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1 Introduction

Symmetries and consistency conditions play an important role in quantum field theory.

This is especially true in the realm of Conformal Field Theories (CFTs), which can be

analyzed by combining constraints from conformal invariance, unitarity and crossing sym-

metry. This set of ideas is known as the conformal bootstrap [1–4]. It was revived in [5] and

has led to a wealth of numerical and analytical results about CFTs, see for instance [6–28].1

1See [29–31] for an introductory discussion of the conformal bootstrap.
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Since the bootstrap uses constraints coming from correlation functions, it is natural to

express crossing symmetry as a sum rule in position space. This is not strictly necessary: for

instance, some properties of CFT correlators are more transparent in Mellin space [32–40].

In the present paper we introduce alpha space, an integral transform for CFT correlators

based on the Sturm-Liouville theory of the conformal Casimir operator. As we will explain,

alpha space can be used to rephrase crossing symmetry as an eigenvalue problem.

To illustrate this idea, consider the toy crossing equation

5∑

n=0

cn pn(z) =
5∑

n=0

cn pn(1− z) (1.1)

involving the following polynomials:2

pn(z) = (−1)n
n∑

j=0

2j
(

5− z
n− j

)(
z

j

)
, n = 0, . . . , 5 . (1.2)

How can we determine the set of all cn that satisfy (1.1)? Since the pn(z) are polynomials,

various brute-force methods can be used. More elegantly, we can realize that the pn form

a complete basis for the space of polynomials of degree ≤ 5, orthogonal with respect to the

inner product

∫
dµf(z)g(z) ,

∫
dµ =

5∑

k=0

(−1)k

2k

(
5

k

)∫
dz δ(z − k) . (1.3)

This implies that the pn(1 − z) appearing in the r.h.s. of the crossing equation can be

decomposed as follows:

pn(1− z) =

5∑

m=0

Qmn pm(z) (1.4)

for some 6 × 6 matrix Q. The latter can be easily computed using (1.3). Since z 7→ 1− z
is an involution, we must have Q2 = 16×6, as can be checked easily. Eq. (1.1) can now be

recast as

cn = (Q · c)n (1.5)

hence our problem reduces to finding all eigenvectors of Q with eigenvalue +1. There are

three such eigenvectors:

f1 = p0 (≡ 1) f2 = 2p1 − p3 − p4 , f3 = p2 + 2p3 + 2p4 , (1.6)

so the most general solution to (1.1) is

5∑

n=0

cnpn(z) =

3∑

i=1

tifi(z), ti ∈ R . (1.7)

2Up to a choice of normalization, these are the Kravchuk polynomials with N = 5 and p = 1/2 [41, 42].
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In this paper we consider one-dimensional (defect) CFTs which are governed by cross-

ing equations similar to (1.1). For definiteness, let us consider a four-point function F (z)

of identical operators of dimension hφ, admitting a conformal block decomposition

F (z) =

∫ ∞

0
dh ρ(h)kh(z) , ρ(h) =

∑

n

cnδ(h− hn) , (1.8)

where the kh(z) are SL(2,R) conformal blocks:

kh(z) = zh2F1(h, h; 2h; z) . (1.9)

The spectrum {hn} and the OPE coefficients cn ≥ 0 are typically unknown. Bootstrapping

entails computing or constraining these CFT data using the crossing relation

F (z) =

(
z

1− z

)2hφ

F (1− z) . (1.10)

There are various technical differences between this d = 1 bootstrap problem and the

previous toy example. For one, h takes its values in the continuum R≥0, whereas the toy

example had a finite and discrete spectrum. Nevertheless, it is tantalizing to apply the

logic from the toy example to the bootstrap. For instance, one could hope to constrain the

density ρ(h) from (1.8) through a relation of the form

ρ(h)
?
=

∫ ∞

0
dh′Q(h, h′|hφ)ρ(h′) (1.11)

for some continuous kernel Q(h, h′|hφ) which plays the role of Q. Sadly eq. (1.11) cannot

quite be true. The reason is that the conformal blocks kh(z) don’t form an orthogonal basis

of functions on (0, 1). The principal aim of this paper is to demonstrate that it is neverthe-

less possible to write down a qualitatively very similar relation. In order to do so we use a

new basis of functions to transform our four-point function to a space that we denote as al-

pha space. In this space we can properly define (1.11) in terms of a crossing symmetry kernel

K which we will explicitly compute. We will discuss its main features and explain how the

ordinary conformal block decomposition is recovered from an analytic continuation in alpha.

We stress that the philosophy of studying CFTs using crossing kernels — à la (1.11) —

is not new. An early avatar of this idea can be found in eq. (2.66) of ref. [43]. Nonetheless,

we are not aware of earlier work where the relevant SO(d, 2) or SL(2,R) crossing kernels

have been worked out in detail. An exception is the 2d Liouville CFT, for which the crossing

kernels have been computed [44, 45] as the 6 − j symbol of a class of representations of

Uq(sl(2,R)), leading to a formal proof of consistency of the theory.3 The case of rational 2d

CFTs (i.e. Virasoro minimal models) is also of interest, since in such theories the crossing

kernel is realized as a finite matrix [49–51]. We will comment on the group-theoretic

interpretation of our crossing symmetry kernel in section 5.

The outline of this paper is as follows. In section 2 we review the one-dimensional

bootstrap problem and solve the Sturm-Liouville problem for the SL(2,R) Casimir oper-

ator. This allows us to construct a complete, orthogonal basis of eigenfunctions on the

3See also [46–48].
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interval (0, 1). In section 3 we use these basis functions to derive a crossing equation sim-

ilar to (1.11), and we study the properties of the relevant kernel K. Section 4 describes

several possible applications of crossing kernels to the conformal bootstrap.

Note added: while preparing this manuscript we learned about ref. [52], which discusses

a crossing kernel approach to both SU(2) and conformal crossing symmetry equations and

is tangentially related to this paper.

2 One-dimensional bootstrap and alpha space

This section is devoted to the Sturm-Liouville theory of the conformal Casimir of SL(2,R),

the conformal group in one spacetime dimension. One-dimensional CFTs arise in the

description of line defects in higher-dimensional theories [53–56]. Although 1d CFTs are

in many ways more tractable than d-dimensional systems, we also note that many salient

features of the d-dimensional bootstrap already appear at the level of d = 1. In addition

the 1d conformal blocks appear naturally in the light-cone limit of the higher-dimensional

crossing symmetry equations, where it becomes possible to obtain non-trivial analytic

results [12, 13, 57].

2.1 Sturm-Liouville theory of the SL(2,R) Casimir

We will start by analyzing the four-point function of a single primary (or lowest-weight)

operator φ(x) in a 1d CFT. The general case will be addressed in section 2.6. The only

quantum number of φ is its scaling dimension hφ, and conformal symmetry dictates that

〈φφφφ〉 has the following form:

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
Fφφφφ(z)

|x1 − x2|2hφ |x3 − x4|2hφ
(2.1)

where the points xi ∈ R lie on a line and z is the following cross ratio:

z :=
|x12||x34|
|x13||x24|

∈ (0, 1) (2.2)

writing xij = xi − xj .4 The function Fφφφφ(z) admits the following conformal block (CB)

decomposition:

Fφφφφ(z) =
∑

O
λ2φφO khO(z) (2.3)

where the functions kh(z) are the 1d conformal blocks defined in eq. (1.9). The sum runs

over all operators O in the φ× φ OPE of dimension hO, and λφφO is the O ∈ φ× φ OPE

coefficient. Finally, crossing symmetry (invariance under the exchange xi ↔ xj) of the

〈φφφφ〉 correlator leads to the bootstrap constraint

Fφφφφ(z) =

(
z

1− z

)2hφ

Fφφφφ(1− z) (2.4)

which must hold for all 0 ≤ z ≤ 1.

4Although a priori the variable z is not restricted to the unit interval, we require z ∈ (0, 1) to guarantee

OPE convergence on both sides of the bootstrap equation.
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We will not assume unitarity (i.e. reflection positivity) in this paper. Just for complete-

ness, we recall that if the CFT in question is unitary, the decomposition (2.3) is constrained

as follows:

• the λφφO must be real-valued, hence λ2φφO > 0;

• there must be a contribution of the unit operator 1 with h1 = 0 and λφφ1 = 1;

• all other operators (including φ) have hO > 0.

As noted in the introduction, it is conventional in the CFT literature to investigate

the bootstrap equation (2.4) in position space. Here we will take a different approach. We

start by remarking that the conformal blocks kh(z) are eigenfunctions of a second-order

differential operator D, the quadratic Casimir operator of SL(2,R):

D · kh(z) = h(h− 1)kh(z) , D = z2(1− z)∂2 − z2∂ . (2.5)

In what follows, we will develop the Sturm-Liouville theory of the operator D on the interval

(0, 1).5 As a first step, we notice that D can be written in the following suggestive form:

D · f(z) = z2
∂

∂z

[
(1− z)f ′(z)

]
. (2.6)

This implies that D is self-adjoint with respect to the inner product

〈
f, g
〉

=

∫ 1

0

dz

z2
f(z)g(z) (2.7)

where f, g are functions (0, 1) → C that are well-behaved near z = 0 and z = 1. Indeed,

we have
〈
f,D · g

〉
−
〈
D · f, g

〉
=

∫ 1

0
dz

∂

∂z

[
(1− z)(fg′ − f ′g)

]
(2.8)

which is a boundary term. Of course, not all functions have a finite norm with respect

to the inner product (2.7). Requiring that a function f is square integrable leads to the

following constraints on its asymptotics near z = 0 and z = 1:

f(z) ∼
z→0

z1/2+ε and f(z) ∼
z→1

(1− z)−1/2+ε
′

(2.9)

for constants ε, ε′ > 0. In particular, this implies that in a unitary CFT all four-point

functions Fφφφφ(z) have a divergent norm with respect to (2.7).

Our next order of business is to construct an orthogonal basis of eigenfunctions of D.

We start by solving the eigenvalue equation D · f = λf . After writing λ = α2 − 1/4 for

convenience, we find that the general solution (for α 6= 0) is given by

f(z) = A1(α)k 1
2
+α(z) +A2(α)k 1

2
−α(z) (2.10)

5Note added: although we have not attempted to do so, it is in principle possible to change the

boundary conditions at z = 1 [58]. We thank Miguel Paulos for pointing out this reference.
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for two constants A1,2(α) that are to be determined. In order to fix them, let’s analyze the

z → 0, 1 asymptotics of f(z). First, we notice that the blocks themselves are logarithmically

divergent near z = 1. To be precise, we have

k 1
2
+α(z) ∼

z→1
−Γ(1 + 2α)

Γ2(12 + α)
ln(1− z) + regular (2.11)

and likewise for k 1
2
−α(z). Requiring that (2.10) has a finite limit as z → 1 therefore deter-

mines the relative coefficient A1(α)/A2(α). Fixing the overall normalization by imposing

f(1) = 1, we arrive at the following eigenfunctions:6

Ψα(z) =
1

2

[
Q(α)k 1

2
+α(z) +Q(−α)k 1

2
−α(z)

]
, Q(α) =

2Γ(−2α)

Γ2(12 − α)
. (2.12)

In what follows, it will be useful to rewrite Ψα(z) as

Ψα(z) = 2F1

( 1
2 + α, 12 − α

1
;
z − 1

z

)
(2.13)

using a hypergeometric identity. In particular, this makes it manifest that Ψα(1) = 1.

However, we have not yet inspected the asymptotics near z = 0. Assuming that α is real,

we find that Ψα(z) ∼
z→0

z1/2−|α|, which means that the functions Ψα have infinite norm.

The only way to avoid this problem is to assume that α is imaginary. In that case, we find

that Ψα has the following asymptotics:

Ψα(z) ∼
z→0

|Q(α)| √z cos (Im(α) ln z + const.) [α ∈ iR] (2.14)

implying that Ψα is rapidly oscillating near z = 0. Notice that even for imaginary α, the

function Ψα(z) is real-valued, since it is symmetric under α→ −α. A plot of two different

functions Ψα(z) is shown in figure 1.

Since Ψα(z) oscillates near z = 0 at a rate that depends on α, it is at least plausible

that
〈
Ψα,Ψβ

〉
= 0 for α 6= ±β, cf. the Fourier transform on R. This is confirmed by an

explicit computation, performed in appendix A. There it is shown that the inner product〈
Ψα,Ψβ

〉
behaves as a delta function on the imaginary axis. To be precise: if f(α) is

defined on iR and has compact support, we have

1

2πi

∫ i∞

−i∞
dβ
〈
Ψα,Ψβ

〉
f(β) = N(α)

f(α) + f(−α)

2
(2.15)

where

N(α) =
Γ(α)Γ(−α)

2πΓ(12 + α)Γ(12 − α)
=
|Q(α)|2

2
≥ 0 . (2.16)

Informally, eq. (2.15) shows that the functions Ψα(z) are plane-wave normalized, having

norm N(α). The fact that the r.h.s. of (2.15) contains the sum 1
2 [f(α) + f(−α)] reflects

that Ψα is even in α, which carries over to the inner product
〈
Ψα,Ψβ

〉
.

6Remarkably, these are not the usual ‘shadow-symmetric’ blocks obtained by integrating one-dimensional

three-point functions over the real axis [59]. Indeed, in one dimension this integral is easily performed using

the techniques of [60] and diverges logarithmically as z → 1, in contrast with our Ψα(z).
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Figure 1. Plot of z−1/2 Ψα(z) for α = 2i (blue) and α = 20i (orange), as well as kh(z) for h = 3

(dotted green). Both the oscillatory behaviour of the Ψα(z) near z = 0 and their O(
√
z) growth

are clearly visible.

Summarizing, we have constructed a set of orthogonal eigenfunctions Ψα(z) with re-

spect to the inner product (2.7). Naively, we can appeal to familiar arguments of Sturm-

Liouville theory to argue that these eigenfunctions form a complete set. In other words,

we can decompose a given function f : (0, 1)→ R as follows:

f(z) =
1

2πi

∫ i∞

−i∞

dα

N(α)
f̂(α)Ψα(z) ⇔ f̂(α) =

∫ 1

0

dz

z2
f(z)Ψα(z) . (2.17)

This formula describes how f(z) is encoded by its “spectral density” f̂(α), and vice versa.

A mathematically rigorous way to obtain this identity will be described in the next section.

A sufficient condition for eq. (2.17) to make sense is that f be square integrable:

〈
f, f

〉
=

∫ 1

0

dz

z2
|f(z)|2 <∞ . (2.18)

An equivalent condition (see the next section) is that

1

2πi

∫ i∞

−i∞

dα

N(α)
|f̂(α)|2 (2.19)

is finite. In sections 2.4 and 2.5 we discuss how these constraints can be loosened.

Eq. (2.15) shows that the Ψα(z) form a complete basis in α space. For reference, we

remark that the Ψα(z) also obey a completeness relation in position space, namely

1

2πi

∫ i∞

−i∞

dα

N(α)
Ψα(z)Ψα(w) = z2 δ(z − w) (2.20)

as can be deduced from (2.17).

2.2 Alpha space as a Jacobi transform

The alpha space transform f(z) 7→ f̂(α) is closely related to a known integral transform,

known as the Jacobi transform. We will briefly describe this transform in the rest of this

– 7 –
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section, pointing to refs. [61–63] as a point of entry in the mathematics literature. The

Jacobi transform is an integral transform that makes use of the Jacobi functions:

ϑ(p,q)α (x) := 2F1

( 1
2(1 + p+ q) + α, 1

2(1 + p+ q)− α
p+ 1

;−x
)
, x ≥ 0 . (2.21)

The parameters p, q ≥ 0 are fixed, whereas the label α ∈ iR is allowed to vary continuously.

Notice that ϑ
(p,q)
α (x) is even in α, and therefore real-valued. Consider now a complex

function f(x), defined for x ≥ 0, decaying sufficiently fast as x → ∞. We assign to it its

Jacobi transform J f as follows:

f(x) 7→ (J f)(α) :=

∫ ∞

0
dxωp,q(x)f(x)ϑ(p,q)α (x) , ωp,q(x) = xp(1 + x)q . (2.22)

ωp,q(x) plays the role of a weight function in position space. A standard result — see

Theorem 2.3 of ref. [63] — is that f can be restored from its Jacobi transform:

f(x) =
1

2πi

∫ i∞

−i∞

dα

Np,q(α)
(J f)(α)ϑ(p,q)α (x) + . . . (2.23)

where

Np,q(α) =
2Γ2(1 + p)Γ(±2α)

Γ
(
1
2(1 + p+ q)± α

)
Γ
(
1
2(1 + p− q)± α

) , Γ(x± y) := Γ(x+ y)Γ(x− y) .

(2.24)

The dots in (2.23) indicate that depending on the values of p and q a finite number of

terms must be added; equivalently, the integration contour in α can be deformed to pick

up poles coming from 1/Np,q(α).7

Properly speaking, J furnishes a map from the Hilbert space L2(R+, ωp,q(x)dx) to the

space of functions on iR which are normalizable with respect to the measure dα/Np,q(α).

This map is an isometry: given two complex functions f, g, the following Parseval formula

holds: ∫ ∞

0
dxωp,q(x) f(x)g(x) =

1

2πi

∫ i∞

−i∞

dα

Np,q(α)
(J f)(α)(J g)(α) . (2.25)

Specializing to the case f = g, this shows in which sense the Jacobi transform is unitary.

It is now straightforward to see that the alpha space transform for the SL(2,R) Casimir

is a special case of the Jacobi transform with p = q = 0, after the change of variable

x→ (1− z)/z. The precise dictionary is given by

Ψα(z) = ϑ(0,0)α

(
1− z
z

)
,

∫ ∞

0
dxω0,0(x) =

∫ 1

0

dz

z2
, N(α) = N0,0(α) . (2.26)

A direct consequence is the identity

〈
f, g
〉

=
1

2πi

∫ i∞

−i∞

dα

N(α)
f̂(α)ĝ(α) . (2.27)

7A sufficient condition for such terms to be absent is p+ q + 1 > 0 and p− q + 1 > 0.

– 8 –
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It would be interesting to see if further theorems concerning the Jacobi transform can be

recycled to prove results about alpha space densities in CFTs.

Our discussion has been quite abstract so far and at this stage the reader may want

to experiment with some explicit alpha space computations. To do so, it is useful to know

that the Jacobi transform essentially maps rational functions to polynomials. A precise

statement is the following. Let

P (p,q)
n (x) =

(p+ 1)n
n!

2F1

(
−n, n+ p+ q + 1; p+ 1;

1

2
(1− x)

)
(2.28)

be a Jacobi polynomial of degree n. Then for any r, s ≥ 0 we have [64]

∫ ∞

0
dxωp,q(x)

1

(1 + x)
1
2
(p+q+r+s)+1

P (p,r)
n

(
1− x
1 + x

)
ϑ(p,q)α (x)

=
(−1)n

n!

Γ(p+ 1)Γ
(
1
2(r + s+ 1)± α

)

Γ
(
1
2(p+ q + r + s) + 1 + n

)
Γ
(
1
2(p− q + r + s) + 1 + n

)

× pn

(
α;

1

2
(p+ q + 1),

1

2
(p− q + 1),

1

2
(r + s+ 1),

1

2
(r − s+ 1)

)
. (2.29)

The object on the last line is a Wilson polynomial [41, 42, 65]:

pn(α; a, b, c, d) = (a+ b)n(a+ c)n(a+d)n 4F3

(−n, a+ α, a− α, n+ a+ b+ c+ d− 1

a+ b, a+ c, a+ d
; 1

)
.

(2.30)

Evidently pn(α; a, b, c, d) is a polynomial of degree n in α2, and it can be shown that pn
depends symmetrically on its parameters a, b, c, d. Specializing to alpha space (p = q = 0)

whilst setting r → 0, s→ 2ρ− 2, the identity (2.29) becomes

∫ 1

0

dz

z2
zρPn(2z − 1)Ψα(z) =

(−1)n

n!

Γ
(
ρ− 1

2 ± α
)

Γ2(ρ+ n)
pn

(
α;

1

2
,

1

2
, ρ− 1

2
,

3

2
− ρ
)

(2.31)

where Pn is a Legendre polynomial of degree n. This formula can be used to find the alpha

space counterpart of rather general functions in position space. As a simple example, we

can set n = 0 to find the alpha space version of the function z 7→ zρ:

∫ 1

0

dz

z2
zρ Ψα(z) =

Γ
(
ρ− 1

2 ± α
)

Γ2(ρ)
. (2.32)

An additional example will be discussed in section 2.4.1.

2.3 Convergence of the alpha space transform

Before we turn to the application of alpha space to CFTs, let us comment on the conver-

gence of the alpha space transform f(z) 7→ f̂(α). We have in mind a function f(z) that

has power-law growth at z = 0 and z = 1, i.e.

f(z) ∼
z→0

zp and f(z) ∼
z→1

1

(1− z)q
. (2.33)
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Moreover, we assume that f(z) admits an expansion in powers of zh around z = 0, meaning

that it is possible to write f(z) =
∑∞

n=1 cnz
hn . All of these conditions are certainly satisfied

when f(z) describes a CFT correlation function.

Let us first consider the case where p > 1
2 and q < 1. In that case, the integral defining

its alpha space density

f̂(α) :=

∫ 1

0

dz

z2
f(z)Ψα(z) (2.34)

converges whenever |<(α)| < p − 1
2 , meaning that f̂(α) is holomorphic on a finite strip.

Moreover, using the alpha space transform of a single power law (2.32), it is possible to

show that f̂(α) extends to a meromorphic function on the entire complex plane, with poles

at α = hn − 1
2 + N for n = 1, 2, . . . (plus mirror poles on the left half plane).

Next, consider the case p < 1
2 , q < 1. In this case, it is convenient to decompose f(z) as

f(z) = fsing(z) + freg(z) (2.35)

where

fsing(z) =
∑

hn<1/2

cnz
hn and freg(z) =

∑

hn>1/2

cnz
hn . (2.36)

By construction, the regular piece freg(z) has a well-defined alpha space transform that

extends to a meromorphic function on C. We can define the density f̂sing(α) termwise, by

analytically continuing eq. (2.32) to arbitrary values of ρ.8 Concretely, we take the alpha

space transform of f(z) to be

f̂(α) =
∑

hn<1/2

cn
Γ(hn − 1

2 ± α)

Γ2(hn)
+ f̂reg(α) . (2.37)

If the leading term of fsing(z) is a constant, the above argument breaks down, since 1/Γ2(h)

vanishes when h → 0. This is an order-of-limits issue, which can be avoided by writing 1

as the limit of zε as ε→ 0.

Finally, we consider the case q > 1. For simplicity we consider p > 1
2 , but the case

of general p is straightforward to treat using the above discussion. Given that q > 1, the

integral defining f̂(α) diverges for all values of α. We thus regulate this integral by cutting

it off at z = 1− ε, writing

f̂ε(α) :=

∫ 1−ε

0

dz

z2
f(z)Ψα(z) . (2.38)

Notice that this regulator does not affect the analytic structure of f̂(α): all poles originate

from the region of integration near z = 0. Now, to isolate divergent pieces in ε we notice

that Ψα(z) admits an expansion in powers of (1 − z) of the following form:

Ψα(z) =

∞∑

k=0

sk(α)(1− z)k (2.39)

8Such analytic continuations may require a deformation of the alpha space integration contour away

from the imaginary axis. Below we explain how to deal with such cases.
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where sk(α) is a polynomial of degree k in α2. This implies that f̂ε(α) has the following

structure of divergences:9

f̂ε(α) =
[
finite as ε→ 0

]
+

bq−1c∑

j=0

tj(α)

εq−1−j
(2.40)

where tj(α) is a polynomial in α. Consequently, we take f̂(α) to be the finite piece of f̂ε(α)

obtained by subtracting the divergent terms in (2.40).

2.4 Conformal block decomposition

As a first application of the alpha space formalism of the previous sections, we will show

that it can be used to compute conformal block decompositions for CFT correlators. As a

starting point, we have in mind a meromorphic spectral density f̂(α), even in α, written

in the following form:

f̂(α) =
∑

n

−Rn
α− αn

+ (α→ −α) + entire. (2.41)

The minus sign in front of Rn is a choice of convention. We will assume that all poles αn lie

on the positive real axis; in particular, we see that every pole has a corresponding mirror

pole −αn on the negative real axis.

Our goal is to compute the position space counterpart of f̂(α):

f(z) =

∫

C

[dα]

N(α)
f̂(α)Ψα(z) (2.42)

where C is a contour parallel to the imaginary axis. Here and in what follows we write

contour integrals as ∫
[dα] =

∫ i∞

−i∞

dα

2πi
(2.43)

to avoid notational clutter. Notice that both f̂(α) and the measure N(α) are even in α,

which means that we can replace Ψα(z) by any linear combination of the conformal block

Q(α)k 1
2
+α(z) and its shadow Q(−α)k 1

2
−α(z). Without loss of generality, let us attempt

to close the contour C to the right, picking up all poles αn on the right half plane. This

means that we have to drop the shadow part ∼ Q(−α)/N(α) × k 1
2
−α(z), as it grows

9To derive this formula, we are assuming that f(z) admits an expansion of the form

f(z) =
1

(1− z)q

const. +
∑
n≥1

an(1− z)n


around z = 1. If f(z) rather behaves as a more general sum of power laws

f(z) =
c1

(1− z)q1 +
c2

(1− z)q2 + . . .

Eq. (2.40) is modified in a straightforward fashion.
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1 2 31′2′3′ + −

Figure 2. Choice of contour for a typical CFT correlator in the complex α-plane. The blue dots,

labeled by {1, 2, 3}, correspond to physical poles of f̂(α), whereas their mirrors (in red, with primed

labels) are unphysical. The pole 1 has <(α) < 0, hence it corresponds to an operator of dimension

h < 1/2. The contour runs upwards along the imaginary axis, but in this case it must circle 1 in

the positive and 1′ in the negative direction, as indicated.

exponentially on the right half plane, whereas the conformal block part decreases as <(α)→
∞. Consequently, we find that the position space version of f̂(α) is given by

f(z) =

∫

C
[dα] f̂(α)

Q(α)

N(α)
k 1

2
+α(z) =

∫

C
[dα] f̂(α)

2

Q(−α)
k 1

2
+α(z) (2.44)

using the second equality in (2.16). In that case, we can rewrite f(z) as

f(z) =
∑

n

2Rn
Q(−αn)

k 1
2
+αn

(z) . (2.45)

To pass from eq. (2.44) to (2.45), we used that 1/Q(−α) is analytic on the right half plane.

But the sum appearing in the r.h.s. is precisely a CB decomposition — cf. eq. (2.3) — where

the n-th term corresponds to an exchanged operator On of dimension [On] = 1/2 + αn,

having OPE coefficient

λ2φφOn =
2Rn

Q(−αn)
. (2.46)

Since Q(−α) > 0 for all α > 0, we conclude that λ2φφOn is positive iff Rn is positive.

Above, we assumed that all αn were positive. This means that only operators of

dimension [On] > 1/2 appear in the CB decomposition (2.45). This condition can be

loosened: an operator of dimension h < 1/2 would simply correspond to a pole α∗ lying

on the left half plane. We must in this case deform the contour to circle α∗ in the positive

direction. Moreover, α∗ will have a mirror pole −α∗ on the right half plane, which must

be circled in the negative direction, such that it does not give an anomalous contribution

to f(z) — see figure 2. We will revisit this point in section 2.5.

The cases h = 0 (corresponding to the unit operator) and h = 1/2 require special

attention. As for h = 0, notice that 1/Q(−α) has a pole at α = −1/2, namely

1

Q(−α)
∼

α→−1/2
− 1

α+ 1/2
. (2.47)
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Consequently, it suffices for f̂(α) to be finite at α = 1/2 in order to generate a unit operator

term. To be precise, if

f̂(α) ∼
α→−1/2

c+O

[(
α+

1

2

)]
(2.48)

and the contour is such that it wraps around α = −1/2 in the sense described above, then

f(z) = 2c + other conformal blocks. A similar issue arises if h = 1/2, because 1/Q(−α)

vanishes as α→ 0. More precisely

1

Q(−α)
∼
α→0

πα+O(α2) (2.49)

hence in order to obtain a contribution f(z) ∼ c k1/2(z) ∼ c
√
z + . . . in position space, we

must have

f̂(α) = − c

2πα2
+O(α−1) . (2.50)

2.4.1 Examples

To develop some familiarity with the alpha space representation of correlation functions,

we will compute the alpha space transform of some simple functions in z-space, and we use

these results to compute the resulting conformal block decompositions.

• Let’s compute the alpha space transform of a single conformal block kh(z) with

h > 1/2:

k̂h(α) =

∫ 1

0

dz

z2
kh(z)Ψα(z) =

C (h)

α2 − (h− 1
2)2

, C (h) = −Γ(2h)

Γ2(h)
. (2.51)

In order to derive this result, it’s convenient to use the Mellin-Barnes formula

2F1(a, b; c; z) =
Γ(c)

Γ(a)Γ(b)

∫ i∞

−i∞
ds

Γ(−s)Γ(a+ s)Γ(b+ s)

Γ(c+ s)
(−z)s (2.52)

in order to expand both kh(z) and Ψα(z). Alternatively, eq. (2.51) is easy to check

numerically inside the strip |<(α)| < h− 1
2 .

Let us make two comments about the formula (2.51). First, although the integral

in (2.51) converges only in a finite strip, the r.h.s. defines an analytic continuation

to any value of α. Moreover, the same formula defines an analytic continuation to

values of h < 1/2. Second, k̂h(α) has precisely one pole on the right half plane, at

α = h− 1/2, in accordance with our discussion from the previous section.

• Let fp(z) = zp with p > 1/2. We have already encountered this function in eq. (2.32),

finding that in alpha space it becomes

f̂p(α) =
Γ(p− 1

2 ± α)

Γ2(p)
. (2.53)

Let’s use this to obtain the CB decomposition of fp(z). First, we note that f̂p(α) has

poles at

αn = p− 1

2
+ n and α̃n =

1

2
− p− n with n ∈ N . (2.54)
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Closing the contour to the right, we only pick up the αn poles. The residue of the

n-th pole is

Rn = −Res f̂(α)
∣∣
α=αn

=
(−1)n

n!

Γ(2p− 1 + n)

Γ2(p)
(2.55)

and this pole corresponds to an operator of dimension h = 1/2 + αn = p+ n. Using

the argument from the previous section, we conclude that

fp(z) =
∞∑

n=0

2Rn
Q(−αn)

kp+n(z) =
∞∑

n=0

(−1)n

n!

(p)2n
(2p− 1 + n)n

kp+n(z) . (2.56)

This confirms a known result, see for instance eq. (4.15) from ref. [53].

• Let fp,q(z) = zp(1−z)−q. It will be instructive to spend some time on the computation

of the alpha space density f̂p,q(α). As a first step, we rewrite Ψα(z) using the Mellin-

Barnes representation (2.52). This means that we can write

f̂p,q(α) =
1

Γ(12 ± α)

∫
[ds]

Γ(−s)Γ(12 ± α+ s)

Γ(1 + s)

∫ 1

0

dz

z2

(
1− z
z

)s zp

(1− z)q
(2.57)

=
1

Γ(12 ± α)Γ(p− q)

∫
[ds]

Γ(−s)Γ(12 ± α+ s)

Γ(1 + s)
Γ(1− q + s)Γ(p− 1− s)

where in the first line we have interchanged the z and s integrals. What remains is

a standard Mellin-Barnes integral, which evaluates to

f̂p,q(α) =
Γ(p− 1)Γ(1− q)

Γ(p− q) 3F2

( 1
2 + α, 1

2 − α, 1− q
1, 2− p ; 1

)
(2.58)

+
Γ(1− p)Γ(p− 1

2 ± α)

Γ(12 ± α)Γ(p)
3F2

(
p− 1

2 + α, p− 1
2 − α, p− q

p, p
; 1

)
.

which provides an analytic continuation to all α, provided that q > p− 1.10 Notice

that the first term above is analytic in α, hence it does not contain any poles in

α. However, it does influence the behaviour of f̂p,q(α) at large α. The second term

contributes two series of poles, at ±α = p− 1
2 +N. Closing the α-contour to the right

and computing residues, we arrive at the following conformal block decomposition:

fp,q(z) =
∞∑

n=0

(p)2n
n!(2p− 1 + n)n

3F2

(−n, 2p− 1 + n, p− q
p, p

; 1

)
kp+n(z) . (2.59)

This is a new result which would have been rather difficult to guess. For p = q, this

reduces to eq. (4.14) from [53].

10Interestingly, the above expression can be analytically continued to other values of p and q using hyper-

geometric identities, in particular Thm. (2.4.4) and Corrollary (3.3.5) from [41]. We can for instance write

f̂p,q(α)=
Γ(1−q)Γ(p− 1

2
±α)

Γ(p)Γ(p−q) 3F2

(
1
2

+α, 1
2
−α,q

p,1
;1

)
=

Γ(p− 1
2
±α)

Γ2(p)
3F2

(
p− 1

2
+α,p− 1

2
−α,q

p,p
;1

)
.

The 3F2(1) hypergeometrics in these expressions converge when p > q resp. q > 1.
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2.5 Convergence and asymptotics

In section 2.3 we discussed the convergence of the alpha space transform in a general

setting. In the present section, we will specialize to CFT correlation functions, and more

particularly, we will relate the large α behaviour of f̂(α) to the growth of f(z) as z → 1.

Recall that at the extreme points z = 0 and z = 1 a crossing-symmetric four-point function

in a unitary CFT behaves as

z → 0 : Fφφφφ(z)→ 1 + . . .

z → 1 : Fφφφφ(z)→
(

z

1− z

)−2hφ
(1 + . . .)

(2.60)

Clearly such a function is not square integrable with respect to the inner product (2.7). As

we will now proceed to explain, an alpha space transform can nevertheless be defined also

for such functions. We will show that divergences near the two endpoints z = 0 and z = 1

translate very differently into alpha space and bear resemblance to the usual IR and UV

divergences in Fourier space.

Let us first focus on z → 0, which is the OPE limit, and suppose we try to transform

a function f(z) behaving like zp(1 + . . .) for small z to alpha space. For our inner product

square integrability is lost as we dial p to a value less than or equal to 1/2. In alpha space

this is reflected by a pair of poles crossing the real axis, as follows from the correspondence

between conformal blocks of dimension h and poles at α = ±(h − 1/2). This forces the

integration contour in the inverse alpha transform off the imaginary axis, since the correct

position-space expression is recovered only if it wraps around the poles as indicated in

figure 2. This is however the only modification necessary, and we conclude that z → 0

singularities of power-law form can be entirely dealt with by augmenting the inverse alpha

space transform (2.17) with a contour prescription around the poles. This prescription

works without issues for any 0 < p < 1/2; the special cases p = 0 and p = 1/2 were

discussed above in section 2.4.

Now let us consider the limit z → 1. For simplicity we will restrict ourselves to the

(physically relevant) case of functions f(z) analytic in 0 < z < 1. First of all, since

Ψα(1) = 1 we find that

f(1) =

∫
[dα]

f̂(α)

N(α)
, (2.61)

and similarly it follows from D ·Ψα(z) = (α2 − 1/4)Ψα(z) that

Dn · f(1) =

∫
[dα](α2 − 1/4)n

f̂(α)

N(α)
, (2.62)

which holds as long as the Dn · f(z) remains square integrable. Supposing f(z) behaves as

a power law near z = 1, we see from

D · ((1− z)ρ(1 + . . .)) = ρ2(1− z)ρ−1(1 + . . .) , (2.63)

that acting with the Casimir operator D worsens the behavior near z = 1. For generic

positive ρ there exists an n such that Dn · f(1) ceases to be well-defined, and therefore the
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integral in (2.62) should somehow suffer the same fate. Since we only modify the integrand

with a polynomial factor, this can only happen if the integral stops converging. We conclude

that the large alpha behavior reflects the ‘short-distance’ behavior of f(z) as z → 1.11

The above discussion also offers a way to make sense of power-law divergent densities

in alpha space: we just divide f̂(α) by sufficiently powers of α2 − 1/4, perform the now-

convergent integral over α, and act just as many times with D on the resulting position-

space expression. This is in fact entirely analogous to the usual trick in Fourier space, where

we habitually make sense of UV-divergent expressions like p2α with α > 0 by replacing

powers of p2 with a Laplacian operator,

∫
dx eipxp2α(1 + . . .)→ (−�)n

(∫
dx eipxp2α−2n(1 + . . .)

)
, (2.64)

with n chosen such that the integral becomes convergent at large p.

The relation between large α and z close to 1 can be made more quantitative. Firstly,

if a function f(z) is infinitely differentiable at z = 1, then the preceding logic demonstrates

that f̂(α)/N(α) must fall off faster than any power for large imaginary alpha. This is

exemplified by the alpha space transform of zρ given above, which falls off exponentially

fast. Secondly, for the generic power-law behavior we find that if

f(z) = (1− z)−ρ (1 +O(1− z)) then f̂(α) = (−α2)ρ−1
Γ(1− ρ)

Γ(ρ)

(
1 +O(α−2)

)
,

(2.65)

which can be found by subtracting the leading power using the alpha space transform of a

known function. For example, for small enough ρ one can use

∫
d2z

z2
[
zρ(1− z)−ρ − zρ

]
Ψα(z) =

Γ(ρ− 1
2 ± α)

Γ2(ρ)

[
Γ(1− ρ)Γ(ρ)

Γ(12 ± α)
− 1

]

= (−α2)ρ−1
Γ(1− ρ)

Γ(ρ)

(
1 +O(α−2)

)
(2.66)

which can be computed as a limit from the above examples.

2.5.1 Application: OPE convergence

We can use the preceding result to discuss the asymptotic behavior of OPE coefficients in

one-dimensional CFTs, i.e., to provide a one-dimensional analogue of the results of [10, 66].

Such a result has been discussed previously in the context of the light-cone limit for higher-

dimensional CFTs [12, 13]. Here we offer an explanation based on the assumption of

suitably nice asymptotic behavior in alpha space.

Consider once more a unitary CFT correlation function Fφφφφ(z) with a correspond-

ing alpha space expression F (α) which is meromorphic with simple poles. Our preced-

ing discussion leads us to conclude that F (α) ∼ (−α2)2hφ−1 for large imaginary α, since

11We can also offer a physical explanation. For fixed alpha the Ψa(z) oscillate very slowly near z = 1

and to probe this region we need to consider very short ‘wavelengths’, corresponding to very large values

of the ‘momentum’ α.
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Fφφφφ(z) ∼ (1− z)−2hφ as z → 1. We will assume that this asymptotic behavior holds for

all non-real α and so the ‘subtracted’ function

F (s)(α) := (α2)−2hφ+1−ε F (α) (2.67)

vanishes asymptotically away from the real axis for any ε > 0. This means we can write a

dispersion relation for it: we write

F (s)(α) =

∮
[dβ]

F (s)(β)

α− β (2.68)

and push the contour away from the point α. With the arcs of the contour at infinity

vanishing, we find contributions only from the cuts created by the power-law prefactor

and the real axis where F (α) has poles. The contributions from the cuts can be made

manifestly finite by aligning them along the imaginary axis and keeping the contour some

distance away from α = 0. It follows that the contribution from the poles, which after

picking up the residues can be written as

∑

n

(α2
n)−2hφ+1−εRn

(
1

α− αn
+ (α↔ −α)

)
(2.69)

is necessarily finite as well. In a distributional sense, then, we expect the residue series to

behave as
∑

n

δ(h− hn)Rn ∼ c(hφ)h4hφ−2 . (2.70)

By working out the example given previously we also find the prefactor:

c(hφ) =
1

Γ2(2hφ)
. (2.71)

We observe that the prefactor vanishes when 2hφ is a negative integer which is precisely

when the z = 1 singularity in Fφφφφ(z) also disappears.

Finally we can use equation (2.46) and to relate this result to the asymptotic behavior

of the squared primary OPE coefficients themselves as

λφφOh(h)2 ∼ 41−h
√
π

Γ2(2hφ)
h4hφ−3/2 . (2.72)

agreeing with the lightcone bootstrap result, see e.g. [28].12 It is interesting to see that

the leading exponential falloff arises from the prefactor Q(1/2−h), and the falloff speed is

independent of the external dimension.

12Strictly speaking there is a factor 2 mismatch between (2.72) and formula (3.8) in [28], due to the fact

that in the d-dimensional lightcone results only even spins are allowed to contribute.
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2.6 Alpha space for different external dimensions

So far we considered the case of a four-point function of identical operators. However, the

Sturm-Liouville theory for the SL(2,R) Casimir operator applies just as well to four-point

functions of different operators. In this section, we will briefly discuss this generalization.

Concretely, we have in mind a four-point function of primaries φi of dimension hi,

i = 1, . . . , 4. Conformal symmetry restricts this correlator to have the following form:

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 =

( |x24|
|x14|

)h12 ( |x14|
|x13|

)h34 zh12Fφ1φ2φ3φ4(z)

|x12|h1+h2 |x34|h3+h4
(2.73)

for some function Fφ1φ2φ3φ4(z), using the shorthand hij ≡ hi− hj . The stripped correlator

admits a conformal block decomposition of the following form:

Fφ1φ2φ3φ4(z) =
∑

O
λφ1φ2Oλφ3φ4O k

s
hO

(z) (2.74)

involving the mixed SL(2,R) conformal blocks

ksh(z) = zh+a 2F1(h+ a, h+ b; 2h; z) , a = −h12 , b = h34 . (2.75)

The sum in eq. (2.74) now runs over all operators that appear in both the φ1 × φ2 and

φ3 × φ4 OPEs; the label ‘s’ refers to this s-channel.

The blocks ksh(z) are eigenfunctions of a mixed Casimir differential operator Da,b:

Da,b·f(z) = ws(z)−1
d

dz

[
ws(z)(1− z)z2f ′(z)

]
+a(a+1)f(z) , ws(z) =

(1− z)a+b

z2+2a
, (2.76)

which means that Da,b is self-adjoint with respect to the inner product

〈
f, g
〉
s

=

∫ 1

0
dz ws(z)f(z)g(z) . (2.77)

Analyzing the relevant Sturm-Liouville problem leads to the following basis of eigenfunc-

tions:13

Ψs
α(z) = 2F1

( 1
2 + a+ α, 1

2 + a− α
1 + a+ b

;
z − 1

z

)
= ϑ(a+b,a−b)α

(
1− z
z

)
. (2.78)

In the second equality, we have rewritten Ψs
α(z) as a Jacobi function, to make contact with

the integral transform introduced previously.

To connect the eigenfunctions Ψs
α(z) to the conformal blocks, we compute

Ψs
α(z) =

1

2

[
Qs(α)ks1

2
+α

(z) + (α→ −α)
]
, Qs(α) =

2Γ(−2α)Γ(1 + a+ b)

Γ(12 + a− α)Γ(12 + b− α)
. (2.79)

13The PDE Da,bf(z) = (α2 − 1/4)f(z) has a second solution, namely

z2a

(1− z)a+b 2F1

(
1
2
− a+ α, 1

2
− a− α

1− a− b ;
z − 1

z

)
.

This second solution ceases to be regular at z = 1 when a+ b > 0.
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As in the case of equal external dimensions, we can decompose any function f(z) — nor-

malizable with respect to (2.77) — in terms of the functions Ψs
α(z), to wit:

f(z) =

∫
[dα]

Ns(α)
f̂(α)Ψs

α(z) ⇔ f̂(α) =

∫ 1

0
dz ws(z)f(z)Ψs

α(z) (2.80)

where

Ns(α) =
2Γ(±2α)Γ2(1 + a+ b)

Γ(12 + a± α)Γ(12 + b± α)
=
|Qs(α)|2

2
. (2.81)

Some care must be taken when considering the α contour in eq. (2.80): when either a, b ≤
−1

2 , the contour must be deformed in the Mellin-Barnes sense because of poles in the factor

1/Ns(α).

Cross channel. Applying crossing symmetry to mixed four-point functions leads to a

relation between two different four-point functions. In the case of the correlator 〈φ1φ2φ3φ4〉,
the bootstrap equation of interest is

Fφ1φ2φ3φ4(z) =

(
z

1− z

)2h2

Fφ3φ2φ1φ4(1− z) (2.82)

where Fφ3φ2φ1φ4(z) is defined as in (2.73) but with φ1 ↔ φ3 and h1 ↔ h3 exchanged. Such

mixed crossing equations have been used intensively in computing scaling dimensions and

OPE coefficients for the 3d Ising and O(N) models [17, 24].

Like before, the correlator Fφ3φ2φ1φ4(z) appearing in the r.h.s. of (2.82) admits a de-

composition in conformal blocks and in plane-wave normalizable eigenfunctions of the con-

formal Casimir. However, care must be taken to use conformal blocks with dimensions

h1 ↔ h3 exchanged, and likewise for the eigenfunctions Ψs
α(z). To be completely explicit,

this new conformal block decomposition reads:

Fφ3φ2φ1φ4(z) =
∑

O
λφ2φ3Oλφ1φ4O k

t
hO

(z) (2.83)

with

kth(z) = zh+a
′
2F1(h+ a′, h+ b′; 2h; z) , a′ = h23 , b

′ = h14 . (2.84)

Here and in what follows we use the ‘t’ label for blocks and eigenfunctions in the φ2×φ3 →
φ1 × φ4 channel. The appropriate eigenfunctions in the t-channel are

Ψt
α(z) ≡ Ψs

α(z)
∣∣
h1↔h3 = 2F1

( 1
2 + a′ + α, 1

2 + a′ − α
1 + a′ + b′

;
z − 1

z

)
(2.85)

= ϑ(a
′+b′, a′−b′)

α

(
1− z
z

)
(2.86)

which satisfy

Ψt
α(z) =

1

2

[
Qt(α)kt1

2
+α

(z) + (α→ −α)
]
, Qt(α) =

2Γ(−2α)Γ(1 + a′ + b′)

Γ(12 + a′ − α)Γ(12 + b′ − α)
. (2.87)
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Finally, the decomposition of a function f(z) in terms of the functions Ψt
α reads

f(z) =

∫
[dα]

Nt(α)
f̂(α)Ψt

α(z) ⇔ f̂(α) =

∫ 1

0
dz wt(z)f(z)Ψt

α(z) (2.88)

where

wt(z) =
(1− z)a

′+b′

z2+2a′
and Nt(α) =

|Qt(α)|2
2

. (2.89)

3 Crossing kernel

So far, we have used Sturm-Liouville theory as a tool to represent conformal correlators

as integrals over a set of basis functions Ψα. In this section, we will use these integral

representations to analyze crossing symmetry. In particular, we will compute the d = 1

crossing kernel and exhibit its properties.

3.1 General case

Let us start by considering a mixed four-point function 〈φ1φ2φ3φ4〉. For such a correlator,

we can write down two inequivalent integral representations:

〈φ1φ2φ3φ4〉 ∼ Fφ1φ2φ3φ4(z) =

∫
[dα]

Ns(α)
Fs(α)Ψs

α(z) , (3.1a)

〈φ3φ2φ1φ4〉 ∼ Fφ3φ2φ1φ4(z) =

∫
[dα]

Nt(α)
Ft(α)Ψt

α(z) . (3.1b)

The ∼ above denotes that we have omitted various unimportant scaling factors. The

spectral density Fs(α) encodes information about the CB decomposition in the s-channel

φ1 × φ2 → φ3 × φ4, whereas Ft(α) describes the t-channel φ1 × φ4 → φ2 × φ3.
The two alpha space densities Fs,t(α) are related — at least implicitly — via the

crossing equation (2.82). Plugging eq. (3.1) into that equation, we find that

∫
[dα]

Ns(α)
Fs(α)Ψs

α(z) =

(
z

1− z

)2h2 ∫ [dβ]

Nt(β)
Ft(β)Ψt

β(1− z) . (3.2)

In order to find make the constraints on Fs,t(α) manifest, we can manipulate this alpha

space bootstrap equation in various ways. For instance, it is possible to express t-channel

eigenfunctions in terms of the s-channel ones:

(
z

1− z

)2h2

Ψt
β(1− z) =

∫
[dα]

Ns(α)
K(α, β|h1, h2, h3, h4)Ψs

α(z) . (3.3)

The distribution K(α, β|h1, h2, h3, h4) introduced here relates eigenfunctions in the s- and

t-channels, and we will refer to it as a crossing kernel. A schematic interpretation of

eq. (3.3) is given in figure 3.

Using (3.3), we can recast the crossing equation (3.2) as

∫
[dα]

Ns(α)

[
Fs(α)− (K · Ft)(α)

]
Ψs
α(z) = 0 (3.4)
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h1

h2 h3

h4

β =

∫
[dα]

Ns(α)
K(α, β|h1, h2, h3, h4)

h1

h2 h3

h4

α

Figure 3. Graphical representation of the crossing kernel K(α, β|h1, h2, h3, h4).

where we have introduced an integral operator K which depends on the hi:

(K · f)(α) :=

∫
[dβ]

Nt(β)
K(α, β|h1, h2, h3, h4)f(β) . (3.5)

Recalling that the Ψs
α(z) form a complete basis in z-space, eq. (3.4) can only be satisfied if

Fs(α) = (K · Ft)(α) . (3.6)

The point of this identity is that it directly relates the two densities Fs,t(α); once we

compute the kernel K(α, β|hi), eq. (3.6) will be completely explicit.

In the previous computation, we made an arbitrary choice by expressing Ψt
β(1− z) in

terms of the s-channel functions Ψs
α(z). It will be useful to go in the opposite direction as

well, by writing

(
z

1− z

)2h2

Ψs
β(1− z) =

∫
[dα]

Ns(α)
K̃(α, β|h1, h2, h3, h4)Ψt

α(z) (3.7)

which involves a second crossing kernel K̃(α, β|h1, . . . , h4). Using the same logic as before,

we arrive at an alternate alpha space crossing equation:

Ft(α) = (K̃ · Fs)(α) , (3.8)

where

(K̃ · f)(α) :=

∫
[dβ]

Ns(β)
K̃(α, β|h1, h2, h3, h4)f(β) . (3.9)

Bringing everything together, we have recast crossing symmetry as a system of integral

equations in alpha space:

Fs(α) = (K · Ft)(α) , Ft(α) = (K̃ · Fs)(α) . (3.10)

3.2 Identical operators

Let us briefly consider the case of the four-point function 〈φφφφ〉 of four identical primaries.

In that case, there is only one spectral density F (α) of interest, namely

〈φφφφ〉 ∼ Fφφφφ(z) =

∫
[dα]

N(α)
F (α)Ψα(z) . (3.11)
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Rather than a system of coupled integral equations, one now finds an eigenvalue equation

for the density F (α):

F (α) = (K0 · F )(α) (3.12)

where the integral operator K0 is defined as

(K0 · f)(α) :=

∫
[dβ]

N(β)
K0(α, β|hφ)f(β) , K0(α, β|hφ) := K(α, β|hφ, hφ, hφ, hφ) . (3.13)

3.3 Functional properties of the crossing kernels

In what follows, we will compute the crossing kernels K(α, β|hi), K̃(α, β|hi) and

K0(α, β|hi). Since this computation is somewhat technical, we will first derive several

properties of these kernels.

Evidently, all of the kernels are even in their arguments α and β. Less trivially, we see

that the kernels K and K̃ are identical after exchanging the external dimensions h1 and h3:

K̃(α, β|h1, h2, h3, h4) = K(α, β|h3, h2, h1, h4) (3.14)

as follows from eqs. (3.3), (3.7).

Next, from the structure of eq. (3.10), we can surmise that

K · K̃ = K̃ · K = id . (3.15)

We have derived this with input from the bootstrap, but later we will rederive eq. (3.15)

formally. For the case of identical operators, eq. (3.15) becomes

K2
0 = id . (3.16)

Notice that eqs. (3.15) and (3.16) only hold when restricted to some space of even functions,

as the images of the integral operators K, K̃ and K0 are even by construction.

Both identities (3.15) and (3.16) are statements about integral operators. By acting

with these operators on test functions — say, having compact support — we can turn them

into orthogonality/completeness relations for the crossing kernels themselves. To make this

concrete, let’s define the distributions

Ds(α, β|h1, h2, h3, h4) := Ns(α)−1
∫

[dy]

Nt(y)
K(α, y|hi)K̃(y, β|hi) , (3.17a)

Dt(α, β|h1, h2, h3, h4) := Nt(α)−1
∫

[dy]

Ns(y)
K̃(α, y|hi)K(y, β|hi) (3.17b)

= Ds(α, β|h3, h2, h1, h4) .

Our claim is that Ds,t(α, β|hi) behave as delta functions on the imaginary axis. Indeed,

eq. (3.15) implies that

∫
[dβ]

{
Ds(α, β|hi)
Dt(α, β|hi)

}
f(β) =

f(α) + f(−α)

2
(3.18)
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where f(α) is arbitrary. This can be thought of as the “local” version of (3.15). In the

case of identical operators, we simply have

∫
[dβ] D0(α, β|hφ)f(β) =

f(α) + f(−α)

2
(3.19)

where

D0(α, β|hφ) = N(α)−1
∫

[dy]

N(y)
K0(α, y|hφ)K0(y, β|hφ) . (3.20)

eqs. (3.19) and (3.20) can be obtained as a limiting case of (3.18). Interestingly, eqs. (3.18)

and (3.19) imply that the distributions Ds,t(α, β|hi) and D0(α, β|hφ) are identical and

independent of external dimensions hi resp. hφ. As with the Fourier transform, the above

identities mean that well-behaved functions f(α) can be decomposed in terms of the “basis

functions” K, K̃ and K0, with computable coefficients.

3.4 Computation of the crossing kernel

Let us now turn to the computation of the crossing kernel K(α, β|hi). To do so, we can

use the alpha space technology from section 2.1 to write down a position-space integral

representation for K, namely

K(α, β|h1, h2, h3, h4) =

∫ 1

0
dz ws(z)

(
z

1− z

)2h2

Ψs
α(z)Ψt

β(1− z) . (3.21)

It will be convenient to employ standard Mellin representations for the functions Ψs,t
α (z):

Ψs
α(z) =

Γ(1 + a+ b)

Γ
(
1
2 + a± α

)
∫

[ds]
Γ(−s)Γ

(
1
2 + a+ s± α

)

Γ(1 + a+ b+ s)

(
1− z
z

)s
, (3.22a)

Ψt
β(1− z) =

Γ(1 + a′ + b′)

Γ
(
1
2 + a′ ± β

)
∫

[dt]
Γ(−t)Γ

(
1
2 + a′ + t± β

)

Γ(1 + a′ + b′ + t)

(
z

1− z

)t
. (3.22b)

Plugging these into (3.21), one obtains an integral representation of the form

K(α, β|hi) =

∫ 1

0
dz

∫
[ds]

∫
[dt] . . . . (3.23)

Exchanging the order of the integrals, the z-integral yields a beta function, whereas the

resulting t-intergral can be performed using the second Barnes lemma. What remains is

the following Mellin representation:14

K(α, β|h1, h2, h3, h4) =
Γ(1 + a+ b)Γ(1 + a′ + b′)

Γ
(
1
2 + a± α

)
Γ
(
1
2 + b′ ± β

)

×
∫

[ds]
Γ(−s)Γ

(
1
2 + a+ s± α

)

Γ(1 + a+ b+ s)

Γ(2h1 − 1− s)Γ(32 − h1 − h4 + s± β)

Γ(2− h1 + h2 − h3 − h4 + s)
. (3.24)

This integral can be performed by closing the contour and picking up poles on the right

half plane, at s = N and s = 2h1−1+N. The result is a sum of two hypergeometric 4F3(1)

14A different-looking representation can be found by doing the s-integral first.
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functions, and it can be cast into a standard form by introducing the Wilson functions of

ref. [67]:15

Wα(β; a, b, c, d) = (3.25)

=
Γ(d− a)

Γ(a+ b)Γ(a+ c)Γ(d± β)Γ(d̃± α)
4F3

(
a+ β, a− β, ã+ α, ã− α
a+ b, a+ c, 1 + a− d ; 1

)
+ (a↔ d)

writing ã = 1
2(a+b+c−d) and d̃ = 1

2(−a+b+c+d). It is useful to know that Wα(β; a, b, c, d)

is even in its arguments α and β, and it depends symmetrically on its parameters {a, b, c, d}.
A closed-form expression for the crossing kernel is then given by

K(α, β|h1, h2, h3, h4) = Γ(1− h12 + h34)Γ(1 + h14 + h23) (3.26)

× Γ

(
h1 + h2 −

1

2
± α

)
Γ

(
3

2
− h1 − h4 ± β

)
Wα(β; P)

with parameters P = P(h1, h2, h3, h4) specified by

P =

{
1

2
+ h14,

1

2
+ h23, h2 + h3 −

1

2
,

3

2
− h1 − h4

}
. (3.27)

The kernel K̃(α, β|h1, h2, h3, h4) admits an expression similar to (3.26), the only difference

being that h1 ↔ h3 are swapped. For completeness, we print the formula for the identical-

operator kernel K0(α, β|hφ) here as well:

K0(α, β|hφ) = Γ

(
2hφ −

1

2
± α

)
Γ

(
3

2
− 2hφ ± β

)
Wα(β; P0) , (3.28)

P0 =

{
1

2
,

1

2
, 2hφ −

1

2
,

3

2
− 2hφ

}
.

3.5 K and K̃ as intertwiners

Having computed the crossing kernels K and K̃, let us now revisit the alpha space crossing

equation (3.10). Informally, it encodes that K maps a “t-channel” alpha space density to

an “s-channel” one, and vice versa for K̃. In this section we will formalize this idea, making

precise in which sense K and K̃ intertwine between two different Hilbert spaces.

First, let’s introduce a Hilbert space Hs = Hs(h1, h2, h3, h4) for s-channel functions,

consisting of all functions f(α) that are even in α and L2 with respect to the following

inner product:

(
f, g
)
s

:=

∫
[dα]

Ms(α;h1, h2, h3, h4)
f(α)g(α) , (3.29)

Ms(α;h1, h2, h3, h4) =
2Γ2(1− h12 + h34)Γ(±2α)Γ(h1 + h2 − 1

2 ± α)

Γ(12 − h12 ± α)Γ(12 + h34 ± α)Γ(32 − h3 − h4 ± α)
.

We have introduced an α-independent factor in the measure Ms(α;hi) to simplify some

formulas later on. The integration contour in (3.29) is to be understood in the Mellin-

Barnes sense, which means that it may be deformed depending on the values of the hi.

15Our conventions differ from those of [67] as follows: Wα(β|a, b, c, d) = φiα(iβ; a, b, c, 1− d).
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Likewise, we introduce a t-channel Hilbert space Ht(h1, h2, h3, h4) of even functions that

are square-integrable with respect to

(
f,g
)
t
:=

∫
[dα]

Mt(α;h1,h2,h3,h4)
f(α)g(α), Mt(α;h1,h2,h3,h4)=Ms(α;h3,h2,h1,h4).

(3.30)

We now claim that the following holds:

Theorem 1.1: K is a unitary map Ht → Hs, and K̃ : Hs → Ht is its inverse.

Unitarity here means that K and K̃ preserve the inner products defined in eqs. (3.29)

and (3.30), namely

(
f, g
)
t

=
(
K · f,K · g)s and

(
f, g
)
s

=
(
K̃ · f, K̃ · g)t . (3.31)

The proof of this result follows from the properties of the Wilson transform, introduced in

ref. [67]. This integral transform uses the Wilson functions Wα(β; a, b, c, d) as a basis. The

above result can straightforwardly be deduced from Theorem 4.12 of ref. [67]. Consequently,

we will not provide many details. However, it will be instructive to provide a sketch of a

(constructive) proof. First, one establishes that Hs is spanned by the following functions:

ξsn(α|hi) = Γ(1− h12 + h34)Γ

(
h1 + h2 −

1

2
± α

)
pn(α; P̃) , n ∈ N. (3.32)

The Wilson polynomials pn were defined in eq. (2.30), and the set of parameters P̃ is given

by

P̃(h1, h2, h3, h4) =

{
1

2
− h12,

1

2
+ h34, h1 + h2 −

1

2
,

3

2
− h3 − h4

}
= P(h3, h2, h1, h4) .

(3.33)

Likewise, Ht is spanned by the functions

ξtn(α|hi) = Γ(1 + h14 + h23)Γ

(
h2 + h3 −

1

2
± α

)
pn(α; P) . (3.34)

By linearity, it suffices to establish that K and K̃ act appropriately on these basis functions.

To establish this, one proves first that

(
ξsm, ξ

s
n

)
s

=
(
ξtm, ξ

t
n

)
t
∝ δmn (3.35)

as well as

(K · ξtn)(α) = (−1)n ξsn(α) , (K̃ · ξsn)(α) = (−1)n ξtn(α) . (3.36)

eq. (3.35) is a property of the Wilson polynomials pn [41], and eq. (3.36) is a consequence

of Theorem 6.7 of [67].

A similar result holds for the case of identical operators. There one defines a Hilbert

space H0 = H0(hφ) of even functions that are finite with respect to

(
f, g
)
0

:=

∫
[dα]

M0(α;hφ)
f(α)g(α) , M0(α;hφ) =Ms(α;hφ, hφ, hφ, hφ) . (3.37)

Then the counterpart of the above theorem reads:
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Theorem 1.2: K0 is a unitary map H0 → H0 obeying K2
0 = id.

Here unitarity means that

(
f, g
)
0

=
(
K0 · f,K0 · g

)
0
. (3.38)

The proof goes along the same lines as the general case discussed before. A basis for H0 is

now spanned by the functions

ξ0n(α|hφ) = Γ

(
2hφ −

1

2
± α

)
pn(α; P0) (3.39)

where P0 was defined in (3.28). The operator K0 maps the ξ0n to themselves, up to a sign

(−1)n:

(K0 · ξ0n)(α) = (−1)n ξ0n(α) . (3.40)

Of course, the only permissible eigenvalues that could have appeared were ±1, given that

K2
0 = id.

3.6 Analytic structure of the crossing kernel

Since we have rephrased bootstrap equations as integral equations in alpha space, it will

be instructive to analyze the analytic structure of the crossing kernel K(α, β|h1, h2, h3, h4).
Let’s first fix β and investigate the properties of K as a function of α, using eq. (3.26).

Since the Wilson functions Wα(β; a, b, c, d) are analytic in α and β, the only poles in α are

due to the factor Γ(h1 + h2 − 1
2 ±α). Consequently K(α, β|hi) is a meromorphic function,

with its only poles on the right half plane at α = h1 + h2 − 1
2 + N. The relevant residues

are polynomials of degree n in β2, namely

Rn(β;h1, h2, h3, h4) := −ResK(α, β|h1, h2, h3, h4)
∣∣
α=h1+h2−1/2+n (3.41)

=
Γ(1− h12 + h34)

n!(1 + h14 + h23)n

Γ(2h1 + 2h2 − 1 + n)

Γ(2h2 + n)Γ(h1 + h2 + h34 + n)

× pn

(
β;

1

2
+ h14,

1

2
+ h23, h1 + h4 −

1

2
, h2 + h3 −

1

2

)
.

Next, remark that for generic values of α, K(α, β|hi) is a rather complicated function of β.

Upon closer inspection it appears that at certain values α∗ the kernel K(α∗, β|hi) becomes

polynomial in β, up to a number of gamma functions. The relevant values α = α∗ are

organized in three families:

αI
n =

3

2
− h3 − h4 + n, αII

n =
1

2
− h12 + n, αIII

n =
1

2
+ h34 + n, n ∈ N . (3.42)

For the first family, we find for instance

K(αI
n, β) = kIn

Γ(32 − h1 − h4 ± β)

Γ(h2 + h3 − 1
2 ± β)

pn

(
β;

1

2
+ h14,

1

2
+ h23,

3

2
− h1 − h4,

3

2
− h2 − h3

)

(3.43a)
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where kIn is a constant that does not depend on β. For the second and third families, we

find

K(αII
n , β) = kIIn

Γ(32 − h1 − h4 ± β)

Γ(12 + h14 ± β)
pn

(
β;

1

2
− h14,

1

2
+ h23, h2 + h3 −

1

2
,

3

2
− h1 − h4

)
,

(3.43b)

K(αIII
n , β) = kIIIn

Γ(32 − h1 − h4 ± β)

Γ(12 + h23 ± β)
pn

(
β;

1

2
+ h14,

1

2
− h23, h2 + h3 −

1

2
,

3

2
− h1 − h4

)
.

(3.43c)

We can also consider the analytic structure of K(α, β|hi) as a function of β for fixed

α. This is a simple exercise, given the relation (3.14). We therefore refrain from printing

explicit formulas.

3.7 Symmetries of the crossing kernel

The crossing kernel obeys various identities which we will exhibit here. Since none of these

results are used in the rest of this paper, this section can be skipped on a first reading.

It will be convenient to strip off the gamma functions in eq. (3.26) and to relabel the

external dimensions as hi → 1
2 + γi. What remains is a single Wilson function, namely

K̂(α, β|γ1, γ2, γ3, γ4) = Wα

(
β|1

2
+ γ1 − γ4,

1

2
+ γ2 − γ3,

1

2
− γ1 − γ4,

1

2
+ γ2 + γ3

)
.

(3.44)

First, we recall that Wα(β; a, b, c, d) depends symmetrically on its parameters {a, b, c, d},
which implies that K̂(α, β|γi) obeys

K̂(α, β|γ1, γ2, γ3, γ4) = K̂(α, β|−γ1, γ2, γ3, γ4) = K̂(α, β|γ1, γ2,−γ3, γ4) (3.45a)

= K̂(α, β|γ3,−γ4, γ1,−γ2) (3.45b)

= K̂(α, β|−γ\1,−γ\2,−γ\3,−γ\4) , γ\i = −γi +
1

2

4∑

j=1

γj . (3.45c)

A second type of symmetry can be found using the identity (see Lemma 5.3 of [68])

Wα(β;A+ ω,A− ω,B + ρ,B − ρ) = Wω(ρ;A+ α,A− α,B + β,B − β) (3.46)

which descends to

K̂(α, β|γ1, γ2, γ3, γ4) = K̂(γ1, γ3|α, γ2, β, γ4) . (3.47)

A final relation follows from the “duality” property of the Wilson functions:

Wα(β; a, b, c, d) = Wβ(α; ã, b̃, c̃, d̃) ,




ã

b̃

c̃

d̃


 =

1

2
(a+ b+ c+ d)−




d

c

b

a


 (3.48)
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which implies that

K̂(α, β|γ1, γ2, γ3, γ4) = K̂(β, α|γ3, γ2, γ1, γ4) . (3.49)

The reader may notice that the above symmetries are reminiscent of those corre-

sponding to the SU(2) 6 − j symbol [69–72]. In the SU(2) context, the transformations

γ1,3 7→ −γ1,3 are known as mirror symmetries and γi 7→ γ\i is a Regge transformation;

eqs. (3.45b) (3.47) and (3.49) are related to transformations that exchange rows and

columns of the 6− j symbol.

A subset of the above symmetries lifts to the full crossing kernel K(α, β|hi):

K(α, β|h1, h2, h3, h4) = K(α, β|h\3, h\4, h\1, h\2) , h\i = −hi +
1

2

4∑

j=1

hj , (3.50a)

= K(β, α|1− h\3, 1− h\2, 1− h\1, 1− h\4) , (3.50b)

= K(β, α|1− h1, 1− h4, 1− h3, 1− h2) . (3.50c)

Any two of these identities imply the third one. In conclusion, it appears that the auto-

morphism group of the K(α, β|hi) is isomorphic to the Klein four-group. In passing, we

note that eq. (3.50) can also be derived by inspecting the integral representation (3.3).

Limit cases. For bootstrap applications, one is often interested in four-point functions

where some of the operators are identical. In that case, the discussion of the symmetries

of the crossing kernel simplifies drastically. For a mixed four-point function of the form

〈εσσε〉, there are two relevant crossing kernels:

Km,1(α, β|hσ, hε) := K(α, β|hε, hσ, hσ, hε) , Km,2(α, β|hσ, hε) := K(α, β|hσ, hσ, hε, hε) .
(3.51)

In this case, the content of eq. (3.50) reduces to

Km,1(α, β|hσ, hε) = Km,2(β, α|1− hε, 1− hσ) . (3.52)

Finally, when all external dimensions are identical, the relevant kernel is K0(α, β|hφ), which

obeys

K0(α, β|hφ) = K0(β, α|1− hφ) . (3.53)

4 Applications to the conformal bootstrap

In section 3, we reformulated crossing symmetry in the form of integral equations in alpha

space, making use of the crossing kernel K(α, β|hi). For definiteness, let us consider the

identical-operator alpha space equation eq. (3.12):

F (α) =

∫
[dβ]

N(β)
K0(α, β|hφ)F (β) . (4.1)

In the bootstrap context, we can ask whether eq. (4.1) (combined with unitarity) can be

used to find useful constraints on F (α). In this section we will sketch some ideas in this

direction, making use of the properties of the crossing kernel as discussed in section 3.
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4.1 (Dis)proving a false theorem

We will start by outlining an simple idea for analyzing the alpha space crossing equa-

tion (4.1). One can think of the r.h.s. of (4.1) as a function of α

α 7→
∫

[dβ]

N(β)
K0(α, β|hφ)F (β) (4.2)

and require that (4.2) has exactly the same analytic structure as F (α), appearing on the

l.h.s. of (4.1). Taken at face value, this should lead to constraints of the poles and residues

of F (α), which correspond to CFT data.

The function (4.2) only depends on α through the crossing kernel K0(α, β|hφ). Using

the results of section 3.6, we see that the identical-operator kernel K0(α, β|hφ) has poles

at αn = 2hφ − 1
2 + n, n ∈ N, with residues

Rn(β|hφ) := Rn(β|hφ, hφ, hφ, hφ) =
Γ(4hφ − 1 + n)

n!2Γ2(2hφ + n)
pn

(
β;

1

2
,

1

2
, 2hφ −

1

2
, 2hφ −

1

2

)
.

(4.3)

Plugging this result into (4.1), we naively conclude that F (α) can only have poles at α = αn,

with their residues constrained as follows:

− Res F (α)
∣∣
α=αn

?
=

∫
[dβ]

N(β)
Rn(β|hφ)F (β) . (4.4)

Obviously, this conclusion is wrong: it says that any solution to crossing consists of

a single tower of exchanged operators with dimensions 2hφ + N. Although solutions of

this form exist (e.g. in mean field theory), any interacting CFT correlator furnishes a

counterexample to (4.4). From a mathematical point of view, we have arrived at (4.4)

using a doubtful manipulation:

Res

[∫
[dβ]

N(β)
K0(α, β|hφ)F (β)

]

α=αn

?
=

∫
[dβ]

N(β)
[Res K0(α, β|hφ)]α=αn F (β) . (4.5)

This fails to hold at general α, as the function (4.2) is defined for real α only by analytic

continuation. It would be interesting to see if this wrong argument can be refined to give

useful bootstrap constraints, likely by deforming the contour in eq. (4.1), as discussed in

section 2.4.

4.2 Split kernel

A second idea is to close the β contour in eq. (4.1) to the right, picking up poles in β. Since

the integrand appearing in the r.h.s. of (4.1) equals

K0(α, β|hφ)F (β)

N(β)
(4.6)

poles in β can come from three different factors. As mentioned, the poles in F (β) —

and their residues — are unknown, but of physical interest. Next, 1/N(β) has poles at
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β = 1/2+N, and K0(α, β|hφ) has poles at β = 3/2−2hφ+N.16 Closing the contour means

that we have to keep track of all of these different poles.

We propose to modify eq. (4.1) in a straightforward way, bypassing this bookkeeping

exercise. The key point is that both N(β) and F (β) are even in β; in the definition (3.3) of

the crossing kernel, it is therefore possible to replace Ψt
β(1−z) by Qt(β)kt1

2
+β

(1−z), where

Qt and ktα(z) were defined in section 2.6. Concretely, we recast the crossing equation as

F (α) =

∫
[dβ]Ksplit(α, β|hφ, hφ, hφ, hφ)F (β) , (4.7)

Ksplit(α, β|h1, h2, h3, h4) :=
Qt(β)

Nt(β)

∫ 1

0
dz ws(z)

(
z

1− z

)2h2

Ψs
α(z)kt1

2
+β

(1− z) .

We will from now on consider this “split” kernel Ksplit(α, β|hi) with arbitrary external di-

mensions, although only the case h1 = . . . = h4 ≡ hφ is of interest in the analysis of eq. (4.1).

We claim that the split kernel Ksplit does not have any poles on the right half plane

<(β) > 0. That is to say, by closing the contour of (4.7) to the right, we only pick up poles

coming from F (β), as desired.

The proof of this claim follows from a direct computation. The computation is very

similar to the one from section 3.4. The only difference is that we use a Mellin-Barnes

representation for the cross-channel block kth(1− z), namely

kt1
2
+β

(1− z) =
Γ(1 + 2β)

Γ(12 + a′ + β)Γ(12 − b′ + β)
(4.8)

×
∫

[dt]
Γ(−t)Γ(12 + a′ + β + t)Γ(12 − b′ + β + t)

Γ(1 + 2β + t)

(
z

1− z

) 1
2
+β+a′+t

.

As an intermediate step, we rewrite Ksplit as a Mellin-Barnes integral:

Ksplit(α,β|hi)=
Γ(1−h12+h34)

Γ(1+h14+h23)

2β

Γ(12−h12±α)

Γ(12 +h23+β)

Γ(12−h23+β)

∫
[ds]

Γ(−s)Γ(12−h12+s±α)

Γ(1−h12+h34+s)

× Γ(2h1−1−s)Γ(h12+h3+h4−1−s)Γ(32−h1−h4+β+s)

Γ(h1+h4− 1
2 +β−s) . (4.9)

Closing the contour to the left17 and picking up poles at s = −N, s = ±α − 1
2 + h12 − N,

we obtain the following closed-form formula for Ksplit:

Ksplit(α, β|h1, h2, h3, h4) = I1(α, β|hi) + I2(α, β|hi) + I2(−α, β|hi) (4.10)

16Note that the poles of K0(α, β|hφ) in β are related to the poles in α through eq. (3.14). In particular,

the β residues are Wilson polynomials in α.
17Closing the contour to the right would mean picking up poles at s = 2h1 − 1 + N and s = h12 + h3 +

h4 − 1 +N. In the case of equal external dimensions, these two series of poles collide to form a single series

of double poles.
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where

I1(α, β|hi) =
Γ(1− h12 + h34)

Γ(1 + h14 + h23)

2β

S(h2 + h4 + α− β)S(h2 + h4 − α− β)
(4.11a)

× Γ(12 + h14 + β)Γ(12 + h23 + β)Γ(32 − h1 − h4 + β)

Γ(12 − h12 ± α)Γ(h2 + h3 − 1
2 − β)

× 4F̃3

[ 1
2 + h14 + β, 1

2 − h23 + β, 3
2 − h1 − h4 + β, 3

2 − h2 − h3 + β

1 + 2β, 2− h2 − h4 + α+ β, 2− h2 − h4 − α+ β
; 1

]
,

I2(α, β|hi) = −Γ(1− h12 + h34)

Γ(1 + h14 + h23)

2β

S(h2 + h4 + α− β)
(4.11b)

× Γ(h1 + h2 − 1
2 + α)Γ(h3 + h4 − 1

2 + α)

S(2α)Γ(12 − h12 − α)Γ(12 + h34 − α)

Γ(12 + h23 + β)

Γ(12 − h23 + β)

× 4F̃3

[ 1
2 − h12 + α, 1

2 − h34 + α, h1 + h2 − 1
2 + α, h3 + h4 − 1

2 + α

1 + 2α, h2 + h4 + α+ β, h2 + h4 + α− β ; 1

]
.

Here we used the notation C(x) = cos(πx)/π, S(x) = sin(πx)/π, and the 4F̃3(1) are regu-

larized hypergeometric functions. In passing we remark that the hypergeometric functions

appearing in (4.11) are balanced,18 which implies that they obey various interesting prop-

erties. In particular, I1 and I2 can be rewritten using three-term contiguous relations [41].

Above we claimed that Ksplit(α, β|hi) was analytic in β on the right half plane. This

is not completely manifest from the expressions in eq. (4.11); in fact, it appears that both

I1 and I2 have singularities at β = h2 + h4 ± α + N. However, it can be shown (using

hypergeometric identities, see e.g. [41]) that the residues in I1(α, β) and I2(±α, β) at these

points exactly cancel. Equivalently, analyticity follows from a contour pinching argument

applied to the Mellin-Barnes integral in eq. (4.9).

In passing, we claim that Ksplit has the following symmetry:

Ksplit(α, β|h1, h2, h3, h4) = Ksplit(α, β|h\3, h\4, h\1, h\2) (4.12)

cf. eq. (3.50a) for the normal kernel.19 To establish (4.12), one develops an alternate

Mellin-Barnes representation for Ksplit, by changing the order of integration:

Ksplit(α,β|hi)=
Γ(1−h12+h34)

Γ(1+h14+h23)

2β

Γ(12 +h34±α)

Γ(12 +h14+β)

Γ(12−h14+β)
(4.13)

×
∫

[dt]
Γ(−t)Γ(12 +a′+β+t)Γ(12−b′+β+t)

Γ(1+2β+t)

Γ(h1+h3−1−β−t±α)Γ(32−h1−h4+β+t)

Γ(h2+h3− 1
2−β−t)

.

Closing the contour to the right, we find a representation of Ksplit of the schematic

form (4.10), with I1,2(α, β|hi) replaced by functions J1,2(α, β|hi) obeying

Ik(α, β|h1, h2, h3, h4) = Jk(α, β|h\3, h\4, h\1, h\2) , k = 1, 2. (4.14)

18A hypergeometric function pFq(a1, . . . , ap; b1, . . . , bq; z) is said to be balanced or Saalschützian if∑p
i=1 ai −

∑q
j=1 bj = −1.

19We also note the existence of a rather mysterious relation between I1(α, β|hi) and I2(α, β|hi), namely

I2(α, β|h1, h2, h3, h4) =
Ns(α)

Nt(β)

C(β − h23)S(h2 + h4 + α+ β)

C(α+ h3 + h4)S(2β)
I1(β, α|1− h1, 1− h4, 1− h3, 1− h2) .
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This proves eq. (4.12).

Let us finally return to eq. (4.7). The modified falloff of the split kernel allows one to

close the contour in the right β plane and pick up the poles, which we have just demon-

strated can only come from F (β). Therefore, up to simple numerical factor the split kernel

considered as a function of α for a fixed β is precisely the s-channel alpha space transform

of a single t-channel conformal block. It is therefore of interest to consider the analytic

properties of Ksplit(α, β|hi) in α as well. For example, for identical external dimensions hi a

contour pinching argument applied to eq. (4.9) shows that Ksplit(α, β|hφ) has double rather

than single poles at the double-trace values α = ±(2hφ− 1
2 +N), reflecting the logarithmic

behavior of the ksβ+1/2(z) as z → 1 in position space. This most clearly demonstrates

the impossibility of expressing physical conformal blocks in one channel as proper sums of

blocks in the crossed channel and consequently the necessity of using a different basis of

functions like our Ψα(z) to arrive at a meaningful crossing symmetry kernel.

4.3 Using the ξn as a basis

It appears that a special role is played by the alpha space functions ξsn(α|hi), ξtn(α|hi) and

ξ0n(α|hφ), defined in eqs. (3.32), (3.34), (3.39). In fact, these basis functions furnish infinitely

many solutions to crossing symmetry. To make this concrete, consider the mixed-correlator

bootstrap equation (3.10), which is automatically solved if Fs,t(α) are chosen as follows:

Fs(α) =
∑

n even

cn ξ
s
n(α|hi) , Ft(α) =

∑

n even

cn ξ
t
n(α|hi) . (4.15)

It is crucial that the same coefficients cn appear both in Fs(α) and Ft(α), and that only

ξn with even n appear. The reason is that the ξs,tn (α) with odd n are antisymmetric under

crossing. To understand this more intuitively, it is instructive to analyze the ξn in position

space. Using eq. (2.29), we find that the z-space versions of ξsn(α|hi) and ξtn(α|hi) are

given by

{
ξsn(z|hi)
ξtn(z|hi)

}
= n!Γ(2h2 + n)Γ(h1 + h3 + h24 + n) z2h2

{
P

(a+b,a′+b′)
n (1− 2z)

P
(a′+b′,a+b)
n (1− 2z)

}
. (4.16)

Given eq. (4.16), it follows directly that

ξsn(z|hi) = (−1)n
(

z

1− z

)2h2

ξtn(1− z|hi) (4.17)

where we use that P
(p,q)
n (−x) = (−1)nP

(q,p)
n (x). Comparing to the crossing equation (2.82),

one confirms that the ξn with even (resp. odd) n are symmetric (resp. antisymmetric)

under crossing symmetry.

Next, we will consider the CB decomposition of the functions ξn, at least schematically.

Notice that ξsn(α|hi) only has poles at α = h1 + h2 − 1
2 + N, as well as mirror poles on

the left half plane. Given our discussion in section 2, this implies that ξsn(α|hi) has a CB

decomposition consisting of operators of dimensions h1 + h2 + N. Such a conformal block

decomposition looks similar to a mean-field solution, where only double-twist primaries
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[φ1φ2]n ∼ φ1
↔
∂nφ2 contribute. Similarly, ξtn has a CB decomposition with a spectrum given

by h2 + h3 + N.

For definiteness, we will compute the CB decomposition of ξ0n(α|hφ) explicitly. The

position-space version of ξ0n(α|hφ) is a limiting case of (4.16), namely

ξ0n(z|hφ) = n!Γ2(2hφ + n) z2hφPn(1− 2z) (4.18)

where Pn denotes a Legendre polynomial. As above, these functions are crossing

(anti)symmetric for even (odd) n, as follows from

ξ0n(z|hφ) = (−1)n
(

z

1− z

)2hφ

ξ0n(1− z|hφ) . (4.19)

The CB decomposition of ξ0n(z|hφ) can be found using alpha space technology; in particular,

its residues in alpha space are equal to Wilson polynomials evaluated at certain values of

α. The precise result is

ξ0n(z|hφ) =

∞∑

m=0

A(n)
m k2hφ+m(z) (4.20)

where

A(n)
m = Γ2(2hφ + n)n!

(−1)m

m!

(2hφ)2m
(4hφ − 1 +m)m

4F3

(−n,−m,n+ 1, 4hφ − 1 +m

2hφ, 2hφ, 1
; 1

)
.

(4.21)

Notice that the coefficients A
(n)
m are sign-alternating: sgn(A

(n)
m ) = (−1)m, provided that

hφ > 0. This implies that the ξn do not correspond to unitary solutions of crossing.

At least formally, it is possible to derive selection rules for alpha space densities using

the functions ξn. We will focus on the identical-operator case for simplicity. Recall that

the ξ0n form a basis of the Hilbert space H0 introduced in section 3.5. This implies that if

a density F (α) ∈ H0 is crossing symmetric, it must obey

∫
[dα]

M0(α;hφ)
ξ0n(α|hφ)F (α) = 0 for n = 1, 3, 5, . . . (4.22)

This selection rule manifestly holds if F (α) is of the following form:

F (α) =
∑

n even

cn ξ
0
n(α|hφ) (4.23)

cf. eq. (4.15). Of course, requiring that F (α) is normalizable imposes constraints on the

growth of the coefficients cn as n→∞.

Unfortunately an alpha space density of the form (4.23) cannot belong to an interacting

CFT: it would have a CB decomposition with exchanged operators of dimensions 2hφ + N
and nothing else — in particular, requiring that F (α) ∈ H0 rules out an identity operator

contribution. These unphysical constraints on the spectrum of F are very similar to the

issue encountered in section 4.1. We also stress that (4.23) generically corresponds to a non-

unitary CB decomposition, in line with our remarks below eq. (4.20). Imposing unitarity
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leads to additional constraints on the coefficients cn, and in future work it would certainly

be interesting to examine these in detail.

To better understand the role played by the ξn, we will briefly consider how these ideas

apply to a mean-field correlator:

FMFT(z) = t1F1(z) + t2F2(z) (4.24)

with

F1(z) = z2hφ and F2(z) = 1 +

(
z

1− z

)2hφ

. (4.25)

Both pieces F1,2 are crossing symmetric by themselves, but only their combination with

t2 ± t1 ≥ 0 is unitary. This follows from the CB decompositions (2.56) and (2.59).20

Separately, F1 and F2 contain contributions from an infinite tower of operators of dimension

2hφ + n, but the contributions for odd (resp. even) n cancel out when t1 = t2 (resp.

t1 = −t2). The combinations with t1 = ±t2 correspond to generalized free fields with

bosonic (resp. fermionic) statistics.

Can we decompose F1 and F2 à la eq. (4.23)? As for F1, we see by inspection that

F1(z) =
1

Γ2(2hφ)
ξ00(z|hφ) (4.26)

consistent with the fact that F1 is crossing symmetric and non-unitary. In particular, this

shows that F1(α) ∈ H. Notice that this is only possible because F1(z) has no unit operator

contribution. Since F2(z) does have a unit operator contribution, it follows that F2(z)

cannot be decomposed as in eq. (4.23). Nevertheless, we compute

(
z

1− z

)2hφ

=

∞∑

n=0

fn ξ
0
n(z|hφ) , fn =

1

Γ2(2hφ)

1 + 2n

n!(1− 2hφ + n)

1

(2hφ − n)2n
. (4.27)

Strictly speaking this holds only for hφ < 1/2; for generic hφ, (4.27) makes sense only after

analytic continuation. Notice that (4.27) contains terms with both even and odd n. This

is consistent with the fact that [z/(1− z)]2hφ by itself has no definite crossing behaviour.

Another interesting feature is that the fn are not sign-definite; in fact, sgn(fn) = (−1)n

provided that hφ < 1/2. However, we know from eq. (2.59) that [z/(1− z)]2hφ has a CB

decomposition with positive coefficients. We conclude that there is a conspiracy between

the coefficients fn from eq. (4.27) and the A
(n)
m from (4.20) that guarantees that the full

CB decomposition is unitary.

The above example shows how the idea to draw selection rules from the ξn runs into

problems when naively applied to CFT correlators. Nonetheless, it may be true that a mod-

ified version of eq. (4.22) holds after carefully regulating the identity operator contribution.

We leave this question for future work.

20Here we are interested in the case p = q of eq. (2.59), which reads(
z

1− z

)p
=

∞∑
n=0

(p)2n
n!(2p− 1 + n)n

kp+n(z) .
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5 Discussion

This paper has outlined how Sturm-Liouville theory provides a framework to study CFTs.

Inspired by classic results [73], we discussed the decomposition of a CFT four-point corre-

lator in terms of a new basis of functions Ψα(z) and explained how the familiar conformal

block decomposition can be obtained by analytic continuation in α. The alpha space decom-

position allowed us to formulate crossing symmetry in terms of an eigenfunction problem

for some integral kernels: in particular equation (4.1) is a mathematically precise version of

the abstract idea expressed by equation (1.11) in the introduction. It features an explicitly

known crossing symmetry kernel K0(α, β|hφ) whose properties we analyzed in some detail.

In this paper we did not touch on the profound connection between the alpha space

construction and the representation theory of the conformal group. Roughly speaking the

dictionary is well-known: three-point functions map to Clebsch-Gordan kernels, conformal

blocks are their square — as used in three-fold tensor products — and the crossing sym-

metry kernel is equal to a 6− j symbol for the conformal group. Moreover, the alpha space

decomposition ought to correspond to tensor product decomposition into a direct integral

over the principal unitary series of representations. We can however only make all these re-

lations precise if we have a detailed knowledge of both the groups, the representations under

consideration, and the Hilbert space of functions on which they act.21 For the case at hand

the question appears to be partially solved in [68], which showed that the Wilson functions

Wα(β; a, b, c, d) indeed appear as 6−j symbols for representations of the sl(2,R) conformal

algebra. Surprisingly this connection works provided three of the four external dimensions

transform in the discrete unitary series, in contrast with the older discussion of [73] which

is based entirely on the principal unitary series.22 It would be interesting to build on the re-

sults of [68] to explicitly connect all the dots between alpha space, one-dimensional unitary

CFTs and representation theory. We hope to return to this problem in the near future.

It is of clear interest to generalize our analysis to d ≥ 2 dimensions. This requires

solving the Sturm-Liouville problem for the d-dimensional Casimir [77] on the square

(0, 1) × (0, 1), or alternatively one could relate this kernel to a suitable set of 6 − j sym-

bols of the universal cover of SO(d, 2). The higher-d alpha space picture will necessarily

be more complicated, because both external and exchanged operators in higher-d CFTs

can carry a nontrivial Lorentz spin. An obvious generalization pertains to superconformal

field theories in various d [78]. Sturm-Liouville theory should also apply beyond four-point

correlators in CFTs on Rd; for instance, one can consider its application to CFTs in the

presence of boundaries or defects.

Most of these problems are rather formal and group-theoretical in nature. In the

framework of the conformal bootstrap, it is more exciting to investigate whether alpha

space crossing equations can be leveraged to constrain CFT data, or — more ambitiously

21In this context it is important to note that the representations are only unitary in Lorentzian signature.

In that case the conformal group is actually the universal cover of SL(2,R) [74], which has a richer class of

inequivalent unitary representations [75] (see also [76] for a detailed discussion of the 4d case).
22This is related to our basis functions being different form the usual shadow-symmetric blocks of [59]

which are in fact the correct squared Clebsch-Gordan coefficients for three unitary principal series.
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— to solve bootstrap equations analytically.23 In section 4 we discussed some tentative

ideas in this direction. Together with recent developments in the realm of Mellin space

and the lightcone bootstrap, we are optimistic that alpha space can become part of the

analytic bootstrap toolkit.
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A Computing the inner product
〈
Ψα,Ψβ

〉

In this section, we will prove eq. (2.15) by computing the inner product
〈
Ψα,Ψβ

〉
, as defined

in eq. (2.7). Concretely, we must perform the following integral:

〈
Ψα,Ψβ

〉
=

∫ 1

0

dz

z2
Ψα(z)Ψβ(z) (A.1)

where we used that Ψα(z) = Ψα(z) for imaginary α. As a first step, we write Ψα(z) and

Ψβ(z) using a Mellin-Barnes representation:

Ψα(z) =
1

Γ(12 ± α)

∫
[ds]

Γ(−s)Γ(12 + s± α)

Γ(1 + s)

(
1− z
z

)s
. (A.2)

Naively, the z-integral (A.1) is logarithmically divergent, the divergence coming from the

region near z = 0. To resolve this divergence, we regulate Ψβ(z) by writing it as follows:

Ψβ(z)→zε 2F1

( 1
2 +β, 12−β

1+ε
;−1−z

z

)
=zε

Γ(1+ε)

Γ(12±β)

∫
[dt]

Γ(−t)Γ(12 +t±β)

Γ(1+ε+t)

(
1−z
z

)t
(A.3)

for ε > 0. This behaves as O(z1/2+ε) at small z. Evidently, in the limit ε → 0, the above

function reduces to Ψβ(z).

23See [79] for a connection between the conformal Casimir and integrability, which may be helpful in this

context.
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At this point, the inner product eq. (A.1) is given by triple integral, schematically

〈
Ψα,Ψβ

〉
=

∫ 1

0
dz

∫
[ds]

∫
[dt] (. . .) . (A.4)

Since we have regulated the integrand, this integral converges and we can exchange the

order of the different integrals. We do the z-integral first, which is a simple beta function

integral. The result is

. . . =
Γ(1 + ε)

Γ(12 ± α)Γ(12 ± β)

∫
[ds]

Γ(−s)Γ(12 ± s+ α)

Γ(1 + s)

×
∫

[dt]
Γ(−t)Γ(12 + t± β)

Γ(1 + ε+ t)

Γ(1 + s+ t)Γ(−1− s− t+ ε)

Γ(ε)
. (A.5)

We now do the t-integral, using the second Barnes lemma. This yields

〈
Ψα,Ψβ

〉
= lim

ε→0

Γ(1 + ε)

Γ(12 ± α)Γ(12 + ε± β)

∫
[ds]

Γ(−s)Γ(12 ± s+ α)Γ(−1
2 − s+ ε± β)

Γ(−s+ ε)
.

(A.6)

At this stage we can take the limit ε → 0 everywhere, except in the two factors Γ(−1
2 −

s+ ε± β):

. . . =
1

Γ(12 ± α)Γ(12 ± β)

∫
[ds] Γ

(
1

2
+ s± α

)
Γ

(
−1

2
− s+ ε± β

)
. (A.7)

This integral can be computed using the first Barnes lemma, yielding

〈
Ψα,Ψβ

〉
=

1

Γ(12 ± α)Γ(12 ± β)
lim
ε→0

Zε(α, β) , (A.8)

Zε(α, β) =
1

Γ(2ε)
Γ(α+ β + ε)Γ(α− β + ε)Γ(−α+ β + ε)Γ(−α− β + ε) .

To conclude, we need to analyze the limit ε→ 0 of Zε(α, β), which we claim is the sum of

two Dirac delta functions:

lim
ε→0

∫
[dβ]Zε(α, β)f(β) = Γ(±2α) [f(α) + f(−α)] , (A.9)

where f(α) is a test function. Notice that eq. (A.9) is sufficient to establish eq. (2.15),

after remarking that
2Γ(±2α)

Γ(12 ± α)2
= N(α) . (A.10)

The proof of (A.9) goes as follows. We start by noticing that limε→0 Zε(α, β) vanishes,

unless β = ±α± n for some integer n. If n 6= 0, the limit ε→ 0 is finite, hence such points

do not contribute to the integral in eq. (A.9). Hence it suffices to consider the cases β = α

and β = −α. For concreteness, let’s consider β = α, in which case we can approximate

Zε(α, β) by

Zε(α, β) ∼
β→α

Γ(±2α)ωε(α− β) , ωε(α) =
Γ(ε± α)

Γ(2ε)
. (A.11)
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It is straightforward to see that ωε(α) behaves as a delta function along the imaginary axis,

i.e.

lim
ε→0

∫
[dα]ωε(α)f(α) = f(0) . (A.12)

This follows from the fact that ωε(α) is peaked around α = 0 with width ε (taking α to be

imaginary) together with the fact that

∫
[dα]ωε(α) =

1

4ε
→ 1 . (A.13)

The same argument holds for the region where β = −α. This allows us to conclude.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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