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Historically, neuroscience principles have heavily influenced artificial intelligence (AI), for

example the influence of the perceptron model, essentially a simple model of a biological

neuron, on artificial neural networks. More recently, notable recent AI advances, for

example the growing popularity of reinforcement learning, often appear more aligned

with cognitive neuroscience or psychology, focusing on function at a relatively abstract

level. At the same time, neuroscience stands poised to enter a new era of large-scale

high-resolution data and appears more focused on underlying neural mechanisms or

architectures that can, at times, seem rather removed from functional descriptions. While

this might seem to foretell a new generation of AI approaches arising from a deeper

exploration of neuroscience specifically for AI, the most direct path for achieving this is

unclear. Here we discuss cultural differences between the two fields, including divergent

priorities that should be considered when leveraging modern-day neuroscience for AI.

For example, the two fields feed two very different applications that at times require

potentially conflicting perspectives. We highlight small but significant cultural shifts that

we feel would greatly facilitate increased synergy between the two fields.

Keywords: artificial intelligence, neural-inspired algorithms, neuromorphic, deep learning, artificial neural network

INTRODUCTION

Neural-inspired artificial intelligence (AI) is based upon the fundamental assumption that brain
circuits have been optimized by evolution. While biological brains face different evolutionary
constraints compared to modern-day computers, it stands to reason that further exploration of
the brain’s underlying mechanisms and using these mechanisms to inform emerging approaches
to AI will capture aspects of cognition that are currently challenging for AI (see (Hassabis et al.,
2017), (Aimone, 2019) for in depth discussions). Correspondingly, notable advances in artificial
intelligence (AI), for example reinforcement learning [e.g., as used by AlphaZero, see (Silver
et al., 2018)], the Transformer network (Vaswani et al., 2017), and deep convolutional networks
(Krizhevsky et al., 2012), are based upon descriptions or theories of brain function. Currently, the
direct path for incorporating modern-day neuroscience (which is increasingly designed for more
detailed descriptions of brain circuits and mechanisms) into AI approaches is unclear, although the
numbers of efforts focused on this challenge are growing. This article describes differences between
the two fields that, if addressed, could significantly expand the path from neuroscience to AI to
ensure the continued growth of neural-inspired AI.
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How AI can best leverage modern-day neuroscience, and
correspondingly, how modern-day neuroscience can best inform
the field of AI remain open questions and active areas of
discussion. One confounding factor is that the brain can be
understood at multiple levels, all of which have impacted
AI [for recent reviews see (Yamins et al., 2014; Sinz et al.,
2019)]. At the phenomenological level (also referred to here
as function level), efforts to include additional brain-inspired
elements include attention (Mnih et al., 2014), episodic memory
(Blundell et al., 2016), continual learning (Kirkpatrick et al.,
2017), imagination (Thomee et al., 2007), and transfer learning
(Pan and Yang, 2010). At a more mechanistic level, efforts remain
centered on applying relatively standard training techniques to
hand-crafted architectures incorporating novel neural-inspired
elements [for example, see the incorporation of recurrence for
visual processing in (George et al., 2017, 2018; Nayebi et al.,
2018; Kar et al., 2019; Kubilius et al., 2019)]. Examples of
efforts to include biophysical detail at the single-neuron or
synapse level include spiking neural networks (Tavanaei et al.,
2019), neurogenesis (Draelos et al., 2017), spine stabilization
(Kirkpatrick et al., 2017), and context-dependent activation or
gating of neurons (Masse et al., 2018; Rikhye et al., 2018).
While there is certainly interest in incorporating additional
neural-inspiration at multiple levels, approaches for doing
so do not appear to be growing at the same pace as the
wealth of neurobiological data being produced by the broader
neuroscience community.

Identifying the appropriate “depth of understanding,” or level
of abstraction, for describing how neural circuits implement
cognition (or any other task) in a manner that facilitates
incorporation into an AI model is one of the greatest challenges
facing neural-inspired AI. In our opinion, a significant but
subtle challenge arises from differing perspectives between the
two fields, largely driven by the end-goal applications that
drive each field. Neuroscience has been pulled by funding
priorities toward a focus on identifying loci of dysfunction (i.e.,
in disease or disorders) for potential therapeutic targets. This
translates to a culture that emphasizes defining and describing
specific system components. AI applications, on the other
hand, require demonstrated improvements on performance on
a specific task. For neural-inspired AI, there is often a focus
on problems for which human performance still exceeds that
of computers (see “Challenges of bringing neuroscience to
artificial intelligence”). For such problems, AI culture is primarily
focused on understanding how a system produces a solution at
an algorithmic-level, rather than understanding the underlying
mechanisms or the biological neural architectures. In contrast to
neuroscience, AI research experiences almost no pull along the
form axis.

The view of these cultural differences is further complicated
by a seeming abundance of riches—the fact that there are
multiple levels across which the two fields may interact. Using
visual processing as an example to highlight the cultural
differences and differing foci between the two fields, we can
describe “levels” of research using three fundamental questions
to describe the impact of a particular research effort: (1) “What
is it?,” or form, is defined as understanding the specifics of

the components that comprise the neural circuit or neural
network. (2) “How does it work?,” or mechanism, is defined as
understanding how components of a network work together. (3)
“What does it do?,” or function, is developing the “higher-level”
description or abstraction of function. These three levels may be
mapped to Marr’s three levels for understanding an information
processing system, implementation, algorithm, and computation,
respectively (Marr, 1982); however here we have cast the levels
as questions to highlight the viewpoint of a researcher interested
in incorporating new information into models (whether for
neuroscience or AI).

We illustrate these differences of our above example in
Figure 1. As with Marr’s levels, although the three axes are drawn
orthogonally, we acknowledge that the axes are not completely
independent, as any one experiment can impact multiple axes.
For example, a combination of optogenetic labeling and large-
scale calcium imaging can be used to characterize the responses of
a specific subtype of neuron within a brain area.While describing
the spatiotemporal features of this type of neuron’s receptive field
is form, inferring the underlying connectivity and interactions
between cell types maps to the mechanism axis, and capturing
a more abstract description of the functional role of this subtype
within the larger population of recorded cells is aligned with the
function axis.

While mechanism and function are both relevant for
neuroscience, the drive for identifying therapeutic targets arising
from a need for biomedical applications results in a strong pull
predominantly along the form axis, as indicated by the red dashed
arrow. This is not to say that all neuroscience work is only aligned
along one axis. For example, the seminal work of Hubel and
Wiesel (1962, indicated by the red star) characterizing receptive
fields in visual cortex could be described as impacting two
different axes. We would consider the ongoing efforts to further
characterize responses and connectivity of various subtypes of
neurons in V1 [for example see (Jiang et al., 2015)] as oriented
along the form axis (what is it?), but the hierarchical model
of visual processing (vertical red arrow) as oriented along the
mechanism axis (how does it work?). The hierarchical model was
fairly abstracted; it could be argued that this level of abstraction
facilitated development of subsequent hierarchical models in
AI, for example (Fukushima, 1980) neocognitron. Indeed, while
many of the new tools becoming available today are specifically
designed to address the form of large-scale neural circuits (see
the next section, “Why neuroscience for artificial intelligence”),
they will produce data that will drive new models at both the
mechanism and function levels. Nevertheless, we would argue
that orientation toward the “what is it?” question will continue
to dominate, driven by the traditional applications of the field.

As with neuroscience, AI encompasses efforts aligned with
all the axes described in Figure 1, but the drive for improving
the performance on a specific task results in a significant pull
along different axes than neuroscience. Algorithm development
cannot proceed without some attention to mechanism (as
well as implementation, see “Specialized hardware: agonist or
antagonist?”), and often critical breakthroughs in performance
arise from developing architectures. For example, the
neocognitron (based upon Hubel and Wiesel’s hierarchical
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FIGURE 1 | Cultural differences between AI and neuroscience. Example studies from visual processing in AI (blue) and neuroscience (red) are projected onto three

different “axes” of impact: answering the question of “what is it?” (form or hardware), answering the question of “how does it work?” (mechanism or representation),

and answering the question of “what does it do?” (function or theory). Neuroscience results tend to be communicated answering the “what is it?” or “how does it

work” questions. As an example, Hubel and Wiesel’s work (red star) characterizing simple and complex cells feeds continuing efforts along the form/hardware axis

(horizontal solid red arrow) to further classify characterization of cell types in visual cortex. At the same time, Hubel and Wiesel’s hierarchical model of visual processing

has had significant impact along the mechanism/representation axis (vertical solid red arrow). Neuroscience experiences a strong application pull along the “what is it”

axis, for example to identify therapeutic targets of circuit dysfunction (dashed red arrow). AI research tends to focus on “what does it do?” and “how does it work?”

Here, development of Fukushima’s neocognitron (blue star) into convolutional networks is illustrated as impact along the mechanism/representation axis (vertical solid

blue arrow), while their application to image classification is impact along the function/theory axis (solid blue arrow). The dominant application pull on AI is to produce

“human-cognition-like” computations (dashed blue arrow).

model and indicated by the blue star), arguably inspired the
architecture of convolutional networks [CNNs, (LeCun et al.,
1998)], representing advancement along the mechanism axis.
Nevertheless, answering the question of “what does it do?”
(or perhaps put more colloquially, “what is it good for?”) is
critical for applying a model to any application space. Training a
convolutional network (e.g., for image classification, blue arrow)
is application along the function axis. Similarly, implementing
“human-like” computations (dashed blue arrow), like those
thought to underlie cognition, while likely drawing from both
mechanism and form, primarily will be oriented along the
function axis.

Our intent is not to suggest that a bias along any one
axis is more valuable than along another. However, the
differences in Figure 1 are illustrative of why the two fields can
sometimes be perceived as diverging, even as the fundamental
research questions seem well-aligned. It is worth noting that
neuroscience’s general bias toward form and AI’s general bias

toward function may perpetuate a disconnect between the
two fields, as each field will be predisposed to build upon
advances framed along dominant biases of the field. For example,
identification of a new type of interneuron (as would arise from
further characterization of types of neurons in visual cortex) will
not be readily incorporated into an existing machine learning
approach or AI model without an accompanying functional
description of the role of the interneuron within the biological
neural network. Conversely, a generalized functional description
of inhibition in an ANN may not be readily explored in
a biological brain without some indication of form, or how
that function might be implemented using known biological
components (i.e., different interneuron subtypes).

In spite of cultural differences, there are indications that
cross-pollination between the fields is thriving. Within the
field of visual processing, it has been encouraging to see
analogies drawn between the architecture of high-performing
neural networks and visual cortex (e.g., George et al., 2017,
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2018). Moreover, such comparisons have been extended to
demonstrate that task-optimized deep convolutional networks
appear to utilize representations similar to the single-unit
responses of neural circuits contained within the ventral visual
processing pathway (Khaligh-Razavi and Kriegeskorte, 2014;
Yamins et al., 2014; Güçlü and van Gerven, 2015; Cadena et al.,
2019). Several recent studies have proposed deep networks,
trained to predict best stimuli for individual neurons, as
validatable models of V1 (Walker et al., 2019) as well as higher-
order areas of visual processing (Bashivan et al., 2019; Ponce
et al., 2019). These works are examples of hybrid research,
a product of both fields, that could facilitate development of
a common language.

While a common language that spans both fields may
be an ambitious goal, acknowledgment of differing priorities
(or application drivers) may be the first step to subtle shifts
in perspective that could do much to address the cultural
differences between fields. For neuroscience, communicating
new neuroscience knowledge on a function level will do much
to ensure impact on AI. Similarly, a slight broadening of
receptiveness of AI to differing levels of neuroscience would
greatly facilitate adoption of new neuroscience knowledge.
These shifts in focus are small but significant and would
do much to increase the synergy between neuroscience and
artificial intelligence.

WHY NEUROSCIENCE FOR ARTIFICIAL
INTELLIGENCE?

Neuroscience is in the midst of a technology development era
that is producing new tools for exploring the brain’s circuits with
higher resolution and in greater detail than previously possible.
First, recent advances in both electron microscopy (EM) imaging
(e.g., Zheng et al., 2018), combined with novel reconstruction
algorithms (e.g., Januszewski et al., 2018) are already resulting
in new connectomes of unprecedented scale (e.g., Li et al.,
2019), with even larger and higher-resolution volumes on
the horizon. Potentially combined with other techniques such
as the bar-coding of individual neuronal connections (Zador
et al., 2012), neuroscience is now positioned such that a whole
mammalian brain connectome is within reach. Second, and
complementary to the large-scale connectomic datasets on the
horizon, neuroscience also continues to advance large-scale
calcium imaging (see (Girven and Sparta, 2017) and (Lecoq
et al., 2019) for reviews) and multi-unit recording techniques,
increasing the range of physical and temporal scales with which
populations of neurons may be recorded (see (Stevenson and
Kording, 2011) for a timeline). Third, a broader range of
tools are now available for simultaneously identifying, recording
and manipulating multiple populations from different cell-types
[see (Huang and Zeng, 2013; Simpson and Looger, 2018)].
Detailed descriptions of interactions between different cell-types,
including different temporal scales of plasticity, are essential for
describing neuronal “motifs” that potentially constitute canonical
computations in the brain (Douglas et al., 1989; Harris and
Shepherd, 2015).

It would seem natural for the technological advances
described above to drive a new and potentially revolutionary
generation of neural-inspired ANNs. As increasingly accurate
computational graphs of neurons become available, the question
of how the brain is wired is no longer the limiting factor for
developing novel and potentially revolutionary neural-inspired
ANN architectures. Neuroscience now has the capability to
record from the same populations of identifiable neurons for
lengths of time that were previously unfeasible. Combined with
advances in data analytics, neuroscience can now provide access
to a range of neural temporal dynamics that were previously
inaccessible. For example, the recent work by Trautmann et al.
(2019) suggests that neural population dynamics can be extracted
from silicon probe recordings without pre-requisite spike sorting,
thus alleviating the data-processing bottleneck facing multi-
unit recording techniques. These technological advances are
particularly relevant from an algorithmic development point of
view because the ability of a static graph (without corresponding
knowledge of the temporal dynamics) to inform or constrain a
computational neural model has historically remained unclear,
as it is likely that temporal dynamics play a central role
in biological neural processing. Nevertheless, the path from
increased biological detail associated with large-scale recordings
to a reduced form appropriate for incorporation into an artificial
neural network is unclear. A neural model that reduces the
temporal dynamics of these large-scale recordings to a more
canonical form, even if at the expense of some biological detail,
would do much to alleviate the disconnect (even if underutilizing
the richness of the large-scale neurobiological data).

It is worth noting that Hubel and Wiesel’s hierarchical model
of simple and complex cells in visual cortex was a significant
influence behind the development of the neocognitron, widely
regarded as the predecessor to CNNs, even in the absence of
anatomical validation. When considering the cultural differences
raised in the previous section, one might even argue that
the impact of Hubel and Wiesel’s work was facilitated by
the lack of anatomical validation as the hierarchical model
was made accessible by its simplicity. Today computational
neuroscience, driven by the availability of new large-scale
datasets, is increasingly focused toward high throughput
methods for data (Gouwens et al., 2019) to provide meaningful
constraints for primarily mechanistic models. These efforts are
synergistic with experimental neuroscience, as model validation
often identifies critical gaps in knowledge. However, a more
functional angle, potentially continued in parallel to the
more detailed neural modeling, would do much to facilitate
impact on AI.

CHALLENGES OF BRINGING
NEUROSCIENCE TO ARTIFICIAL
INTELLIGENCE

While AI researchers are highly motivated to explore novel
approaches (e.g., neural-inspired architectures), that interest can
fade without a relatively quick demonstrated impact on accepted
benchmarks. In spite of the foundational work of Fukushima
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(1980) and LeCun et al., 1998), it was not until AlexNet won the
ImageNet Large-Scale Visual Recognition Challenge (Krizhevsky
et al., 2012) that CNNs rose to the level of popularity that they
enjoy today. While it can be argued that the rise of CNNs was
driven as much because availability of GPUs and large-scale data
sets made training them tenable for the first time, their success
and continued popularity is a significant example of how a
concept, drawn from neuroscience and framed within the correct
context (in this case tractability of training the network combined
with success on a benchmark) can drive significant advances. It
was the clear demonstration of function (successful application of
the architecture) that drove the current and relatively widespread
use of convolutional networks today.

In the case of AI, function is often defined by application.
Broadly speaking, computer tasks may be divided into two
categories: those for which a computer is currently better
suited, and those for which a human is currently better suited.
The latter category of tasks is an obvious desired application
space for neuroscience, and AI has traditionally focused on
improving performance in these areas while continuing to
leverage capabilities for which a computer is better suited (e.g.,
extracting patterns from large corpuses of data). One example
of a such a task is learning from a single or a few examples
(zero-, one-, or few-shot learning). State-of-the-art algorithms
currently achieve modest success at these tasks (Snell et al., 2017),
but still remain unable to meet or beat human performance. A
second, potentially related, task is extrapolating information to
new examples (semi-supervised learning). Humans are able to
recognize examples of a class of stimuli, even if presented in
very different environments, after exposure to only a few labeled
examples of that class with several unlabeled examples of that
class and other classes. Developing algorithms that are capable
of self-labeling new examples of a class remains a challenge
for computer science [although see (Arjovsky et al., 2019)],
presenting a real limitation to data processing algorithms as the
process of labeling data is relatively expensive (and therefore
large labeled datasets are not always readily available). Although
these tasks are seemingly trivial for human beings, computer
algorithms struggle to match human performance.

Demonstrating the value of looking to neuroscience for
novel solutions to these tasks is particularly challenging, as
neuroscience does not currently understand how the brain
performs these tasks on the levels toward which neuroscience
is biased. It is reasonable to assume that AI will be most
strongly impacted by efforts aligned with the function axis
(see Figure 1). Models of human behavior and human memory
exist in a functional form, but they are relatively disconnected
from studies at the neural circuit level (Krakauer et al., 2017).
On one hand, this application space presents an opportunity
for neural-inspired AI, as neuroscience will likely utilize
approaches spanning all of the previously mentioned levels
(form, mechanism, and function) to answer these questions.
On the other hand, opportunities for neuroscience to impact
this axis in the near future are constrained by the fact
that most neuroscience tools available today are designed
for exploring the form and mechanism of neural circuits
(as previously discussed).

One practice that facilitates re-framing neuroscience form
or mechanism data into a functional description appropriate
for impacting AI is considering the functional context of
the neural circuit (or single neuron) within the brain when
assessing potential impact on AI. The majority of successful
developments in neural-inspired AI (included those reviewed
in this article) follow this practice. At the same time, we
would encourage a broader perspective when considering which
areas of neuroscience to draw from. A continued or increased
focus on drawing from human cognition runs the risk of
maintaining the disconnect between AI and neuroscience as the
needed conversion from mechanistic and form descriptions to
more functional ones may be slow to mature. In addition, our
observation (discussedmore fully in the next section) is that there
are many opportunities for neuroscience to impact AI that will be
overlooked without a broadening of the perceived “impact space”
for neuroscience within AI.

CROSSING THE CLEFT

Currently a theoretical “gap” exists between neuroscience
and AI as researchers seek to establish the “right” level of
abstraction for translation between the two fields. While, as
previously mentioned, the incorporation of neuroscience into AI
development is often viewed as, at best, a superficial treatment
of the understanding of neural circuits that neuroscience has
to offer, neuroscience could do much to broaden its impact on
AI through relatively small efforts to describe new discoveries
in a function-oriented manner (answering the question of
“What does it do?” in Figure 1), in addition to the form-
and mechanism-oriented manners that are more common in
the general neuroscience community. It is also worth noting
that in some cases translation to a functional description may
require loss of fidelity to the underlying mechanisms and
form. Indications are that a cultural shift within computational
neuroscience to describe brain theory in a more “machine-
learning-accessible” manner has already begun [see recent papers
by (Marblestone et al., 2016; Richards et al., 2019)]. As already
described, neuroscience has also begun to adopt machine
learning approaches to further develop computational models of
neural systems, as seen for the visual system (Khaligh-Razavi and
Kriegeskorte, 2014; Yamins et al., 2014; Güçlü and van Gerven,
2015; Bashivan et al., 2019; Cadena et al., 2019; Ponce et al., 2019;
Walker et al., 2019).

In addition to better aligning with the goals of AI, from
our viewpoint the impact of neuroscience on AI can also be
extended by taking a broader view when considering what neural
systems are relevant for fostering the development of neural-
inspired AI (in particular those with more mature functional
models derived from mechanistic and form data). One example
of such an area is the exploration of visual processing in non-
mammalian (but still strongly visual) animals. Recent work has
identified neurons in the dragonfly visual system that exhibit a
form of predictive gain modulation, in which visual responses
to predicted prey-position are selectively enhanced (Wiederman
et al., 2017), even in the presence of a second potential
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target (Wiederman and O’Carroll, 2013). Phenomenologically,
the selective gain modulation of visual responses in the
dragonfly system has obvious parallels with selective visual
attention observed in macaque visual cortex (McAdams and
Maunsell, 1999; Treue and Martínez-Trujillo, 1999). While
the underlying neural circuitry and specific mechanisms are
still under investigation in both the non-human primate and
dragonfly systems, the relative simplicity of the dragonfly system
has facilitated development of function-level models of the
dragonflymechanism [for example (Wiederman et al., 2008)] and
subsequently development of dragonfly-inspired target tracking
algorithms (Bagheri et al., 2015, 2017b) implemented on robotic
platforms (Bagheri et al., 2017a).

A second example of the potential continued impact of
neuroscience toward AI is the continued incorporation of
elements of spatial coding as observed within the hippocampal
formation into navigation algorithms.When place fields (O’Keefe
and Dostrovsky, 1971) and head-direction cells (Taube et al.,
1990a,b) were first characterized, they were accompanied by
hypothetical functional descriptions of their roles in spatial
coding. While abstract, these proposed functions facilitated their
incorporation into robot navigation systems (Arleo and Gerstner,
2000) as well as SLAM (simultaneous localization and mapping)
algorithms [e.g., RatSlam, (Milford et al., 2004)]. More than
a decade later, the field continues to draw from neuroscience
discoveries [(Zhou et al., 2018), (Kresier et al., 2018a,b)],
including grid cells (Fyhn et al., 2004; Banino et al., 2018; Cueva
and Wei, 2018), and 3-dimensional representations (Yu et al.,
2019). While it remains to be seen whether the hippocampal
spatial code is representative of a more general framework
for cognition (Bellmund et al., 2018; Hawkins et al., 2019),
advances in our understanding of the spatial navigation system
of animals have clearly had continued impact on development of
artificial brain-inspired navigation algorithms, with longer-term
implications for autonomous or semi-autonomous navigation
systems that will rely on some form of AI.

While these neural systemsmay be viewed as esoteric by some,
the successes in these areas suggest that a common language
(or at least a common perspective) is already being developed,
even if restricted to certain applications in which neuroscience
has had a demonstrated but limited impact. While it may be
debatable whether modern neuroscience is poised to unravel the
neural circuits underlying cognition, these examples illustrate
that there are several avenues by which continued application
of neuroscience to AI will (1) continue to grow communication
between the two fields and (2) foster the development of neural-
inspired AI application areas that could eventually form the
foundation for more general neural-inspired AI.

SPECIALIZED HARDWARE: AGONIST OR
ANTAGONIST?

One potentially complicating aspect to looking to a broader range
of neural systems for impacting AI is the potential increase in
computational cost. As discussed previously, the availability of
modern high-performing computing platforms such as GPUs are

a significant factor in the recent success of deep neural networks.
While ideally neural-inspired algorithms should not be biased by
the dominant computer architectures of the time, in practice the
cost of applying an algorithm to particular application domains
will be a consideration. For this reason, aspects of neuroscience
that can be incorporated into a deep learning framework have
an advantage for impacting AI in that they can be run on high-
performing technology. While using a deep learning framework
as a “best-practices” guideline may be beneficial in the short-
term to foster communication between neuroscience and AI, an
unfortunate side effect is that many neural systems with much to
offer (for example the hippocampus) may contain architectures
that are rather distinct from the hierarchical processing models
that inspired deep neural networks.

For this reason, when looking more broadly within
neuroscience to inspire AI, it will be useful to also look
beyond current computing technologies to what technologies
may be on the horizon. Recent years have seen an increased
prioritization of neuromorphic hardware solutions for AI
applications (Esser et al., 2015; Blouw et al., 2019; Severa et al.,
2019) in addition to their long-proposed use for neuroscience
modeling (Indiveri et al., 2011; Furber, 2012). Programmable
neuromorphic hardware remains a somewhat immature
technology compared to GPUs and CPUs, however there are
now a number of technologies such as IBM’s TrueNorth (Merolla
et al., 2014) and Intel’s Loihi chips (Davies et al., 2018) that
have sufficient neurons to implement a variety of neural circuits,
especially some of the more succinct circuits (e.g., the dragonfly
system discussed above). The trade-off for this programmability
is potential increased difficulty of implementation. Until these
newer neuromorphic hardwares mature, it is likely that GPUs
and other accelerators will continue to prove most effective for
simple neural networks.

The effectiveness of GPUs at accelerating deep neural
networks in some ways demonstrates that initial costs (for
example increases in required computational power) may be
acceptable when initially exploring new areas of neuroscience
for impacting AI. Although neuromorphic technologies have
demonstrated computational advantages, these advantages
typically come with restrictions on the set of neural capabilities
(e.g., leaky integrate-and-fire neurons) that may be effectively
implemented. From our perspective, the neuromorphic hardware
community is, in many respects, still searching for clear evidence
of what aspects of the brain should be incorporated in hardware.
Should potential computational advantages be demonstrated,
there will be considerable interest in pursuing aspects of neural
realism that can fully realize these advantages.

SUMMARY

We have discussed certain cultural differences between
neuroscience and AI that, from our viewpoint, hinder
cross-pollination between the two fields. While such cross-
pollination is, in itself, a challenging proposition, much
of these differences are driven by diverging priorities and
perspectives rather than technical obstacles. Neuroscience is
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primarily focused toward understanding form, the components
of biological neural circuits, and mechanism, how neural
circuits work. New neural data, driven by a stream of new
tools for dissecting neural circuits, will be described from this
perspective. AI, on the other hand, seeks to increase performance
(with respect to an objective function), especially on tasks
where human performance still exceeds that of computer
algorithms. While it is natural to look to neuroscience to
inform the next generation of AI algorithms, AI requires
information in a more abstracted language than neuroscience
typically produces. Incorporation of neural elements be
biased toward functional descriptions of neural circuits and
the brain.

There are indications that there is already a cultural shift
within neuroscience to communicate results on a more function-
oriented level (although the fields have yet to arrive at an agreed-
upon “common language”). Our view is that this slight shift
in perspective will do much to facilitate translation of new
neuroscience knowledge to AI algorithms. We also suggest that
neuroscience impacts on AI could be enhanced by broadening
the current perspective regarding what areas of neuroscience are
relevant to AI. We have pointed to two example neural systems
(spatial navigation in the hippocampus and visual processing
in insects) that have been successful at maintaining an open
pipeline to impacting ANN development and implementation
in robotic systems and that, in our view, demonstrate the
potential of “alternative” neural systems to inform AI. History
(and hindsight) will eventually reveal the “right” source of
inspiration and the correct language with which to communicate.
Our current view is that there is tremendous potential for the
two fields to work together synergistically, potential that can

only be realized through broader exploration of a wide range
of possibilities.
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