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Crossing Symmetry in Elliptic Solutions of
the Yang-Baxter Equation and a New

L-operator for Belavin’s Solution

Koji HASEGAWA JMathematical Institute, Tohoku University

Abstract

Investigated are some algebraic structures in elliptic solutions of the
Yang-Baxter equations. We prove the crossing symmetry in Belavin’s
model as well as in the AS}I face model, and we construct a new family

of L-operators for Belavin’s R-matrix as an application.

-1 Introduction

Recently many progresses have been made in the theory of two dimensional
solvable statistical lattice models. Among them we will investigate here some
algebraic structures in elliptic solutions of the Yang-Baxter equations (YBE).
Namely, we show the crossing symmetry in Belavin’s model [Be] as well as
in Jimbo et al.’s A'Y, face model [JKMO], and we construct a new family of
L-operators for Belavin’s model as an application.

In [BS] Bazhanov and Stroganov showed that the chiral Potts model, which
is a solution of the YBE or the star-triangle relation whose spectral parameter

lies in a high genus algebraic curve [AMPTY] [BPA] , is a “descendant” of the



6-vertex model which is nothing but the R-matrix associated to Uq(sAln) . That
is, they derived the chiral Potts model as the intertwiner of cyclic L-operators,
or equivalently, the intertwiner of two-fold tensor of cyclic representations of
Uq(gln). Motivated by their result, in our previous paper [HY] we have shown
that Kashiwara-Miwa’s elliptic solution (the so-called broken Zy symmetric
solution) [KM] is a descendant of Baxter’s 8-vertex model {Bax| in the above
sense : Take Sklyanin’s cyclic L-operator for the 8-vertex model and we get
Kashiwara-Miwa’s model as the intertwiner for the L-operators. Along with
this derivation, in [H] we further succeeded in relating the crossing symmetry
of Kashiwara-Miwa’s model with a certain duality property of the L-operators.

To generalize this story for the n-state elliptic model of Belavin, one imme-
diately needs a cyclic L-operator for the model and its construction is one of
our motivation here. We are inspired by an idea in Bazhanov et al. [BKMS].
They considered the Uq(;ln) generalization of [BS] by means of “intertwining
vectors” or “factorized L-operators [IK]”. Here intertwining vectors are origi-

nally appeared in [Ba.x73] to introduce face models via vertex models. Hence

by definition they relate a vertex model and a certain face model, and using

this relationship [BKMS] observed that a simple combination of intertwining
vectors provides an L-operator. Intertwining vectors between Belavin’s model
and the Afll_).l face model are given in [JMO] and they are, so to speak, “out-
going” intertwining vectors. What we need more to construct L-operators are
their “dual” or the “incoming” intertwining vectors and our method to con-
struct them is as follows: we first observe the crossing symmetry of the models,
which is nothing but the incoming/outgoing duality (sections 3 and 4 ) , and
then we obtain the incoming intertwining vectors by fusing [C][JKMO] the
original intertwining vectors (section 5) . The resulting L-operators (section

6) act on C" ® (space of functions on the weight space h* of sl,,), and letting
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the deformation parameter ¢ = e of Belavin’s model to be a root of unity
there arise invariant subspaces and we can get the desired cyclic L-operators.
In addition to this cyclic one we can also find out other invariant subspaces so
that we can generalize the analogue of Sklyanin’s series of L-operators [S] for
Baxter’s 8-vertex model to the Belavin model.

As is well known, up to a certain transformation the trigonometric limit
of Belavin’s model gives the R matrix of U,(sl,) in the vector representation
[J]. In this sence ﬁvhat we have observed here can be regarded as a part of the
theory of “elliptic” version of quantum groups [IKRS] [KS] , which we hope to

discuss elsewhere.

2 Review

Belavin’s vertex model [Be].

For n > 1 let C*" = @}?_;Ce* and let g,h € GL(C") to be gef =
ekexp&gﬁ,he’c := "1 50 that gh = hgexpgfi. Let h,7 € C,h # 0,Im7 > 0.
Belavin’s R-matrix is characterized as the unique solution of the following five

conditions.

¢ R(u) is a holomorphic End(C" ® C") -valued function in u,

e R(u) =(z@z)R(u)(z @ z)~! for z = g, h, . (1)
¢ Ru+1)=(¢9® 1) 'R(u)(g®1) x (-1),

¢ R(u+7)=(h@ 1)R(u)(h ®1)™! x (—exp2mi(u + 2 + 1))~}

e R0O)=P:zQ@y— yQux.
We also have the following formula for R(u) [RT):

Rlu)e' ® e’ = " @ e R(u)

i3
it ot
LEY)



y 06~ (u + 1) TIp25 8% (u)
P S =0 :
Ry = Ouvimetn G )G (u) T3] 09(0)

Here 8m(u, 7) := 3, mii1z €Xp 27 (pu + 2%7’) and 09 (u) := 9%_%,1(u+ 5, 07).

Then the YBE of the vertex type

R®(uy — uz) R®(uy — uz) R (ug — ug) = R*(uy — ug) R13(uy — uz) R?*(uy — u3)
2)

holds, where V; are copies of C* and RY acts on i-th space and j-th space.
For the latter purpose we will reformulate this solution as follows. For each
u € C let V(O,) be the copy of C" and write the R-matrix R(u — v) acting
on V(O,) ® V(0,) as R(D,,0,) . We also put RO+H .= PRO«D: where P is
the permutation V(@,) ® V(Q,) — V(@,) ® V(O.) . Then the YBE (2) reads

as follows,
(R He @ 1)(1 @ RED)(R-D @ 1)
= (1® R%H)(1@ RB-Lw)(RB-De g 1) (3)

V(@)@ V(o) @ V(ow) — Vow) @ V() ® V(D).

EllL D’\r Gm Cl(,\ G b Dmr

0,008 0 oo,

“

Remark. The notation O stands for the Young diagram consisting of one
box. If we consider the ‘algebra of L-operators’ for Belavin’s R-matrix then
the notation O, can be justified as its “vector representation with the spectral

parameter u”.

AW face model [IMO].
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Let €;(i = 1,---,n) be the orthonomal basis of an n dimensional vector space
with the inner product (,) and put h* := C-Span of {¢; — €41(i = 1,---,n — 1)}
so that we can identify h* and the weight space of the complex Lie algebra sl,, -
in a usual way. Let™: C® — h* be the orthogonal projection. Then the Boltz-
mann weight of the Af,l_)l face model corresponding to the vector representation

Ois given by the following.

A+§
. h(u + h
Wi U A+ 2¢ ZZ-Lh#’
A+ &
A+ g
3 h(—u + R
WIiXx o A&+ :=—'——(h(m--)])’
ij
A4
A+ 6

B h(ﬁ) h(h/\”) ’

Wix o A+a+§
A+ §
and for the other configulation of A, i, i/ and v

. K
W A uw ov|= 0,7
’

7
where h(u) := 0121(v +1/2,7) and

Aij == (A +p, & — &), pis the half sum of positive roots.

To formulate this weight as a linear operator or a ‘face operator (an elementary

transfer matrix)’, the following vector space is in order.

C :p= X+ ¢ for some i,
0 : otherwise.
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We denote by €4 the basis of the one dimensional space Plowhen p=A+¢§

for some 2, and otherwise we set ef = 0. For each u € C we consider the copy
Pig, of Pig and define
P;Dtnl"'uuk = Z Pfaul ® P::fmuz ® T ® P:k—luuk—l’
Hiy syl

o, -0, = 8P, -0

’Uk-

- ); -’
A E— Cmre e —
{ u, Hl L, Uy v O_ Spau. - P)\DM "'Duk

| . )
whire  de—p = €0 € Pyn,

: | ]

These are the space of “addmissible paths” in [JKMO]. For €} € P and

e, € 'PL’D” we put

I
WD"’D”(e’)\' ®ey) = Eef\‘l ® eZ,VV Au—v v |,
o

!

I
< pe——V " |
rn rST Jo® ]
_7 ’ W“;;fv]
tAI
o -
: ‘ 9\6{\’_\4}-2——\)

thereby define the face operator

100 . ’ v v
WEE P = Pon, Ploo — Poo.
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With these definitions the YBE of face type reads as follows: as operators
PﬁDuDqu — l:\fijuDu we have
(1 & Wﬂuﬂu)(ﬁfﬂuﬂw ® 1)(1 ® Ij/l]v,[:lw)

x

Vit A TRV e
: [
i

]
[
|
Lo,
o~ N (9

a A

v

Intertwining vectors [JMO]. Put

(¢";EI.. )i = i
0 - : otherwise

{ 09D (u — nh(A\+p,&)) 1p—A=¢ for some k,
and define the linear map

‘o P, — Vi)

, (A%
® AR Ae——b AT” )
J"wa; ‘ : H? _ e
\—__-s‘i\_"

' (4’50“ )J-'

Then they “intertwine” Belavin’s vertex model and the Afllll face model,
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namely

1/
gl @bl =Y ohn ®dnW | A u-v v |. ()
15 ”’
P\
e
= by vV
" AKX
¥

This formula is very remarkable because of its similarity between the mon-
odoromy property of the n-point function in the g-conformal field theory [FR].
The quantity {(qb;)gu )j }3=1 regarded as an n-vector is called the intertwining

vector.

3 Crossing symmetry in the vertex models
Fusion procedure[C]. Let
R[jul &y @&, o = (RDul ,Elu)l.Z(RDuz,[]v )2,3 L. (RDu,,EL,)l,H-l

RD"I ®"'®Duk 7Dv1 ®"'®Dv, =

(Rﬂ,@---@ﬂuk,ﬂv, )k---k+l—1;k+l . (RD”@---@EJ%,DU,, )2---k+1;k+2(RDul®---®Duk,Dv, )1---k;k+1_
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Q.- Oy O, - O
¥ Dud-Du, , O, 8-804, N

R

-

——
——

For k = 1,---,n let 1* be the Young diagram of vertical k boxes ( 1! =0
; in this paper we will treat these special diagrams for simplicity.). Then the
fusion operator by Cherednik associated with 1* is given by
T V() Q- @ V(Qusrte—1)n) = V(Ougte—1yn) @ -+ - @ V(Ou)

= (RD“I sy YemLik (Rﬂul 0w, @80, Ou,_, )2-~-k—1;k(RDu1®Du2®"'®[:]uk_l,|:luk)1-'-k—1;k

(6)

Dw Qu, -+ O
(6 . /
1
/ e
DuL T Du}_ Dul

where the spectral parameters are specialized as
(ul,---,uk)-:(U,U-f—h,'--,’lt-f-(k—].)h) (7)

so that the rank of the operator = degenerates. By virtue of the YBE (4) the
factors in (6) can be arranged in various ways by ‘braid manipulation’ and
this is the key remark in deriving the formula in what follows. We denote the
image of myx in V(Oy(e-1)0) ® - - - ® V(T,) as V(1¥) and then it turns out that

V(1¥) = A®(C™) for the generic value of . Put

?
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SKL . 3l n®800 Do i 880k
R = RD =@ 80 oy o1y a @ IV(K)@V(L)a

where

K=1* L=1,

are shorthand notation. Then the YBE for RM+D» (4) guarantees that this

‘fused’ operator preserves the image of #’s
REL . V(K)® V(L) = V(L) ® V(K),
as well as they enjoy the YBE:
(RPMe1)(1@ REM(BX Y @ 1) = (1o REM(REM e 1)(1 0 BMM) (8)

(K=1"L=1 M=17).

Crossing symmetry. Let us denote the special diagrém 1™ as top and put
(1) = 130 (9)
‘Then since o, = REX" (1 ® 7+ ) for each K = 1%, we can define a pairing
<,> V(K)@ V(K") - V{top,) = C

as the composition of R¥XX" and the identification map |top, >+ 1, where
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|top, > is a fixed basis of the 1-dimensional space V (top.).

K K*
>
C

For generic A this pairing turns out to be non-degenarate so that we can
and do identify V(K)* and V(K*) , where V(K)* stands for the dual space
of V(K). Fix K = 1% and L = 1}. We take a basis {e/}; in V(K) and its
dual basis (with respect to <,>) {el}; in V(K*) , and do the same for L. We

define the matrix elements of R by

BRI gl =3 7 @ (REM)Y, (el e V(K), el € V(L)),
II’JI

RV gel = Y ef @ (REM), (¢ € V(K), el € V(L)
PJ!
etc.

Proposition 1 Let K = 15 L = 1} and top = 1. Then under the notation
(9) we have the following.

1. There is a scalar f(K,L) which is nonzero for generic u,v such that
RUERKEL = (K, L) - id. (10)
2. We have
RXtoo = (K, top,) - P, R’ = g(top,,L) - P

where P is the permutation and g(K,top,) ,g(top,,L) are scalars which

are nonzero for generic u,v.



3. The crossing symmetry holds:

, pker KL
(L, = (R L, (1)
e g(tope, L
= (R SR, (12
K L
(0)
o
K L L
T 7 @1,1@ T J
o
]-/ I/ | J_, .I, KA’-

Proof. 1) follows from the first inversion formula REDREO = seqlar
for the original Belavin’s R-matrix. To show 2), note that fhe opérator TK
commutes with the k-fold tensor product representation of the Heisenberg
group < g,h > (2) . Since dimV(top,) = 1, the representation restricted on
V (top,) is only by scalar multiplication. Together with the characterization (2)
of BB« this implies that (1@z)RX P (z-1@1) = RX:P. for any z € GL(n),
as desired. The fact that g(K,top,) # 0 in generic follows from the explicit
calculation. To prove 3), we use 1) and an elementary braid manipulation to
get

R4 (1 8 105, ) (K © 1) = i, (1@ BEE) - f(K, L),

93
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C L C -

Rewriting this in terms of matrix elements we obtain (11). To get (12) is

similar. U

Corollary 1
f(K,L) _ g(top,,L)

g(L,top,)  f(L,K*)

Corollary 2

(RK,L)IJ (RK*,L* rry . f(KaL) f(LaK*) (13)

s J g(L,top,) g(K~, top,)

K L
I 7 (13 T T
4
7T 7T
K"
Remark. For K = 1F write K*' 1= 1:;?,0_”),5. We can also define a pairing
by using RX" X,

<, > V(K*)® V(K) = V(topysk-nn) — C (14)

which is also non-degenarate for generic i so that we can identify V(K)* and

V(K*).

13



4 Crossing symmetry in the face models

As in the vertex case we can similarly derive the crossing symmetry for face

models. Put

WDuIDug"’DupDv = (WD“I ,Dﬂ)1,2(WDu27Dv)2,3 R (WDH"DU)I’I+1’

W By oy -0y . (WDnl"'Dukuv,)k"-k'i-l—l;k"rl“.

(Wl:lul ey, Do, )2---k+1;k+2 (WD..1 0 )1---k;k+17

where the superscripts denote the components they act on. The fusion operator

for the face model [JKMO] associated with 1* is given by

Hlk = (Wﬂul,ﬂuz )k—l;k .. (WD"XD%"'D%-z*D"k—l )2---k—1;k(ﬁ/Du1Du2'“Duk__l,Eluk )1~--k-1;k

: PDM"'Du+(k-—1)h‘ - PDu+(k-1)i|"'Du

where the spectral parameters are specialized as before (7) : (uy,---,ux) =

(4, -+, u+ (k — 1)h).

: : Y

We denote the image of [I;+ in PDu-{-(k—l)h"'Du (resp. PADu+(k—1)ﬁ"'Du) as 7915 |
(resp. Py: ), or Py (resp. PYg ) with the shorthand in the previous section
K = 1%, We also write P{gy, := ®,Pix ® Piy, , Pxr := ®xnPiky- It turns

out that for K = 1* and generic value of /i the dimension of the space P% is

95
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given by
dlm’P:\IK = I{(]l:)]k)al S.h L v <jk g n;€;1 ++€;k =U_)‘}|7
which is equal to the multiplicity of the weight v — X of the GL(C")-module

AF(C™). In particular, for top = 1" we have dimP¥,,, = 8y,

The fused weight for K = 1¥, L = 1! is defined by
WKL = WD«Hk—l)h"'Du5v+(1—1)f-""3"|pKL : Pkr — PLk
and they satisfy

(WM @ 1)(1 @ WEMYWKL g 1)

= (1@ WEIY(WEMg1)(1@ WhM), (15)

9

Fix a base |top) ., >€ Pj\‘topu for each A and u. We can define the pairing

<> (Pk)"® Pk« = P, —C

topu

as the composition of W¥X" and the identification map |topru >— 1. Suppose
Plk # 0. Then for generic h this pairing is non-degenarate between (Piy)*
and ’P;)K,, so that we can identify these spaces with each other. Take basis
{ek,}a of Pik and its dual basis (with respect to <,>) {e*l’)a o Of ’P;‘K., and
define the matrix element of W as follows.
a p b
WK’L(eI;a ® e;b) = Z 6’;,), ® ez:al . V['/K’L A 17

b,},tlal
bl ,U,’ a/



(€ha € Pikr € € PiL-)

a W bV
K s

2

5

-

4
4

;o€ L;‘, pret_vy
e e
b~ “'/a/

b
@
a

Proposition 2 Let K,L are as in Propositon 1 and let f(XK,L) be the scalar
therein (10) .

1. We have
WLEWKL = f(K L) - id.

2. For each X and u there exists a scalar G5(K, top,) (resp. G(top,,L) )

which is non zero for generic u,v and satisfies that
WEKtore (b @ |top,. >) = |topr, > @b - G4(K, top,) for any b € Piy

(resp. WE([topy. > ®b) = (b ® |top,. >) - Gh(top,, L) for any

be Pg‘mpML ).

3. The crossing symmetry:

a u b (b v ]
S . T Ke K,L)
WKL = WK ' _jf(—’ 16
A v 7 I G (T, topa) (16)
Vo od [ a A Y
b v d ] ’
< LK Gh (topy, L)
= k¥ | 22 \OPw )
e W Tk
a AV

97
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Proof. Proof of 1) is similar to the vertex case. 2) is trivial when k =1
because the space ’P;«‘Du is at most one dimensional, and then the general case
follows. The fact that GX(K, top,) # 0 in generic follows from calculation. To

prove 3), as in the vertex case we use 1) and an elementary braid manipulation

to get

WL’wp"(l ® Htopu)(ﬁ/K’L ®1) =, (1® ‘/VL’K‘) - f(K,L).

Rewriting this in terms of matrix elements we obtain (16). Similarly we get

(17). O



Corollary 3
f(K,L)  GA(top,,L)
Gi(L,top,) — f(L,K*)

Corollary 4

a p b o g
. . Ke L+ K,L) f(L,K%
WwK.L = WKL . Jf( ! .
A v . Y A Gl; (L, tOpu) G,);(K*a topv)
T4 b p a ‘
| (18)
(18)
A .
v X 9

Remark. As in the vertex case we can define a non-degenerate pairing

<,>" Pyo @ Pg — P, - C

Py (k=n)h

by using WK*"K, where K* is the same as before (14).

5 The incoming intertwining vectors

Fusion of the intertwining vector. Let K = 1¥ L = 1., top = 1™ as before. Let
us consider the operator
¢KDuIDu2mEI..,,. = Dy 2 Mk d;ll]‘.l ® ¢Zf[iu2 ®---® ¢f‘k-—lDuk

2

. — H [
" P;Dululq"'l:]uk - $“17#2"'1ﬂk-ﬂ1p/\éul ® P‘“DUZ ® T ® P;:k—luuk .

99
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— V(0,)®V(0,)®- @ V(o)

then from the intertwining property (5) we have

i —_ 14
ﬂ-lk¢/\DﬁDu+h"'Du+(k—l)h - ¢’\Du+(k—i)h"'Du+hDuH1k'

This implies that the image of the restriction ¢5g = ¢Kﬂu+(k_1)h~-l]

lies in V(K) :

u+hEu |P;K

¢k : Pk — V(K). (19)

Generalizing the intertwining property of the original intertwining vector (5) ,
these ‘fused intertwining vectors’ intertwine the fused R-matrix and the fused

face operators: Let
LK . PH' Pv P#o‘ PV
pr,\pou : @#' AL ® WK 7 FHL ® oK

denotes the projection and put

M
i K.L e K 1i7KL . v ! v
w A v | = Ph w |P:K®P:L" PfK ® P#L — P;‘JL ® Pp.’K'
ul
Then it is easy to see that
1
R e @gn =2 dh®dxWEr | 2 o |, (20)
“I
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where the both hand sides are the operators Pix ® Py, — V(L) ® V(K).

?\éK\é—, LV v

K, G :‘Z’)\ K, u Y
i Aé—\f———YTV

The incoming intertwining vectors. While the fused intertwining vectors

(19) may be called outgoing intertwining vectors because the space V(K) ap-
pears there as the output of these quantities. In contrast with this, what we

would like to call ‘incoming’ intertwining vectors are the quantities
L L
A VL) - PR
that satisfy

!

1
#LogXKREL = WKL |\, | R er (21)
”1

K, G | K! bi
N Y

and now we are in the position to construct them.
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First we substitute £ by n — & and ! by n — [ in (20) ,
RK*’L.‘f’ﬁK* ® (sz* =¥ ¢ﬁ'L* ® ¢2,K*VVVK"L‘ , \
Y

and take the matrix elements: write

k(€)= ZI: e'(¢ik)ra € V(K),

then we have

S (REE L (B ) ra( S )

1J
a p b
= E (¢f,lL.)J’b’(¢£'K*)I’a’WK*L‘ v A
Ha'd Vo d

We use the crossing symmetries (13), (18) in Corollaries 2, 4 to get:

. ' op.) g(K*, top,
SRR g;I(‘I’; i))g;(L ;{f)) AN ACHA

1J '
a uov X
, y G4 (L, top,) G (K", top,)
= J - A’ Dy /WK’L Bl A ) u)
2l G e WX TR R
b p a

(22)
We need the following.

Lemma 1 Let < ¢},,,, >€ C be the coefficient in the formula

H o
%topveutopv - etop., < ¢'Ztapv >,

where €10, € Phiop, (TSP €1op, € V(top,) ) denotes a fized basis of the one

dimensional space. Then we have the formula

G}A‘(K7topv) — < ¢ﬁtop,, >
g(KitOpv) < ¢’§top,, >

(23)
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Proof. Recall the formula (20) for | = n,

RK,tOpv ¢I/—\‘K ® Mytopu Z ¢t\tt0p,, WKtoPu A u

!

i

Since dimP%,,,. = 6x,, the summand in the right hand side is zero unless

¢ = A. Then the lemma follows if we take the matrix elements of the both

hand sides with using Proposition 2(2). O
Applying (23) to (22) we have:

Z(RK B (W dra(@hne s

a o v ,\
: i GY(L, top,) Ga(K*, top,)
= Z (QbﬁL*)J’b’((ﬁ;\‘,K*)parWK’L /\ v . /\é u) #K* )
“’a'b' g( 3 topu) g( s topv)
b p a
[ a’ “I bl
: i < ¢Pto > < ¢:\\to >
= Z (qb.uL')J’b’(qb/\’K*)I’a"/VK’L A v . ,; Py = Py
ula'h! v I . < q&/\topu > < ¢'ﬁ'top., >
| b o4 oa

Deviding the both hand sides by < ¢l,,,,, >< ¢§top., > we get

d ol
A o A
S (REL)L (k) (Bur-)n _ (Sor-)oy (Sux-)re ok \ ,
< ¢ﬁt0pu > <_ ¢itop., wa'tt < M’top >< ¢/\t0’pu
b u a

Thus we obtained the desired incoming intertwining vectors (21):
Theorem 1 For each A\,v and K = 1% define the operator
#5F  V(K) - Pik

t)]a
¢UK( v uK
A ; ¢ < ¢Atop.,
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for each basis element ¢! € V(K), where K* := 1%, (9).
+kh

T T
RN BV
N o v P V Topu
o o i o,

[ o |85 > = (& \¢§t*‘eza>/< o> ] —

Then they satisfy

Hl
Sl pKRKL WKL |y | K g gl
7

where the both hand sides are the operators V(K) ® V(L) — P{L, ® Pik-

By the construction incoming vectors and outgoing ones satisfy the follow-

ing duality relations [BIKMS].
Y i = idvag : V(K) - Pg — V(K),
)

¢5\LK¢5K = 5,\,yidp:K : P.'/‘K - V(K) — ’Pf\‘K

I A K

K
> > k=SL,2 Y5 |r =34,
N d

T/ v £
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6 The L-operator
We define the vector space
V= I,ep C6* - (24)
with 6#, the “delta function supported at p E h*”, as its basis.
Theorem 2 For each A, 1 € h* put
LK)} := S5 : V(K) — Pl — V(K)
for K = 1% and definé the operator
LK) : VK)®@V — Ve V(K)

by
LK)(v® &) = ; 8 @ LK)K(v)

for any v € V(K) and p € h* . Then this operator is well defined and satisfies

the following:

(L(L) ® i)(1 ® LIK)RET ®1)

= (1@ RELYL(K)®1)(1 ® L(L))
where K = 1%, L = 1! and both hand sides are operators
VK)® V(L) 8V — Ve V(L)®V(K).

In particular, putting k = | = 1 the operator E(DU) gives an L-operator for

Belavin’s R-mairiz RBDv |
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v, ¥ elt_
L&), = * TK—*’L

Proof. Remark that for each A, I}(K)}’; = 0 for all but finite g , which imply
that the operator L(K) is well-defined.
Then by the iﬁtertwining properties (20) (21) we have the following for

each A and v,
> LLY ® fJ(K)ZRK'L
H

= (") ® (ks K)RKL

"

= Y (¢h ® Sk )Y © ¢ K)RKL

m

!

\ M
= Y hodkd WKL v | K@k
18 n
1

= REUY (¢k ® L) E @ o)

Ty _
= RELS(dhxdh ®) ® (dhn82F)

”l

= RELSLKY ® LL),.

n
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This identity of operators V(K)® V(L) — V(L) ® V(K) implies the assertion.

— A
LA TN
€< v W

;-\LVJ\E\) L P
L K

Remark. Recall the definition V(1%) := 74 (V(0.) ® - - ® V(Tuskn)) ,Where
V(D) is just a copy of C* (section 3). This implies V(1%, ) = V(1%) . Simi-

larly Pflﬁ+r = Plix- So identify these spaces and denote them as V(1F), PhL

respectively. Then we have the operator

i1k R\E . p #1h
L(1u+m71u)k' - ,\1":_” A

V(1*) = V(1) — Py = P

k
1u+z

and we can define L1k, 1% by L(1%,,, 15)(v@é*) := T, 8* @ L(1E ,, LE)A(v)

- V(1k ) =V(F)

. Adapting the above identification of spaces we can say that the operators
RIL and Wiele depends only on their deference v — v. Then we apply the

above proof and get
(E(Liypy L) ® 1)(1 ® L(K 4y, K)) (BT @ 1)

where K=1*K,, =1% L=1 L, =1_,.

The L operator given in this section defines a representation of the algebra
of L-operators [KS] on V (24) . This is rather a large space but contains some
series of sub/quotient representations. First, we can restrict (the contragradi-

ent of) this representation to the space of quasi doubly periodic meromorphic
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functions on the weight space h*. This can be considered as a generalization
of series a) in Sklyanin’s work [S]. Second, letting A to be a rational num-
ber we get a “cyclic” representations from this, which generalize the series
b) in [S], and suggest the generalization of the Kashiwara-Miwa’s solution of
the star-triangle equation. We hope to discuss these important aspects of our

L-operator elsewhere.
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