180 200

nu
m

be
r o

f c
ro

ss
in

gs

number of nodes

Graphs with a density of 10%.

CIRCULAR 1
Length

Crossings

Fig. 9. Initial layout: CIRCULAR 1, and Length and Crossings combined with Con-
nectivity

0

500

1000

1500

2000

2500

20 40 60 80 100 120 140 160 180 200

nu
m

be
r o

f c
ro

ss
in

gs

number of nodes

Graphs with an average degree of 3.

CIRC1 + CIRC2
Append + CIRC2

CIRC1 + Sift
Append + Sift

0

1000

2000

3000

4000

5000

6000

7000

20 40 60 80 100 120 140 160 180 200

nu
m

be
r o

f c
ro

ss
in

gs
number of nodes

Graphs with a density of 2%.

CIRC1 + CIRC2
Append + CIRC2

CIRC1 + Sift
Append + Sift

0

2000

4000

6000

8000

10000

12000

14000

20 40 60 80 100 120 140 160 180 200

nu
m

be
r o

f c
ro

ss
in

gs

number of nodes

Graphs with an average degree of 5.

CIRC1 + CIRC2
Append + CIRC2

CIRC1 + Sift
Append + Sift

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

20 40 60 80 100 120 140 160 180 200

nu
m

be
r o

f c
ro

ss
in

gs

number of nodes

Graphs with a density of 5%.

CIRC1 + CIRC2
Append + CIRC2

CIRC1 + Sift
Append + Sift

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

20 40 60 80 100 120 140 160 180 200

nu
m

be
r o

f c
ro

ss
in

gs

number of nodes

Graphs with an average degree of 10.

CIRC1 + CIRC2
Append + CIRC2

CIRC1 + Sift
Append + Sift

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

20 40 60 80 100 120 140 160 180 200

nu
m

be
r o

f c
ro

ss
in

gs

number of nodes

Graphs with a density of 10%.

CIRC1 + CIRC2
Append + CIRC2

CIRC1 + Sift
Append + Sift

Fig. 10. Improvement phase: various combinations of initial and improvement algo-
rithms

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

20 40 60 80 100 120 140 160 180 200

cr
os

si
ng

s
(r

el
at

iv
e

to
 C

IR
C

U
LA

R
)

number of nodes

Graphs with an average degree of 3

CIRCULAR 1
CIRC1 + CIRC2
Greedy-Append

Append + CIRC2
CIRC1 + Sift

Append + Sift

0.8

1

1.2

1.4

1.6

1.8

2

20 40 60 80 100 120 140 160 180 200
cr

os
si

ng
s

(r
el

at
iv

e
to

 C
IR

C
U

LA
R

)
number of nodes

Graphs with a density of 2%.

CIRCULAR 1
Greedy-Append
CIRC1 + CIRC2

Append + CIRC2
CIRC1 + Sift

Append + Sift

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

20 40 60 80 100 120 140 160 180 200

cr
os

si
ng

s
(r

el
at

iv
e

to
 C

IR
C

U
LA

R
)

number of nodes

Graphs with an average degree of 5.

CIRCULAR 1
Greedy-Append
CIRC1 + CIRC2

Append + CIRC2
CIRC1 + Sift

Append + Sift

0.8

1

1.2

1.4

1.6

1.8

2

20 40 60 80 100 120 140 160 180 200

cr
os

si
ng

s
(r

el
at

iv
e

to
 C

IR
C

U
LA

R
)

number of nodes

Graphs with a density of 5%.

CIRCULAR 1
Greedy-Append
CIRC1 + CIRC2

Append + CIRC2
CIRC1 + Sift

Append + Sift

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

20 40 60 80 100 120 140 160 180 200

cr
os

si
ng

s
(r

el
at

iv
e

to
 C

IR
C

U
LA

R
)

number of nodes

Graphs with an average degree of 10

CIRCULAR 1
CIRC1 + CIRC2
Greedy-Append

Append + CIRC2
CIRC1 + Sift

Append + Sift

0.8

1

1.2

1.4

1.6

1.8

2

20 40 60 80 100 120 140 160 180 200

cr
os

si
ng

s
(r

el
at

iv
e

to
 C

IR
C

U
LA

R
)

number of nodes

Graphs with a density of 10%.

CIRCULAR 1
CIRC1 + CIRC2
Greedy-Append

Append + CIRC2
CIRC1 + Sift

Append + Sift

Fig. 11. Results on random graphs relative to CIRCULAR

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

10 20 30 40 50 60 70 80

ru
nn

in
g

tim
e

(s
ec

)

number of nodes

Rome graphs.

CIRC 1 + Sift
Append + Sift

CIRC 1 + CIRC 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

20 40 60 80 100 120 140 160 180 200

ru
nn

in
g

tim
e

(s
ec

)

number of nodes

Graphs with an average degree of 3.

CIRC 1 + Sift
Append + Sift

CIRC 1 + CIRC 2

0

1

2

3

4

5

6

7

8

9

20 40 60 80 100 120 140 160 180 200

ru
nn

in
g

tim
e

(s
ec

)

number of nodes

Graphs with an average degree of 10.

CIRC 1 + Sift
Append + Sift

CIRC 1 + CIRC 2

0

1

2

3

4

5

6

7

8

9

20 40 60 80 100 120 140 160 180 200

ru
nn

in
g

tim
e

(s
ec

)

number of nodes

Graphs with a density of 5%.

CIRC 1 + Sift
Append + Sift

CIRC 1 + CIRC 2

Fig. 12. Running time: combinations of initial and improvement algorithms

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

20 40 60 80 100 120 140 160 180 200

ru
nn

in
g

tim
e

(s
ec

)

number of nodes

Graphs with an average degree of 10.

CIRCULAR 1
Crossings

Length

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

20 40 60 80 100 120 140 160 180 200

ru
nn

in
g

tim
e

(s
ec

)

number of nodes

Graphs with a density of 5%.

CIRCULAR 1
Crossings

Length

Fig. 13. Running time: initial algorithms

