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Abstract

The kinetic Monte Carlo method and its variants are powerful tools for modeling materials at the

mesoscale, meaning at length and time scales in between the atomic and continuum. We have completed

a 3 year LDRD project with the goal of developing a parallel kinetic Monte Carlo capability and ap-

plying it to materials modeling problems of interest to Sandia. In this report we give an overview of

the methods and algorithms developed, and describe our new open-source code called SPPARKS, for

Stochastic Parallel PARticle Kinetic Simulator. We also highlight the development of several Monte

Carlo models in SPPARKS for specific materials modeling applications, including grain growth, bubble

formation, diffusion in nanoporous materials, defect formation in erbium hydrides, and surface growth

and evolution.
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1 Overview

Materials inherently interact with their environment at the atomic scale, e.g. via mechanical, chemical, or

electrical means. However, their response is usually manifest and observed at the continuum scale. Kinetic

Monte Carlo (KMC) is a powerful computational tool for spanning these length and time scales. Critical

events, such as diffusive hops or reactions, are defined and rate equations can be specified in terms of

external fields, such as electric potential or solute concentration, in order to capture the model’s relevant

physical underpinnings. Efficient KMC algorithms can then select events one after another with the correct

probabilities and update the state of the system, without the need to follow detailed atomic motion and spend

CPU time waiting for events to occur. However the classic KMC algorithm is inherently serial, and thus

KMC has often been limited in the size of systems and timescale of phenomena it can model.

The goals of this LDRD project were three-fold:

• To develop new parallel KMC algorithms that remove this bottleneck for specific kinds of KMC

models.

• To build a flexible code incorporating these algorithms to enable a suite of KMC models to be imple-

mented.

• To use the new code to model several systems important for materials science applications at Sandia,

at a scale that has not previously been possible.

The remainder of this report is structured as follows. In Section 2 the KMC method is described. In Sec-

tion 3 our new Monte Carlo code SPPARKS and its basic functionality and design are discussed, focusing

on the flexibility it offers for adding new models to the code. The heart of a KMC model is the algorithm for

selecting events. In Section 4, three such algorithms are detailed, all of which are implemented as options

in SPPARKS. In Section 5 the basic algorithms by which SPPARKS can run KMC models in parallel are

highlighted, and some performance data is given for Potts grain growth models run on a large parallel ma-

chine. In Section 6 SPPARKS accuracy and performance is compared to that of a serial KMC code MESO.

Since MESO was developed independently, this comparison serves as a “verification” of the SPPARKS

implementation of the KMC model.

Section 7 is the largest section of the report. It contains 7 sub-sections, each of which describe a different

physical model, its implementation in SPPARKS, and highlight simulation results which illustrate what the

KMC method is capable of modeling. These applications are for abnormal grain growth in 7.1, nanoporous

metals in 7.2, a solid-on-solid model for surface diffusion in 7.3, defect formation in erbium hydrides in 7.4,

bubble formation in nuclear fuels in 7.5, the sintering of a nuclear fuel pin in 7.6, and thin film deposition

and growth in 7.7.

A brief summary of future development still needed in SPPARKS as well as KMC modeling projects at

Sandia that intend to use the code is given in Section 8.

Finally, we note that SPPARKS is available for download as an open-source code from this WWW site:

www.sandia.gov/∼sjplimp/spparks.html. The web site includes HTML documentation as well as input

scripts and pictures and movies of example calculations, some of which are discussed in this report.

2 Kinetic Monte Carlo

This section contains a paper that appeared in the journal “Computer Methods in Applied Mechanics and

Engineering”, titled “The kinetic Monte Carlo method: Foundation, implementation, and application”. It

was authored by Corbett C. Battaile and published in vol 197, pages 3386-3398, in 2008.
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It provides a good overview of the kinetic Monte Carlo (KMC) method and its utility for materials sim-

ulations. Two additional recent papers which also give nice descriptions of KMC and related MC methods

are [16, 83].

The entire text of the CMAME paper is included here, except for the appendices. We note that the

simulations presented in this paper were not performed with SPPARKS (discussed next in Section 3), but

with a serial KMC code developed independently by Corbett, prior to the start of our LDRD.

2.1 Abstract

The Kinetic Monte Carlo method provides a simple yet powerful and flexible tool for exercising the con-

certed action of fundamental, stochastic, physical mechanisms to create a model of the phenomena that they

produce. This manuscript contains an overview of the theory behind the method, some simple examples to

illustrate its implementation, and a technologically relevant application of the method to model the refine-

ment of grains during polycrystalline thin film deposition. The objective is to provide an introduction to the

method and its basics, and to present useful examples that might be followed to achieve its implementation

for solving practical problems.

2.2 Introduction

Nature is rife with fundamental processes and elementary mechanisms that, when viewed at the appropriate

scale, behave stochastically (or, at least, appear to). For example, the thermal vibrations of atoms in a

potential energy “well” appear to be random. Therefore, the details of atomic diffusion are essentially

stochastic, since diffusion is in some sense simply a result of the extreme vibrational excursions that push

atoms from one energy well to another. And yet the collective behavior of large numbers of diffusing

atoms can, on average, be quantified deterministically. When an atom is diffusing on an atomic lattice,

its trajectory from jump to jump is random (appropriately weighted according to the energetic landscape

that the atom “sees”), but Fick’s second law of diffusion provides a deterministic equation relating the

temporal composition gradient to the Laplacian (i.e. the divergence of the spatial gradient) of the average

composition when many atoms are diffusing simultaneously. This leads to a second salient point, namely

that statistically sufficient ensemble- or time-averaged behaviors of collective stochastic phenomena can be

described deterministically.

In certain simple cases, the average (i.e. deterministic) behavior of fundamentally stochastic phenomena

can be derived analytically, and closer examination is not required. Unfortunately, problems of technological

and/or scientific interest are rarely so simple. Direct observation is sometimes possible, e.g. when compo-

sition analysis is performed to measure diffusion profiles, but this rarely provides insight into the nature or

the details of the fundamental mechanisms that produced the observed behavior. A variety of theoretical

and computational approaches exist for exercising fundamental processes in order to predict collective phe-

nomena. For example, molecular dynamics (MD) is a particularly powerful technique that uses interatomic

energy functionals to compute forces between atoms, and then solves Newton’s equation of motion to pre-

dict the atom trajectories. However, these trajectories include (of course) atomic vibrations, and thus MD

is usually not able to address phenomena that require treatment on much larger scales. The finite element

method (FEM) lies at the other extreme and is invaluable for solving problems in solid mechanics, heat

transport, and other fields, but its inherently continuum nature makes it ill-suited in situations where atomic

or microstructural details are important.

The Monte Carlo (MC) method provides a relatively general approach for exploring the thermodynamic

or kinetic behavior of sequences of arbitrary fundamental transitions. The approach offers considerable flex-

ibility in the nature and specification of this fundamental process reflects, and the MC method can therefore
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span potentially arbitrary spatial and temporal scales and is useful in an extremely wide range of applica-

tions, from the behavior of the stock market [39] to the formation of clusters of galaxies [53]. The Kinetic

Monte Carlo (KMC) method is a variant specifically designed to assemble kinetic and procedural infor-

mation about potentially arbitrary, fundamental processes and mechanisms, and to then examine stochastic

sequences of them in order to model the temporal evolution of a complex system. Because these funda-

mental processes can be expressed on time and length scales that are much larger than those associated with

atomic vibrations, the KMC approach can straightforwardly access regimes between MD and the FEM, e.g.

when atomic-scale details are important but operate on a time scale beyond the reach of MD. In addition, the

algorithmic foundation of KMC is stochastic by its very nature, making it well suited to describing the many

process that behave likewise, e.g. atomic diffusion or chemical reaction. Elementary mechanisms that occur

on very small scales can be condensed into coarser-scale processes that encompass the collective action of

many sub-processes, e.g. KMC is used to model atomic diffusion without actually resolving the details of

atomic vibration, or to simulation grain growth on time and length scales well in excess of those involved in

the transport of atoms across a grain boundary.

This paper presents on overview of the basic underpinnings of KMC; a set of simple examples of the

method’s implementation in models of vacancy diffusion, grain growth, and film deposition; and a practical

application of the method toward elucidating a potential mechanism for grain refinement during the deposi-

tion of polycrystalline thin films. The intent is to provide an introduction to the KMC method, and a basic

overview of its utility and implementation.

2.3 Method

2.3.1 History

The Monte Carlo method as a means for solving scientific problems was first proposed in 1946 by Stan

Ulam [79] in his correspondences with John von Neumann. Since then, it has been used to model a wide

variety of phenomena, and has evolved into several well-established variants. In its earliest forms, the MC

method was essentially an efficient means for numerically estimating complex integrals. In that context, it

could be operated simply by computing the energies of a model system in randomly selected states, and

weighting the likelihood of realizing each state according to the Boltzmann energy equation.

In 1953, Nicholas Metropolis et al. [55], while working with Ulam shortly after the method’s incep-

tion [56], improved on this simple scheme by biasing the state’s selection itself, and weighting each state

equally. In this manner, the calculation wastes less time exploring configurations that are unlikely to exist.

Bortz, Kalos, and Lebowitz [9] introduced yet another rephrasing of the MC method, and termed the new al-

gorithm the N-Fold Way (NFW). The NFW algorithm chooses and implements random configurational tran-

sitions with unit probability (i.e. unconditionally), and the choices are biased according to each transition’s

likelihood (i.e. rate in a kinetic context) so that more likely transitions are chosen more often. The stochastic

component of the NFW algorithm is also manifested in the time incrementation (which can thereby vary at

each MC step). Independent discoveries of the NFW algorithm were presented by Gillespie [30], and more

recently by Voter [82] (with a minor difference in the implementation of time incrementation).

These and other Kinetic Monte Carlo methods have been applied to a very wide range of applications,

and the reader is referred to a selection of the numerous texts and review articles on this topic [4, 7, 17, 33,

38, 41, 43, 45, 47, 84].
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2.3.2 Formulation

There are several other KMC variants in common use today, and the present paper focuses on a kinetic

adaptation [5, 35, 82] of the NFW [9, 25, 30]. At its core, the kinetic version of Monte Carlo, i.e. the KMC

method, stochastically explores sequences of transitions in the state of a model system, selecting links in

the chain of events according to the rates of the transitions. In cases where the transitions are thermally

activated, e.g. atomic diffusion, the transitions themselves are diffusional hops, and rates of the transitions

are parameterized by activation energies, attempt frequencies, and temperature, usually via an Arrhenius

equation. A KMC model must be parameterized by at least the rates of each type of transition, and the

change (usually local) that each transition induces in the model system. For example, in the case of vacancy

diffusion (by which most atomic self-diffusional processes are enabled), the diffusion rates are governed by

an Arrhenius equation,

rD = Doexp(−
Q

kT
) (1)

where rD is the average rate of a vacancy hop, Do is an exponential prefactor, Q is the activation energy for

diffusion, k is Boltzmann’s constant, and T is the temperature. These kinetic parameters can vary depending

on the details of the local atomic configuration, but in the simplest case all the diffusion events are similar,

and there is only one possible value for the rate even though individual hops can occur at various locations

and in different directions. In order to specify these locations and directions precisely, the underlying lattice

and the allowed types of diffusion must both be specified, e.g. hops to any of the six nearest-neighbor sites

on a simple cubic lattice.

Even when only one type of event is possible, multiple realizations of it will generally be possible in any

given state of the model system. For example, on a two-dimensional, simple-square lattice containing a

single vacancy that can jump only to a nearest-neighbor lattice site, only one type of event is possible, but

four realizations of it are available, one for each of the vacancy’s four nearest atom neighbors.

The particular KMC variant addressed here maintains a “running tally” of all the possible individual

realizations of the allowed event types. (These individual realizations are hereafter termed simply “events”.)

Each of the events has an associated rate, although their values might all be the same. The state of the model

system is evolved by choosing one event stochastically, according to the events’ rates, via

m−1
∑

i=1

ri ≤ ρ1

N
∑

j=1

rj <

m
∑

k=1

rk, (2)

where i, j, and k are summation indices denoting the individual events, ri is the rate of the event i, m is

the site of the chosen event, N is the total number of possible events throughout the model system, and ρ1

is a random number evenly distributed over the range [0, 1). Selecting an event according to Eq 2 ensures

that faster events have a greater probability of being chosen than do slower ones. Once an event is chosen,

the model system is modified at the particular location corresponding to the specific event, according to the

nature of the transition. For example, in the case of vacancy diffusion, the chosen event will correspond to a

particular vacancy hopping in one of the available directions on the atomic lattice, and so the vacancy must

be swapped with the atom in the destination lattice site. In the proximity of the event, the system will be

modified (otherwise the event is trivial), and the running tally of events, i.e. the event list, must be modified

accordingly. In some cases, this could even result in a change to the total number, N , of possible events.

The simulation time is then advanced by

∆t = −
ln(ρ2)
∑N

j=1 rj

, (3)
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where ∆t is the time that has elapsed between the previous event, i.e. the one prior to m, and the event m
itself; ρ2 is a random number evenly distributed over the range (0,1); and N is the total number of possible

events before event m has transpired. This procedure represents a single time step in a KMC model. At

the conclusion of the time step, once the event list has been updated accordingly, the procedure is repeated

to realize the next step. Note that, unlike in the Metropolis algorithm [55], an event is always realized at

each and every time step, and the conditional event acceptance that’s inherent in the Metropolis scheme is

manifested by ρ2 in Eq 3.

2.4 Implementation

The KMC algorithm described above is relatively straightforward in principle, and much of the work is

involved in describing realistic model systems and kinetic parameters for input to the model. The procedural

details of the latter are well beyond the scope of the present discussion, and the reader is referred to Appendix

A (in the journal version of the paper) for a presentation of the method’s implementation toward a trivial

model system. In this section, three simple yet practical examples of such an implementation are presented

to further clarify the process: vacancy diffusion, grain growth, and thin film deposition.

2.4.1 Vacancy Diffusion

Consider a rigid, simple-square lattice containing a random distribution of vacancy defects. Assume that a

vacancy can diffuse to any of the four nearest non-vacant sites, and that the attempt frequency and activation

energy are the same for all hops. Then the rate of a diffusional hop is

rD = Doexp(−
Q

kT
) if ∆E ≤ 0; rD = Doexp(−

Q + ∆E

kT
) if ∆E > 0, (4)

where ∆E is the change in the system’s energy due to the hop. If the energy of the model system is JB,

where J is the bond energy and B is the total number of bonds, then ∆E = nJ , where n is the change (either

positive or negative) in the number solid-solid bonds due to the diffusion hop. Note that the bond energy,

J , is generally negative, otherwise the material that occupies the lattice would not be thermodynamically

stable as a solid phase.

For the starting system configuration in Fig 1a, i.e. a simple square lattice with periodic boundary con-

ditions imposed in both directions, containing 128x128 sites with 10% vacancies, any pair of adjacent light

(vacancy) and dark (solid) sites can exchange in a vacancy “hop.” If the temperature and bond energy

are chosen such that kT = −J , the activation energy for diffusion assumed to be Q = 0, and the at-

tempt frequency taken as Do = 1, then the average rate at which an lone vacancy hops to a nearby site is

r1 = 1 ∗ exp(0) = 1 according to Eq 4. (Note that the diffusion of a lone vacancy does not change the

system’s energy.) Two lone vacancies create eight dangling atomic bonds total, whereas a pair of adjacent

vacancies creates six. Therefore, not only is the rate of dissolution of a vacancy pair (i.e. the diffusion of

one of the vacancies away from the other) equal to r2 = 1 ∗ exp(−2) = 0.135335 according to Eq 4, but

also a vacancy pair is energetically favorable and will tend to persist, as indicated by the difference between

the rates, r1 and r2. For this reason, the evolution of the system in Fig 1a, as depicted in Fig 1b-1f, results

in the formation of vacancy clusters, i.e. pores, which coarsen until all that remains is a pair of large pores.

(Given enough time, the smaller of the two pores would shrink and eventually disappear, while the larger

would grow and persist.)

The images in Fig 2 contain a progression similar to that in Fig 1, except that the simulation temperature

is kT = −2J . Notice that the vacancies again coarsen to form a large pore, and that because the temper-

ature is higher, the large pore is surrounded by the thermodynamic equilibrium concentration of individual
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Figure 1: Vacancy diffusion and pore formation at a simulation temperature of kT = −J , where J is the

bond energy, at simulation times of a) 0 mcs, b) 1,000 mcs, c) 10,000 mcs, d) 100,000 mcs, e) 1,000,000

mcs, and f) 10,000,000 mcs. Light gray pixels are vacancy sites, and dark pixels are solid.

vacancies and very small pores. Furthermore, the single, large pore contains the thermodynamic equilibrium

concentration of solid particles in what essentially amounts to a gas phase. An intermediate case is achieved

in Fig 3, where kT = −3J/2, and an extreme case in Fig 4 where kT = −3J such that the equilibrium

vacancy concentration is near the total and very little vacancy clustering occurs.

It is clear from Eq 4 that at higher temperatures, the rate of vacancy pair dissolution is higher whereas

the rate of vacancy pair formation is unchanged (because it decreases the energy). Therefore, vacancies

congregate more slowly at higher temperatures simply because their constituent vacancies are able to break

away faster. This is not only the source of the relatively high concentrations of lone vacancies and small

pores in Fig 2 and Fig 4, but also the reason that pore growth is faster at lower temperatures as shown in Fig

5. (Interestingly, although it is not shown here, the migration of large pores is faster at higher temperatures

for exactly the same reason.) Note that this simple vacancy diffusion example is equivalent to the coarsening

of any two phases, even when both are solid.

2.4.2 Grain Growth

Now consider another simple square lattice containing a random distribution of many different species rang-

ing from 1 to 2,048, as in Fig 6a where each different species is shaded differently on a gray scale such

that species 1 is black and 2048 is white. Assume that periodic boundary conditions are again imposed,

and that any site can change its species (i.e. “flip”) to assume the identity of one of its nearest neighbors.

Also assume that the attempt frequency is the same regardless of the detailsails of the flip, that there is no

activation energy for any flip, and that the bond energies between like and unlike species are J = 0 and
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Figure 2: Vacancy diffusion and pore formation at a simulation temperature of kT = −2J , where J is the

bond energy, at simulation times of a) 0 mcs, b) 300 mcs, c) 2,000 mcs, d) 10,000 mcs, e) 60,000 mcs, and

f) 800,000 mcs. Light gray pixels are vacancy sites, and dark pixels are solid.

J = kT , respectively. In this case, it is clear that like bonds are preferred over unlike. Since Q = 0, the rate

of flipping a lattice site to assume a neighbor’s species is

rG = A if ∆E ≤ 0; rG = Aexp(−
Q + ∆E

kT
) if ∆E > 0, (5)

where A is the activation energy, taken to be A = 1 for this example; and ∆E is the difference in the

energies before and after the flip. As reflected in Fig 6b-6f, the system evolves toward a configuration

containing only two species, i.e. a bicrystal. (Given sufficient time, one of the two grains in Fig 6f would

disappear, leaving only one single crystal.) Clearly the size of the grains increases on average, i.e. the grains

grow as evident in Fig 6, and the kinetics of grain growth are shown in Fig 7 where the average grain area

increases approximately linearly in time (in the so-called scaling regime) according to Ā = 0.0037t1.15.

2.4.3 Film Deposition

Consider next a simple cubic lattice containing 128x128x128 sites, whose sites are empty, except along

one face where the sites are filled by a solid substrate material. This is depicted in Fig 8a, where only the

substrate is shown. Assume that periodic boundary conditions are imposed in the two directions parallel to

the substrate’s surface, and that any empty site that has at least one solid nearest-neighbor is a candidate

for deposition, i.e. the transition of the empty site into a solid adatom species. Since this transition always

implies the creation of new solid-solid bonds, it will always decrease the system’s energy, and if the transition

is barrierless then its rate is a constant representing the deposition flux. Assume further that an adatom can
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Figure 3: Vacancy diffusion and pore formation at a simulation temperature of kT = −3J/2, where J is

the bond energy, at simulation times of a) 0 mcs, b) 100 mcs, c) 2,000 mcs, d) 10,000 mcs, e) 200,000 mcs,

and f) 5,000,000 mcs. Light gray pixels are vacancy sites, and dark pixels are solid.

Figure 4: Vacancy diffusion and pore formation at a simulation temperature of kT = −3J , where J is

the bond energy, at simulation times of a) 0 mcs, b) 3,000 mcs, and c) 300,000 mcs. Light gray pixels are

vacancy sites, and dark pixels are solid.

diffuse into any empty nearest-neighbor site, as long as the adatom will have at least one solid-solid bond

after it diffuses and does not leave any unbonded adatoms behind. The rate of adatom diffusion obeys Eq

4. Assume that the deposition rate is 0.001, the attempt frequency for adatom diffusion is Do = 1, the

adatom-adatom bond energy is J = −2kT , and the adatom-substrate bond energy is J = −kT . As evident

in Fig 8b-8d, the early stages of deposition involve adatoms arriving at the substrate, diffusing along it, and
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Figure 5: Average pore area as a function of Monte Carlo time for the vacancy diffusion examples in Fig

1-4, at simulation temperatures of kT = −J , −3J/2, −2J , and −3J , where J is the bond energy.

Figure 6: Grain growth at simulation times of a) 0 mcs, b) 200,000 mcs, c) 600,000 mcs, d) 2,000,000 mcs,

e) 6,000,000 mcs, and f) 2,000,000,000 mcs. Different gray levels represent different grains.

15



Figure 7: Average grain area as a function of Monte Carlo time for the grain growth example in Fig 6. The

dotted line is a function fit to the data in the range t = 200 - 10,000 mcs.

clustering into islands to reduce the system’s energy by maximizing the number of solid-solid bonds. The

islands’ aspect ratios are particularly high because an adatom’s bond to another adatom is stronger than that

to the substrate, such that adatoms are driven to mound (i.e. Stranski-Krastanov-like growth) rather then wet

the substrate (i.e. layer-by-layer growth). Eventually the substrate becomes completely covered by adatoms,

and subsequent adatom deposition and diffusion occurs on the existing and growing film. A signature of the

adatom island morphology is retained during the early stages of the deposition process. The island evolution

is plotted in Fig 9, which demonstrates that the island count increases quickly during the very earliest stages

of deposition, and then peaks and decreases as the islands coalesce, until finally only one “island” (i.e. the

continuous film) remains.

There are a number of obvious extensions to this example that could alter the growth behavior in a po-

tentially favorable manner, e.g. implementing a more meaningfule atomic lattice, or enumerating multiple

species of adatoms (as in the grain growth example) to model the deposition of a polycrystalline thin film.

In the next section, these extensions and several others are applied to this basic film growth example in order

to address a technologically relevant problem.

2.5 Application: Grain Refinement During Thin Film Deposition

More realistic applications of the KMC method are often much more complex than the examples provided

above, largely because the fundamental mechanisms that conspire to produce technologically relevant pro-

cesses are more varied and elaborate. For example, when electrodepositing metal films, it is not uncommon

to introduce various chemical agents that modify the film’s microstructure. In particular, because unaided

electrodeposition often produces films with relatively large, columnar grains, so-called “grain refiners” are

used to encourage the nucleation of new crystals and thereby produce smaller, more equiaxed grains [13].

In the present application, this process is modeled phenomenologically by considering thin film deposition
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Figure 8: Heteroepitaxy of adatoms, where the adatom-adatom bond is twice as strong as the adatom-

substrate bond. Light gray spheres are adatoms, and dark gray spheres are substrate atoms.

Figure 9: The number of islands as a function of time for the film deposition example in Fig 8.

(though not specifically electrodeposition) both with and without the codeposition of an agent that promotes

the nucleation of new grains (i.e. secondary nucleation). The treatment of this agent, and of polycrystalline

deposition in general, adds substantially more complexity to the idealized example provided above.

As in the simple example of film deposition described above, the computational domain in this case

consists of a lattice of atomic sites that can assume one of several species: empty (i.e. vacuum), substrate,

adatom, or grain refiner. However, in the present application the sites conform to a face-centered cubic

lattice, rather than simple cubic, to more closely represent commonly-used metals like copper and nickel.

Adatoms and grain refiners can deposit into any empty site that has at least two solid (i.e. substrate, adatom,

or grain refiner) nearest-neighbors. Similarly, adatoms can diffuse into any empty site that has at least two

solid nearest-neighbors. (Grain refiners are assumed to be immobile.) When a grain refiner deposits into
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an empty site on the growing surface, it occupies the sites itself, as well as all the empty nearest-neighbors

of the site. When an adatom deposits or diffuses, it is assigned a spin in the range 1 to 2,048 (as in the

grain growth example), as follows. If the adatom deposits into a lattice site with no other adatom nearest-

neighbors, it is assigned a random spin. If it diffuses into a lattice site with no other adatom or grain refiner

nearest-neighbors, its spin remains unchanged. If it deposits or diffuses into a lattice site that has at least

one other adatom nearest-neighbor (but no grain refiners see below), it is assigned the spin owned by the

largest number of its nearest-neighbors. (In case of a tie, one the winners is chosen at random.) When an

adatom diffuses into an empty site with at least one grain refiner nearest-neighbor, the adatom is assigned

a random spin to represent the nucleation of a grain, and the new spin is retained until the adatom diffuses

away from the refiner.

Figure 10: Deposition of a polycrystalline film without a grain-refining agent, at simulation times of a) 0

sec, b) 50 sec, c) 300 sec, d) 2,600 sec, e) 7,800 sec, and f) 16,250 sec. Different gray levels represent

different grains.

Consider the FCC substrate in Fig 10a. Assume that kT = 0.25eV , the rate of adatom deposition is 0.01

1/sec, the attempt frequency of adatom diffusion is 10 1/sec, the bond energy between any two atoms is -0.8

eV, and the activation energy for adatom diffusion is 0.6 eV. (These parameters are based on data for nickel

depositing onto copper, despite the rather high temperature.) If no grain refiners are introduced (i.e. their

deposition flux is zero), then any and all grains in the film must be attached to the substrate, as depicted in

Fig 10 which shows the deposition of approximately 16,0000,000 atoms. If, on the other hand, the rate of
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Figure 11: Deposition of a polycrystalline film with a grain-refining agent, at simulation times of a) 0 sec,

b) 30 sec, c) 150 sec, d) 1,500 sec, e) 6,000 sec, and f) 12,000 sec. Different gray levels represent different

grains.

grain refiner deposition is assumed to be 0.0001 1/sec, the film’s microstructure develops as depicted in Fig

11. Clearly the relatively low-flux deposition of grain refiners servers to decrease the average grain size and

to promote equiaxed, rather then columnar, grain structures. This same effect is observed experiments [13]

of LIGA Ni electrpdeposition in nickel-sulfamate (without grain refiners) and Watts (with grain refiners)

baths. Furthermore, these results suggest that grain-refining agents serve to promote secondary nucleation

of new grains by attaching to the growing film and influencing the crystallographic orientation of mate-

rial that deposits near them, and that this is a viable pathway to achieving the grain refinement observed

experimentally [13] in electrodeposited Ni films.

2.6 Conclusion

The Kinetic Monte Carlo (KMC) method models the temporal evolution of a system by stochastically ex-

ploring sequences of fundamental transitions. The length and time scales accessible to the KMC method

are limited only by the nature of these transitions. The basic approach is relatively simple to implement, yet
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very complex problems can be addressed if the implementation is informed by the appropriate phenomenol-

ogy. In addition, the method is amenable to a wide range of applications, including diffusion, microstructure

evolution, and deposition. tion.

3 SPPARKS Simulator

As part of this project, a new parallel Monte Carlo code, called SPPARKS [75], for Stochastic Parallel

PARticle Kinetic Simulator, was developed. It is an open-source code, freely available for download from

the SPPARKS WWW site at www.sandia.gov/∼sjplimp/spparks.html. The site also contains documentation,

example test problems, and pictures and movies of simulation output. SPPARKS is distributed under the

terms of the GNU Public License (GPL), which means the code can be used or modified however a user

wishes. The only restriction imposed by the GPL is on further distribution of the code; it must remain open

source.

SPPARKS is written in C++. It can be run on single-processor desktop or laptop machine, but for many

applications, can also be run in parallel. It will run on any parallel machine that compiles C++ and supports

the MPI message-passing library. This includes distributed- or shared-memory machines.

SPPARKS was written as a “framework”, with the goal of enabling new Monte Carlo models to be rapidly

implemented. Key elements of a new model, including a definition of “events”, their associated probabilities,

and how an event changes the state of the system, must be defined and written as C++ code by the user.

Other aspects of the simulation are handled by the framework. These include event selection according to

kinetic Monte Carlo (KMC) or equilibrium (Metropolis) Monte Carlo rules, partitioning the problem across

multiple processors, communicating information between processors, and output of snapshots of the system.

The hope was that this code structure allows a user to focus solely on the unique attributes that define their

model, and ignore other issues that are common to all models. It does mean, however, that the user must

write new code to create a new “application”. Unlike, for example, molecular dynamics simulators where

the collection of commonly-used modeling options is well-established and a package such as LAMMPS [44]

can implement them for the user, each user’s Monte Carlo model typically has new features and thus requires

new code. The mechanisms for adding a new application to SPPARKS are discussed below.

3.1 Options

SPPARKS defines 3 kinds of Monte Carlo models which can be implemented as “applications”. The first

two are motivated by materials modeling problems where events occur on a collection of spatial “sites”

where the sites can be stationary points on a lattice (an on-lattice model) or particles which move freely

in space (an off-lattice model). An example of an on-lattice application is Potts model grain growth. An

example of an off-lattice application is atomistic energy minimization via Metropolis MC. The third kind of

application is a general non-spatial model. SPPARKS currently has several on-lattice models, as described

in Section 7. It has two off-lattice models (for atomistic energy relaxation and surface growth), and also two

general models (for biochemical equations). The general models are included for completeness and as test

drivers for KMC solvers, but cannot be run in parallel, since they have no spatial component.

For on-lattice applications, SPPARKS provides a variety of 2d and 3d lattice styles (square, triangular,

cubic, fcc, bcc, diamond, etc), including a “random” style where lattice points are created at random lo-

cations in space and site-to-site connections are created within a user-specified cutoff distance. Arbitrary

lattice topologies can also be read in from a file.

On-lattice or off-lattice spatial applications can be run in one of three Monte Carlo modes, assuming the

application provides low-level methods that enable the particular mode; see Section 3.3 for more details.
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General non-spatial applications can only be run in the first of these Monte Carlo modes. See reference [16]

for an excellent description of these various MC variants.

The first mode is true kinetic Monte Carlo (KMC), also called non-equilibrium MC or rejection-free KMC

or the N-fold way or the Gillespie Stochastic Simulation Algorithm. Each site defines zero or more events it

can perform and associated probabilities. These can often be thought of as rates, associated with the crossing

of an energy barrier. The set of probabilities is stored within SPPARKS by a KMC “solver” which selects

the next event according to the KMC algorithm described in the papers of Sections 2 and 4. SPPARKS

implements all 3 of the KMC solvers described in the J.Chem.Phys. paper of Section 4: a linear-time,

log-time, and constant-time solver. The cost of choosing the next event from N possible events, where N in

this case is the number of sites, is O(N), O(logN), and O(1) respectively, for the 3 solvers. After the event

is selected, the application performs the event, and updates all affected probabilities, so that the next event

can be selected properly.

The second mode is rejection KMC (rKMC), also called null-event MC or non-equilibrium MC. As with

true KMC, each site defines a set of events if can perform with associated probabilities. It also defines a

null-event with a probability that brings the summed probability of events for that site to a value that is the

same for all sites. The event is “null” because if it is selected, nothing happens.

The advantage of rejection KMC over true KMC is simplicity. No list of probabilities for all sites need

be maintained and no KMC solver is required to select events from a global list. Instead, a site is chosen

randomly, and a second random number is used to select an event for that site, which may be the null-event.

Once the event is performed, there is no need to update the probabilities of all affected sites. That calculation

can be performed on a site-by-site basis once a site is selected.

The disadvantage of rejection KMC is that the aggregate probability of the null events for all sites may

be large, and thus there can be a high probability of no event occurring at each iteration of the algorithm,

which wastes CPU time. In particular, even if there are only a handful of high-rate events in the model,

all sites must define a large-probability null-event to insure the per-site probability is equal for every site,

which exacerbates the inefficiency. The trade-off between these effects and thus the relative speed of these

two MC modes is model-dependent. An application may choose to implement one or both modes.

Both the true and rejection KMC modes track the dynamic evolution of the system in a time-accurate

manner. This is because probabilities (rates) are computed and the event selection algorithm calculates a

timestep for each event’s occurrence.

A third Monte Carlo mode can also be implemented by an application, which is Metropolis Monte Carlo

(MMC), also called equilibrium MC or barrier-free MC. As with rejection KMC, a site is chosen randomly

as is a possible event for that site. No rate is assigned to the event; instead the energy change it induces in the

system is computed and the event is accepted or rejected via the usual temperature-dependent Boltzmann

factor.

The advantage of the Metropolis approach is that it offers great flexibility in defining and choosing events,

since there is no requirement to compute an event’s probability or to insure that the relative probability of two

different attempted events occurring is correct. Moreover, unphysical events, such as swapping the species

of two adjacent atoms or large-scale conformational changes or particle deletion/creation, can be performed.

Likewise, the relative frequencies for considering different kinds of prospective events can be altered at will,

so long as the constraint of “detailed balance” is observed, meaning that a) events are reversible and b) for

any two states A and B joined by an event, the product of population A times the A-to-B event frequency

should equal the product of population B times the B-to-A event frequency.

The disadvantage of Metropolis MC is that there is no accurate “time” associated with events, since rates

are what infer time dependence. Instead the Metropolis algorithm will evolve the system from the initial

state to a stationary distribution of states, corresponding to thermodynamic equilibrium at temperature T ,
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pressure P , etc. Often this distribution of states will be clustered around a local or global potential energy

minimum.

3.2 Parallelism

A parallel KMC algorithm (or rKMC or MMC algorithm) allows for events to be performed simultaneously

on multiple processors. As discussed in the following Section 5, strictly speaking, KMC is inherently a

serial algorithm, in that selection of a single event depends, in principle, on the current set of probabilities

for all events. Thus to enable parallelism, some approximation must be made. In SPPARKS, applications

with spatial dependence (on-lattice or off-lattice) allow for this approximation. The physical justification is

that an event in one location has minimal dependence on the state of the system far away, thus events can be

decoupled spatially.

SPPARKS exploits this idea in two steps. First, the spatial domain is partitioned across processors, so

that each processor owns the sites within its sub-domain and a small shell of surrounding ghost sites. Figure

12 illustrates this idea for a 2d simulation domain, split across a 5x4 grid of 20 processors. The dark lines

represent processor boundaries.

Figure 12: 2d domain partitioned for 20 processors (5x4) into sub-domains indicated by solid lines. Each

processor sub-domain is further sub-divided into sectors (4 quadrants in 2d, 8 octants in 3d). Each processor

can then perform events in its yellow sector without conflicting with other processors.

Note, however, that a processor still cannot perform events independently within its sub-domain with-

out coordinating with other processors. If two processors simultaneously performed events near a shared

boundary they could execute in a conflicting manner or with incorrect probabilities. E.g. two atoms could

hop to the same vacant site. The second step is to order events within a processor to avoid this conflict.

One method for doing this, only relevant for on-lattice applications and for the rejection KMC mode

described above, is to “color” the lattice in a checkerboard fashion across the entire domain. The coloring

is done in a manner that insures events on sites of the same color can be executed simultaneously without

conflict. The number of required colors depends on the lattice and the application. When this option is

selected in SPPARKS, a sweep over lattice sites consists of multiple stages, one per color. In between

stages, processors must communicate boundary site information so that neighboring processors can update

their ghost sites.
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A second, more general method for ordering events within a processor, is to sub-divide the sub-domain

into “sectors”, typically 4 quadrants in 2d or 8 octants in 3d. The yellow squares in Figure 12 are sectors

within each processor’s sub-domain. The idea is that each processor can perform multiple events within its

sector, without conflicting with events on other processors.

SPPARKS has several options for how to order events within a sector. For true KMC mode (see above), a

KMC solver is created for each sector. All events within the sector are stored by the solver and selected one

after the other via one of the KMC algorithms of Section 4. For rejection KMC or Metropolis mode, sites

can be selected in random or consecutive order; see the SPPARKS “sweep” command. Coloring can also be

applied within a sector to avoid dependency effects due to performing events sequentially on adjacent sites.

When using sectors, SPPARKS performs an outer loop over sectors, and an inner loop over events within

the sector. When moving to the next sector, inter-processor communication must be performed to update

boundary sites surrounding the sector. The amount of required information is smaller than in the coloring

strategy discussed above, where a processor updated all its ghost sites. The pattern of communication is

illustrated in Figure 13. The left side is one processor’s portion of Figure 12. It needs to update sites in

the dotted boundary region before performing events in the yellow quadrant. Each processor does this by

sending its own sites to 3 neighboring processors (7 in 3d) and receiving ghost sites from a different 3

processors, as shown on the right side. The unfilled sites within the dotted square are the sector boundary

sites which are already owned by the processor; they do not need to be communicated.

Figure 13: (Left) One processor’s 2d sub-domain with four quadrants. The yellow quadrant has a sur-

rounding dotted box of sites it needs, some of them ghost sites owned by other processors. (Right) Sites

the processor will send and receive in 3 exchanges (red, green, blue) in order to update the ghost sites

surrounding its yellow quadrant.

Note that while SPPARKS is performing events within a sector, the boundary region is effectively “frozen”;

the state of those sites does not change. This is one source of the approximation error being made to enable

parallelism. Additional sources of error are discussed in Section 5.

A related question is how many events should be computed in one sector, before moving to a new sector.

SPPARKS controls this by a time threshold. The KMC clock advances, event by event. Once the thresh-

old is reached, a new sector is selected, communication is performed, and the outer loop continues. The

appropriate choice of time threshold is a trade-off between accuracy and parallel performance. The smaller

the threshold, the less error accumulates due to frozen boundary sites. But more communication must be

performed for the same overall simulation time. Conversely, the larger the threshold, the larger the error, but

less communication is needed and thus parallel scalability is enhanced.
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Section 5 discusses an automated strategy, implemented in SPPARKS, for adjusting this time threshold

on-the-fly as a simulation runs, to balance these competing issues. Resulting parallel performance is also

given for a large grain-growth Potts model.

Finally, we note that SPPARKS supports a second form of parallelism. The set of P allocated processors

allocated can be used to perform a single simulation. But they can also be partitioned into M subsets, where

each subset has P/M or any number of processors, so long as the total processor count sums to P . Each

subset can then run an independent simulation simultaneously. This is managed by the input script, in which

variables can be defined that assign different parameters to different simulations, or loop over a large set of

input files. For example, with M = 10 subsets, a run could be launched to perform 500 simulations. Each

of the 10 subsets starts a simulation. Whichever finishes first launches the 11th simulation, etc, until all 500

are finished. This is a useful technique for performing many independent runs to generate good statistics or

to search a large parameter space.

3.3 Implementing New Models

SPPARKS is designed to allow new Monte Carlo models to the code. This is done by writing a C++ class

that is derived from one of 3 parent classes: a general App class, an on-lattice AppLattice class, or an

off-lattice AppOffLattice class. In each case the new child class inherits considerable functionality from the

parent class. It needs to provide a set of methods that define events and their associated probabilities. Details

are given in the on-line SPPARKS documentation. Here we illustrate with the list of methods needed for

on-lattice applications:

• site energy()

• site event rejection()

• site propensity()

• site event()

• input app()

Only the first method is required. It computes the energy associated with a site. For on-lattice applications

this is typically the Hamiltonian that describes the model. The site event rejection() method is required if

rejection KMC or Metropolis MC is to be performed. The site propensity() and site event() methods are

required if true KMC is to be performed. The former computes the probability for all events a site can

perform. The latter performs an event and updates the propensity of all affected sites. All of these methods

are invoked by the top-level iterators and solvers in SPPARKS when a simulation executes in a chosen mode

(KMC, rKMC, MMC) with a given parallel strategy (coloring, sectoring) and/or sweeping option (random,

raster, etc).

The last input app() method is optional. It allows an application to define extra application-specific input

commands that can be used in a SPPARKS input script. There are additional optional methods that can

be defined to invoke operations needed when the application is created or at the beginning stages of a

simulation.

Building SPPARKS with a new application is particularly simple. The user has created new “app foo.cpp”

and “app foo.h” files that implement the new “Foo” application. Simply placing these files in the SPPARKS

src directory, and typing “make machine” will include them in a new SPPARKS executable. This includes

the ability to invoke the new application from an input script via a command like
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app style foo option1 option2 ...

Other new features can be added to SPPARKS in a similar fashion, by writing a child class that derives

from a provided parent class and defines the appropriate methods. This includes “diagnostic” classes that

allow add-on computations to be invoked during a simulation (e.g. for statistics gathering), “solver” classes

that define KMC solvers, “pair” classes that define pairwise interatomic potentials for use with off-lattice

models, and “command” classes that define new input script commands.

4 Solvers

The heart of the kinetic Monte Carlo method is the algorithm which selects each event from a list of events,

based on their relative probabilities. The SPPARKS code implements 3 such algorithms, all of which are

described in the following paper, which is included here in its entirety. This paper appeared in the “Journal

of Chemical Physics”, and was titled “A Constant-Time Kinetic Monte Carlo Algorithm for Simulation

of Large Biochemical Reaction Networks”. It’s authors were Alexander Slepoy, Aidan P. Thompson, and

Steven J. Plimpton. It was published in vol 128, page 205101, in 2008.

Although this article discusses the group-based algorithm in the context of biological networks, it can

also be applied to materials modeling problems, such as those discussed in this report.

4.1 Abstract

The time evolution of species concentrations in biochemical reaction networks is often modeled using the

stochastic simulation algorithm (SSA) [D. Gillespie, J. Phys. Chem, 81, 2340 (1977)]. The computational

cost of the original SSA scaled linearly with the number of reactions in the network. Gibson and Bruck

developed a logarithmic scaling version of the SSA which uses a priority queue or binary tree for more

efficient reaction selection. [M. Gibson and J. Bruck, J. Phys. Chem. A 104, 1876 (2000)] More generally,

this problem is one of dynamic discrete random variate generation which finds many uses in Kinetic Monte

Carlo (KMC) and discrete event simulation. We present here a constant-time algorithm, whose cost is

independent of the number of reactions, enabled by a slightly more complex underlying data structure.

While applicable to kinetic Monte Carlo simulations in general, we describe the algorithm in the context of

biochemical simulations and demonstrate its competitive performance on small- and medium-size networks,

as well as its superior constant-time performance on very large networks, which are becoming necessary to

represent the increasing complexity of biochemical data for pathways that mediate cell function.

4.2 Introduction

The metabolic, regulatory, and signaling pathways in biological cells are often represented by biochemical

networks involving reactions between proteins, genes, and other molecular species. The response of such

networks to perturbation is a ubiquitous modeling problem in computational biology. Simulations of the

response track the time-dependent concentrations of individual species. Continuum versions of the models

can be formulated as sets of coupled ordinary differential equations and integrated by standard methods.

In cases where the concentrations of some species are small, stochastic effects impact the behavior of the

system [1].

In 1976, Gillespie developed the stochastic simulation algorithm (SSA) to model these networks via

Monte Carlo methods, in a way that correctly samples the dynamic probability distribution of possible

reactions [19,29]. Derived from the chemical master equation, the algorithm evolves the system one reaction

at a time, choosing the specific reaction to perform, advancing time by an appropriate interval, and updating
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the probability distribution of future reactions to reflect the outcome of the selected reaction. The method is

widely used to model biochemical networks (the original two papers have been cited over 1500 times), and

to analyze the effects of stochasticity within the small reaction volumes of cells [11].

With rapid growth in experimental data characterizing biochemical interactions, researchers simulate

ever-larger reaction networks [1, 8, 18, 23, 54, 64, 65, 68, 80, 87], where a network represents the interac-

tions between biochemically reactive molecular species in and around the cell. The nodes of the network

are biochemical species with concentrations; the edges are the relationships implied by the reactions, with

edge weights corresponding to reaction rates. Currently, the largest protein interaction network [2] known

to the authors contains 18,000 proteins and 44,000 interactions.

Note that each bound state of two or more molecules is typically counted as a separate “species” in

formulations of these networks, though alternate methodologies have been proposed as discussed below

[24, 50]. Thus, if the combinatorial richness of protein complex formation is included, network sizes can

grow exponentially, since even a relatively small number of proteins which bind together can exhibit great

variety in complexation and post-translational modification, with the enumeration of possible states for a

single receptor complex reaching 106 to 108 states [37]. Estimates of average connectivity in such networks

are as high as 38 interactions per protein [88]. The kinetic rate constants associated with biochemical

reactions span many orders of magnitude. For example, fast enzymes operate at ∼ 105/sec, while slow

enzymes operate at 2/sec or slower [3, 48]. These characteristics define the size and other properties of the

network which produces a probability distribution of reactions that must be sampled by the SSA in order to

accurately model biochemical network dynamics.

The computational cost of the original SSA to perform a single reaction scaled as O(N), i. e. linearly

in N , the number of reactions in the network. Since the time increment per reaction also tends to shrink

with increasing N , such scaling limited the size of networks that could be efficiently simulated. Gibson and

Bruck [28] proposed an alternate implementation of the SSA which scales as O(log2 N), enabling much

larger networks to be modeled. Other optimizations have also been proposed, including pre-ranking the

list of reaction probabilities from large to small [15], which allows a sequential search to outperform a

logarithmic search for some probability distributions and small networks.

A variety of enhancements to the SSA have also been developed to enable its use for different problems.

For example, much work has been done [14,31,32,66,67,86] to address the issue of stiffness of the dynam-

ical systems embodied in biological networks, and extend the timescale over which the SSA can be used,

while bounding the errors induced by multi-timescale approximations. To address the issue of exponential

growth in the number of possible reactions due to protein complexation, rule-based approaches have been

developed [24,50], which limit the number of reactions by generating new ones only as needed during a sim-

ulation as specific reactants are produced. Properties of the new reaction (e.g. its rate constant) are inferred

from properties of its reactants, limiting the amount of information that must be stored. Depending on how

reactions are selected, the computational cost in these approaches can depend on the number of molecules

currently present in the simulation, rather than the number of possible reactions [20, 90]. Computationally,

this can be a win when the number of molecules is smaller than a very large list of possible reactions.

In this paper, we do not address these enhancements directly. Rather we note that they are all built on top

of some version of the SSA at their core. Thus improving the scalability of the SSA itself could benefit any

of these approaches.

All of the algorithms discussed thus far solve the generalized problem of random variate generation (RVG)

from a dynamic discrete probability distribution. The generated variate determines what “event” takes place

in the next time increment. “Dynamic” means the distribution changes each time an event occurs. For

biochemical networks, the “event” is a reaction, and the system is dynamic because the occurrence of a

reaction changes the concentration of various species (its reactants and products) and hence the probabilities
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for other reactions to occur at the next iteration. In this more general context, RVG is a well-studied problem.

Devroye [21] provides a classification scheme for RVG and describes a rich compendium of algorithms,

including all of the event-selection algorithms commonly used in SSA implementations. Efficient RVG is

also a key kernel in discrete-event and kinetic Monte Carlo (KMC) simulators which model phenomena as

diverse as factory scheduling (operations research) or grain growth and chemical vapor deposition (materials

science). It is worth noting that the classic KMC algorithm for choosing events and the associated timestep,

known as the n-fold way or BKL algorithm [10], is in fact equivalent to the SSA, though it was formulated

independently.

In this paper, we adapt a particular RVG algorithm known as Composition and Rejection, which has been

developed and enhanced in [26, 34, 63], and apply it to the SSA. It is well-suited to the simulation of large

biochemical networks, because its scaling is O(1), i. e. the computational cost to perform a reaction is con-

stant, independent of N . This surprising result requires only two assumptions be met, both of which we

argue in later sections, are reasonable for biochemical networks. The first is that the ratio of maximum to

minimum probability for any two reactions is bounded. The second is that the average number of other reac-

tions directly coupled to each reaction (products of one are reactants of others) does not grow continuously

as large numbers of new reactions are added to the network.

In the remainder of the paper, we briefly describe the original SSA, the widely-used Gibson/Bruck en-

hanced algorithm, the new constant-time algorithm and its implementation details. We compare the com-

putational cost of the logarithmic and constant-time algorithms on a synthetic test suite, showing the new

algorithm to be competitive even for small networks, and to perform significantly faster as the network

grows to large numbers of reactions.

4.3 Linear Time Algorithm

Consider a collection of molecules of different chemical species in a volume V . The initial count of

molecules of each species i is ni, so that molar concentrations are ci = ni/(NAV ), where NA is Avo-

gadro’s number. The species interact via a set of N chemical reactions. The nth reaction can be written in

familiar form as

rn
∑

i=1

Rn
i

kn−→

pn
∑

i=1

Pn
i

where kn is a reaction rate constant, Rn
i is a reactant molecule of a particular chemical species, and

similarly for product molecules Pn
i . The number of reactants rn on the left side of the equation can be

limited to 0, 1, or 2 without loss of generality, while the number of products pn can be 0, 1, or any number.

The N reactions are “coupled” in the sense that products of each reaction can be reactants of others. The

computational task is to evolve the species concentrations ci over time, assuming the volume is a well-stirred

reaction chamber, where each molecule is equally likely to encounter any other molecule.

The continuum formulation of this problem converts reactions to ordinary differential equations (ODEs)

and integrate the set of coupled ODEs forward in time, where continuous concentrations are the variables

of interest. As an alternative, Gillespie proposed the SSA, which treats individual molecules discretely,

and showed it was rigorously equivalent to simulating the tome evolution of the chemical master equation

formulated for the system of reacting molecules and, in the limit of large numbers of molecules, to the

continuum formulation as well [19, 29].

In the SSA, the system evolves one reaction at a time, changing the counts of reactant and product

molecules appropriately, and thus the associated species concentrations. Which reaction occurs next, and

the time at which it occurs, are chosen using random numbers and probabilistic rules that ensure accurate
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sampling. In the SSA, a “propensity” is computed for each reaction which is proportional to its probability

of occurrence relative to other reactions. The propensity is knNAV for a zeroth-order reaction, n1kn for

a first-order, and n1n2kn/(NAV ) for a second-order reaction, where n1 and n2 are the molecular counts

of the reacting species, and the input kn values have units of molarity/sec, 1/sec, and 1/molarity-sec for

zeroeth-, first-, and second-order reactions respectively.

With these definitions, the “direct” SSA is outlined in Figure 14. A “first-reaction” version of the SSA

was also discussed by Gillespie and shown to be exactly equivalent. Its scaling properties are the same as

discussed here. Note that as presented in Figure 14, the following values must be pre-computed before the

first iteration: pi = the propensity for each reaction and ps = the sum of pi for all N reactions.

(1) Generate two random numbers r1 and r2

(2) ∆t = 1
ps

ln( 1
r1

)

(3) Find the smallest m such that r2ps <
∑m

i=1 pi

(4) Perform mth reaction, incrementing reactant/product counts

(5) Compute propensity pi of each reaction

(6) ps =
∑N

i=1 pi

Figure 14: A single iteration of the original SSA, the Gillespie stochastic simulation algorithm, with O(N)
scaling in the number of reactions N .

Two random numbers are used per iteration, each sampled from a uniform distribution bounded by 0 and

1. The first is used to compute a time increment in step (2). The second is used to pick a reaction in step

(3). Conceptually, step (3) can be thought of in the following way. Each propensity represents a short line

segment of length equal to pi. If these segments are concatenated, the resulting long segment has length ps.

If a random point along this long segment is chosen, step (3) determines which short segment the point falls

inside of. Step (4) updates molecular counts due to reaction m. Steps (5) and (6) compute new propensities

resulting from changed molecular counts, in preparation for the next iteration.

As originally proposed by Gillespie, step (3) scales as O(N) with the number of reactions N , using the

following approach. Sum the N propensities in order from 1 to N , adding each in turn, continuing until the

the pm term causes the accumulating sum to exceed r2ps. Step (4) scales as O(1) since we assume each

reaction has a small bounded number of products. As written, steps (5) and (6) also scale as O(N).

In the nomenclature of random variate generation, step (3) “generates” a random variate from a dynamic

discrete probability distribution (the set of propensities), and steps (5) and (6) “update” the distribution.

Thus the scaling of the original Gillespie SSA is O(N) (linear) in both its “generation” and “update” times.

However, a simple enhancement improves the scaling of the “update” to O(1) (constant). If we assume each

chemical species occurs as a reactant in a small bounded number of reactions (a plausible assumption for

biochemical networks), then the number of propensities that need to be updated in step (5) is also small and

bounded, i. e. O(1). The sum of step (6) can be similarly updated in O(1) time, yielding an overall “update”

scaling of O(1).

The idea of only updating propensities for affected reactions was formalized as a “dependency graph” by

Gibson and Bruck [28], though others may have implemented similarly efficient forms of steps (5) and (6)

before this paper. Reactions are nodes of the graph representing the biochemical network and a directed

edge from node i to j exists if a product of reaction i is a reactant of reaction j. Storing such a dependency

graph enables a straightforward implementation of an O(1) version of steps (5) and (6).

Another optimization of the direct method, proposed in Cao et. al. [15], is to pre-order the set of propensi-
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ties so that large values appear at the beginning of the list. Then the accumulating sum in step (3) is likely to

exceed r2ps quickly, yielding a small m. Cao et. al. argue this pre-ordering is feasible for some biochemical

networks and can be re-computed periodically as concentrations change, leading to a faster algorithm.

We note that when N is small, the number of required updates (although fixed) can be close to N . Thus an

algorithm whose update scaling is constant is a good choice even if its generation cost scales linearly. Hence

the original SSA performed satisfactorily in a computational sense until the size of simulated biochemical

networks grew larger. This motivated the algorithm of the next section.

4.4 Logarithmic Time Algorithm

The key advance of the Gibson/Bruck version of the SSA was to convert it from an algorithm with linear

generation time and constant update time to one that is logarithmic in both generation and update time, thus

enabling large networks to be simulated more efficiently [28]. The paper mainly focused on enhancements

to the first-reaction version of the SSA yielding a “next-reaction” method, but enhancements to the direct

SSA were also proposed. The resulting scaling is the same for both algorithms; we discuss the enhanced

direct SSA here, which we refer to as SSA-GB.

The SSA-GB algorithm is outlined in Figure 15. It has the same sequence of steps as in Figure 14.

Steps (3) and (6) now use a binary tree so that random variate generation and the update of the distribution

scale more efficiently. Note that step (5) is now the O(1) update discussed in the previous section using a

dependency graph, as suggested by Gibson and Bruck.

(1) Generate two random numbers r1 and r2

(2) ∆t = 1
ps

ln( 1
r1

)

(3) Search binary tree for smallest m such that r2ps <
∑m

i=1 pi

(4) Perform mth reaction, incrementing reactant/product counts

(5) Compute propensity pi of affected reactions

(6) Percolate changed propensities up binary tree, yielding ps =
∑N

i=1 pi

Figure 15: A single iteration of SSA-GB, the Gibson/Bruck stochastic simulation algorithm, with O(log2N)
scaling in the number of reactions N .

A binary tree is used to store the set of N reaction propensities, assuming N is a power of 2. Each propen-

sity is a “leaf” in the tree. Pairs of propensities (siblings) are summed to a parent value, stored at a “branch”

location in the tree. Pairs of parent values are summed iteratively at the next level (grandparents) until a

single “root” value results which is ps, the sum of all N propensities. The resulting tree has log2 N levels.

Since N − 1 partial sums are stored, the entire tree can be stored in 2N memory locations. Generalization

to a tree where N is not a power-of-two is straightforward, e. g. by padding the list of leaves with zeroes.

Step (3) can now be performed in a logarithmic number of operations, yielding an algorithm whose

generation time scales as O(log2 N). Begin at the root of the tree with a search value s = r2ps. If s is less

than the left child value pl, branch to the left keeping s as the search value, else branch to the right using a

new search value s = s− pl. This operation is applied successively at each of the log2 N levels of the tree,

until a specific leaf is arrived at. This is the mth leaf of step (3).

Similarly, in step (6), the effect of each changed propensity on the summed ps can be computed in a

logarithmic number of operations. First, the appropriate leaf value is changed, then its parent value (changed

value + sibling value) is re-computed. Then the grandparent value is re-computed and so forth until the root
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value is re-computed. This operation is performed once for each changed propensity (the number of which is

small and bounded); thus, the overall scaling of the update operation is also now logarithmic, i. e. O(log2 N).

The overall logarithmic scaling of the Gibson/Bruck enhanced SSA algorithms (both next-reaction and

SSA-GB) results in a large performance improvement over the linear time method for networks with even

a few dozen reactions. Hence these algorithms are currently widely used in many biochemical network

modeling codes.

4.5 Constant Time Algorithm

All the algorithms of the preceding sections are discussed (from a RVG perspective) in Devroye’s com-

pendium [21]. Methods linear in generation time and constant in update time (the original Gillespie SSA)

are presented in chapter 3.2.3 (Inversion by Sequential Search). The Cao et. al. optimization [15] is de-

scribed in the same chapter (Inversion by Sequential Search with Reorganization). Methods logarithmic in

both generation and update time (SSA-GB) are discussed in Chapter 3.3.2 (Inversion by Binary Search). For

these methods, Huffman trees are proposed to further reduce the generation time, but this does not change

the fundamental logarithmic scaling behavior.

For better performance on networks with a very large number of reactions N , we turn to a class of methods

called Composition and Rejection (CR) algorithms (chapter 2.4) that are constant in both generation and

update time, i. e. their O(1) scaling is independent of the number of reactions.

The rejection idea is illustrated in the left panel of Figure 16. Consider a set of N reaction propensities,

listed along the x-axis. The y-axis height of each bar represents the propensity for that reaction. If we draw

a rectangle that bounds the N vertical bars, then a valid algorithm for randomly choosing a reaction is as

follows. Let the height of the bounding rectangle be pmax. Pick a uniform random integer i from 1 to N .

Pick a second uniform random number r from 0 to pmax. If pi < r, then reaction i is selected. If not,

the selection is “rejected” and the algorithm is repeated. Thus, in the figure, point A would be rejected,

while point B would select reaction 8. Effectively, this algorithm iterates until a point inside one of the

bars is selected, using two random numbers at each iteration. Note that the cost of selecting a test point

is independent of N . If the set of bars covers a high fraction of the bounding rectangle’s area, the average

rejection count per selection will also be small.

Now imagine the set of N propensities are first grouped by their propensity values, as illustrated in the

right panel of Figure 16. In this case, 3 groups from pmin to pmax are used. The first group (reactions 5,6)

contains propensities ranging from pmin to 2pmin, the second group (1,3,7,9) from 2pmin to 4pmin, and

the third group (2,4,8) from 4pmin to pmax. The selection of a reaction can now be done efficiently via

an algorithm composed of 2 stages (hence the “composition” aspect of the CR algorithm). The first stage

selects a group. Let G be the number of groups. If the total propensity of all reactions in a group is pg and

the total propensity of all reactions is ps =
∑G

g=1 pg, then this requires one random number and a linear

scan or binary search of the G values, as discussed in the preceding two sections. Once a group is selected,

the reaction within the group is chosen via the rejection procedure, using a rectangle that bounds only the

reactions in that group, as illustrated for the second group in the figure. The key point is that by choosing

the group boundaries as cascading factors of 2 (pmin, 2 ∗ pmin, 4 ∗ pmin, etc), we have guaranteed the area

covered by the bars of each group’s reactions is greater than half the area of the group’s bounding rectangle.

Thus, on average, selection of each reaction will require less than two iterations of the “rejection” portion

of the CR algorithm.

The two stages together constitute the “generation” portion of the CR algorithm. Its scaling is O(1),
independent of N , if the number of groups G is also independent of N . We now argue why this is a valid

assumption for biochemical networks. Clearly, for a set of reactions, there is a pmin which can be computed

from the propensity formulas for the zeroeth-, first- and second-order reactions, assuming only one molecule
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Figure 16: Composition and Rejection algorithm for random variate generation. A reaction is selected from

a set of reaction propensities (left) by picking random points (A,B) from a bounding rectangle until a point

inside a vertical bar (B) is found. Grouping the propensities by their magnitude (right) makes rejected points

less likely.

of each reactant exists in the volume V . Note that reactions with propensity p = 0 need not be included as

possible selections. Similarly, one can bound the maximum number of reactant molecules of any species

by physical constraints or knowledge of the reaction network. For example, only so many molecules of a

given species will be present in a cell. Thus the maximum propensity pmax for the set of reactions is also

computable from the reaction rate constants ki and the maximum molecular counts. The largest number of

groups possible is then Gmax = log2(pmax/pmin), though many fewer will likely be required when the SSA

model executes. In a biochemical sense, adding new reactions to the model does not change G, assuming

their rates are in the same range as those of previous reactions.

G can also be bounded by practical considerations. If pmax is computed, propensities below a cho-

sen threshold value of pmin could be discarded, since statistically speaking, they will not occur frequently

enough to impact the network dynamics. For example, if reactions with propensities a billion times smaller

than pmax are discarded, then G is bounded at 30. Alternatively, pmin can be computed, and groups added

on-the-fly as pmax grows during a simulation. If G grows too large, a larger pmin can be used for future

simulations of the same network. In practice, G remains small (around 10-20) for networks we have mod-

eled. We also note that even if G grows slowly with increasing N , this only affects the generation time for

the algorithm, which scales as log2(G) using a binary search of the group propensities. As shown in the

next section, the generation cost is considerably smaller than the update cost, which is independent of the

number of groups.

Using the CR algorithm for reaction selection leads to a constant time algorithm that is exactly equivalent

to the original Gillespie SSA. We refer to this new algorithm as SSA-CR; it is outlined in Figure 17. Before

the first iteration, reactions are assigned to groups, the summed propensities for each group pg are computed,

as is the total summed propensity ps =
∑G

g=1 pg.

Steps (3a) and (3b) are the reaction selection procedure outlined above. Step (3a) is the same as step

(3) in either Figure 14 or 15, except that now the selection is from G groups instead of N reactions, thus
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(1) Generate four random numbers r1 thru r4

(2) ∆t = 1
ps

ln( 1
r1

)

(3a) Use r2 to select a group of reactions (composition)

(3b) Use r3 and r4 to select reaction m within the group (rejection)

(4) Perform mth reaction, incrementing reactant/product counts

(5) Compute propensity pi of affected reactions

(6) Assign affected reactions to new groups, yielding new pg and ps =
∑G

i=1 pg

Figure 17: A single iteration of SSA-CR, the Composition and Rejection stochastic simulation algorithm,

with O(1) scaling, independent of the number of reactions N .

it scales as O(G) or O(log2 G). Step (3b) may require additional random numbers if rejection occurs, but

this will happen less than half the time (on average), regardless of the distribution of reaction propensities.

For randomly distributed propensity values, it will occur only one quarter of the time (75% area coverage

by the vertical bars within a group). Note that a constant-time implementation of step (3b) requires that the

mth reaction in a group can be accessed in a one-step operation. This is easily done by having each group

maintain a linear list of its reactions, which can simply be integer indices from 1 to N .

Once a reaction has been performed in steps (4) and (5), the update portion of the SSA-CR algorithm

is performed in step (6). The new propensity of each dependent reaction is compared to its old value. If

the reaction stays in the same group, only the group sum pg and total sum ps need updating. If the group

assignment has changed, the reaction is deleted from the old group and added to the new group, then pg

and ps values for both groups are updated. Adding/deleting a reaction to/from a group is a constant-time

operation. For addition, a new index is added to the end of the group list and the group size is incremented.

For deletion, the reaction at the end of the group list replaces the deleted reaction and the group size is

decremented. Thus the update portion of SSA-CR also scales as O(1).

There are two requirements implicit in this scaling result. The first is that a dependent reaction can be

located within its group in a one-step operation. This is easily done by having each of the N reactions store

two integers: its current group assignment and its location within that group. The second is the assumption

that the average number of dependencies per reaction does not grow continually larger as the number of

reactions grows. Since extremely large networks have not been formulated, this assumption is hard to test

empirically, but we note that any implementation of the SSA will suffer in performance if this is not the

case, since the update time is necessarily proportional to the average number of dependencies.

Overall, in addition to propensities, the memory cost of the SSA-CR is three integers per reaction. This

is similar to the SSA-GB memory cost for its binary tree of one additional floating point value per reaction.

Nothing in the preceding discussion requires that propensity boundaries between groups be chosen such

that the ratio of upper and lower bounds for a group is r = pupper/plower = 2. If r < 2, the cost of the

rejection portion of the algorithm would decrease (less rejections) while the cost of the composition portion

would increase (more groups). The converse would be true for r > 2. In either case, both portions would

still be constant-time operations. A practical reason to use groups with r = 2, as illustrated in Figure 16, is

that calculating which group a newly computed propensity value p falls into can be done in a single operation

by calling a standard C math library function, namely frexp(p/pmax,&gneg), which returns the negative of

the group ID as the variable gneg.
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4.6 Performance and Discussion

While the CR version of the Gillespie SSA has better theoretical performance than the Gibson/Bruck version,

actual performance depends on pre-factors of the scaling terms and other implementation details. For SSA-

CR, the pre-factors also depend on the number of groups G.

To test the algorithms for widely varying numbers of reactions N , we generated random reaction net-

works. We represented the network of reactions as an 1d array of N doubles representing reaction propen-

sities and a 2d N ×M array of connectivity for each of the propensities representing the dependency of

the reactive species. For each of N reactions, initial propensities varying by a factor of a million (1.0e-6

to 1.0) were chosen randomly from an exponential distribution. For SSA-CR this created approximately

20 groups, with roughly equal numbers of reactions per group. Each reaction affected M other randomly-

chosen reactions where M is a uniformly distributed integer from 1 to 30. Each time one reaction executed,

the propensity of each of the M affected reactions was altered and the effect of the change on the overall

probability distribution accounted for, before the next reaction was selected. Specifically, the new propen-

sity of each of the M reactions was set to a uniform random value between 95% and 105% of its current

propensity.

We created two versions of our test program. The first, which we call a high-memory version, stores a

pre-computed random dependency graph, where the list of M affected reactions is generated in advance

and stored for each of the N reactions. This requires 15 integers per reaction (on average), which limits

the problem size that can be run for large N . So we also created a second, low-memory, version which

generates M random dependencies on-the-fly, each time a reaction is selected. As before, M is a uniform

random integer between 1 and 30. This second scheme could not be used for modeling an actual biochemical

network, but allows the scaling of the SSA-GB and SSA-CR algorithms to be tested for much larger N .

Figure 18 shows timings for the high-memory version of the test program, which stores a dependency

graph. Simulations of networks varying in size from N = 100 to N = 100 ∗ 217 ≈ 13.1 million reactions,

were run with the SSA-GB and SSA-CR algorithms outlined in Figures 15 and 17. The CPU time is in

seconds for 1,000,000 iterations of each algorithm, i. e. 106 reactions are executed. The generation and

update times for both algorithms are shown; the total time is simply the sum of generation and update for

either algorithm. These timing tests were run on a single processor (core) of a Dell 690 desktop machine

with two 2.66 GHz quad-core Xeon chips and 16 GB of memory. The two algorithms were implemented in

C++, though simple C-style data structures and coding syntax were used for the key operations.

The generation time for both algorithms is roughly equal and nearly constant for networks of any size.

Both algorithms are dominated by the cost of updating, since there are many dependencies per reaction. For

N < 100, 000 reactions, the logarithmic and constant scaling of the update time for the two algorithms are

evident; logarithmic dependence is a sloped line on a log/linear plot. Around N = 100, 000, both algorithms

begin to run slower due to cache effects when the data structure (tree, groups) for storing propensities no

longer fits in second-level cache.

For SSA-GB this is manifested by a logarithmic dependence with a steeper slope. For SSA-CR, the new

slope is not as flat as for smaller problems. As we discuss below, this is not due to the algorithm, which still

has O(1) or constant-time scaling, but to memory-access issues for very large problem sizes.

Figure 19 shows timings with the low-memory version of the test program, where the reaction dependen-

cies are generated on-the-fly, rather than stored. The update times are now somewhat slower than in Figure

18 (note the difference in vertical scale) due to the cost of generating dependencies each time a reaction

executes. But we can now run networks up to size N = 100 ∗ 221 ≈ 210 million reactions. The difference

between logarithmic- and constant-time scaling is now more evident for very large N .

To address the apparent non-constant scaling of the update time for the SSA-CR algorithm for large N ,

we ran the same low-memory tests on a single processor (core) of a Cray XT3 with dual-core 2.4 GHz
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Figure 18: CPU time in seconds for 1,000,000 iterations of the logarithmic-time Gibson/Bruck (open sym-

bols) and constant-time Composition and Rejection (filled symbols) versions of the direct-method Gillespie

stochastic simulation algorithm. Squares are generation times; circles are update times; total time is the

sum of generation and update. This is the high-memory version of the test program which stores a reaction

dependency graph.

Figure 19: CPU time in seconds for 1,000,000 iterations of the Gibson/Bruck and Composition and Rejec-

tion versions of the direct-method Gillespie stochastic simulation algorithm. The symbols have the same

meaning as in Figure 18. This is the low-memory version of the test program which does not store a reaction

dependency graph. These runs were performed on a Xeon processor.

Opteron chips, each with 4 GB of memory. The operating system on the XT3 has the run-time option to
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configure itself with either small memory pages (4 kB) or large pages (2 MB). On most Linux machines,

including the Dell desktop machine of Figure 18, small memory pages are the default. Large-memory pages

is an available option, but typically requires changes in the setup procedure for the OS and a reboot of the

machine.

The results for runs with small and large pages on the Opteron processor are shown in Figure 20. The

difference is only significant for the update times of the largest runs; elsewhere the dotted- and solid-line

data overlay almost exactly. The update timings for small pages (dotted lines) are qualitatively the same as

the Xeon timings in Figure 19, with a non-constant upturn for large N runs of the SSA-CR algorithm. Note

that the vertical scales of Figures 19 and 20 are different; the last dotted-line data point for a SSA-GB update

(open circles) is off the plot at 22.3 seconds.

The large-memory page timings illustrate the constant-time scaling of the SSA-CR algorithm (solid lines

and symbols), up to N = 100 ∗ 220 ≈ 105 million reactions. The large-memory pages improve the speed

of both the SSA-GB and SSA-CR algorithms. The reason is that memory access to huge data sets (several

gigabytes for the problems with largest N ) in Linux is through a translation lookaside buffer (TLB) which

is a list of page addresses. For small pages the size of the TLB becomes large for a huge data set, so that

access to the TLB itself causes additional cache misses. For large pages, the TLB still fits in cache and

overall memory access is more efficient.

Two other features of Figure 20 are interesting to note. First, the constant-time versus logarithmic scaling

of even the less-costly generate time for the SSA-CR and SSA-GB algorithms is apparent. Second, the

slow-down around N = 50, 000 due to the size of the data set exceeding second-level cache happens for

smaller problems than in Figure 19, due to a smaller cache on the Opteron (1 Mb) versus the Xeon (4 Mb).

Figure 20: Same timing runs as Figure 19 but on an Opteron processor. The dashed-line data points are

for Linux configured with small-size memory pages; the solid-line data is for large-size memory pages. The

latter evidences the constant-time scaling of the Composition and Rejection algorithm.

Our main conclusion is not the fine details of the performance plots, since these may depend on specific

processor attributes or optimized implementations of the algorithms. Rather we focus on the fact that the

SSA-CR algorithm is competitive or faster than the SSA-GB algorithm across a large range of biochemical

network sizes and exhibits the desired constant-time scaling behavior. We again emphasize that the CR
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algorithm is applicable not only to simulations of biochemical networks, but can be used for efficient event

selection in any large-scale kinetic Monte Carlo model whose event probabilities and inter-event dependen-

cies meet the same assumptions discussed in this paper.

While biochemical networks with a million or more reactions are not common today, due to limited

experimental or bioinformatic data, this is likely to change in the future. As this occurs, the use of O(1)
reaction-selection algorithms, such as the Composition and Rejection scheme described here, will become

increasingly advantageous.
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5 Parallel Algorithms and Performance

A key computational drawback to KMC is its inherently serial nature. In the standard algorithm, the proba-

bility distribution used to select events is a function of the global state of the system. As each event occurs,

the probability distribution changes, and this affects which event will be selected next. Thus parallelization

of KMC represents a significant algorithmic challenge. Two distinct solutions have been developed. The

first is a hybrid approach in which KMC is used to choose events in the interior of the processor sub-domain,

while rKMC is used to pick events in the boundary region [42, 52]. The second uses an iterative relaxation

method to correct errors due to events at boundaries [22, 51] However, both of these methods suffer from

poor scaling [72]. In addition, all of these schemes require specialized treatment of events occurring near

processor boundaries which must be carefully worked out for each new application. Because of these short-

comings, we focused our efforts on developing an approximate, but more general, parallel algorithm. We

required that the scheme provide accuracy, scalability and generality:

• Accuracy: demonstrate convergence to the standard KMC in some limit

• Efficiency: for a fixed number of events per processor, the simulation time should be independent of

the number of processors

• Generality: the interaction between the KMC scheme and the application should be small

We identified the “synchronous sublattice” method of Shim and Amar [73] as a promising approach.

The method is based on a previous parallel scheme developed by Heffelfinger and Lewitt [36] for off-

lattice Metropolis Monte Carlo simulation. An extension of this scheme to a more complicated interaction

potential (EAM) was also developed by Slepoy, and this formed the basis for the subsequent implementation

in SPPARKS. We refer to the approach as “sectoring”, as described in the previous Section 3. Here we

discuss how the sectoring algorithm is controlled in SPPARKS to produce the desired accuracy and parallel

efficiency.

We assume that a procedure exists for partitioning all the events amongst the processors. This is usually

achieved by associating each event with one and only one particle or site, which in turn is associated with
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one and only one processor, based on its position. In the same way, we can divide each processor’s events

into 2, 4 or 8 sectors as in Fig 12, corresponding to a bisection of the processor domain in each coordinate

direction. This ensures a minimum spatial separation between events in corresponding sectors on adjacent

processors. By having each processor perform events only in one sector at a time, the worst errors due

to simultaneous events can be eliminated. The number of events that each processor performs can not be

specified directly, because the total propensity of sectors on different processors are not equal, and these also

change as events are performed. Instead, a threshold time tstop is specified, after which all the processors

update and proceed to the next sector.

Once tstop is chosen, the basic parallel KMC algorithm in SPPARKS is as follows.

For each sector:

1. Update state of ghost sites adjacent to local sector (see Figure 13)

2. Update propensities of sites in local sector

3. Run KMC on sector until t > tstop. The event that exceeds tstop is not performed

4. Update state of local sites adjacent to ghost sectors

In the limit of tstoppsector ≪ 1, most of the sectors will perform no events, and the few that are performed

will be chosen with the correct probability. In this limit, the method looks like rKMC, with a very high

rejection rate. Moreover, the ratio of computation to communication becomes vanishingly small. The

question then is, can we find a region of “application space” where the approximate method exhibits good

accuracy and good parallel efficiency. The coordinates of application space include some easily modified

parameters such as system size and number of processors. It also includes some more complicated factors

such as details of how the parallel communication is implemented, and how events at boundaries are handled

for particular applications.

The question of accuracy is also quite complex. We have identified the following five distinct sources of

error that are introduced by the approximate parallel scheme:

a ) Events occur simultaneously on different processors.

b ) Order of events depends on order in which sectors are visited.

c ) Consecutive events occurring in the same sector are oversampled.

d ) Consecutive events that straddle a sector boundary are undersampled.

e ) Event probabilities affected by adjacent sectors that are both older and younger.

The first three effects are relatively weak. The reason is that their effect falls equally on all events. The

last two are stronger, because they are concentrated at sector boundaries. To address the question posed

above, we focused on the standard Potts model for grain growth. This is a well-characterized model, and is

also representative of many lattice-based KMC applications. We used a 100x100x100 cubic lattice with 26

neighbors per site at zero temperature.

Figure 21 shows the evolution of grain size as a function of time using the exact (serial) KMC algorithm.

Ten independent simulations were run, so ten points are plotted at each time, giving an indication of the

statistical distribution of 〈N(t)〉. Time units are such that the maximum site propensity is 26. The initial

state contained about 3 sites per grain and was obtained by running rKMC for 0.1 time units.
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Figure 21: Plot of average grain volume versus time from an exact KMC Potts model simulation. Ten points

are plotted for each time, corresponding to ten independent simulations. See text for more details.

In our initial implementation of sectoring, we followed Shim and Amar [73], by choosing a fixed value of

tstop throughout the simulation. We ran the same lattice on a 2x2x2 processor grid, so that the size of each

sector was 25x25x25. In Figure 22 we compare the parallel algorithm for two different values of tstop, along

with the exact algorithm. We compare the quantity N/t, rather than N , as it varies less strongly with t. For

tstop = 0.1 grain size is slightly overestimated, relative to the exact algorithm, but the parallel efficiency is

only 55%. Parallel efficiency was estimated as the ratio of compute time to compute plus communication

time. By increasing tstop to 5.0, the parallel efficiency is greatly improved, but the overestimation of grain

size is now much more pronounced.

The apparent increase in grain size is caused by enhanced growth of grains near sector boundaries. This

is an example of an error of type (e) above. The effect is illustrated in Figure 23 which shows a slice through

the system at t = 10. The sector boundaries are indicated by the black lines. At sector boundaries, the grains

are relatively large and protrude asymmetrically to one side or the other. A particularly good example of

this is circled in red. In this case, because of the horizontal orientation of the sector boundary, the protrusion

of the grains into the lower sector is reminiscent of pieces of grilled meat suspended on a spit. This “shish

kebab” effect occurs because the upper sector was visited before the lower sector. When the lower sector

is visited, it is initially younger than the upper sector and has smaller grains. The larger grains in the older

sector tend to out-compete the smaller grains in the younger sector, resulting in the grains from the older

sector protruding into the younger sector. The same effect occurs at all the sector boundaries, with a net

increase in grain size. The magnitude of the effect increases with the size difference of grains in the old and

new sectors.

We see from this example that it will be difficult to find a value of tstop that provides good efficiency and

good accuracy. This is because the rate of growth of the grains drops by many orders of magnitude during

the simulation. A value of tstop that works well at short times will be hopelessly inefficient at long times,

while a value of tstop that works well at large times will be hopelessly inaccurate at long times. The solution

is to use the current state of the system to adaptively choose a good value of tstop.
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Figure 22: Time evolution of average grain volume scaled by time t. Black circles are exact KMC results.

Crosses are approximate parallel KMC results using fixed tstop values of 0.1 (red) and 5.0 (blue).

We consider first an idealized system consisting of a large number of identical events, each with propensity

p. If we set tstop = nstop/p, we would expect to perform a fraction nstop of the events in the sector,

assuming that nstop ≪ 1. Even in cases where nstop is not very small, it should still give a good estimate

of the number of events performed. We exploit this relationship by defining ps to be the total propensity of

events in a sector, divided by the number of events in that sector. We explicitly exclude events that have zero

propensity. At the start of each pass through the sectors we compute tstop adaptively using

tstop = nstoppmax

where pmax is the maximum ps across all processors and sectors, for ps computed when each sector is visited

on the previous pass. nstop is an accuracy parameter that is specified at the start of the simulation. Because

of the way that nstop is defined, we expect that values less than one produce will give results comparable to

exact KMC. This expectation is confirmed by the results in Figure 24. The system is the same as before. We

see that for nstop = 1.25 we obtain results that closely match the exact KMC algorithm. For nstop = 12.5
we observe grains that are too large at short times, due to the previously mentioned “shish kebab” effect.

In addition, we observe grains that are too small at large times. The latter effect corresponds to an error of

type (d) above. As the grains and tstop grow large, the tendency for them to be temporarily held up at sector

boundaries increases, resulting in lower average grain size.

Parallel efficiency is much higher using the adaptive algorithm than using a fixed value of tstop, for the

same level of accuracy. The adaptive algorithm is both more efficient and more robust. At short times, when

grains are small, and there are many active sites at grain boundaries, pmax is large and tstop is small. At

long times, the grains are large, most of the sites are in the inactive interior of grains, and so pmax becomes

small and tstop becomes large. As tstop increases, the parallel efficiency improves.

All of the previous calculations were performed using only 8 processors. In order to truly test the scalabil-

ity of the adaptive algorithm, we performed some benchmark calculations using large numbers of processors

on Sandia’s Red Storm supercomputer. The system was identical to the one described above, but larger sys-
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Figure 23: Cross-section of snapshot from a 100x100x100 parallel KMC grain growth simulation using

fixed tstop = 10.0. Colors indicate spin values of sites. Black lines indicate sector boundaries. Red circle

identifies a particularly prominent example of the “shish kebab” effect. See text for more details.

tem sizes were used, and the simulations were run for a relatively short time of t = 1.0.

The strong scaling parallel efficiency is defined as follows:

ParEff =
P ∗ T (1)

T (P )

where T (1) is the time required to run a calculation on one processor (using the sectoring algorithm), and

T (P ) is the time required to run the problem on P processors. We studied systems consisting of 1003, 1503,

2003, and 10003 sites. In all cases we used the adaptive algorithm with nstop = 1.25. For the smallest

system we also ran a higher accuracy run with nstop = 0.125.

We ran the different systems on cubic grids of processors ranging from 1 to 3375 processors, and a

non-cubic grid of 15x16x16 = 3840 processors. Figure 25 shows strong scaling parallel efficiency versus

processor count for all the different cases. The surprising super-linear scaling is due to the use of the tree

algorithm for selecting events in a sector. Unlike the constant-time algorithm described in the paper of

Section 4, the computational cost per event of this algorithm increases logarithmically with the number of

sites. In other words, the apparent super-linear scaling of the parallel algorithm is caused by the sub-linear

scaling of the underlying serial algorithm. Because we were unable to run the 10003 system on 1 processor,

we obtained T (1) by fitting to the following equation

T (P )P = T (1) + mlog(P )
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Figure 24: Time evolution of average grain volume scaled by time t. Black circles are exact KMC results.

Crosses are approximate parallel KMC results using nstop values of 1.25 (red) and 12.5 (blue).
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Figure 25: Strong scaling parallel efficiency for approximate parallel KMC algorithm using nstop values of

0.125 (open symbols) and 1.25 (filled symbols). The simulations used a grain growth Potts model on a 26

neighbor cubic lattice with 1003 (black), 1503 (red), 2003 (green), and 10003 (blue) sites. All calculations

were performed on Sandia’s Red Storm supercomputer.

As expected, the graph for 10003 matches those of the other systems. For the smallest system, the parallel

efficiency decreases sharply for P > 216. Decreasing nstop causes this breakdown in parallel efficiency

to occur at a proportionately lower processor count. Simple scaling arguments would suggest that we also
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see breakdown in 1503 system for P > 729, but the parallel efficiency remained above 100% out to 3840

processors.

6 Verification

In order to test the speed and accuracy of the Potts model implementation in SPPARKS, a separate serial

code was written from the ground up for testing purposes. This code, named MESO (for Microstructure

Evolution Simulation and Optimization) was designed to replace a number of existing Sandia kinetic Monte

Carlo codes that were not optimized for efficiency, and therefore not suitable for testing purposes.

MESO is coded entirely in ANSI-C and is completely portable across platforms, so it can be easily

compared against SPPARKS on a variety of test machines. Lattice site searches in MESO are binary tree-

based for speed, all memory is dynamically allocated, and the code is written modularly so that analysis

can be performed in-code and easily added or removed. In addition to kinetic Monte Carlo, rejection Monte

Carlo is implemented as an optional preconditioning step.

Figure 26 shows the results of timing runs of SPPARKS versus MESO as a function of the number of

lattice sites. For the generic Potts model, timing in both codes is identical for lattice sizes up to 106 sites,

which are 3d simulations of 100 sites on a side. Earlier versions of the SPPARKS code also included an

option to use an explicit 3d data structure to store the lattice (lattice3d), and these timings are reported in

this figure as well. The lattice3d option was found to be slower than the general lattice data structure and

was removed from later versions of the code.
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Figure 26: Run time in seconds for 3d simulations as a function of total number of lattice sites. Data are

shown for SPPARKS general lattice (red circles), SPPARKS lattice3d (green diamonds) and MESO (blue

squares). Linear fits to the SPPARKS general lattice and SPPARKS lattice3d simulations are shown with

red and green lines, respectively.

The time-dependence of the total system energy provides a simple test of the accuracy of Potts model

simulations. Figure 27 shows the total system energy at different times for the 1003 site simulation in Figure

26 using MESO, SPPARKS on a single processor and SPPARKS on four processors. The energies produced

by SPPARKS on different numbers of processors agree well with each other. While it was not possible to

compare energies from SPPARKS and MESO at identical times, the evolution of energy generated by both
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codes agree well.

Figure 27: A comparison of energy as a function of Monte Carlo time for a 3d grain growth simulation in

the Potts model with 1003 lattice sites MESO (red circles), SPPARKS on one processor (blue diamonds) and

SPPARKS on four processors (green squares). Data are plotted as a function of Monte Carlo time with lines

shown as a guide to the eye.

The time-dependence of the average grain radius provides a stronger accuracy test of Potts model simula-

tions. This comparison in shown in Figure 28 for the previous example. Again, this figure shows that grain

radii produced by SPPARKS running on different numbers of processors agree well with each other and the

evolution of radii generated by both SPPARKS and MESO agree well.

Figure 28: Average grain radius for 3d grain growth from Potts model simulations with 1003 lattice sites

from MESO (red circles), SPPARKS on one processor (blue diamonds) and SPPARKS on four processors

(green squares). Data are plotted as a function of Monte Carlo time with lines shown as a guide to the eye.
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7 Applications

This section contains seven sub-sections, each of which describe a different physical model, its implemen-

tation in SPPARKS as an on-lattice application, and highlight simulation results which illustrate what the

method is capable of modeling. The seven applications are for abnormal grain growth in 7.1, nanoporous

metals in 7.2, a solid-on-solid model for surface diffusion in 7.3, defect formation in erbium hydrides in 7.4,

bubble formation in nuclear fuels in 7.5, the sintering of a nuclear fuel pin in 7.6, and thin film deposition

and growth in 7.7.

7.1 Abnormal Grain Growth

Most metals and ceramics are polycrystalline; they are comprised of many individual crystallites, called

grains, separated by internal interfaces, or grain boundaries. Because these grain boundaries contribute free

energy due to broken atomic bonds, the equilibrium state does not include grain boundaries and is a single

crystal.

When polycrystalline materials are annealed at sufficiently high temperatures, the grain boundaries will

move and rearrange so as to increase the average grain size and decrease the grain boundary area per unit

volume. In many cases, these rearrangements occur fairly uniformly; grains remain equiaxed and maintain

a relatively small size distribution. This process is termed normal grain growth. However, in a variety of

systems, the grain growth process is not uniform; a few, special grains grow very large at the expense of the

other grains in the system. This process is called abnormal grain growth.

Abnormal grain growth is detrimental to many materials applications, causing premature failure of copper

interconnect lines in integrated circuits and poor surface finish on aluminum automotive body panels, for

example. However, it is desirable in some applications, where it improves magnetic permeability and loss

properties in transformer steels and increases the toughness of nanocrystalline metals.

Abnormal grain growth is one phenomenon with many causes. It can occur in thin films due to surface

energy anisotropy; in textured materials due to outlier grains with special boundary properties; in materials

with a thin grain boundary phase due to variations in boundary structure; and in deformed materials to

relieve stored strain energy. One of the most baffling instances of abnormal grain growth occurs in materials

that contain stable, static particle dispersions, such as nickel-based superalloys. Conventional grain growth

theory suggests that a stable particle dispersion should pin grain boundaries in positions that maximize their

contact with the particles; when enough boundaries are pinned, grain growth cannot proceed. Nonetheless,

abnormal grain growth is often observed in such materials and remained unexplained for many years.

In collaboration with Tod Hoffman and his adviser at Carnegie Mellon University, we performed the first

simulations to shed some light upon this phenomenon. We began with an equiaxed microstructure with static

particles deposited at random upon the grain boundaries. Boundary properties were isotropic and uniform,

and we evolved the structures using the KMC Potts model for grain growth. For sufficiently high particle

fractions, this system should be pinned and normal grain growth should not occur. Surprisingly, we found

that in certain regimes of particle fraction and grain size, abnormal grain growth occurs, with one or a few

abnormal grains consuming the entire structure. We termed this phenomenon particle-assisted abnormal

grain growth.

We are working to develop a model for scaling the abnormal growth frequency with initial grain size and

particle fraction. However, particle-assisted abnormal growth events are rare and stochastic. To acquire

enough data for good statistics, we need to simulate large numbers of grains for long times under various

conditions. There is a further challenge: Since the abnormally growing grain consumes the other grains in

the system, one abnormal event can wipe out the possibility of other, later events, thus skewing the frequency

data. Therefore, we want to run many independent MC Potts model simulations of moderately large size for
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very long times. SPPARKS provides an ideal code platform for performing these simulations.

We developed a SPPARKS application that included both Potts model grain growth and the presence of

inert pinning particles. The SPPARKS implementation also utilized an initialization routine that created

equiaxed microstructures with particles decorating the grain boundaries. We verified the SPPARKS ap-

plication against the serial code MESO and found excellent agreement, even in parallel mode, using the

approximate algorithm of Section 5. We ran over 300 independent trials on both workstations and the Thun-

derbird cluster. Each trial was on a 300x300x300 system for at least a million MC steps (sweep over all

lattice sites) at finite simulation temperature.

Typical results are shown in Figure 29. In a system with 5 volume percent pinning particles and initial

grain radius of 10 sites, shown in Figure 29(a), the initial system is not fully pinned. There is sufficient

driving force to move the boundaries away from their initial positions, but after some amount of normal

grain growth, a particle-pinned structure is achieved. In contrast, in a system with 10 volume percent

pinning particles and the same initial grain radius of 10 sites, shown in Figure 29(b), the initial system is

strongly pinned. There is little microstructural evolution initially, but eventually a few grains break away

from their particle clouds and begin to grow. Since the other grains in the system are still pinned, the growing

grains can grow without competition, until they impinge upon each other; this is a particle-assisted abnormal

growth event.

Figure 29: (a) Normal grain growth in an equiaxed grain structure containing 5pinning particles by volume,

initially located at grain boundaries. The initial structure is not fully pinned; after some normal grain

growth, the system pins at a larger grain size. (b) Particle-assisted abnormal grain growth in an equiaxed

grain structure containing 10boundaries. The initial structure is strongly pinned; after a long incubation

time, a few grains grow abnormally and dominate the system at late times.

We are still analyzing the data to develop a model, but we have already gotten more qualitative and

quantitative insight into the particle-assisted abnormal grain growth phenomenon. In particular, we find that

the abnormal grains are always among the largest initial grains, but most of the largest initial grains do not

grow abnormally. By examining which grains grow and which do not, we hope to establish a criterion for
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abnormal grain nucleation based on grain characteristics and environment.

7.2 Nanoporous Metals

7.2.1 Motivation and Description

Nanoporous materials have a range of applications based on their very large surface-to-volume ratios. At

Sandia, nanoporous metals are being synthesized and developed for gas and energy storage applications.

In particular, nanoporous palladium particles are being studied for use as a hydrogen storage medium, and

nanoporous gold wires are being tested for use as electrodes in super-capacitors. As these complex materials

age, especially under elevated temperatures, the evolution of their nanostructures with time can greatly affect

material properties and performance. For example, nanoporous structures may coarsen or close off over

time, leading to loss of accessible surface area and lower storage capacities. In this case, the coarsening is

caused by surface diffusion that is driven (from the continuum viewpoint) by surface curvature gradients.

Although this surface motion is driven by phenomena at the atomic scale, it occurs over a timescale too long

to be simulated using classical molecular dynamics. Kinetic Monte Carlo modeling can allow simulations

over longer times, capturing the evolution of these nanoscale structures.

A simple atomistic model that can qualitatively capture the coarsening due to surface diffusion has been

implemented in SPPARKS. In this model, a lattice of sites represents the atomic configuration of a material.

Each site is marked as either “vacant” or “occupied”; here we will let the variable φi represent the state of

site i, with φi = 0 denoting a vacant site and φi = 1 an occupied site. The energy of an occupied site is

assumed to be a function of its coordination number ci:

Ei = φif(ci) (6a)

ci =
∑

j∈neigh(i)

φj (6b)

where f(c) is a monotonically decreasing function.

One possible choice for f(c) is a linear function that gives zero when an atom is surrounded by its full

complement of neighbors:

flin(c) = Z − c (7)

where Z is the maximum number of neighbors for a given lattice structure (e.g. Z = 12 for an FCC crystal).

This choice of energy function gives a minimum system energy of zero when all sites are occupied (or when

all sites are vacant).

Diffusion is described by Kawasaki dynamics, in which each event is the motion of an individual atom.

A basic atom hop is defined as the motion of an atom to any vacant neighboring site. However, special con-

sideration is given to the Schwoebel barrier, in which an atom diffuses up or down a ledge between atomic

monolayers. To account for this case, atoms are allowed to hop to locations two sites away, provided that

a vacant intermediate site exists. Prospective Schwoebel barrier events can be further limited by specify-

ing a maximum coordination number for the originating site, and a minimum coordination number for the

destination site.

In general, the rate of a possible atom hop event is computed using both the change in energy between

initial and final states, along with a user-supplied energy barrier Q. Consider an event that takes the system

from some configuration I to a new configuration J ; define the energy change as ∆EI→J = EJ − EI ,
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where EI and EJ are the energies of the entire system in the two configurations. The rate of this event is

computed as:

PI→J =

{

exp(− Q
kT

) if ∆EI→J ≤ 0

exp(−Q+∆EI→J

kT
) if ∆EI→J > 0

(8)

The energy barrier Q can be a constant for all events, or a function of the coordination numbers of the

initial and destination sites (where coordination numbers are computed without counting the moving atom).

In addition, different barriers can be prescribed for simple 1-site hops and for Schoebel barrier hops. The

default value is Q = 0 for all events.

For the general case where the energy function f(c) is a prescribed function of the coordination number,

the energy change of the system for a hop from site i to site j must be computed by summing the energies

of all sites whose energies are changed by the event, i.e. all sites that neighbor sites i and j. However, a

simplification is possible when a linear energy function is used; in this case it can be shown that the energy

change is given by:

∆EI→J = 2(Ej,J − Ei,I) (9)

where Ei,I is the site energy at site i at state I (before the event) and Ej,J is the site energy at site j at state

J (after the event).

7.2.2 Simulations

The diffusion application of SPPARKS has been used to study the formation and evolution of nanoporous

structures. Typically, an initial condition is created in which random sites are filled according to a prescribed

volume fraction. When the simulation is started, atoms quickly form a ligamented structure as the system

evolves toward a lower energy configuration. As time progresses, the structure coarsens leading to larger

ligament sizes and less surface area. Surface facets form for low energy surfaces such as {111} planes; this

facetting is more pronounced at lower temperatures. A snapshot of a typical atomic configuration is shown

in Figure 30.

Simple arguments based on continuum models of surface diffusion predict that, for self-similar coarsening

of nanoporous structures such as these, the characteristic length scale of the system raised to the fourth power

should grow linearly with time. To test whether this scaling behavior is exhibitted by our KMC model, we

choose the inverse of the surface-to-volume ratio as a measure of the characteristic length scale of the system,

and plot the fourth power of this quantity against time. Figure 31 shows this curve for simulations at various

temperatures. For all cases, above a certain length scale the curve appears linear, implying that the scaling

law predicted by continuum models is obeyed.

7.3 Solid-on-Solid Model

7.3.1 Motivation and Description

The solid-on-solid (SOS) model is a useful simplified model of surface diffusion that captures many of the

physical phenomena of diffusion, but is simple enough to be amenable to analysis [46]. In this model, the

surface is described by a one- or two-dimensional lattice of sites. At each site an integer value represents

the height of the surface at that site, so that collectively the heights of all the sites represent a surface profile

with no overhangs or vacancies.

The energy of the system is given by the sum of all of the site energies:
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Figure 30: Atomic configuration for a typical diffusion simulation. Simulation is an FCC lattice with 60 unit

cells in each direction, with 50% solid fraction. Nondimensional temperature is T=1.0; nondimensional

time is t=2500.
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Figure 31: Evolution of surface area with time for various non-dimensional temperatures. Surface-to-

volume ratio to the −4th power appears to show linear growth in time.

Etot =
∑

i

Ei. (10)

The energy of a given site i is a function of the height difference between site i and all of its neighbors:
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Ei =
1

2
J

∑

j∈neigh(i)

|hi − hj | (11)

where J is a prescribed bond energy, hi is the height at site i and neigh(i) is set of sites neighboring site i.
The energy in this model can therefore be thought of as resulting from the breaking of lateral bonds between

atoms (so that a surface with constant height has zero energy).

Although the SPPARKS code can simulate this model for a range of lattice types, in our simulations

we have concentrated on 1D periodic lattices. This system is often referred to in the literature as “1+1

dimensional”, since in effect it models the 1D surface of a 2D solid. In this case the energy can be written

more simply as:

Etot = J

L
∑

i=1

|hi − hi−1|. (12)

where L is the total number of sites along the length of the system; sites i = 0 and i = L are equivalent

because of periodicity.

Surface diffusion is described by Kawasaki dynamics, i.e. by hopping of surface atoms to neighboring

sites. We assume that only individual atoms hop as part of a single event, so that for any given configuration,

there are 2L possible events: an atom from any site hopping to the left or to the right.

7.3.2 Simulations

To understand the dynamics of surface evolution described by this model, the decay of a sinusoidal surface

has been studied using KMC. The initial condition for all simulations is:

hi(t = 0) = aint(A0 sin(2πi/L)) (13)

where A0 is the initial amplitude and aint() is a function that rounds its argument to the next lower integer

in magnitude. Figure 32 shows the initial condition corresponding to L = 40 and A0 = 5.5.
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Figure 32: Initial condition from equation (13) with L = 40 and A0 = 5.5.

Surface evolution data is computed by averaging over a large number of realizations using different ran-

dom number seeds. This averaging operation will be denoted by an overbar, so that h̄i represents the height

at position i averaged over all realizations. Because this 1D problem runs very quickly, a large number of

realizations can be run to obtain smooth data; 103 or 104 realizations are used to generate data in this work.

The shape evolution is characterized by the amplitude of the surface profile, given by

A(t) =
1

2

[

max
i

h̄i(t)−min
i

h̄i(t)

]

. (14)
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Figure 33: Average profile h̄(t) over time for L = 40, A0 = 5.5, T = 0.8.

Figure 33 shows the average profile height h̄(t) for several different times for the case L = 40, A0 = 5.5
at a temperature T = 0.8. The profile retains its sinusoidal shape. The time history of the amplitude for this

case is plotted in Figures 34.

The theoretical continuum equation for surface diffusion [59], assuming a small-amplitude surface profile,

is a fourth-order PDE:

∂h̄

∂t
= −B

∂4h̄

∂x4
(15)

where B is a temperature-dependent surface mobility. Self-similar solutions to this equation on the periodic

domain have the form

h̄(x, t) = A0 sin

(

2πnx

L

)

exp

(

−B

(

2πn

L

)4

t

)

(16)

where n is an integer, so that sinusoidal profiles decay with a characteristic relaxation time τ given by

τ =
L4

B(2πn)4
(17)

Since relaxation time is strongly dependent on wavelength, shorter waves should decay much more

quickly than longer ones, so that long-time dynamics is dominated by the longest mode in the system

(n = 1). The relaxation time for the longest mode can be estimated by fitting the dependence of the ampli-

tude on time to an exponential function. Figure 35 shows this fit for various system sizes L; the straight lines

on this log-log plot indicate an exponential decay as predicted by the continuum theory in equation (16).

The relaxation time τ for each system is given by the negative reciprocal of the slope of the line. Figure (36)

shows the relation between τ and system size L (the wavelength of the longest mode) for various values

of L on a log-log plot. The slope of the line is 4.12, showing good agreement with the continuum theory

prediction of 4 (equation 17).
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Figure 34: Amplitude vs. time for various size systems with A0 = 5.5, T = 0.8.

 0.1

 1

 10

 0  5000  10000  15000  20000  25000  30000

A
m

p
lit

u
d

e

t

τ = 79.74

τ = 1444

τ = 7869

τ = 23453

L=40
L=30
L=20
L=10

Figure 35: Exponential fit of amplitude decay for various system sizes with A0 = 5.5, T = 0.8. Relaxation

time τ for each value of L is the negative reciprocal of the slope of the line on the log-log plot.
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Figure 36: Variation of τ with L for A0 = 5.5, T = 0.8. The slope is very close to the continuum theory

prediction of 4.0.

7.4 Erbium hydrides for Neutron Generators

Metal hydrides (MH2) are commonly used for neutron generation in many applications in industry, medicine,

and national security, including petroleum exploration, explosives detection, toxic waste analysis, and boron

neutron capture therapy. In the present work, we examine the mobility of gaseous species, i.e. tritium (T) and

helium (3He), on the instersitial lattices of FCC erbium (Er) in erbium tritide (ErT2). Tritium is implanted

into the erbium metal matrix, and resides primarily on the tetrahedral interstitial sites of the face-centered

cubic (FCC) lattice. The tritium isotopes decay into helium with a half-life of approximately 12.3 years.

Both the tritium and helium can diffuse through the FCC lattice on the tetrahedral and octahedral interstitial

sites.

As tritium decays into helium, the helium gas clusters to form bubbles, often found to be preferentially

oriented along {111} planes. To investigate this phenomenon, we have utilized density functional theory via

Sandia’s SeqQuest electronic structure code, to calculate the energetics required to construct and parame-

terize a mechanism for the diffusion of tritium and helium in FCC erbium, as shown in Table 7.4. Recently,

SeqQuest was used to estimate the binding energies of various clusters of vacant tetrahedral sites, and the

implementation of defect binding into SPPARKS for simulating ErT2, will be performed as part of an ASC

project starting in 2010.

In order to demonstrate the ability of SPPARKS to perform large calculations of diffusion in ErT2, we

conducted a simulation of tritium diffusion on the tetrahedral and octahedral lattices using only the third

and fourth reactions from Table 7.4 for simplicity, and seeding the tetrahedral interstitial lattice with 10%

vacancies. A domain of 500x500x500 ErT2 unit cells was created. A snapshot from this simulation is shown

in Figure 37, where it is evident that in the absence of a mechanism for defect binding, the arrangement of

tritium and vacancies on the lattice sites remains spatially random. In addition, the “one-way” diffusion

of tritium from the tetrahedral to the octahedral lattice results in the accumulation of tritium on the latter.

Nonetheless, this simuation is noteworthy because, assuming a lattice parameter of 5.1254 Å, it captures a

simulation domain representing approximately 0.25 µm of material on each edge.

52



Table I: Diffusion Mechanism in ErT2.

Reaction Rate [1/ns] or Barrier [eV]

Ttet→
3Hetet 1.78[1/ns]

Toct →
3Heoct 1.78[1/ns]

Ttet + *tet → *tet + Ttet 0.98 [eV]

Ttet + *oct → *tet + Toct 1.89 [eV]

Ttet + *oct ← *tet + Toct 0.68 [eV]
3Hetet + *tet → *tet + 3Hetet 0.49 [eV]

3Heoct + *oct → *oct + 3Heoct 1.49 [eV]

Ttet + *oct + Toct → Ttet + Toct + *oct 0.62 [eV]

Ttet + *oct + 3Hetet →
3Hetet + Toct + *tet 1.31 [eV]

Ttet + *oct + 3Hetet ←
3Hetet + Toct + *tet 0.16 [eV]

3Hetet + Toct + *oct → Ttet + *oct + 3Heoct 0.88 [eV]
3Hetet + Toct + *oct ← Ttet + *oct + 3Heoct 0.16 [eV]

Note: Rates of the first two reactions are from the half-life of tritium, and barriers in the remaining reactions

are from density functional theory [89]. Vacancies are denoted by an asterisk (*). The tetrahedral and

octahedral interstitial lattices are denoted by subscripts tet and oct, respectively. The beta particle and

antineutrino have been omitted from the products of the first two reactions for clarity.

Figure 37: Massively parallel simulation of tritium diffusion on two billion lattice sites of ErT2. Only the

outermost layers of octahedral interstitial sites are shown. Blue spheres are vacancies and red are tritium.

7.5 Bubble formation in Nuclear Fuels

During operation in a nuclear fuel, approximately 0.3 atoms of Xe and Kr gas are generated per fission

event. These atoms have very low solubility in the fuel so they diffuse in the grain structure and coalesce to

form gas bubbles, both inter- and intra-granular bubbles. We developed a model in SPPARKS to simulate
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the formation of gas atoms, their diffusion, nucleation to form bubbles (both in the crystalline structure of

the grain and at grain boundaries), growth of the bubbles and redissolution of gas back in the crystalline

structure due to fission fragment damage. The results of these simulations are presented here. Gas atom

formation is simulated by introducing voxels designated as gas atoms with frequency that can be related to

the frequency of fission events in a nuclear fuel. Diffusion of a gas atom in the fuel structure is simulated by

random walk. Nucleation occurs at trapping sites, defects generated by irradiation, and at grain boundaries.

Nucleated bubbles grow by gas precipitating on them. Another mechanism that is active in nuclear fuels is

the redissolution of gas atoms from bubbles back into the fuel matrix. This occurs because fission fragments

that pass near or through gas bubbles disorder the fuel matrix sufficiently to cause gas atoms to go back into

solution in the fuel crystal.

The simulations to demonstrate this model was performed on a two-grain system of size 100 x100 x 200,

with each grain being 100 x 100 x 100. Full periodic boundary conditions were use. The geometry is shown

in Figure 38; each of the large colored features is a grain and blue features are trapping sites. The two grain

boundaries are at the center plane between the grains and at the two free parallel to the center plane. The

two edges are the same grain boundary.

Figure 38: The two-grained microstructure with full periodic conditions used for initial simulations.

The SPPARKS model simulates gas atom generation, diffusion, coalescence, redissolution, bubble migra-

tion by surface diffusion and grain growth. The results are shown in Figure 39. Only bubbles and trapping

sites are imaged, grain sites and gas atom sites are not. Due to periodic boundary conditions, the grain

boundary at the ends of the simulation are contiguous, thus the visible plane at the near left edge is a cross-

section at the grain boundary. Gas atoms are generated and diffuse to sites where they precipitate as intra-

and inter-granular bubbles. The shape of the bubbles is changing by surface diffusion to obtain the mini-

mum energy shape. There are small circular intragranular bubbles and larger lenticular bubbles at the grain

boundaries.

While grain growth does not occur in this simulation, as there is no curvature to the grain boundary, the

grain sites locally do change from one grain to another to accommodate the feature shapes locally.

To study the grain boundary bubbles, a modified two-grain geometry with large grain boundary face was
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Figure 39: The bubbles are the green features and the blue are trapping sites.

used in the next set of simulations. The simulation size was 200 x 200 x 40. The green features in Figure

40 are bubbles at the grain boundary. The grains and the grain boundary are not imaged. Periodic boundary

conditions mean that bubbles are continuous across the edge. The shape of the bubbles is shown in Figure

40 images of the grain boundary bubbles from different angles to show the bubble shapes. The bubbles

are lenticular in shape as seen in real fuels. The intergranular bubble formation is shown in Figure 41.

Initially small isolated bubbles form at the grain boundary. As more gas atoms were formed, diffused and

precipitated at the grain boundary, the bubbles become larger and more connected. As their connectivity

increases, the bubbles become more snaking in their shape. Finally, the bubbles become percolating. These

bubble evolution results are in good agreement with that observed and reported in the Light Water Reactor,

LWR, fuel literature. These simulations results are confirmed by determining the average bubble size as a

function of fuel service time and plotted in Figure 42.

Figure 40: The intergranular bubbles at the grain boundary have lenticular shapes.

Initially, the bubbles nucleate and grow slowly due to gas being added to individual gas bubbles. In the

later stage, bubbles grow by primarily by coalescence, although they do grow due to additional gas diffusing

to the grain boundary as well. The percolation threshold is defined here as a single pore that touches all four

edges of the grain boundary. One can see that bubble growth is rapid at and beyond the percolation threshold

again due to rapid coalescence. This made very clear by Figure 43, a plot of the total volume fraction of

bubble that percolates as a function of time. The volume fraction of the percolating bubble increases very
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Figure 41: The formation and growth of intergranular fission gas bubbles.

Figure 42: Intergranular bubble growth during LWR fuel service.

rapidly as soon as it becomes a percolating due to rapid coalescence by the surrounding bubbles. The

other important parameter for LWR fuels is the area fraction of the grain boundary that is covered by the

percolating bubble as it is an important engineering parameter in LWR fuels performance codes. In these

simulations, the area fraction η of the grain boundary covered by the bubbles at percolation was found to be

η = 0.65.

The same simulation with a polycrystalline geometry was repeated. The structure used is eight tetrakaidec-

dral grains with periodic boundary conditions so that they fill space as shown in Figure 44.

The polycrystalline structure on the left is the eight tetrahedral grains arranged so that they fill space.

Each color corresponds to a grain, so the red colored feature in the corners are all a single grain and likewise

for the other colors. The single grain shown on the right is the central grain and shows the shape of all

the grains in the assembly. The same simulation as described above with gas atoms forming, diffusion,

nucleating and growing was done in this geometry. Figure 45 shows the grain boundary bubble formation

and growth. Only half the cube shown in Figure 45 is imaged, so that the intergranular bubbles can be seen

clearly. The red bubbles on the left are all the bubble forming and growing and the blue ones on the right

are only the percolating bubble. The results were very similar to that of the plane grain boundary. Initially,

the intergranular bubbles nucleated and grew due to gas diffusing to the grain boundaries. Later the grain

boundary bubbles grew primarily by coalescence until they started to percolate. And the volume fraction of
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Figure 43: The volume fraction of the percolating bubble. No bubble percolates until t= 28,000 MCS. Then

there is a sudden and rapid rise in the volume fraction of the percolating bubble suggesting that almost all

bubbles join up by coalescence.

Figure 44: The geometry for used to study grain boundary bubble formation and growth in a polycrystalline

microstructure. Periodic boundary conditions are use so colored entities with the same color are the same

grain and they are all the same size and shape of the tetrakaidecahedral grain shown on the right.

the percolating bubble grew very rapidly upon percolation due to the other bubbles coalescing with it. The

one big difference is the area fraction η of grain boundary covered with bubbles at the percolation threshold

is lower than that for a plane grain boundary. For the polycrystalline microstructure it is η = 0.53 versus η =

0.65 for the planar grain boundary.

These results suggest that the percolation threshold may be dependent on the details of the microstructure.

We had expected that bubbles would percolate along the edges before they percolate on the faces. The sim-

ulation results in Figure 45 do not support this. This will be investigated further to determine the percolation

behavior of fission gas bubbles in polycrystalline microstructure in future work. k.
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Figure 45: Grain boundary fission gas bubbles in a polycrystalline microstructure for time t = 16,000,

24,000, 24,800 and 25,200 MCS. The red bubbles are all the bubbles and the blue bubble is the percolating

bubble.

7.6 Sintering for Nuclear Fuels Aging

This section contains a paper that will appear in the Sandia CSRI summer program proceedings for 2009. It’s

entitled “Parallel Monte Carlo Simulation of 3D Sintering” and was authored by Cristina Garcia-Carbona,

Veena Tikare, and Steven J. Plimpton. Cristina was a summer student who visited Sandia as part of the

CSRI program.

Like the previous section, the motivation for this work is from nuclear fuels modeling. This application,

as implemented in SPPARKS, contains a novel parallel algorithm, developed by Cristina, for compacting

the solid (removing vacancies), a key aspect for capturing the densification that results from the sintering

process.

7.6.1 Abstract

A three-dimensional parallel implementation of a Monte Carlo model for the microstructure evolution during

sintering is presented. The model accounts for the main phenomena occurring during sintering, including

grain growth, pore migration and vacancy annihilation. The parallel implementation is based on the SP-

PARKS code and enables the simulation of systems with large number of particles. Several examples are

shown and results are compared with a serial implementation as well as experimental data available.

7.6.2 Introduction

Sintering is a fabrication process where the fluid-like behavior of powders is exploited to build arbitrar-

ily complex shapes. The consolidated piece is subjected to a firing process leading to strengthening and

densification but is also accompanied by volume shrinkage. At the mesoscale level, sintering is the result

of thermally activated adhesion processes which produce the bonding between particles and their coales-

cence [61]. The driving force for sintering is the reduction in surface free energy achieved by diffusional

transport of material from the centers of the particles to the particle-particle neck [12].

One effective way of gaining insight into the process is to simulate the physical phenomena occurring

during sintering. Different numerical simulation methods have been used, including finite element meth-

ods [74], finite difference methods [62], discrete element methods [40] and kinetic Monte Carlo models [60].

As the physico-chemical and mechanical properties of the final piece are determined by the structure of the

sintered body there is an interest in studying the microstructural evolution of the material. Furthermore,

the microstructural evolution provides the driving force for the deformation observed at the macroscopic

level [12]. In this sense, the simplicity and versatility of kinetic Monte Carlo method makes it a sensible

choice to investigate the microstructural evolution during sintering [78].
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The kinetic Monte Carlo simulation of sintering has been developed in recent years and analysis for

simple configurations in 2D [78] have been extended to estimation of macroscale parameters [60] as well

as simulations of 3D complex configurations [76, 77]. This stochastic approach uses the Potts model to

account for the local kinetics of the process, including grain growth, pore migration and vacancy diffusion

and annihilation at grain boundaries. To obtain meaningful results a considerable number of particles must

be considered. Nevertheless, simulation of microstructural evolution during sintering on the mesoscale with

imaging of many particles sintering is challenging [77]. Therefore it is necessary to build techniques that

enable a greater simulation space with capacity to include more particles.

This paper describes a parallel implementation of the kinetic Monte Carlo model for solid-state sin-

tering of a three-dimensional powder compact. The implementation is built as an extension module for

SPPARKS. SPPARKS is a kinetic Monte Carlo code designed to run efficiently on parallel computers us-

ing both rejection-free kinetic Monte Carlo and Metropolis Monte Carlo algorithms [75]. To verify the

performance of the new parallel implementation, sintering for different initial configurations is simulated

and results are compared with the serial version as well as some experimental data available. Results are

encouraging in terms of the dynamics and the size of the problems that can be attempted.

The document is organized as follows. Section 7.6.3 describes the kinetic Monte Carlo model of sintering

and the implementation under SPPARKS, and contrasts the differences between the serial and the parallel

version. Next, Section 7.6.6 compares the results obtained with the serial and parallel versions for different

initial configurations as well as different problem sizes. Finally, Section 7.6.7 draws some conclusions and

suggests directions of future work.

7.6.3 Simulation

A powder compact is a porous medium composed by a phase of substance and a phase of voids (pores).

The substance is formed by grains that are loosely in contact with each other. During sintering, the surface

tension of the particles forces a mass movement that redistributes the substance and eventually leads to a

reduction in the total porosity, i.e. densification with a corresponding reduction in the dimensions of the

porous body. Briefly, the main mechanisms operating during sintering are [77]:

• Curvature driven grain growth in the presence of evolving porosity that inhibits grain growth by pin-

ning.

• Pore migration by surface diffusion leading to pore shape evolution coarsening.

• Formation of vacancies, grain boundary diffusion of vacancies and vacancy annihilation leading to

densification.

To simulate sintering for a three-dimensional powder compact using a Metropolis Monte Carlo model the

controlling mechanisms of material flow under sintering must be emulated. Essentially three aspects are

defined: a representation of the porous body, a set of events that can transform it and an energy function to

drive the Metropolis algorithm used for the dynamic evolution of the kinetic Monte Carlo model.

To represent the material, a 3D cubic lattice structure (a grid) is overlaid in the simulation space and a

neighborhood topology is prescribed. For each point in the grid a discrete state is assigned. Grain sites

populating the lattice assume one of Q possible distinct states, the individual state is symbolized with q
and the total number of states in the system is Q, thus: qgrain ∈ {1, 2, . . . , Q}. The pore sites can assume

only one state qpore = 0. The neighborhood topology used is the 26 first neighbors in the cubic grid. In

this model a vacancy is defined as a single, isolated pore site that does not have any other pore site in its

neighborhood.
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The events that transform the porous body correspond to the mechanisms operating during sintering.

Consequently, grain growth is simulated by converting a grain site into the state of a neighboring grain

chosen at random, pore migration is simulated by exchanging a pore site with a grain site, this last assuming

the state of the neighboring grain site that results in the minimum possible energy for the grain site, and

densification is simulated by producing vacancies in the grain boundaries and annihilating them by moving

the vacancy to the surface of the material but in a way that conserves mass globally and moves the centers of

mass of the grains adjacent to the site being annihilated closer together [12]. In addition, note than since this

densification algorithm requires the definition of the surface of the material, periodic boundary conditions

cannot be used.

The driving force for sintering is the reduction of the interfacial free energy [77]. To cast this condition

in terms of the lattice configuration described, the energy of the system is given by the sum of all neighbor

interaction energies of all sites:

E =
1

2

N
∑

i=1

n
∑

j=1

(1− δ(qi, qj)) (18)

where N is the total number of sites, n is the number of neighbors (26 first neighbors in a cubic grid), qi

is the state of the current site, qj is the state of the j-th neighbor site and δ is the Kronecker delta with:

δ(qi = qj) = 1 and δ(qi 6= qj) = 0. According to this energy definition, only unlike neighbors contribute

to energy, i.e. only interfacial energy of the system is defined.

The dynamic evolution of the kinetic Monte Carlo model is driven by a reduction in (18), by means

of a standard Metropolis algorithm. Therefore, every time an event is to be updated, a random number

R ∈ (0, 1) is generated and is compared with the probability P of accepting that change, if R ≤ P the

change is accepted. The probability P is calculated as:

P =

{

exp
(

−∆E
kBT

)

for ∆E > 0

1 for ∆E ≤ 0
(19)

∆E corresponds to the energy change, kB is the Boltzmann constant and T is the simulation temperature, a

measure of the thermal fluctuation in the system [78].

The parameterization of the model enables the consideration of different grain-pore mobility ratios, ba-

sically by varying the frequency in which the different events are attempted or using different values for T
in (19). Similarly, the frequency of annihilation events fa is adjusted inversely proportional to the average

area of grain boundaries:

fa ∝
A0

Agb

(20)

In this equation A0 stands for the average grain boundary area at the beginning of sintering and Agb for

the average grain boundary area at the current time. Time in the simulation is measured in terms of kinetic

Monte Carlo steps, where one step corresponds to N attempted changes, being N the number of sites in the

system. This simulation time is related linearly with the real sintering time.

In summary, the model described incorporates most of the characteristic phenomena in sintering: inter-

facial energy related to surface evolution, annihilation to introduce densification, sintering rate proportional

to the pore surface area, sintering force inversely proportional to the grain size and change of dimension of

the compact. Further details can be found in other references [12, 60, 78].
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7.6.4 SPPARKS

This sub-section is omitted from this report, because its discussion of SPPARKS is well-covered in other

sections of the report. See the original CSRI paper for details, if needed.

7.6.5 Serial vs. Parallel Implementation

During the Metropolis Monte Carlo used for simulate sintering, sites are chosen randomly while performing

a batch of site-event rejections. These site-events correspond to the mechanisms operating in the sintering

process that were described previously. Accordingly, once a local site is selected:

• If it corresponds to a grain site: a grain growth step is attempted. The state of the grain site is converted

into the state of a neighboring grain site chosen at random.

• If it corresponds to a pore site: a pore migration step or a vacancy annihilation step is attempted. The

pore migration step is simulated by exchanging a pore site with a grain site, this last assuming the

state of the neighboring grain site that results in the possible minimum energy for the grain site. The

vacancy annihilation step is computed by moving the vacancy to the surface of the material, while

displacing the centers of mass of the grains adjacent to the site being annihilated closer together.

All these events are accepted or rejected according to (19), i.e. using a local criterion. Consequently,

almost all the events can proceed independently in every processor [71]. The only exception is the annihila-

tion step, because it requires the coordinate modification of sites along a path that, in general, is distributed

along several processors. Hence, the main difference between the serial and the parallel implementation is

the handling of the annihilation step.

In the serial version, if the vacancy annihilation is to be performed the center of mass of the adjacent grain

is calculated, as well as the vacancy new position and the annihilation is performed immediately. The path of

the annihilation starts in the vacancy current position, goes through the center of mass of the adjacent grain

and continues in the same direction until arriving to the surface of the specimen (See Figure 46). Thus, the

vacancy new position corresponds to the position of the last grain site in the annihilation path. At the same

time, all the intermediate sites in the path are shifted one position in the direction toward the vacancy current

position. In this way, mass is globally conserved, the centers of mass of the adjacent grains are moved closer

together and the compact shrinks.

Figure 46: 2D schematic of vacancy annihilation. Black color denotes pores and grain boundaries; white

denotes grains. Image taken from [12].

In the parallel version, since the lattice is distributed spatially over several processors, long range commu-

nications are required to perform a vacancy annihilation step. Thus, instead of computing the annihilation
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immediately it is registered in a list of pending annihilations to be updated at the end of the current batch of

site-event rejections. At the end of the batch, the pending list of annihilations is processed normally: cal-

culating the center of mass of the adjacent grain, the vacancy new position and the path of the annihilation.

The annihilations in the list are performed one after the other. While performing the batch of site-event re-

jections, a flag is used to signal if the vacancy is pending annihilation and no further operations are allowed

for the site. Nevertheless, it is possible that the actual processing of the annihilations in the list cause the

shifting in vacancies pending annihilation. In those cases, as the vacancy is no longer there no annihilation

is performed. The following description summarizes the processing of the list of pending annihilations.

a Each processor verifies that the local vacancies pending for annihilation are still vacancies and deter-

mines the adjacent grain.

b The list of states of the adjacent grains for all the annihilations pending is gathered in all processors.

c Each processor calculates the local center of mass of each one of the adjacent grains.

d The center of mass of all the adjacent grains is reduced (calculated) in all processors.

e Each processor determines the new position of the local vacancies pending.

f If the vacancy current position and the new position are in the same processor, the path of the anni-

hilation is calculated and the sites traversed are updated. If current and new position are in different

processors, the initial position, the direction of the annihilation path and the number of discrete steps

to the final position are stored in a local list.

g A buffer is created and the annihilation paths that cross multiple processors are gathered in all proces-

sors.

h Each processor follows every annihilation path in the list, consequently any processor knows which

sites in all the domain are being modified. When a processor owns part of the sites to be updated, it

updates them. It also sends the state of the first local element to the previous processor in the path and

waits to receive the update for the last local element from the next processor in the path.

Figures 47(a) and 47(b) demonstrate some of the conflicting cases occurring while updating the list of

annihilations in the parallel implementation. These schematics, drawn for simplicity in 2D and without

ghost cells, show a domain divided between four processors and two annihilation paths to be updated: path
−−→
AB starting at the vacancy site marked A and ending at the border site (surface) marked B and path

−−→
CD

starting at the vacancy site marked C and ending at border site marked D. Annihilation paths are contained

in one processor in Figure 47(a), while in Figure 47(b) they cross multiple processors. If these annihilations

are ordered in the pending list in such a way that annihilation
−−→
AB is first, then both can be performed. On

the contrary, if annihilation
−−→
CD is first in the list, then it is unlikely that annihilation

−−→
AB takes place in the

one-processor case and definitively it is not taking place in the multi-processors case. In the one-processor

case, if after updating annihilation
−−→
CD A is still a pore site, then updating for

−−→
AB proceeds. However,

if A is no longer a pore site then there is no point in processing it as a vacancy being annihilated. In the

multi-processors case, even when all processors are following the path of annihilations (to know how and

when to exchange border information) only the bottom-right processor knows the new state of site A, only

it could verify if it is still a pore site. Thus, rather than incurring in the overhead of communicating the

new state for site A, there is a local book-keeping that allows each processor to detect that the site has been

changed and avoid computing an annihilation for a vacancy that could no longer be there.
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(a) One-processor (b) Multi-processors

Figure 47: Conflicting cases when updating the list of pending annihilations. Left: required updates con-

tained in one processor. Right: required updates crossing multiple processors.

7.6.6 Results

To verify the performance of the new parallel implementation, sintering simulations have been conducted

for three different initial configurations. The first case studied corresponds to a random initialization and a

lattice of: 200×200×50. The second case is a close packing of spheres in a lattice of: 200×200×200. The

third case is based on a microstructure obtained from microtomographic imaging of a real powder compact

of copper particles [77] and a lattice of: 403 × 403 × 95. This section is dedicated to present the results

computed with the serial as well as the parallel version. All images corresponding to 3D views and 2D slices

are generated with ParaView, an open-source visualization application (http://www.paraview.org).

The parameters used to run the simulations are included in Table II. There, RFreq stands for the relative

frequency for attempting the event, kBT for the thermal factor to be applied in (19) and MCS Start for

the Monte Carlo step to start the annihilation of vacancies. The parameters are kept almost equal, the only

difference is in the first case where the microstructure has to be evolved, i.e grains should be available, before

performing annihilation events. Thus, smaller factors of temperature for grain growth and pore migration

are used to decrease the thermal fluctuation in the system while evolving the grain structure.

Table II: Simulation Parameters
Grain Growth Pore Migration Annihilation

Lattice Size RFreq kBT RFreq kBT RFreq kBT MCS Start

200× 200× 50 0.15 0.1 0.08 0.7 0.77 15.0 616

200× 200× 200 0.15 1.0 0.08 1.0 0.77 15.0 0

403× 403× 95 0.15 1.0 0.08 1.0 0.77 15.0 0

Figure 48(a) displays the initial configuration for the first case studied and Figure 48(a) contains a 2D

view of the corresponding microstructure. For the initialization, each site inside the simulation space has

been assigned with a positive number (grain site) or a zero (pore site) at random, to obtain a starting density

of ∼70%. All the grain sites start with a different state, thus rather than a real grain structure the starting

configuration is a collection of isolated one-site grains. Consequently, just grain growth and pore migra-

tion events are performed for a number of Monte Carlo steps until a rough grain structure is obtained and

attempting vacancy annihilation makes sense. Figure 49 shows 2D slices of the resulting microstructure

obtained for serial and parallel versions. Figure 50(a) compares the densification curves vs. Monte Carlo
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steps for both cases. Different initializations with density of 70% are generated and averaged results are

reported. It can be noticed that the evolution is almost identical. Figure 50(b) plots the evolution of the grain

size (radius) vs. Monte Carlo steps for both cases and again, there is a complete agreement between the two.

(a) 3D View - Initial State (b) Slice - Initial State

Figure 48: Initial configuration - Random Initialization. Density: 70.0%

(a) Serial - Slice - 616 MCS (b) Serial - Slice - 1231

MCS

(c) Parallel - Slice - 616

MCS

(d) Parallel - Slice - 1231

MCS

Figure 49: Random Initialization - Initial Density: 70%. Microstructures at 616 and 1231 Monte Carlo

Steps. Top: serial version, density: 71.3% and 85.3% respectively. Bottom: parallel version, density:

71.1% and 84.9% respecively
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(a) Density (b) Grain Size

Figure 50: Evolution of Densification and Grain Size for random initialization

Figure 51 displays the initial configuration used for the close packing of spheres. Starting from an initial

density of 73.1%, both versions reach a density of 94% around 924 Monte Carlo steps. The corresponding

microstructures are included in Figure 52. Curves of evolution of densification and grain size (radius) vs.

Monte Carlo steps for both cases can be encountered in Figure 53(a) and Figure 53(b), respectively. All the

results obtained are similar.

(a) 3D View (b) Slice

Figure 51: Initial configuration - Close Packing of Spheres. Density: 73.1%

Next, simulation results are compared to experimental data. An input image obtained from micrographic

imaging of real powder compact of copper particles is pre-processed to extrapolate a grain structure into

the original 3D structure as explained in [77]. The outcome, shown in Figure 54, is used as the starting mi-

crostructure for the simulation. Results for the parallel implementation can be found in Figure 55. Results

of a serial implementation of the model originally published in [77] are included in Figure 56 to facili-

tate comparisons. Additionally, Figure 57(a) shows the densification curve obtained for the simulation and

Figure 57(b) compares grain size (radius) distributions for serial and parallel versions as well as real data
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(a) Serial - Slice (b) Parallel - Slice

Figure 52: Sintering - Close Packing of Spheres: 924 Monte Carlo steps. Left: serial version, Density:

94.8%. Right: parallel version, density 94.7 %.

(a) Density (b) Grain Size

Figure 53: Evolution of Densification and Grain Size for close packing of spheres

calculated from the microtomographic images of Cu sintering (curves for serial and Cu sintering have been

adapted from [77]). The distribution for the parallel version is computed at 82.9 % density, while distribu-

tions for serial and Cu sintering are calculated at 83.8% density. The parallel version seems to have a rate of

grain growth similar to the real data, although it has more fine grains. Overall the microstructure evolution

observed in the parallel version is compatible to that occurring in the real system.

Finally, Table III displays average times for execution in a cluster of 32 dual Intel Xeon processors,

with 2.8 GHz and 4 GB RAM. The * indicates that the memory requirements have exceeded the available

resources in one or several nodes and that the computation could not be done. The scaling in time is not

ideal, ways to improve performance should be explored.
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Table III: Simulation Times in [sec]
Number of Processors

Lattice Size 1 2 4 8 16 32 64

200× 200× 50 1731 2211 1138 570 349 262 314

200× 200× 200 * * 15751 8260 4971 2519 1913

403× 403× 95 * * * 20660 10236 5674 3287

(a) 3D View (b) Slice

Figure 54: Microtomographic image with a grain structure extrapolated into the 3D structure. Density:

69.1%

7.6.7 Conclusions

A parallel implementation of a Monte Carlo algorithm for 3D sintering simulation has been described. To

verify its performance, different initial configurations were simulated and results were compared with the

serial version, and when available, with experimental data. There is an agreement, in the statistical sense,

between the expected (serial) and obtained (parallel) microstructure, as well as in the average grain size

evolution and the densification curves. Results are encouraging in terms of the dynamics and the size of the

problems that can be attempted. Nevertheless, future efforts must be directed toward the reduction of the

overhead caused by the processing of the list of pending annihilations.

7.7 Thin Film Deposition and Growth

7.7.1 Introduction

Thin film applications emerge across a wide range of technology, from highly efficient solid state light

sources to microelectronics and photonics applications to mechanical wear and/or thermal resistance. For

many applications, a high degree of control is desired over film properties including surface/interface rough-

ness, film texture, grain structure, and defect content. For example, when TiN is used as a diffusion barrier

layer in semiconductor devices, < 111 > texture is preferred. However, when TiN is used as a mechanical

resistance coating, < 100 > texture is desired. Controlling void content is critical to a number of thin film

applications where voids created during deposition lead to shortened device lifetimes. Interface roughness

is important to many photovoltaic, microelectronic, and optical thin film applications where multilayered
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(a) 3D View - 1200 MCS (b) Slice - 1200 MCS

(c) 3D View - 3600 MCS (d) Slice - 3600 MCS

Figure 55: Sintering - Parallel Implementation - From Microtomographic Image. Top: 1200 Monte Carlo

steps. Density: 78.7%. Bottom: 3600 Monte Carlo steps. Density: 82.9%

films are deposited. For example, when a thin layer of Ta is deposited on top of Cu as a diffusion barrier in

semiconductor applications, a very chemically and structurally sharp interface is desired. These film char-

acteristics can be controlled by altering deposition conditions but, for most systems, a one to one mapping

between process variables and resultant film properties does not exist. Creating such a mapping via experi-

ments is difficult and costly so models of thin film deposition bear great potential for increasing control over

thin film engineering.

Analytical descriptions have been advanced of the thermodynamics and kinetics of thin film deposition

and growth. Such models, while highly useful in describing some aspects of film growth, suffer from

deficiencies inherently linked to not fully accounting for atomistic scale phenomena responsible for a given

observed behavior. The same is true for continuum scale simulations of film growth. Atomic scale models

of film growth reveal fundamental mechanisms important to determining observed behavior. They can be

used to develop highly robust and accurate analytical descriptions, paving the way to optimized constitutive

relations for continuum simulations of film growth. Models based on ab initio or even classical force fields,

like molecular dynamics, suffer from being temporally too far removed from macroscopic deposition rates

used in experiments. As an example, consider a MD simulation of film deposition onto a model substrate
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Figure 56: Sintering - From Microtomographic Image. Top: Slices through the 3D microtomographic im-

ages. Bottom: Slices through the simulation - Serial Implementation. Image taken from [77].

surface; using currently available, fairly standard computational resources, a reasonable deposition rate

(film thickness per time) that can be modeled is of order 1 m/s [27]. This is many orders of magnitude

greater than even the highest typically used experimental deposition rates (e.g. 10 nm/s in sputter or e-beam

evaporation methods of metal film deposition). Because experiments use much slower deposition rates, a

newly deposited atom has a relatively long time to diffuse on the growing surface before another atom is

deposited. In MD simulations, the number of diffusive hops that occurs between each deposition event is

significantly smaller than in experiment. This places great limitations on MD simulations for assessing film

growth. Despite such limitations, a considerable body of work exists using this method to explore film

growth at the atomic scale and many useful observations have been made. Nonetheless, an atomic scale

model capable of examining film growth at realistic deposition rates bears great potential for improving the

ability to engineer film structure and optimize the performance of devices dependent upon such films. The

KMC method offers a solution in that models can be formulated with atomistic spatial resolution that are

capable of accessing macroscale temporal regimes.

In this section we describe capabilities that have been built into SPPARKS for executing KMC models

of film deposition and surface diffusion. These models can be classified as on lattice versus off lattice. On

lattice models of atomic scale deposition and diffusion suffer from an inability to resolve, for instance, dis-

location formation in the depositing crystal because this would entail atoms occupying non lattice positions.

Nonetheless, this class of KMC models offer tremendous insight into connections between film morphology

and film growth processing variables including temperature, angle of incidence, and deposition rate. Off
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(a) Density (b) Grain Size Distribution

Figure 57: Left: densification for evolution of microstructure interpolated in microtomographic image.

Right: comparison of grain size distribution (radius) for 82.9 % density (parallel) vs. 83.8% density (serial

and Cu sintering adapted from [77]).

lattice models are significantly more complex because finding candidate diffusion events, or hops, requires a

robust algorithm capable of searching, in a given atom’s neighborhood, for vacant sites amongst an arbitrary,

continuous space ensemble of atoms. In addition, when a neighboring diffusion site is identified, the barrier

for that hop in the given local environment must be computed, typically on the fly. In the following sections,

details of a 2D and 3D on lattice model of film growth are presented along with representative results for

both. This is followed by a description of off lattice KMC models for surface deposition. Off lattice model

implementation in SPPARKS is an ongoing effort.

7.7.2 Motivation and Description

Much of the morphological behavior exhibited during thin film growth can be interpreted as a competition

between diffusion and deposition. This can be thought of as the ratio of the number of diffusive events (or

hops) to the number of deposition events; this ratio is determined by the deposition rate, the temperature,

and the relevant energetics of diffusive hops on the given surface at the given state point. When the ratio

of diffusive hops to deposition events is low, then atoms arrive at the surface and, relative to the deposition

time, do not diffuse very far. In this regime, one expects a relatively rough surface because atoms do not

diffuse to lower energy positions in the time scale of deposition; as such, material is deposited on - and

essentially traps - higher energy, rougher atomic scale structures in the growing film. The opposite regime

has significant diffusion occurring between deposition events and, in this case, a film structure is expected

with lower energy atomic configurations. Atoms will minimize their number of missing bonds; this, in

turn, means smoother film surfaces during growth. Such morphological transitions with changing growth

parameters have been observed; indeed, a good deal of understanding exists about growth processing and

film morphology as evidenced by the tremendous success of various technologies dependent upon control-

ling film growth. However, much is still unknown and a modeling tool capable of assisting experiments in

understanding growth in a given system bears great potential for advancing film growth engineering science.

For a KMC model of growth, the two types of events are diffusive hops and new atom additions to the

system to represent deposition. The diffusive hop part of this application is very similar to what was modeled

for the nanoporous metal application discussed in a preceding section. Indeed, the diffusion code machinery
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for the surface growth application discussed in this section is the same as was used for the nanoporous

application. A difference between the nanoporous material application and surface growth applications is

that one must properly implement the attempt frequency for the often disparate deposition event rate and

diffusion event rates. The deposition rate is an input parameter. In order to scale the diffusion event rates

properly relative to this, some temporal notion of diffusive time scale must be established.

This can be accomplished by assuming that the system is well described by Transition State Theory.

This gives a rate law wi = kT
h

exp(−∆F i

kT
), where wi is the rate for process i, kT is the product of the

Boltzmann constant and temperature, h is Planck’s constant, and ∆F i is the change in free energy between

the initial state and the saddle point state as a system traverses the reaction coordinate for molecular process

i. The prefactor kT
h

can be loosely interpreted as the inverse of the time required for a particle with thermal

energy kT to traverse the physical path associated with the reaction coordinate of process i. The second

term reflects the probability that the energy distribution amongst ensemble degrees of freedom is such that

there exists sufficient energy local to the event site for the particle to surmount the free energy barrier

∆F i. Since ∆F i = ∆U i − T∆Si, where ∆U i and ∆Si are the change in internal energy and entropy for

process i, the rate law can be recast wi = wi0exp(−∆U i

kT
), where the prefactor is now an attempt frequency,

wi0 = kT
h

exp(∆Si

k
). The entropy term is typically small and estimating wi0 ∼

kT
h

is reasonable. Detailed

balance dictates that wi0 is the same for forward and reverse events; indeed, many KMC models of diffusion

use a single value of for all diffusive events with a typical value being wi0 ∼ 5 ps−1. One exception to this

could be for a specific diffusive hop for which multiple mechanisms are identified. In this case, the lowest

energy barrier mechanism is assumed for ∆U i and additional mechanisms are absorbed into the exp(∆Si

k
)

term in wi0, leading perhaps to an altered value of wi0 for the given event.

In the current SPPARKS implementation, wi0 is assumed to be 1 for all diffusive hop events and the

input deposition rate and total run time must be scaled accordingly to achieve the relative rate and total

amount of deposited material desired. For models of experimentally used deposition rates, this introduces a

somewhat cumbersome scaling factor of order 1012; however, future code developments will permit users to

specify event dependent attempt frequencies. This can be particularly important, for instance, for Schwoebel

diffusive hops where multiple mechanisms for a given hop have been identified. As discussed above, this

can manifest as an attempt frequency different from that of other diffusive hops.

7.7.3 On Lattice Simulation Results

We modeled 2D deposition using an on lattice model in SPPARKS; the lattice was triangular and the rate

law used only energy barriers for diffusive hops. The barrier magnitudes selected were based on existing

literature for a 2D model of Ni deposition that calculated barriers using an embedded atom method in-

teratomic potential [91]. Note that the input energy barriers are not equal for forward and reverse events

nor are there any simple function of the coordination number for the sites involved; this is a reflection of

the multibody interatomic interaction prescribed by the embedded atom method. Events modeled included

atoms diffusing via the Schwoebel-Ehrlich mechanism; there are referred to as Schwoebel hops. These were

discussed previously but, briefly, they model a perhaps concerted diffusive event by which an adatom on a

surface step effectively hops to a vacant site in the layer below the adatom, i.e. the layer forming the surface

step. A concerted and a non-concerted mechanism have been proposed for this event. A different flavor of

Schwoebel-Ehrlich barrier has also been identified; in this case, an adatom that is on top of an island terrace

hops to an adsorption site on a side wall of the island. This mechanism has been identified as the first step

necessary for an atom to diffuse down the side of the island toward ledge and kink sites that exist where the

island meets a terrace plane [49]. Again, two mechanisms are proposed for this: one concerted and one not.

In these Schwoebel hop cases, the final vacant site is two neighbors away from the initial site of the adatom;

the current SPPARKS implementation only permits Schwoebel hops to occur from an initial site with a user
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Figure 58: Evolution of a rough surface: (top) initial configuration with sinusoidal hillocks; (middle) after

10,000 secs at 500 K, no Schwoebel hops; and (bottom) after 10,000 secs at 500 K, with Schwoebel hops.

specified maximum coordination. The user also specifies a required minimum coordination for the final site.

To ensure that the KMC realistically simulate the surface diffusion processes including the Schwoebel

jumps, test cases of evolution of a rough surface during annealing were first simulated. A three dimension

FCC crystal was used. This crystal is aligned in the cubic orientation, i.e., x = [100], y = [010], and z = [001].

The surface is assumed to be in the y-direction, and the horizontal dimension has 100 fcc unit cells in the

x-direction and 100 unit cells in the z-direction. An infinite surface was simulated using periodic boundary

conditions in both the x- and z-directions, with a free surface boundary condition in the y-direction. To

initialize a rough surface, sinoidal wave functions that included five periods over the length scale of the

system was projected in both the x- and z-directions; atoms above the sinoidal functions were removed. The

initial crystal thus created is shown in Figure 58(top).

To set up a simple, but physical surface diffusion problem, we assume that the energy of the system is

a sum of the nearest neighbor bonding energy with a value of -0.2 eV/bond. A constant atom vibration

frequency of 1012 /sec was used. A constant activation energy barrier parameter Q = 1.0 eV is superim-

posed upon the energy change during a nearest neighbor jump event to determine the real activation energy

barrier for this event. Similarly, a constant activation energy barrier parameter QS = 1.0 eV is superim-

posed on the energy change during a Schwoebel jump event to determine the real activation energy barrier

for the Schwoebel event. For the Schwoebel jumps permitted here, we further impose the constraint that

the jumping atom must have no more than 6 nearest neighbors prior to the jump and at least 3 neighbors

after the jump. Under these conditions, annealing simulations were performed at a temperature of 500 K

with Schwoebel jumps both on and off. The configurations obtained after 10,000 sec. of annealing are

shown in Figures 58(middle) and 58(bottom) for Schwoebel hops off and on respectively. Both Figures

58(middle) and 58(bottom) indicate that the unstable surface asperities seen in Figure 58(top) turned 45◦

to maximize the stable 111 type of surface. This is a good validation that the KMC simulations, at least
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Figure 59: Rendering of an atomistic KMC model of 2D Ni film deposition and diffusion, where Schwoebel

hops are suppressed and T=250 K. Red sites are atoms and blue sites are vacancies; the total growth time

is 2 s.

qualitatively, correctly simulate the evolution. Comparing Figures 58(middle) and 58(bottom) indicates that

without Schwoebel jobs, the system lacks the ability to anneal out terraces. But with Schwoebel hops, ter-

races were all annealed out and clear 111 and 100 facets developed. Such phenomena are exactly what is

expected from Schwoebel hops, providing another strong validation of the code.

Deposition onto the surface was modeled by initially selecting a random position above the substrate (i.e.

the growing film surface). In 2D(3D) simulations, the y(z) position of the incident atom is assigned to be

the top of the simulation box and the x(x and y) coordinate(s) are randomly distributed across the simulation

cell. A vector, dictated by the user supplied deposition angle, defines the incident atom’s path toward the

substrate. Lattice sites that are vacant and have a user supplied minimum coordination with occupied lattice

sites are found that are also within some cutoff distance from the incident atom’s trajectory. This cutoff

distance is user specified; a larger value increases the chance that a deposition site will be found. The

cutoff distance also permits one to investigate adatom steering effects. Once sites satisfying these criterion

have been identified, the site in this set that is the shortest distance projected ald along the incident atom’s

trajectory is selected as the deposition site.

Both for validation purposes and to illustrate morphological film transitions that can be achieved with

models implemented in SPPARKS, three deposition conditions were simulated using a 2D on lattice model.

In all cases the deposition angle, defined as the angle between the incident atom’s trajectory and the surface

normal, was zero; the deposition rate was 10 nm/s (this is a value typically used in sputter deposition or e

beam evaporation deposition of metals). The simulation cell dimension in x is 50 nm. In the first simulation,

the temperature was relatively low (T = 250 K) and Schwoebel hops were suppressed. This can happen,

for instance, due to an impurity effect or because some surfactant is used during growth. These conditions

favor significant surface roughness and Fig. 59 shows this is what was obtained from SPPARKS. Red lattice

sites signify atoms and blue lattice sites are vacant. Significant porosity and a rough surface, with vacancy

channels extending preferentially along the growth direction, are observed. Perhaps one of the most notable

features of the system depicted in Fig. 59 is the total simulated time of 2 s, corresponding to 20 nm of film

thickness for the specified growth rate. This time of simulation is many orders of magnitude beyond what

is obtainable from, for instance, standard MD methods and this illustrates why KMC models really permit

one to cross the temporal no man’s land between MD and continuum descriptions.

Two additional state points were modeled using the 2D on lattice model presented above. In both of

these cases, Schwoebel hops were enabled; in the first case with Schwoebel hops active (Fig. 60), T=250
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Figure 60: Rendering of an atomistic KMC model of 2D Ni film deposition and diffusion, where Schwoebel

hops are active and T=250 K. Red sites are atoms and blue sites are vacancies; the total growth time is 2 s.

K while in the second case with Schwoebel hops (Fig. 61) T=600 K. The same amount of material (and

time of deposition) was modeled in all three cases. It is clear from comparison of Figs. 59 and 60 that

Schwoebel hop mechanisms of atomic transport - parameterized as they are here - lead to the evolution of

smoother surfaces. Less porosity is also seen in Fig. 60 compared to Fig. 59, again reflective of a lower

energy structure achieved during deposition. Elevating temperature lowers porosity even further and leads

to a significantly smoother surface, as illustrated in Fig. 61. To illustrate the relationship between film

morphology and the ratio of diffusion to deposition events, the ratio for the three systems studied - in order

from no Schwoebel (T=250 K), to yes Schwoebel (T=250 K), to yes Schwoebel (T=600 K) - was 6.1, 3.1,

and∼ 72000. The smooth surface obtained in the last system correlates with a very high ratio of diffusive to

deposition events. The ordering of the first two numbers at first seems a bit counterintuitive since enabling

Schwoebel hops actually lowers the total number of diffusive events (recall that the number of deposition

events in all three cases is roughly equal). Indeed, this low T system exhibits ∼ 6500 Schwoebel hops and,

because of these, the number of regular diffusive hops is reduced by over half (∼ 65000). This dramatic

reduction in regular hops comes as a result of the surface smoothing generated by Schwoebel hops. These

mechanisms lead to lower energy structures and, even though site energy is not defined in this model, the

barriers assigned ensure it is less likely to jump from a more highly coordinated to a less highly coordinated

site, compared to the opposite event. This is a profound illustration of the impact had on film growth

morphology by the Schwoebel-Ehrlich mechanism. Note that these results show agreement with what was

observed in the original literature presenting this model [91], providing some level of code implementation

validation.

On lattice 3D models of deposition and diffusion require that a greater number of site coordination states

(i.e. state changes) be addressed. For instance, in the triangular 2D lattice illustrated in results above,

the number of nearest neighbors is six whereas in a face centered cubic (FCC) 3D lattice, the number of

nearest neighbors is 12. The 2D model presented above was not sufficient to populate all the needed energy

parameters for a 3D model so in the examples below, the material should simply be considered a model

metal. In other words, the range of barriers are reasonable for a metallic material but we have not obtained

these from any rigorous barrier finding method. For an atom to occupy a site, it had to have a minimum

coordination number of 2; diffusion into sites with a coordination of up to 11 must be considered; however,

common neighbor effects due to the geometry of the lattice reduce the number of coordination combinations

that must be considered. Values were assigned to reflect physically reasonable trends (i.e. diffusing from

a coordination of 9 to 3 has a significantly higher barrier than from 9 to 7); the barrier magnitudes were
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Figure 61: Rendering of an atomistic KMC model of 2D Ni film deposition and diffusion, where Schwoebel

hops are active and T=600 K. Red sites are atoms and blue sites are vacancies; the total growth time is 2 s.

assigned to be within the range of values seen in literature addressing diffusion barriers in metals. A zero

deposition angle was used and the FCC lattice was constructed with a lattice constant of 0.352 nm (this is

the T=0 value for Ni but, again, this should be interpreted as a model metal). A 90 x 90 x 20 FCC lattice of

sites was generated, corresponding to a simulation cell dimension of 31.7 nm x 31.7 nm x 7 nm; there are 4

sites per FCC unit cell such that there are 16200 sites per layer and 40 layers total in z (648000 sites total).

A substrate was constructed by occupying the bottom 3 layers of sites (in z); deposition onto the (001) FCC

surface was modeled.

To illustrate the significant effect Schwoebel hops have on morphology, one run is presented with them

active at T=300 K in Fig. 62. Layer by layer growth is exhibited and a very smooth surface is obtained.

Suppressing Schwoebel hops was also examined. At T=300 K, Fig. 63 shows this results in layer by layer

growth but with significantly more surface roughness. In both these cases, the deposition rate modeled was

10 nm/s and the times shown are t = 0, 0.01 s, and 0.04 s. A reasonable test of the model implemented

is to see if it can be driven into an island growth mode. This mode emerges experimentally when atoms

are able to diffuse a significant amount between deposition events. It is also promoted when there exists

less wettability of the deposited material on the substrate material. Because we have only one material type

here, we cannot model the latter effect directly. However, by suppressing Schwoebel hops (particularly at

elevated T), this gives a model where atoms on island terraces do not drop down a layer and effectively

spread the terrace. This can be roughly interpreted as lower wettability. Figure 64 shows the case with no

Schwoebel hops but for elevated T=400K. This increase in T activates more surface diffusive events. In

addition, this simulation was run with a deposition rate of 0.1 nm/s (two orders of magnitude less than the

first two simulations). Figure 64 shows this combination results in an island morphology; the times shown

for this simulation are t=0, 1 s, and 4 s. Layered islands are observed; this type of structure is referred to in

the experimental growth literature as a wedding cake morphology.

7.7.4 Off Lattice Surface Deposition Modeling

It is no exaggeration to say that the available literature decreases by over an order of magnitude when off

lattice surface deposition KMC studies are compared to on lattice studies. Off lattice models permit atoms to

occupy arbitrary positions in continuous space and, as such, the complexity inherent in their implementation

increases markedly compared to on lattice models. While the underlying concepts of a KMC model are still

applied (i.e. diffusion hops and deposition atom additions), these events are followed by some form of relax-
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(a)
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(c)

Figure 62: Rendering of an atomistic KMC model of 3D metal film deposition and diffusion, where

Schwoebel hops are active and T=300 K. Red sites are deposited atoms and blue sites are substrate atoms

present at t=0; the growth times shown are (a) t=0, (b) t=0.01 s, and (c) t=0.04 s.

(a)

(b)

(c)

Figure 63: Rendering of an atomistic KMC model of 3D metal film deposition and diffusion, where

Schwoebel hops are not active and T=300 K. Red sites are deposited atoms and blue sites are substrate

atoms present at t=0; the growth times shown are (a) t=0, (b) t=0.01 s, and (c) t=0.04 s.
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(c)

Figure 64: Rendering of an atomistic KMC model of 3D metal film deposition and diffusion, where

Schwoebel hops are not active and T=400 K. Red sites are deposited atoms and blue sites are substrate

atoms present at t=0; the growth times shown are (a) t=0, (b) t=1 s, and (c) t=4 s.

ation under the forces given by an assumed interatomic force field. This can be energy minimization or MD

at the modeled temperature; relaxation can either be done local to the event or globally and a combination of

the two is often utilized, with global relaxation done less frequently than local relaxation. Because no lattice

is assumed, diffusive events can in theory connect any occupied point in space to any unoccupied point in

space, within some reasonable diffusive hop distance. Ideally, one would utilize an algorithm that performs

a search for local energy minimum sites throughout the volume of space so defined. However, this is com-

putationally quite costly, perhaps sufficiently so to undo much of the time scale bridging achieved by using

a KMC model. That said, in many relevant cases of film growth, crystalline structure, especially polycrys-

tallinity, emerges. Thus, it may be possible to construct off lattice models that exploit some knowledge of

relevant underlying lattice system(s). For the general amorphous case, it may be possible to use bond length

and angle expectations to significantly reduce the volume of space that need be probed for potential vacant

sites near an occupied site. Not surprisingly, most off lattice models of surface deposition and diffusion in

the literature are 2D [6, 57, 58, 85] and existing 3D models are for a simple cubic lattice [69, 81].

In addition to the complexity in finding candidate final sites for a diffusive event, one must also compute

the energy barrier (and/or energy change) on the fly for each event. The burden of this requirement can

be lessened by storing encountered environments and reviewing them when new environments are being

probed to determine potential events. However, in this case a highly efficient pattern recognition scheme is

required and this introduces a separate level of complexity. Once an initial and final site for a diffusive event

have been identified, a simpler approach is to displace the diffusing atom along a straight line between the

two sites in small increments. At each position along the diffusion path, a local minimization is performed

with the constraint that the diffusing atom can only relax its position by remaining in a plane perpendicular

to the previous displacement vector. After each relaxation, the atom is displaced another increment and the

process is repeated. By recording the position and energy of the atom during this process, a reaction path

and, more relevantly, a barrier energy can be extracted. Once diffusive events and their energy data have

been tabulated, an off lattice KMC simulation proceeds according to the same rate law presented previously.

When an event is selected, it is performed and followed by some form of relaxation as discussed above.

The simulation time is advanced and events are redefined local to the previous event. Deposition occurs

in a fashion similar to what was done for the on lattice model except that finding potential sites along the

incident atom’s trajectory suffers from the same complications discussed above for site finding.

Despite these challenges, pursuing robust off lattice KMC models is an important activity to continue.
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Such models, in principle, will permit us to resolve atomic scale defect formation during thin film growth

at realistic growth rates. In the absence of an underlying assumed lattice, realistic models of heteroepitaxial

growth can be implemented. Furthermore, while off lattice development in SPPARKS so far has been

restricted to using a simple Lennard-Jones (12-6) interatomic potential for relaxing the system, in principle

any interatomic potential scheme could be adopted for this phase of the simulation, permitting connection

to a broad range of materials.

7.7.5 Conclusions

Capabilities built into SPPARKS enable both 2D and 3D modeling of film growth at the atomic scale via on

lattice models; results show that this model captures well known morphology transitions with temperature

and also with Schwoebel hops active versus inactive. Most importantly, models of growth into the seconds

and even minutes regime can be formulated to establish more direct connection to experiment.

8 Summary

In this report, we have presented work done under the auspices of our LDRD to develop a parallel kinetic

Monte Carlo modeling capability at Sandia. Our efforts focused on 3 areas, each of which has been high-

lighted in the report: creating a new code SPPARKS for parallel KMC modeling, developing novel serial

and parallel KMC algorithms, and implementing materials modeling applications within the code.

As is evident from Section 7, the majority of the applications developed thus far have been on-lattice

models. Though the SPPARKS framework supports them, we made less progress on developing off-lattice

models, as discussed briefly in the preceeding Section 7.7. In on-going modeling projects that plan to use

SPPARKS and its KMC applications, we hope to further develop various off-lattice algorithms for barrier

identification and localized relaxation.

In two such projects, SPPARKS is being coupled to other continuum-based models and codes (either

finite-element or meshless discrete element or equation-free methods) to perform multiscale calculations.

Additionally, a different LDRD project has plans to model Sn whisker growth. Whiskers have been

observed to sometimes grow very rapidly from deposited Sn thin films; with the removal of Pb from com-

ponents (including COTS parts), Sn whiskering has re-emerged as a potential failure mechanism. This is

particularly important for high consequence applications where long microelectronics lifetimes are critical

to performance. A model capable of describing whisker nucleation density and growth rate for varying film

conditions would greatly improve reliability for a collection of applications. Results indicate that stress

gradient driven atomic diffusion is responsible for whisker growth. We intend to use SPPARKS to better

understand how grain structure, grain size, and stress gradient magnitude control the kinetics of this growth

process.
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