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I. - INTRCDUCTION

The problem of putting together crossing symmetry and
unitarity has led fo different approaches, One of them, which has
been initiated by Martin 1 , and extensively developed in the recent

2)33)s4)55)

past , ie based on the combination of the "posgitivity con-
dition" imposed by unitarity with crossing symmetry. In the TLTL
case, it 1gads to various sets of inequalities bhetween the values of
a8 finite number of paritial waves taken at different points of the
Mandelstam triangle. Another approach, developed by Balachandran

and Fuyis 6), consists in deriving a compleite set of equations, each
of them invelving a finite number of partial waves, which ensures
crossing symmetry. Unitarity can then be added as a supplementary
condition on the pirtial wave amplitudes involved. Other developments

can be found in Ref. 7). The crossing symmeiry constraints have also

: *
been extensively studied by Rogkies in the MMM case ) ).

In this paper, we first want to show that a complete sei
of sum rules, each of them involving a finite number of partial wave
amplitudes, for any elastic scattering, can be derived very simply,
just from the ({s,u) symmetry character of the Mandelstam amplitude
M(s,t,u). Here, complete means that the conditions oktained are
necessary and sufficient to ensure crosging symmetry. Thig set of
sum rules is shown to be equivalent to that obtained by other methods

6) 7,

we discuss some physical implications of these sum rules and illustrate

in Refs. and This is achieved in Section 2, In Section 3,

their usefulness in explicit dynamical theories. In particular we
show that, for the A¢'4 theory of T T scattering, Padé approxi-
mants, which verify elastic unitarity in the low energy region, seem

to be also in excellent agreement with crossing symmetry.

*
) We thank Dr. Roskies for keeping us informed of his own work and

bringing the paper of Ref, 7) to our attention.

SIS/K 1208



II. - DERIVATION OF THE SUM RULES

1) Kinematics
Let us consider an elastic reaction
a+b->a+b (s channel reaction)
and the iwo associated crossed reactions
b+b-oa+a (t channel npeaction)
and

a+b-a+ b (u channel reaction).

The kinematical configuration is described on Fig. 1.

m and P’ are the respective masses of a and b.

As usual we define N
&
S= (94*%) = (93t P) )
&
bz (9-9) = (990

"

W= (q,_q,,)"z (92-?.3)1 (11.1)

2 2
with Se ke, = 2mMm s 2 4 /

The physical regions for the three reactions are limited

by the curve ¢ given by
t zz] -
t[su-(mtp))=o
and shown in Pig. 2.
The scattering angles Ss and Gt in s and t channels

are given by

conlz 14 = (11.2)
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where

o Lemdfernlfos,

the squared s chamnnel centre-cf-mass momentum and

L

pegVe-am

(1I1.5)
b LVe-ap

t

Finally we call D the unphysical region in which |cos 93|
(or ‘cos Ot" or |cos Qul) is less than or equal to 1. We remark
that, whatever a and b are, the geometrical situation is obviously

symmetric under the s,u exchange.

2) Derivation of the sum rules in the spinless case

Let M(s,t,u) be an amplitude describing some charge
configuration of the three reactions and which has, say, the Mandelstam
analyticity domain, If b =D or if a=b, s and u channel
reactions correspond to the same process, up to spin and isospin com-
ponents. We first concentrate on the spinless case. Now, according
t0 %the isospin in the 1 channel M(s,t,u) ig either symmetric, or
antisymmetric under the g,u exchange. This is the crossing symmetry

propertye.

Sao, let us denote by M(+) (resp. M(-)) an amplitude
symmetric (resp. antisymmetric) under the s,u exchange., It is clear

that for any domain [} symmetric under this exchange



(=)
Sds dt Mistu) = o

(11.6)
a
and
@)
dg dt (s-w) Mt =0 (11.7)
A

Note that if & is not an analyticity region for M(i)(s,t,u),
Eqs. (II.6) and {II.7) must be supplemented by a prescription concern-

ing the determinations of M t orn their cuts.

Now if we take A = D, the + integration reduces to an
integration on cos Gs from -1 tc +1 and then exhibits s channel
partial wave amplitudes. We get the following sum rules for s channel

S and P waves :

('mﬂ-l-)t
> d 19{'353 o
J qa. 5 (I1.61)
lm- )
L
(mep) *) 2 o
3
qa'd..':[(ﬁ-‘){mz't")fo“) +9 ;w s Q (II.7%)
(m-p-)"
the partial wave amplitudes being defined by
+1
&) t) a
19(5)1 L dm% M (g}tlb‘-) ,;(m ‘S) (11.8)
£ 2

-1
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3) A complete set of sum rules from crossing symmetry

It is also interesting to interpret the sum rules (II.6?)

and (IIOT‘) in terms of 1_ channel partial wave amplitudes,

+4 .
) Fp
ga)__._.'_!. d G b, M (st w) e-“‘"oé) (11.9)
e 2
-1

Taking A =D in (II.6) and (II.7) and changing the integration va-

riagbles into s-u and +t we find :

ep o
dt pk 9, &) = o (11.10)
o
L N
b s e
at (p, kt') 91 ) = (11.11)
-
which are ftriviasl consequences of
ayz=0 Yt gow=o , VE e
° - F

as implied by the symmetry character of M(_) and M(+).

The derivation of a complete set of sum rules is now
gstraightforward. The crossing symmetry is verified if, and only if,

for any ncon-negative integer f ’

g wyzo , VE

and.
) . b/f
gch“') 0 , (11.1§)

!
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which is equivalent to o JR o t
Jd(s-u.) de bt (s-w) Meshwd = o

b

Q 2Re1 4 (11.14)
Jd.(.S-M-)‘a' tos-w " (s,t,u) =0
D

for any non-negative integers Q and R. Equivalence of (I1.13) and
(II.14) follows from the fact that if (II.14) is verified for a given
R and all Q then

+ 2R ZR"" -

)
€ | dwo, (@) (AR Mitstuy= o, Ve

G

2R (11.15)

-1

since all its moments in the interval 0& t £4 t\-2 are zero. Now if
Bqg. (II.15) is satisfied for C€ R &R', then

) <R’
9. =0, Vb for 0LRS

Letting R?' go to infinity achieves the proof., The same is true of
(+)

8zm41 (1)

Finally we notice that, given Q and R, the t inte-
gration at fixed s gives in Eg. (IL.14) two sum rules involving a
finite number of s channel partial wave amplitudes since the coef~
ficients of M(t) are polynomials in t of degree 2R+ Q or
PR+ Q4+ 1.

Clearly the infinite set of sum rules just derived is
equivalent to the one obtained in Ref. 7), gsince both are complete.
They cannot differ by more than a linear transformation with numerical
coefficients corresponding to different choices of sets of polynomials

in s and %o
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4) The m N case and the treatment of spin

We now derive the sum rules for M nucleon elastic

scattering and outline the way to generalize to higher spins.

With the A N kinematics the interesting partial wave
amplitudes are the helicity partial wave amplitudes which are simply

related to the usual phage ghifts

= 3 J
© | 7 Geny d o MO
M - = ¢ t'/g Vz -
+2 J ) (11.16)

+
J - €= J- Y,
= F(s) £ §09) 2
m+=(s) - fCS) fen y,

+ 2.5.5; (I1.17)
¢ 20 gris

()
++

tudes (SnHvo ) .

and Mif) are the non-flip and flip & channel heliecity ampli-

In order to apply the general formalism given above and to
find sum rules connecting a finite number of phase shifts, we need to

find linear combinations of S.H.A. with the following properties :
(i) symmetry or antisymmetry under the 8, u exchange ;

(ii) +the coefficients of Mf_i) (resp. Mf_f)) must be equal to
cos 8_/2 (resp. sin 98/2) times a polynomial in t since
such coefficients can be expanded into a finite number of

)a

di;_ (resp. dJ

1,1
52 =itz

The use of % channel helicity amplitudes (T.H.A.) which

have obvious symmetry propertiés under the &, u exchange according
to the isospin in the +t channel, and known kinematical properties 9)
provides an answer to these problems. From the crossing matrix for the

helicity amplitudes we can write the T.H.A. as 9) :



H; - F(t) [fm, Cnf M, *+ E,_,,,,E_ M,
/)
(s}
Mw G (t) [E s % H:?- mm% M,. (I1.18)
= 2
10

where E 1is the nucleon energy in the s channel centre-of-mass
system, and F(t) and G(t) depend only on +t and thus are symmetric
under the s, u exchange. On the other hand the quantity -t =

= 2q8in6 /2 and V;u - (mg— 8.2)2 = 2q¥s cos 6 /2 are also sym-
metric under this exchange. The sum rules for RN partial wave

amplitudes can then be derived from

@ R ) : (s)
ds dt £ (5-w) [‘WLM%M‘++EAM% ”4--] = o

*
(11.19)
D
Q: O}"’z"“'"'
for 4%6,%...... for isogpin O in the + channel
R:{ . . .
... for isospin 1 in the t channel
03,6 P

and

Q R . %) o (4)) 8 .
dsdt & (s-w [EAWI%”" - mm{”,-]‘i‘f\fs'm‘z‘m.is =0

*
¢ (11.20)
b

for q’3,5’7,..... for isospin 1 in the % chamnel
e={

.. Tor isospin ¢ in the t channel,
0’2’9’6.... b
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It is very easy to check that for any fixed Q and R
the t integration in {II.19) and {(II.20) exhibits a finite number
of helicity partial wave amplitudes. We postpone to Section III the
explicit writing of the simplest sum rules resulting from (II.19) and
(11.20), We Just give the hints for the generalization to higher spins,
Explicit calculations would be tedious but the principle of the method
is straightforward : one would have to write the T.H.A. in terms of

9)

variable 9) (a procedure which does not destroy the s, u symmetry

S«eHusAs through the crossing matrix s 10 regularize them in the

properties)a Then it is spufficient o multiply in by suitable powers
of V-t and f su - (m°~ @?)?
a finite number of partial wave helicity amplitudes.

in order to get sum rules involving

IiT1. - PHYSICAL CONTENT OF CROSSING SYMMETRY CONSTRAINTS

The sum rules just derived and inequalities obtained
in Refs. 1)_5) involve partial waves in an unphysical region, so they
cannct be directly confronted with expériment. As remarked in Ref. 6 ’
the sum rules can be, if partial wave amplitudes satisfy dispersion
relation, written in such a way is to exhibit physical values of the
amplitudes : suppose that, in the {t W case, the partial wave ampli-

tudes satisfy unsubtracted dispersion relations :

P
, 7
afsnds’ dm f,087) s
- = ~ - {I1I.1)
- 00 $-5 by S-S
4~

then a sum rule of the type

4 14.-"

ds %(S) &G) = (111.2)

o

where qk(s) ig & known function, can bes rewritten in the form
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o
° ’ ’ ' r
ie“') 5fets')d,s + fcuj :]m.fe ts'yols' = o

(I1I.3)
L o0 M
where
Y
“p
Ye ¢s) ds’'
Q (s) = _—-;7—;-" (III.4)
4 s -

The second integral in (III.3) is expressed in terms of physical quan-
tities while the first one exhibits the famous left-hand cut which, in
the dispersion appreoach, describes the forces. Equation (I11.3) illus-
trates very well the type of information whieh could arise from the sum
rules. Ia the simplest case where fc(s) is a combination with positive
coefficients of well-defined isospin amplitudes, Im fg(s) dis positive
from unitarity. Then, if 4&}5) has some positivity properties,

Eg. (ITI.3) tells us the sign of the left-hand cut integral, which is

already a non-negligible information.

It is the object of the present Section to show, on several
examples, the physical implications of the crossing symmetry constraints
for various theoretical approaches. In fact we shall use ‘the sum rules
in their finite version [integral from (m- 9.)2130 (m+ y-)z] and in the

mrr case we will also check some of the inequalities of Refs. 1)_5).
0f course we will not be interested in models, explicitly crossing
symmetric (eog., Veneziano model, or N N model with only ¢ channel
Regge poles). According to the model, there are two possible types of

applications of the congtraints :

(i} the model has free parameters or unknown functions, then the
sum rules can be used as a way of determining parameters in

order to verify, or at least fto approach, exact crossing

symmetry ;
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(ii) the model has no free parameter, the sum rules can now be used
t0 check crossing symmetry or to evaluate how much this symmetry
is vioclated ; in this respect the example of Padé treatments of
perturbation theory for RN M scattering will be discussed in

detail below.

1) MR scattering

A - Use of the sum rules

——— e e i

Denoting by ao(s) and az(s) the s wave W N ampli~
tudes in isospin states I =0 and I = 2 respecitively, and by ay (s)

the isospin one p wave amplitude, fthe three lowest order sum rules

invelving these amplitudes are the folleowing 10)
L "
tepe
J (s-‘rt‘") (2 “’o“J - s‘a.)_(S)) ds =0 (III.5a)
(]
9"} i ts) + Zd..(S)) ds = o
(s-4pt) (35- Y1) (a2, 2 (III.5b)
a
b
§ie _
" ol oA
- ) S
cs-w‘!.)(_o,s-q.,.‘) 0.1(5)45-" (s"’f‘) Q‘C J (I11.5¢)
[ o

where & is the pion mass.

Note that Bgq. (III.5a) reflects the fact that at the
symmetry point s =1t = u = %H-2 the ratic of the I =0 and I =2
total amplitudes is g—, and that Eq. (III.5b) is a consequence of the
complete symmetry of r[o r(o - r[o r[o amplitude in s, t and u.
Equation (III.5¢) is a necessary condition for crossing symmetry to

" hold in R i scattering.

In recent years, field theoretical calculations have been
quite successful in describing meson-meson scattering when Padé appro-

ximants were used to sum the divergent strong coupling perturbation
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11),12),13)

series Begides their nice property of being able fto sum
divergent series, (this was the original motivation for using them),

1 *
[E’QH ) alsc have the very important property

”)’14), provided that M » N. Thus, one
15),16)

all Padé approximants T
of satisfying exact unitarity
has a unitary, and presumably convergent s method of treating the

perturbation series.

Notice, however, that the perturbation series, truncated at
order p, 1s exactly crossing symmetric, =o that 1t satisfies Egs.
(IIIOEa,b,c) identically, while it only satisfies unitarity up ¢ order
p. On the other hand, since the Padé algorithm is non-linear, unitary
Padé approximants will only satisfy crossing up to order N+M, and
Egs. {I1T.5a,b,c) will only be approximate for them. The question which
therefore arises is whether the viclation of crossing by Padé approximants
is small (which must be the case if the method actually converges) or very
large as is the violation of unitarity in the perturbation series (in that

case, the Padé method would not be reliable).

A simple example consists Iin calculating meson-megon zcatter-
ing in the g ﬁ4 theory ; this has been extensively studied in the last

11),12).

two years It has been shown in particular that :

(i) in practice the convergence appears to be very good in that the
approximants are remarkably stable as the order is increased ;
(ii) higher partial wave resonances such as the P ’ fo, k*, etica,
are generated very well by such an interaction.
For M I scattering, one obtains the ¢ meson with a value of the
coupling constant g °~ 6. Here we have computed the perturbation series
up to third order in g, so that we can build the following approximants

*%
in a given partial wave -

e e T e o T T T ALl B Lk I ke P | S T P e 7y Y S S ey B ol o . e e S e B Bk S e Ul e e iy e A B e ey L B

*
) We recall that the [@3ﬂﬂ approximant to the T matrix i1s written as

a ratic of two polynomials in the coupling constant g, of degrees XN

[,

and M respectively, T = PN(g)/QM(g), which has the same power

series expansion in g as the Feynman series, up fto order N + M.

*%
) The analytic expressions for the perturbation seriesg are given in

Ref. 11)0
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T[“,’] _ gTﬂ(s) - (unitary) | (III.62)
-9 T, (s)/T;CS)
t X
T. () itary)
[!‘1] 9 2 (non unt Y
T, gy + 4-373(”/7:“) (1I1.6D)

'T‘['a"] . 31:“)/{1 _ 37;(5)/'7:(5) - 3‘[1;(9/1:“) . (71(‘)/1:":9 ]} (I11.6¢)

(wnitary)

Note that although the E2,ﬂ approximant is not unitary,
the violation of unitarity turns out o be very small in practice {(a
few per cent), az a consequence of rapld convergence, Also, since the
Born term ig pure s wave in the gﬂ4 theory (E[‘,‘e #0 _ 0), the lowest
order Padé approximant one can build for the higher partial waves is
.the [:2,1] y Wwhich again was shown to be very similar to the unitary

122,2:[ in a fourth order calculation ﬂ).

Let us now check crossing symmetry. Defining

ow w,M)
[N l"l] . [ f)
0 N A %) 4s (III.7a)
A
T (N,M)
tun] ’
Ji) z f (-9t (".'5'“‘!) %) Ls (1I1.7b)
0
et J
N,M z [NM
Ji ) E J (s-¢u’) 2 ds p (III.7¢)

-]
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the relations (IIl.5a,b,c) can be written as

[N M] LN, ]
’ - (I1I1.8a)
ZIO - SII.. o
J_U',""] L zl”‘":, . (III.8b)
(w,M] (v,M]
5 ’ . j’ - o (III.8¢)

The results are the following. In the D,ﬂ approximation,
ocnly (IIIDBa) and (III.8b) can be tested since higher waves do not exist.
One finds

1]
I --472.4¢
o

11
IzL'] - -117.06

TR 24 8

J'zt"']: -12.6]

so that Eq. (IIT.8a) is satisfied within 0.04% and Eq. (III.8b)
¥*
within 2% )o

In the E&,ﬂ approximgtion, we have

5]
Io z =472 06
1]
I,_[z‘ - 137 22
tz,4]
L . 29.2¢
J:z‘ﬂz _1¢. 97

e P o s i S o A L RS S B P i ——— — — — —

*
) The deviation from an eguation a + b= 0 1is defined as |a+bf/|a[.
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Equation (IIIZ.8a) holds within 0,2%, Eq., (III.8b) within 2.3%, and
Bq. (III.8¢) within 2.4%.

Going to the D,aﬂ approximation we obtain

CJ’I-J
° = - 472. 61
IC‘I,J.J - - ,z’. 6’

F 3
P R

3 t1,2]

2 te. 82

Again, for Eq. (III.8a) the deviation is 0.04%, and for Eq. (III.8b)

1.5%.

Notice that Eq. (III.8a) is always satisfied much more

closely, but this is actually a consequence of the g;2f4 theory in

MR scattering. 1In fact the ratio of a, and a, is cloge to %
in all the domain Ogs-\(‘d, tLQ 3 1t is gomewhat larger in the region

8 ~ 0, and closer to 2 near s = 49-2 [amplitudes in this region
‘being damped by the factor (3-4[—\-2) in Eq. (III.5aﬁ « Therefore,
Eg. (III.Ba) cannot be considered as a strong test of crossing in the

gﬁ4 theory.

On the contrary, Egs. (II1.8b) and (III.8c) are not at all
trivially satisfied and the facet that they are verified within a few

percent is a very strong argument in favour of the Padé approximation.

Por the s wave amplitudes this is not surprising since
previous tests of crossing have been made, based on different
methods 12)’16) and have yielded excellent results (in fact the gﬁf4
theory has strong & waves, and furthermore there exist sub-series
. in the Feynman series which are geometrical, so that the Padé method
is well adapted to this situation). The fact that the relation between
g and p waves EE:qo (III.8C):[ is well satisfied is much more meaning-
ful and indicates that the f resonance obtained by this method 11)12)

is a true dynamical effect and not an artifact due to the approximation.
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Note in particular that with a value of the coupling constant g ~ 6,
the 7 phase shifts are very large and, thus, unitarity is very
much vioclated by the perturbation series. Also we have varied the
value of g. As g Dbecomes smaller, the relations are satisfied
better, as was to be expected. What is more interesting is that even
for large values of g, for instance g ~ 10 where the J mass goes

down fo Inr ~ 400 MeV, the discrepancy is still a few per cent,

The previous considerations show that, as a mathematical
tocl, the Padé approximation seems reliable in strong coupling field
theory. However, it has been shown 16) that in the gﬁ4 theory,
although higher partial waves are generated well, the s wave phase
shifts do not agree with experiment, i.e., the shori range forces are
not described correctly. In other words one needs more physical infor-
mgtion in the Lagrangian. Along these lines, it has been suggested by
BsW. Lee 17) that one could incorporate the current algebra constraints
in the Lagrangian by requiring that it produces the correct soft pion
limit. This can also be consgidered as an unambiguous way of unitarizing
the amplitude given by current algebra. Such a calculation of

13)

scattering has been done recently in the so-called sigma model.
However, although to lowest order the current algebra amplitude will
satiefy the previous relations identically, since it is crossing sym-
metric, the unitarized amplitude will no longer satisfy them. These
unitary amplitudes with the current algebra constraints yleld correct
58 wave phase ghifts ftogether with the f and fo regsonances 13) in
such a way as to keep the good results of the gﬁ4 theory and correct
the bad ones {in fact, from the structure of Feynman graphs one can
congsider the sigma model as a sum of the ﬁ4 and 53 theories). It
will therefore be very interesting to test crossing along the previous

lines. This calenlation is under way and will be reported elsewhere,

As already mentioned, a complementary test of crossing
consists in verifying the inequalities given by Mariin 3) for the
ﬂb ﬂb-ﬂ “b T, partial wave amplitudes. We have tested these ine-

qualities for the various Padé approximants of the gﬁ4 theory. Since
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1)

unitarity convention is opposite to the unsual one, Cﬁnﬁt=-?(s)|ﬁa(g)]2x

we follow the notationg of Ref. where the convention for the

the inequalities should read :

o < Beoann ¢ fanm

190 (2.199) > ‘fo(") (III.10)

Here fo(s) is the s wave T, nh - T Rb amplitude,

g0 that in the previous notabtions we have

f, (s) = @n(8) + 22, ) (IIT.11)

The resulits are shown in the Table for the varicus approximants
{(remember that D,ﬂ and D,Eﬂ are unitary, but not E2,1:l),
and for three values of the coupling constant : g = 4 (for which
the f mass is Mf~1 GeV), g=6 (Mjg = 760 MeV), g = 10
(M, ~ 400 MeV).

£

It is remarkable that the inequalities are all satisfied.
Notiece in the Table that, at lowest order in g, fo(s) is a consgiant
equal tc 18 g, and it is not at all frivial that the Padé approxima-
tion, which produces small deviations from this constant, does give
inequalities in the good direction. Once more we see that crossing

is well satisfied by the unitary Padé approximants.
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2) WX scattering

Turning, now to the case of H-K scattering we denote by
a:e[ the f—th partial wave amplitude in iscspin I. The three lowest

order relations, which do not involve the d waves, are the following

(m-»y-)‘ o
2 o -
q (a.!/z - Qs/z) d—S - o
1 (rrr.12)
(M-}
T2
('mw-)‘ () .
o 4 1
9" (ay, - %y )ds= | 97(ay, - “4) 45
. ke » (II1.13)
(w-p) (m-po
.
(mm)z (mep) ‘
& o ) 1 .
dngfs-?t-””‘-b‘t)(a'y,fz“%)=- q CQ"/;,*ZQS/:.) ds
. (II1I.14)
(m-p)" (m-¢)

where m and tl. are the kaon and pion masses, and where q is the

n -k centre-of-mass momentum.

Note that we have now only three relations between four
amplitudes since we no longer have Bose statistics in the direct

channel,

In a g;zfﬂ’ theory involving piong and kaons one can show
that the isospin I =% and I =35 ff -k amplitudes are exactly

12)’18). This comes from the fact that at any order the

degenerate
crossed reaciion Tn— KK is pure isospin zero. The only possible
way to split these states is to introduce the » meson and the
coupling gmt KR which is pure isospin one E}.OWeveI', in 8U(3)

symmetry one has g n _xig = O and the degeneracy holds|. Needless
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to say that Padé approximants cannoi change anything in this degene-

racye.

As a consequence, the first two relations will hold trivially
at any order since all integrands vanish identically, and only the third
relation can be used as a test of crossing [in fact, Eq. (IIL.12) can be
compared with Eq. (III.5a) for R M gcattering].

On the contrary, to lowest order, the current algebra ampli-
= 19)
KK

fore, since in the soft pion limit the Weinberg relations for ff -K

tude is pure isospin one in the crossed channel R R - o There-—

scattering in any partial wave are

- - Z a
Qn,/‘ 3/3 (111.15)

it is the third relation [Eg. (III.14]] which is trivially satisfied :
the integrands vanish (while, of course, to lowest order, the first two

relations are also satisfied by the current algebra amplitudes).

One can also do a calculation of K -K scattering with the
current algebra congtraints, in facl{ one can use broken chiral
SU(3) x SU(3) dynamics 2°), insteaa of SU(2) x SU(2) as in the sigma
model. Here again the theory will appear as the sum of ﬁ4 and ¢3
contributions, with the correct soft pion limit, and clearly there wilil
be great interest in testing Egs. (III—12)—(IIIa14) for the Padé appro-
ximants. HFinally, an Iiniteresting exerclise consists in writing these
gsum rules in the static limit of infinite kaon mass M - @, while the
plon mass ¢ is kept fixed. In thalt case, dencting by & = q2+»HE

the pion enhergy, we have

S~ MY+ 2Mw (M larsc)

w ~ M- 2 Ma

(111.16)
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and, clearly Eq. (III.13) boils down to

tp
[
w (WD [ Q;;(w’ + 2 4—%_{“)}4“ zo

o -

(111.17)

It ig easy %o see that we will actually obtain for the s wave

i -"K" amplitudes the set of relations

Ht ° e N
(wid) [q_'/'-(w) - a»%(w)]w dw =z o

(111.18)
i
and
M 0 2N
w (wo i) [a;ztw) ¢ Za’s,f“"’} w dw=zo (111.19)
-¢

valid for any N. It is also obvious that such relationg are valid
for any partial wave, and not just the s wave [}he only difference
coming from a factor (wz-’k?)ze for the f—th partial wave:l. The
consequence of Bgs. (IIX.18) and (III.19) is that the symmetric parts
in @ of a%_ and =az are the same, while the antisymmetric parts

2
are in the ratio -2:1, therefore we can write

e
e f 2 G c wl-
= 2
q,v‘cw) = F w) * ) (11I.20a)

r
¢ e . G (w?
Q%C"’) = Fe)- @ ) (II1.20Db)

and we thus recover the trivial sedu crossing relations in the static

approximation.
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Kote that analogous relations can be obtained of course

for any static target.

In other words, the partial wave sum rules due to crossing
are trivially satisfied in the static 1imit and therefore they give
information only because se¢e&d t crossing is possible. In fact, when
the masses are finite, they relate different partial waves. In R =N
scattering these sum rules will give constraints on the deviation of

the amplitudes from the static approximation.

3) N, KN and KN scattering

Using the isospin crossing matrix we derive from Eq. {(II.19)

and Eq. (II.20) the three simplest sum rules for g N scattering which

involve only J =4 and J = £ partial wave amplitudes :

L
(miR)
ds qa'[fe'lm) (S"'- 53') - (E""‘l)( P” - %')} - 0 (III.21)
(- )"
(M1+|-l)" .
ds { (5,+2 S,) q"{&m) [3 (s-q%m% p?) - (E--m)-].,.
- ' (£em)]
2ee.m)[-3(s-gbmepu’) v CExm) j+
+(h+? P"') q ¢ )[ L (1I1.22)

o (Pyraf a2 e -

o

- (1%5¢.1I%;Tq#2.45-4ﬂ)
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(mw)"
ds q*s (5,25, ) (E-m)+(Ry* 2 B,) (E+m) -

tm-)*
~(p,+2Fs)(E+mm) ~ (Dig#2D33) ("8 =0 (117.09)

[ﬁe have used the speciroscopic notation for partial waves : (L)2I 2Jj.
H

A few comments are in order about these sum rules :

(i) partial wave amplitudes are singular inside the integration
region due fto the direct and crossed nucleon poles § these
pole contribtutions satisfy crossing symmetry, so that the sum
rules separately hold for the singular and the non~singular part

of the pariial waves 3

(ii) the MacDowell zymmetry properties

f:(.; )= ‘ﬁe:'(' Vs) (III.24)

ensures that if the sum rules are satisfied in the first sheet

of i s they are also satisfied in the second sheet ;

(iii) in order to evaluate qualitatively the importance in the sum
rules of each partial wave amplitude we are guided by the
threshold and pseudothreshold behaviours ; with ocur pormali-
zation féi) behaves like \[;_- (m+tt)2l2e near threshold

and as a constant near pseudothreshold ; we see then that the

D wave contributicons are strongly damped [iarticularly in
Eq. (III.22}].;

(iv) Equation (III.21) seems to be the richest in information : at

threshold it is known experimentally 21) that s

11—331 is large
ag compared to Sqq + ZSBAI (properties of & wave scattering
lengths) ; on the other hand, the P11 scattering length must

*
be important due to the proximity of the Roper resonance (N1470) ;

we then expect Eqg. (III.2T) t0 be highly non-~trivial.



- 23 -

Since for the scattering lengths Baq F 2831 is known to
be small we expect Eg. (III.22) to provide essentially a correlation
between the g wave effective ranges and the P wave scattering

lengths.

Let us now give.a rapid review of models or theoretical
approaches for which the sum rules could be useful. Consider first

the analyses, & la Hamilton 22)723)

s of the low energy f nucleon
interaction. In such analyses the nearby left-hand gingularities

are very carefully studied : the direct and crossed nucleon poles

are put in explicitly, the 1+ channel singularities parametrized
through a few Born terms, and the crossed physical cut evaluated.

The unknown far away left-hand cut confribution is described globally
with the help of a few "phenomenological poles" {short range core).

In this case it is clear that the sum rules will put strong constraints
on the parameters of these "phenomenological poles”. In the so-called
method of discrepancies, we expect the sum ruleg to compensate the
lack of information in the region between (m—tt)2 and {m+ 5)2

(see Figs. 15, 16, 20 of Ref. 22)).

We suggest also that phase ghift analyses using dispersion
relation as a gmoothing procedure should take advantage of these sum
rules. We think particularly of KN and R phase shift analyses
which are still at their very beginning and for which any theoretical
information is welcomed. In the extension of the sum rules to KN and
KN one would have to choose suitable combinations of XN and KN
amplitudes in order to satisfy s, u symmetry properties, and to
properly take infto account the singularity lying inside the demain D
of integratiocn (t channel unitarity cut starting from + = 4%3,

annihilation singularities in the KN system).
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