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Crossover among structural motifs in transition and noble-metal clusters
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The energetics of nanoclusters is investigated for five different metals~Ag, Cu, Au, Pd, and Pt! by
means of quenched molecular dynamics simulations. Results are obtained for two different
semiempirical potentials. Three different structural motifs are considered: icosahedra~Ih!,
decahedra~Dh!, and truncated octahedra~TO!. The crossover sizes among structural motifs are
directly calculated, considering cluster up to sizesN.40 000. For all the systems considered, it is
found that icosahedra are favored at small sizes, decahedra at intermediate sizes, and truncated
octahedra at large sizes. However, the crossover sizes depend strongly on the metal: in Cu, the
icosahedral interval is rather large, and it is followed by a very wide decahedral window; on the
contrary, in Au, the icosahedral interval is practically absent, and the decahedral window is narrow.
The other metals display intermediate behaviors, Ag being close to Cu, and Pd and Pt being close
to Au. A simple criterion, which is based on the ratio between the bulk modulus and the cohesive
energy per atom, is developed to account for the differences among the metals. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1448484#
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I. INTRODUCTION

Clusters provide a bridge between isolated atoms
bulk material, and, because of that, they can display unu
physical and chemical behaviors. The knowledge of
structure is the starting point to understand the peculiar c
acteristics of a cluster.1,2 It is well known that nanometer-siz
clusters can present both crystalline~fcc for the elements tha
we shall consider in the following! and noncrystalline struc
tures. The latter are very common at small sizes, and, in
case of noble and transition metals, they take the form
icosahedra~Ih! and of Marks truncated decahedra~m-Dh!.1–3

In Fig. 1, examples of Ih, Dh, and fcc clusters are show
Icosahedra have a quasispherical shape and a close-pa
surface with 20 distorted~111!-like facets.1 The Ih structure
is obtained by packing together twenty tetrahedra sharin
common vertex. This packing is possible only if the tetrah
dra are distorted, and this causes the high internal strai
the structure. Icosahedra are thus expected to be favorab
small sizes, where the efficient minimization of the surfa
energy prevails over the strain contribution, which is prop
tional to the cluster volume. The decahedral structure is
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tained by packing five tetrahedra so that they have a comm
edge. In this way, the surface is again close-packed, be
formed by 10~111!-like facets, but the resulting cluster shap
is quite far form a spherical one. Better Dh structures can
obtained, however, by truncating the clusters. The
truncation4 exposes five rectangular~100!-like facets. The
latter facets are not close-packed, but the resulting shap
closer to a sphere. However, this is not usually the best d
hedral shape, since the energetically costly~100! facets are
rather large in the Ino Dh. A better solution to the problem
finding the best Dh structure was given by Marks,5 who pro-
posed further truncations, which are done in such a way
create~111!-like re-entrant facets. In this way, the clust
shape remains still close to a sphere, but smaller open~100!-
like facets are exposed. From the point of view of the surfa
energy, icosahedra are still better for small clusters, but de
hedra have less internal strain, and become more favor
than icosahedra at increasing sizes. Finally, fcc clusters
expected to be the most favorable in the macroscopic lim
because this is the bulk lattice symmetry for the metals c
sidered in this paper. Fcc octahedra present only~111! facets,
but are very far from the spherical shape. Truncated octa
dra have a better surface/volume ratio, but expose large~100!
facets. Therefore, fcc structures present a large surface
ergy, but they lack internal strain, and are thus expected
dominate at large sizes. These general trends are comm
many fcc-bulk systems, ranging from metallic to Lennar
Jones clusters~as demonstrated by calculations6–9 and

il:
6 © 2002 American Institute of Physics
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3857J. Chem. Phys., Vol. 116, No. 9, 1 March 2002 Crossover among structural motifs
experiments10,11!. We expect that they shall hold also for th
metals treated in this paper, which are thus expected to s
a crossover among structural motifs, from icosahedra
decahedra and finally to fcc clusters. An interesting poin
therefore to investigate quantitatively the crossover sizes
the different metals, looking at the best clusters for ea
structural motifs, and trying to devise general trends am
the different elements and to give, if possible, some sim
criteria for understandinga priori their behaviors. This is the
purpose of the present paper, in which we shall treat exp
itly Cu, Ag, Au, Pd, and Pt clusters. There are already sev
papers~see, for example Refs. 7, 8, 12, 13! dealing with
crossover sizes in metallic clusters, but they either trea
single element~Ni in Ref. 7!, or they are limited to rathe
small sizes, well below the crossover ones,8 or they compare
only Ih structures with cuboctahedra13 @which are indeed
very unfavorable fcc structures with large~100! facets# and
truncated octahedra.12 The present work synoptically trea
several elements up to large sizes (N<40 000), and searche
for the best clusters for each structural motif.

The paper is structured as follows: in Sec. II we brie
describe the interaction potentials and the calculat
method; in Sec. III we report the results of the energy mi
mization of the clusters for the three structural motifs co
paring the five metals; Sec. IV develops a simple criterion
devise general trends among the different metals; Sec
contains the conclusions.

II. THE MODEL

As anticipated in the Introduction, we calculate clus
energies by two different semiempirical many-body pote
tials. The first one was proposed by Rosato, Guillope`, and
Legrand~RGL!.14,15 Then we check general trends by com
paring with the results of an embedded atom method~EAM!
potential16 as parametrized by Voter.17,18 The RGL potential

FIG. 1. Structural motifs of clusters. In the top row, at left a perfect oc
hedron is shown; in the middle panel and right panels, a truncated oc
dron, obtaining truncating the six vertices of the octahedron, is shown. In
middle row, the~3,2,2! Marks decahedron is shown in different views. No
the rectangular~100!-like facets of size 332 (m53, n52), and the Marks
re-entrance. In the bottom row, the fourth shell Icosahedron is show
different views.
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has a very simple analytical expression depending on
parameters, and because of that, it is well suited for disc
ing general trends and for comparing the different metals
rather easy way. In the following, we give a brief descripti
of the RGL potential; for the EAM potential we refer to th
original literature.18 In the RGL potential, the cohesion of th
crystal is given by an attractive many-body term~the band
energy!, which for an atomi is given by

Eb
i 52H (

j ,r i j ,r c

j2 expF2
q

a S r i j

r 0
21D G J a

; ~1!

a51/2 in the second-moment approximation to the tig
binding model;14 other exponents have been proposed in
literature.13,19 The stability of the cluster is ensured by ad
ing a phenomenological core-repulsion termEb

r of the Born–
Mayer-type,

Er
i 5 (

j ,r i j ,r c

A expF2pS r i j

r 0
21D G . ~2!

In these expressions,r i j is the distance between atomsi and
j, r c is the cutoff radius of the interactions~in the following
calculations, we use the above form of the potential up to
second-neighbor distance, and link smoothly the potentia
zero at the third-neighbor distance!; r 0 is the nearest-
neighbor distance in the bulk;A, j, p, q are parameters fitted
on bulk properties of the metals, i.e., the cohesive energy,
bulk modulus and the annihilation of the energy gradient
r 0 . Their values are given in Table I. It can be noted th
after fitting the bulk properties, one is left with only tw
independent parameters, say,p andq. p andq determine the
range of the repulsive and of the attractive part of the pot
tial, respectively; as we shall see in Sec. IV, these two
rameters define the trends among the different metals.

The cohesive energy of a cluster of atoms is given b

Ec5(
i

~Eb
i 1Er

i !. ~3!

Detailed comparisons of RGL results for diffusion bar
ers on flat and stepped surfaces with experimental dataab
initio, and semiempirical calculations are reported in Ref.
It turns out that RGL results correctly predict the domina
diffusion mechanisms on noble and transition me
surfaces;21,22 from the quantitative point of view, the agree
ment with experimental data and first-principle calculatio
is usually good, especially for silver. Moreover, the use
these potentials in the modeling of silver clusters growth23,24

has lead to the explanation of the experimen
phenomenology.25

-
e-
e

in

TABLE I. Lattice constanta and RGL parameters for the different metal

Metal a5A(2)r 0 ~Å! j ~eV! A ~eV! p q

Cu 3.62 1.280 0.0894 10.55 2.43
Ag 4.09 1.190 0.1031 10.85 3.18
Au 4.07 1.855 0.2197 10.53 4.30
Pd 3.89 1.702 0.1715 11.00 3.79
Pt 3.92 2.621 0.2477 10.71 3.85
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



or
nc

l-
th
in
g,

uc
or
ra

de
n

ea
s

n
t

th
e

n

55

es

ng

y

all

e
O

la

om-

-

gu-
d by
rs

er-

x-
r
d
the

e
ys

m,

pe.
ve
e
of

der-

ls

he-

e

00
s,

e

3858 J. Chem. Phys., Vol. 116, No. 9, 1 March 2002 Baletto et al.
Comparison with density functional calculations f
noble-metal clusters are reported in Ref. 26, where o
again a good agreement is found.

In the following, the total energy of the clusters is ca
culated by quenched molecular dynamics, which allows
complete relaxation of the structures around a local m
mum. At the sizes which will be considered in the followin
global optimization27 is not feasible.

III. RESULTS

Here we report the results concerning the different str
tural motifs for the metals Ag, Au, Cu, Pd, and Pt. We rep
a thorough study of the energetics of the different structu
motifs by RGL potentials, considering large clusters and
termining crossover sizes. Then we check the general tre
about the transition from icosahedra and decahedra by m
of the EAM potentials. Ag is treated in greater details a
reference case.

Before showing the results we introduce few notatio
and indices related to the different structures, in order
facilitate their geometrical description, and we introduce
quantityD ~see below!, which is useful to discuss the relativ
stability of structures of different sizes.

Icosahedra: They are structured in shells, see Fig. 1. A
Ih with k shells has

NIh~k!5
10

3
k325k21

11

3
k21 ~4!

atoms ~so that the series of magic numbers is 1, 13,
147,...! and presents 20 triangular facets of sidek.

Marks decahera: They are characterized by three indic
~m, n, r! ~in previous works,23,24the third index was namedp
instead ofr, but here that choice would lead to a confusi
notation because of the parameterp of the RGL potential!. m
andn are the length of the sides of the~100! facets, perpen-
dicular and parallel to the fivefold axis, respectively~see Fig.
1!; r is the depth of the Marks re-entrance~r 51 corresponds
to no re-entrance i.e., to the Ino decahedron!. A ~m, n, r!
marks Dh hash5m1n12r 23 atoms along its symmetr
axis and a total number of atomsNDh(m,n,r ) given by

NDh~m,n,r !5 1
6$30r 32135r 21207r 21021@5m3

1~30r 245!m21~60~r 223r !

1136!m#1n@15m21~60r 275!m

13~10r 2230r !166#%21. ~5!

fcc polyhedra: Starting from the octahedron~see Fig. 1!,
better fcc polyhedra are obtained truncating symmetric
the six vertices, thus obtaining square and hexagonal~trian-
gular in the case of cuboctahedra! facets. In the following we
characterize a given truncated octahedron~TO! by two in-
dexes:nl is the length of the edge of the complete octah
dron; ncut is the number of layers cut at each vertex. A T
has a number of atoms,

NTO~nl ,ncut!5 1
3~2nl

31nl !22ncut
3 23ncut

2 2ncut, ~6!

and square facets with edges ofncut11 atoms. Concerning
the ~111! hexagonal facets, they are not in general regu
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hexagons. In fact, three edges of the hexagons are in c
mon with square facets, having thusncut11 atoms, while the
remaining three edges havenl22ncut atoms. Regular hexa
gons are thus possible ifnl53ncut11; in the following the
TO with regular hexagonal facets will be referred to as re
lar TO. On the other hand, cuboctahedra are characterize
nl52ncut11, which gives energetically unfavorable cluste
with large~100! facets and triangular~111! facets; by substi-
tuting this relation into Eq.~6!, and comparing with Eq.~4!,
one finds that a cuboctahedron with a givenncut has the same
number of atoms as an Ih withk5ncut11.

The quantity, which we introduce to compare the en
getics of clusters of different sizesN, is D,3,7,8 defined as

D5
Etot2NEcoh

N2/3 , ~7!

whereEtot is the total energy of the cluster after the rela
ation of the structure andEcoh is the cohesive energy pe
atom in the bulk.D is thus the excess energy roughly divide
by the number of surface atoms. In general, we expect
following expression to hold forD:7,8

D5
a1bN1/31cN2/31dN

N2/3 . ~8!

In the numerator~which is the excess energy!, the constant
comes from the vertices of the cluster, the term inN1/3 from
the edges, the term inN2/3 from the facets, and the volum
term inN is due to the internal strain. This last term is alwa
present in Ih and Dh clusters, while in TO vanishes~at least
in the limit of large sizes!. Therefore, for TO clusters,D
decreases with size and tends to a constant atN→`, while
for Ih and DhD initially decreases, then reaches a minimu
and finally diverges at large sizes asN1/3.

A. Ag clusters

Icosahedra: Silver icosahedra decrease theirD up to N
5147 ~fourth shell Ih! according to the RGL potential~see
Fig. 2!.

Decahedra: The best Ag decahedra havem5n, which
gives square~100! facets, and a more spherical cluster sha
Concerning the Marks reentrance, the best clusters har
.m/2. As we shall see in the following, while the choic
m5n is common to all the metals treated here, the choice
r changes with the metal, and relative trends can be un
stood comparing the surface energies of the~100! and ~111!
surfaces@g (100) andg (111) respectively#. Indeed, increasingr,
the proportion of~111! facets increases, and thus meta
characterized by larger ratiosg (100) /g (111) ~see Table II! pre-
fer largerr thanm/2. Once the sequence of the best deca
dra is chosen (m5n, r .m/2), D decreases up to sizesN
.15 000 for RGL potentials@where the best clusters are th
~10, 10, 5! and the~10, 10, 6! Dh, at N510 887 andN
513 829, respectively#, and it decreases at least up to 10
atoms for the EAM potential. According to RGL potential
decahedra are the best structures in the interval 300,N
,20 000.

fcc clusters: A criterion which can be helpful in finding
the best TO structures is the Wulff construction~see, for
example, Ref. 28!, which was indeed developed to find th
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



za
e

ul

tio
c-
o

r

t
n

ies

er

ur
in

ller
en
de-

re
find
p to

. An
. In
red
and

t-

r is
f

re-

ce

re
ra,

ls:

ce
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equilibrium shape of macroscopic crystals by the minimi
tion of the surface energy for a crystal of a given volum
From the Wulff construction, the best TO structure sho
fulfill the following condition:

g~100!

g~111!
5

d~100!

d~111!
, ~9!

whereg (100) andg (111) are the~100! and~111! surface ener-
gies, respectively, whereasd(100) andd(111) are the distances
from the center of the cluster. In Fig. 3, we report the ra
c5d(100) /d(111) for the most significant unrelaxed TO stru
tures in the nanometric size range, compared to the rati
the surface energies for the different metals. The energy
laxation shows that either regular TO@characterized byncut

R

and nl
R53ncut

R 11, see Fig. 3# or TO with slightly larger
~100! facets than the regular TO~say with nl5nl

R21 and
ncut5ncut

R , which givesnl53ncut! are the most favorable a
sufficiently large size, in good agreement with the Wulff co
struction criterion~compare the ratio of the surface energ
in Table II with the data in Fig. 3!, which turns out to be
useful also for nanometer-size objects in the case of silv

FIG. 2. The quantityD5(Etot2NEcoh)/N
2/3 as a function of the sizeN,

calculated by means of RGL potentials for silver clusters. Circles, squa
and triangles refer to icosahedra, decahedra, and truncated octahed
spectively.

TABLE II. Ratio between the relaxed surface energies of~100! and ~111!

faces in the case of RGL potentials witha5
1
2.

Metal g (100) /g (111)

Cu 1.032
Ag 1.076
Pd 1.104
Pt 1.114
Au 1.150
Downloaded 15 Mar 2002 to 131.111.112.18. Redistribution subject to A
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B. Other metals

In this section, we treat Cu, Au, Pd, and Pt clusters. O
results are reported in Fig. 4 using the RGL potential and
Fig. 5 for the EAM. In the latter case we consider a sma
size range (N.1000) just to analyze the crossover betwe
icosahedra and decahedra. In the following we report in
tail the results obtained with RGL potentials.

We find that the size interval in which a kind of structu
is favored depends strongly on the metal. So we can
copper clusters which present icosahedral structures u
1000 atoms and a very great size interval for decahedra~the
crossover with fcc is atN.30 000!, while gold clusters pre-
fer fcc structures already at sizes larger than 600 atoms
intermediate behavior characterizes Pt and Pd clusters
fact, for these metals, we find that icosahedra are favo
only at very small sizes and the crossover between Dh
fcc is atN;6000– 7000 atoms.

Moreover, we find that the best choices for~m, n, r! for
decahedra andnl andncut for TO structures depend on me
als. In the case of decahedral structures the choicem5n is
common to all metals, because in this way the cluste
much more spherical, whiler is much larger in the case o
Au clusters for which we haver 5m @the best Dh is the
~3,3,3! at 433 atoms# than for Cu@decahedra decrease theirD
up to ~10,10,5! at 10 887 atoms# and Ag clusters wherer
.m/2. This means that Au clusters prefer to have deep
entrances or in other words, large~111! facets @remember
that for gold a~111! facet presents a much better surfa
energy than a~100! facet ~see Table II!#. Again Pt and Pd
clusters present an intermediate choice: at small sizesr .m
and at larger sizesr 5m22 or r 5m23 @for both metals the
minimum is the~7,7,5! Dh at 5341 atoms#.

s,
re-

FIG. 3. Ratioc5d(100) /d(111) as a function ofncut for different series of
truncated octahedra~TO!. Each series is represented by different symbo
the open circles are related to TO structures withnl53ncut14, the full
circles to TO withnl53ncut13, the open squares to TO withnl53ncut

12, the full squares to regular TO havingnl53ncut11, the open triangles to
TO with nl53ncut , the full triangles to TO withnl53ncut21, and the stars
to TO with nl53ncut22. The horizontal lines represent the ratio of surfa
energiesg (100) /g (111) for the five metals.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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The best choice ofnl and ncut satisfies generally the
Wulff construction, especially when the cluster is not t
small, as can be understood by the comparison of Tabl
and Fig. 3. Again we find that gold clusters are characteri
by large hexagonal~111! facets~the best TO structures ar
characterized bynl53ncut13 at small sizes andnl53ncut

14 at larger sizes! while Pt and Pd prefernl53ncut12 ~for
large Pt clusters also the choicenl53ncut13 is very good!,
and Cu fcc clusters are characterized bynl53ncut. We re-
member that for Ag clusters we have regular TO, withnl

53ncut11. These results are in very good agreement w
the ratiog100/g111 reported in Table II: in fact, we find tha
Cu and Ag, which present the lowest ratio, prefer sma
~111! facets than Au, which has the largest ratio.

Finally, we remark that, in the case of gold, it is know
from literature26 that, at small sizes, amorphous structu
may play an important role. We do not consider them
cause the principal aim of our work is to make a comparis
between different metals trying to find a simple method
devisea priori general trends about the crossover sizes
tween different structural motifs, whereas amorphous str
tures are favorable only for gold and maybe for platinu
clusters.

C. Comparison of RGL and EAM results

Here we compare the results of the two potentials
sizesN,1000~see Figs. 2, 4, 5!. First of all, we notice that
for each metal, the values ofD obtained by the two potential
are rather different. However, the values in themselves
not of great importance. For example, we have made
following check. We have calculatedD by means of a secon
parametrization of the RGL potential~the one in Ref. 15!
which differs from the one used in Figs. 2 and 4 essentia

FIG. 4. D calculated by RGL potentials for Cu, Au, Pd, and Pt cluste
Symbols as in Fig. 2.
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because the cutoff distance for the interactions is larger
that case, the curves ofD(N) are shifted to higher values, bu
crossover sizes remain unaltered.

If we compare crossover sizes for the transition
→Dh, we see that RGL results are in agreement with
EAM results from a qualitative viewpoint. In fact, also i
this case we find that copper clusters present a broad
window in which Ih are the best structures~D decreases up to
309 atoms and the crossover with decahedra is atN.1000!,
which is followed by a large decahedral interval, while go
disfavors this kind of structures and prefers the fcc sh
already at small sizes: there is a strong competition betw
Dh and fcc already atN.400. Silver has an intermediat
behavior~closer to Cu than to Au! also according to EAM
potentials, while Pt is closer to Au.

In conclusion, the major difference between RGL a
EAM results is that, within the EAM potential description
palladium clusters present a behavior much more simila
Ag than to Pt~the icosahedral interval is wider: Ih are th
best up to 150 atoms!.

IV. DISCUSSION

In this section, we try to develop a simple criterion f
explaining the trends shown by the different metals about
crossover sizes. Due to their rather simple analytical fo

.

FIG. 5. D calculated by EAM potentials for Ag, Cu, Au, Pd, and Pt cluste
Symbols as in Fig. 2.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Downloaded 15 M
TABLE III. Parameters5r(«)/«2 in the cases of first (s1n5pq/2) and second neighbor~s2n , see Appendix
for the formula! cutoff, sizes whereD is minimum ~ND

Ih for icosahedra andND
Dh for decahedra!, and crossover

sizes~NIh→Dh andNDh→fcc!, in the case of the different metals and for the RGL potentials.

Metal s1n s2n ND
Ih ND

Dh NIh→Dh NDh→fcc NIh→fcc

Cu 13.1 14.4 309 20000 1000 .30000 1500
Ag 17.2 18.3 147 14000 ,300 20000 400
Pd 20.9 21.8 147 5300 ,100 6500 ,100
Pt 20.6 21.5 147 5300 ,100 6500 ,100
Au 22.6 23.3 147 1300 ,100 500 ,100
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RGL potentials are well suited to discuss general trends
functions of the potential parameters. An example is the
32) missing-row reconstruction. This reconstruction
adopted by Ir, Pt, and Au~110! surfaces~the 5d series, while
the 3d and 4d series do not reconstruct! and it has been
theoretically ascribed29 to the increase of the parameterq,
which governs the attractive interaction dependence with
tance, when going from 3d to 5d metals. Such an increase
q for the fcc transition metals is consistent with the univer
nature of binding-energy-distance relations.30,31 A similar
trend has been pointed out along the noble metal colu
concerning the vacancy stabilization in icosahedra.12

The question that we shall try to answer in the followi
is: Why are crossover sizes small for gold and large for c
per? First of all, we notice that noncrystalline structures
distorted: even in the unrelaxed structure, nearest-neigh
atoms are placed at distances which are different from
nearest-neighbor distance in the bulk solid. Therefore,
expect that a crystal which increases strongly its energy f
change in interatomic distances~i.e., which has a ‘‘sticky’’
interatomic potential!, would have small crossover sizes.32

On the contrary, elements with less sticky interactions wo
have larger crossover sizes. Following this idea, we look
the effect on the total energy of a bulk crystal of changing
the interatomic distances by a factor, say

r i j →~11«!r i j . ~10!

Then we develop the crystal energy per atomEi(«) to the
second order and divide it by the equilibrium valueuEi(0)u.
We expect that the larger is the ratio,

r~«!5
Ei~«!2Ei~0!

uEi~0!u
, ~11!

the smaller are the crossover sizes from icosahedra to d
hedra and then from decahedra to fcc crystallites.r(«) is
essentially the ratio between the bulk modulus and the co
sive energy per atom of the bulk crystal.

Let us now calculateEi(«), and try to find a simple
expression in terms of the parameters of the potential.
assume, for the moment, that interatomic interactions ext
to first neighbors only. The inclusion of second neighb
introduces only minor changes~see the following!. For first-
neighbor interactions, we obtain@see Eqs.~1! and ~2! with
a51/2#:
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Ei~«!512A exp~2p«!2A12j exp~2q«!

.12A2A12j2~12Ap2A12jq!«

1~6Ap22)jq2!«2. ~12!

The first-order term is zero because of the equilibrium c
dition on the crystal; this gives

A12Ap5jq, ~13!

and therefore

r~«!5 1
2pq«2. ~14!

From the above arguments, this result would indicate thatthe
larger is pq, the smaller are the crossover sizes. This is in-
deed the case, as can be seen in Table III, where also re
for second-neighbor interactions are reported. In the la
case one finds againr(«)5 f (p,q)«2, with f (p,q) of a
rather complicated form~see the Appendix!; however, the
inclusion of second neighbors does not introduce signific
changes. A simple interpretation to Eq.~14! follows from the
fact thatp andq determine the range of the repulsive and
the attractive parts of the potential, respectively@see Eqs.~1!
and~2!#; smallerp andq give a longer range~and less sticky!
potential. We can notice from Table I that, whereasp does
not vary monotonically,q increases from 3d to 5d series as
expected from the universal features of bonding
metals30,31 so thatpq is globally increasing from Cu to Au.

An equivalent way to correlate the metal-dependence
the stability domain of icosahedra relative to fcc-type stru
tures with respect to the potential parameters is to give
analytical expression of the energies involved in the m
simple cases: the 13 atoms clusters with icosahedral or
octahedral~TO with nl52ncut11 and same atoms numbe
as the Ih! symmetry. In these cases, the relaxed structu
display only three different interatomic distances: one rad
(r 1) and one tangential (r 2) for Ih13, and only one (r 3) for

TABLE IV. Interatomic radial (r 1) and tangential (r 2) distances in the Ih13

and the one (r 3) in the TO13 after relaxation versus the equilibrium distanc
in the bulk (r 0).

Metal
r 1

r 0

r 2

r 0

r 3

r 0

Cu 0.928 0.976 0.950
Ag 0.924 0.972 0.945
Au 0.920 0.967 0.939
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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the TO13. If we note Pi5e2p((r i /r 0)21) and Qi

5e2q((r i /r 0)21) the distance dependencies of the repuls
and attractive terms of the potential, we can write the ene
difference between Ih13 and TO13 normalized by the bulk
cohesive energy as follows:

EIh13
2ETO13

uEcohu
5

1

p2q
$2p@Q112A3Q1

2115Q2
2

2~2A1511!Q3#1q~2P115P226P3!%.

~15!

The values ofr 1 , r 2 , andr 3 are noted in the Table IV. Fo
noble metals, we can notice from Tables III and IV that thep
parameter and the interatomic distances are not so diffe
from one metal to another, so that we use averaged value
plot Eq. ~15! as a function ofq; essentially, sincep is not
changing much, to look at variations inpq or in q is the same
thing. We check in Fig. 6 that the points representing
‘‘exact’’ values fit quite well the curve so that we get a
evolution of the energy difference between Ih13 and TO13

which decreases appreciably whenq increases, i.e., from Cu
to Au. That means that the Ih is the most favorable for
then for Ag and at last for Au clusters. In order to extend t
analysis to bigger sizes to evaluate the crossover trans
from noncrystalline~Ih! to crystalline~TO! clusters in noble
metals, we have compared the surface energy gain and
core energy loss of the Ih relatively to TO with the sam
atoms number for three different sizes: 13, 561, and 205
order to distinguish the trend in the crossover transition fr
one metal to another. Looking at Table V we notice th
except for the 13-atoms clusters where core defect is incr
ing from Cu to Au along the series, the core energy los
quasi constant for the three metals and independent of
size@this is coherent with the divergence asN1/3 of D at large

FIG. 6. Normalized energy difference between the Ih and the TO~cubocta-
hedron! of 13 atoms as a function of the parameterq.
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sizes, see Eq.~8!#, whereas the surface energy gain is d
creasing from Cu to Au so that Cu Ih are more favorable~in
a larger size range! than Ag and Au ones. This second anal
sis confirms the first one related to the stickiness of
potential32 in order to predict the crossover size transiti
from 3d to 5d transition and noble metals series.

V. SUMMARY AND CONCLUSIONS

In conclusion, we present a study of the energetics
five transition and noble metal clusters, and make a comp
son among them trying to find simple ways to understana
priori general trends about crossover sizes among diffe
structures.

We consider three structural motifs: icosahedra, tru
cated decahedra, and truncated octahedra for Cu, Ag, Au
and Pt.

We calculate the cluster energy by quenched molec
dynamics as a function of the cluster sizeN and considering
both the RGL and EAM potential. Moreover, in the case
Dh and fcc structures we find a criterion to determine
best choice of the parameters which identify the clus
shape:~m, n, r! for decahedra andnl andncut for TO. We find
that their choice depends on metals according to the r
g100/g111. In fact, we show that Au clusters, which prese
the largest ratio, prefer to have large~111! facet so they are
characterized byr 5m andnl53ncut13. On the other hand
Cu and Ag clusters, which have the smallest ratio, pres
both r 5m/2 andnl53ncut, nl53ncut11, respectively. The
best choice for Pd and Pt clusters is just in the middler
.m22 andnl53ncut12.

Once we have found the best sequence for the th
structural motifs, we can establish the crossover size am
different structures and then make a comparison betw
metals. We demonstrate that copper and gold clusters h
completely different behaviors. In fact, in the case of C
clusters we find that non-crystalline structures are favored
wide intervals of size, while Au disfavors completely th
icosahedral motif, with fcc clusters already at small siz
The other metals present intermediate behaviors: silve
much more similar to copper while palladium and platinu
are close to gold. The trends we find for different metals
in line with simple considerations based on the strain ene
of the structures, due to the distortion of the interatomic d
tances in the noncrystalline structures. To estimate the e
of the strain on the excess energy, we introduce a small
form expansion« in the interatomic distances of the fcc bu
crystal, and we develop the crystal energy per atomEi(e) to
the second order, subtract the equilibrium valueEi(0) and
divide by uEi(0)u, thus obtaining the quantityr~e!, which is
essentially the bulk modulus divided by the cohesive ene
per atom in the bulk crystal. In this way, we can explain w
energy
TABLE V. Energy difference between Ih and TO with same size for the surface energy gain and core
loss divided by the total number of atoms~13, 561, 2057!.

Metal 13 ~surf.! 13 ~core! 561 ~surf.! 561 ~core! 2057 ~surf.! 2057 ~core!

Cu 20.081 0.019 20.020 0.007 20.012 0.007
Ag 20.067 0.017 20.014 0.006 20.009 0.007
Au 20.053 0.030 20.005 0.006 20.002 0.007
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Cu has a wide size interval in which noncrystalline structu
are favored while Au presents a very small crossover s
interval. In fact, we find thatr(e) depends only on the prod
uct pq: a largepq ~as happens for gold! suggests a sticky
potential, so displacing atoms in noncrystalline positio
costs a lot. On the other hand, smallpq allows to displace
interatomic distances and so the icosahedral and decah
motifs are favored up to large sizes. Therefore, we can c
clude that there is a simple way to determine the gen
trends in crossover sizes among different structures: a cry
which increases strongly its energy for a change in in
atomic distances would have small crossover sizes while
ements with less sticky interactions would have larger cro
over sizes.
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APPENDIX: FORMULA FOR r„e… WITH
SECOND-NEIGHBOR INTERACTIONS

Here we report the results forr(e) in the case of inter-
actions extended to the second neighbors for RGL poten
@see Eqs.~1! and~2! with a51/2#. Following the same pro-
cedure as in Sec. IV, one finds easily thatr(e) can be cast in
the formr(e)5 f (p,q)e2 where f (p,q) is given by

f ~p,q!5
pq

2

p
11C

11&C
2q

12~32& !D1
D2

2

S 11
D

2 D S 11
D

&
D

p

11
D

2

11
D

&

2q

11
C

2

11&C

, ~A1!

where

C5exp@2p~&21!#, D5exp@22q~&21!#. ~A2!

As seen in Table III the corrections to the first-neighbor
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sult are in between 3–10%. They are larger for Cu a
smaller for Au; this follows from the fact that the potenti
for Cu has the longest range~i.e., it is the least sticky! among
the five metals, and the potential for gold has the shor
range. The result with first-neighbor interactions@ f (p,q)
5pq/2# is recovered by puttingC50 andD50 in the above
formula.
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