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Crossover from Two- to Three-Dimensional Turbulence
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Forced rotating turbulence is simulated within a periodic box of small aspect ratio. Critical parameter
values are found for the stability of a 2D inverse cascade of energy in the presence of 3D motions at
small scales. There is a critical rotation rate below which 2D forcing leads to an equilibrated 3D state,
while for a slightly larger rotation rate, 3D forcing drives a 2D inverse cascade. It is shown that inverse
and forward cascades of energy can coexist. This study is relevant to geophysical flows, and contains
physics beyond the scope of quasigeostrophic models. [S0031-9007(96)01175-1]

PACS numbers: 47.27.Eq, 47.60.+i

Random forcing at wave numbéy of an incompress- aspect-ratio 3D (SAR3D) flows. We first seek to establish
ible fluid in three space dimensions leads to a forwarcconditions for which 2D dynamics are stable to smaller-
cascade of energy from to the dissipation wave num- scale 3D fluctuations. Our ultimate goal is to determine
berk; > ks [1]. The energy dissipation rate; is equal conditions under which 3D forcing at small scales actually
to the energy input rate; and all scales are statistically drives a 2D inverse cascade of energy to large scales.
steady. However, in two space dimensions, an inverse cas- It is often mistakenly argued on the basis of the Taylor-
cade of energy t& < ky develops [2]. In the 2D case, Proudman theorem that rotation two dimensionalizes
€s < €7 and only scales small compared to the largest popthe flow. The Taylor-Proudman theorem [7] states that
ulated scald, = 27 /k, are statistically steady. Dimen- 9,(V X u) = 2Q4d,u in the limit of fast rotation and
sional analysis leads to an energy spectififk) « k5>  small viscosity. This implies only that motions slow with
for the rangek) < k < k;in 2D, and for the rangké; << respect to the rotation rate are independent dflowever,

k < ky in 3D. Geophysical data in which the turbulenceif the initial conditions or the forcing contain a significant
is both three dimensional and high Reynolds number supe variation, this variation remains and leads to rapid
port an approximaté >3 scaling of the energy spectrum oscillations on the rotation time scale (inertial waves).
(e.g., [3]). Recent numerical data using hyperviscosities ifRotation does in fact lead to two dimensionalization, but
2D also exhibitE(k) o« k=53 for k < ks (see, e.g., [4]). this is a subtlenonlineareffect that has only begun to be

Here we consider forced turbulence in a thin layer ofunderstood [8,9].
fluid rotating about thez axis. The flow is simulated We solve the 3D incompressible Navier-Stokes equa-
in a periodic box withL, < L, = L,. This provides a tior:?s in a frame rotating at constafit = ()2, given by
single system in which one can study the transition and Ju . —r _ 2
interaction between 2D and 3D behavior by varying the 9t TusVut 20 xu=1-Vp+ Ve, (1)
box heightL_ or the rotation rate). whereu is the divergence-free velocity, the constant den-

In addition to its fundamental nature, this study hassity has been absorbed into the pressurand v is the
applications to flows in oceans and atmospheres whergnematic viscosity. To obtain a sufficiently large range
vertical length scales are much smaller than horizontadf inertial scales, we have used both an eddy-viscosity
length scales and the large-scale eddy turnover time isubgrid model [11] as well as a hyperviscosity operator
much larger than the rotation time scale. Mathematicak,(—1)?*'V* in place ofvV?in (1). The choice of a sub-
models of geophysical flows are usually quasi-2D ingrid model affects the shape of the energy spectrum in the
the sense that the motions are described only byzthe high wave-number range, but does not affect the results for
component of vorticity [5]. In such models, the effectsthe critical values of the parameteS's= L;/L. and Ro=
of the small aspect ratio, stratification and, rotation(efk})1/3/ﬂ that define the crossover from 2D to 3D
are expressed through a single parameter, such as thehavior, wherel; = 27 /ks. Here we present mainly
Burger number characterizing the rotating shallow watespectra as calculated using the eddy-viscosity model de-
equations [6]. Here we would like to separate thesereloped by Kraichnan and Chollet and Lesieur [11].
effects, and to establish when a quasi-2D model is a The forcef is taken to be Gaussian and white in time
reasonable approximation to the large scales of smallwith forcing spectrum¥(k;) given by
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exp( — 0.5{[kn — (kp)nl/ o)) 2 time evolution of the total energl¢ and the ratioe, /€.
Qm)2a > @) In this figure, time is nondimensionalized igy,k7)~"/3
_ _ ) ., and kinetic energy bye/ks)?3. After an initial period
where €, is the energy input ratek, = (ky + ky) / of development of the nonlinear interactions, the energy
is the horizontal wave number, an@;), = [(ky); +  remains constant in time ane/e; = 1 indicating that
(k;)2]/2 is the horizontal component of the peak wavea 3D statistically steady state is established for all wave
numberk, of the force. The standard deviation Btk;,)  numbers. Most of the energy input by the random forcing
has been chosen as = 1> 2m/L.. Here we present js transferred directly to higher wave numbers and even-
primarily the results for SAR3D turbulence driven by tyally dissipated by viscosity. Figure 2(a) shows energy
a two-dimensional, two-component (2D2C) forée=  spectra at two values of the nondimensional time 42
fxx + fy¥ with (ky), = ky. The case of 2D2C forcing and: ~ 52. These spectr&,(k,) are obtained by sum-
investigates the Stablllty of calculations such as thOSﬂ]ing u,(k)u,(—k)/2 Overkz and binning into rings of ra-
reported in [4]. We also briefly discuss 3D3C “conical” djys kn with Ak, = 27 /L,. One sees that the flow at
forcing for which the vertical component of the forcing these late times is statistically steady, with large fluctua-
wave number ig(ks).| = 27 /L.. The forcing is turned tions in the spectra at low wave numbdrs< k; = 12.
on at time zero, with initial 3D motions present only at theThe spectra at high wave numbérs> k; show an ap-
level of round-off error. Equations (1) and (2), modified proximate scaling, (k;) = k=5/3_ Notice that the small
to account for the subgrid model, are solved using aspect ratio leads to jumps in the spectra at multiplies of
pseudospectral code. the smallest vertical wave numbgr = 16. As the pa-
The problem as posed is characterized by four nondirameterSis increased, less and less energy resides in the
mensional parameters: the aspect ratie= L./L., the  Jow wave numberg < k;.
Reynolds number Re= e;’k; **/v, the Rossby num-  The 3D behavior fors = 0.75 [Figs. 1 (solid line) and
ber Ro= (efk.,%)l/ 3/Q, and the relative scale of the force 2(a)] should be contrasted with the 2D behavior at large
S = Ls/L.. Here we consider the limit of a very large scales forS = 0.375 [Figs. 1 (dashed line) and 2(}, =
Reynolds number by using subgrid models, and a smali/64]. Notice that in both cases the forcing is in the 2D
enough aspect ratio such that finite-size effects in the horikange of wave numbers. Intlfe= 0.375 case, the forcing
zontal directions are not important for the times considereds at wave numbet; = 6 and the smallest positive vertical
in our simulations. Therefore we are primarily concernedvave number isk, = 16 (and thus the smallest wave
with the behavior of SAR3D flows as a function of Ro andnumber of the 3D range ik = 16). The energy spectra
Sfor a large Reynolds number add— 0. E;(k;) show two different cascade regions: foy > k¢
The choice of forcing plays a role in the determinationthere exists a forward cascade of energy that quickly
of the critical curve in(S, Ro) space defining the crossover achieves a statistically steady state, whilekfp< &, there
from 2D to 3D behavior. We expect the shape of theis aninverse cascade of energy leading to a time-dependent
force, its dimensionality, and its coherence properties tdorizontal integral scalé, that is increasing in time, and
shift the critical curve, perhaps even significantly. Table lonly scales small compared ig are statistically steady.
provides a few approximate critical values for the case offhe inverse-cascade and forward-cascade regions exist
2D2C forcing. Our purpose for this initial study is to simultaneously, and both show rough power-law scaling
illustrate a range of behaviors i®(Ro) parameter space E(k;) « kh_s ’. Notice that the spectra decrease rapidly
for the particular force (2) described above. in the region of 2D scaleé < k;, < 16 greater than the
We have performed three sets of simulations withforcing wave number before exhibiting the approximate
three different resolutions (see Table I): (028 X ¢, scaling in the 3D regiok;, > 16. For this flow, only
128 X 8 (A = 1/16), (I) 512 X 512 X 8 (A = 1/64),  a fraction of the energy input by the forcing is dissipated
(1) 256 x 256 x 32 (A = 1/8). In all cases, the grid by viscosity at small scales, the remainder of which is
is taken to be isotropic at small scales. The first andransferred to larger scales, and this is reflected in the fact
second data sets are used to study separation distanahate,/e; < 1 [Fig. 1 (dashed line)]. Changing from the
§ = 1 (forcing in the 2D range of wave numbers). The eddy viscosity subgrid model to the hyperviscosity subgrid
third data set confirms that the nature of the resultsnodel changes only the shape of the energy spectra for
does not change when the resolution of the small scalegave numbers in the 3D range [see Figs. 1 and 2(b)].
is increased, and to study separation distanfes 1 Next we consider rotating SAR3D turbulence driven by
(forcing in the 3D range of wave numbers). the 2D2C force with spectrum given by (2). We vary
First we consider 2D2C forcing in the limit Re»  both the Rossby number Ro and the relative s€aléthe
© () = 0). We have determined a critical val§g =~ 0.5  force to determine the portion o§(Ro) parameter space
above which an overall inverse cascade was not found tavhere an inverse cascade of energy to wave nunigers
exist and below which a 2D-like inverse cascade of energy, will exist. Table | presents our results for selected
to large scales was found to be stable to 3D motions atalues of §, Ro). Recall that the critical value of the
scales smaller than the forcing scale[11]. Forthe case Rossby number Ro— > asS — 0.5. Ascan be extracted
of A = 1/64 andS = 0.75, Fig. 1 (solid line) shows the fromTable |, Rg = 1.6for S = 0.75 (A = 1/64) and
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TABLE I. The behavior (2D, 3D of for critical) of the turbulence for varioussS(Ro) and
2D2C forcing.

(1) 128 X 128 X 8 () 512 X 512 X 8 (1) 256 X 256 X 32
(0.75, ) 3D (12/16,%) 3D  (0.75,1.6) 1 (2.0,1.5) 3D
(0.75,2.0) 3D (9/16,%) 3D (0.75,1.3) 2D (4.0,1.8) 3D
(0.75,1.4) 3D (8/16,%) 1 (0.75,125) 2D (4.0,1.4) 1
(0.75,1.25) 1 (7/16,) 2D (075,050 2D (4.0,1.25) 2D
0.75,12) 2D (6/16,») 2D (10,025 2D (4.0,1.1) 2D
0.75,1.1) 2D (4/16,) 2D (0.5,2) 2D (4.0,1.0) 2D
(0.75,0.75) 2D (0.75,2) 3D (8.0,0.7) 2D

(0.75,0.5) 2D

decreases slowly f&f > 0.75. The data suggest that Ro of energy is cascaded to large scales as the Rossby number

may asymptote to a nonzero constant for lagge is decreased below critical. Figure 1 compares=Re
Numerical data sets | and Il were used to explore 1. (solid) and Ro= 0.5 (dot-dashed line) foA = 1/64 and

For aspect ratiogt = 1/16 and 1/64, the range oSis § = 0.75.

limited by the dimensions of the box to approximately The scalinge, = O(Ro) indicated by our results for

0.1 =S =1. ForS = 0.75, we found the near-critical 2D2C forcing can be understood in light of the closures

values Ro= 1.25 for A = 1/16 and Ro= 1.6 for A =  [9,11] which show that, in a statistically steady state, the

1/64 (Table 1). The critical Ro for fixedS changes by energy flux tok > k; is proportional to a decorrelation

(20-25)% when the aspect ratio is lowered frem=  time scalg6;,,). Inthe absence of rotation, this time scale

1/16 to 1/64, suggesting that finite-size effects in theis determined by the nonlinear interactions andDidl)

horizontal directions may be influencing the results forwith respect to the variables nondimensionalized pgnd

the caseA = 1/16. For fixedS and decreasing Ro, the

value of e,;/¢; decreases approximately linearly for Ro ] A L l(ell)| ]
less than the critical value, indicating that a larger fraction 5 3
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FIG. 1. A = 1/64,Ro=, § = 0.75 (solid line);A = 1/64,  FIG. 2. (upper)A = 1/64, Ro= e, § = 0.75 (statistically
Ro = =, § = 0.375, eddy viscosity model (dashed line};=  steady); (lower = 1/64, Ro = =, § = 0.375: eddy viscosity
1/64, Ro = =, S = 0.375, hyperviscosity operato¥* (dotted (solid line) with time |ncrea5|r1%j/3upwards; hyperviscosity
line); A = 1/64, Ro= 0.5, S = 0.75 (dot-dashed line). (dotted line). The lines arg, o« k;, .
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107! ey — T — T no inverse cascade of energyko< k; = 16. Figure 4
shows spectra fo§ = 4.0, Ro = 1.0 which is on the 2D
side of the critical curve and shows that a fraction of the
energy input by the force is transferred to wave numbers
smaller than the forcing wave numbéy = 16 by an
inverse cascade of energy. The dashed line in Fig. 4 is
the pure 2D spectruri(k;, k, = 0) to indicate the wave
numbers containing significant 3D energy.

The critical curve in §,R0) space defining a crossover
from 2D to 3D behavior will be shifted when the force is
modified. The existence of an inverse cascade in SAR3D
flows subjected to 3D3C forcing is probably most relevant
to the geophysical applications, and is the subject of
1 ongoing study. With 3D3C conical forcing (2), the critical

10~ Lt i . curve shifts only slightly: We found a critical value Re-
1 10 1.25 for A = 1/64 and S = 1.0, while this value Ro=
k, 1.25 is just below critical for 2D2C forcingd = 1/64 and
B _ _ ) ... 8§ =1.0. We also found the persistence of a strong inverse
FIG.3. A=1/8, S = 4.0, Ro= 1.8 (approaching a statisti-
cally steady sta(té with time increasing( dF:)F\)anardg). Cascad('_:' for the casesA = 1/64, Ro= 0.5, and § =
1.0 leading toe;/e; =~ 0.8; andA = 1/8, Ro = 0.1, and
k. Rotation introduces an additional linear decorrelation’ = 2.0 leading toe;/e, ~ 0.6 and representing 3D3C
mechanism on a time scaf®Ro). Hence the latter is the forcing deeper in t_he 3D range 01_‘ scales._ These results
dominant decorrelation time scale when Rol. A subset demonstrate thatitis possible to drive a 2D inverse cascade

of triad interactions is not decorrelated by rotation: theffom purely 3D forcing at the small scales in a rotating
resonant triads for whictk./|k| = p./Ip| = ¢./Iql =  flow.
O(Ro). However, there is no energy transfer between 2D L- M. S. gratefully acknowledges the support of NSF
and 3D modes resulting from the resonant triads [8], angnder Grant No. CTS-9528491 and computing resources
thus we expect the scaling = O(Ro) for 2D2C forcing  Provided by the Cornell Theory Center (CTC) and the
and Ro smaller than the(1) critical value. The scaling Maui High Performance Computing Center (MHPCC).
€2 = O(Ro) may hold in general (i.e., for 3D3C forcing) The authors are indebted to R. Rogallo and A. Wray for
since the number of resonant triadsii$Ro) as Ro— 0. the use of their software. The computations were begun
Figures 3 and 4 present results from data set Il fodt the Hong Kong University of Science and Technology
2D2C forcing in the 3D range of wave numbers. Figure 3(HKUST).  L.M.S. and F.W. thank the Mathematics
shows energy specti, (k,) (time increasing downward) Department at HKUST and The Hong Kong Research
for the point in §,R0) spaceS = 4.0, Ro = 1.8 which is Grant Council for making possible their visit to HKUST.

on the 3D side of the critical curve, meaning that there is

aax T ] [1] A.S. Monin and A. M. Yaglom Statistical Fluid Mechan-
ics (MIT Press, Cambridge, MA, 1975), Vol. 2.
[2] R.H. Kraichnan, Phys. Fluid$0, 1417 (1967).
[3] H.L. Grant, R. W. Stewart, and A. Molliet, J. Fluid Mech.
12, 241 (1962).

T T T
AR RN

10-2

T T T
1 gl

Eh(kh)

10-3

10-t

L R AR |
roe vl

’ﬁ? [4] L.M. Smith and V. Yakhot, Phys. Rev. LetZ1, 352
o (1993).

107 3 3 [5] J. PedloskyGeophysical Fluid Dynamic&Springer, New
= : York, 1979).

= ] [6] L. M. Polvani, J.C. McWilliams, M. A. Spall, and R. Ford,
1<) i Chaos4, 177 (1992).

m‘m_a [7] H.P. GreenspanThe Theory of Rotating FluidéCam-

bridge University Press, Cambridge, 1968), reprinted by
Breukelen Press, Brookline, MA, 1990.
[8] F. Waleffe, Phys. Fluids /&, 677 (1993).
[9] C. Cambon and L. Jacquin, J. Fluid MecB02 295
(1989).
[10] R.H. Kraichnan, J. Atmos. Sci33, 1521 (1976); J.P.
Chollet, and M. Lesieur, J. Atmos. SE8, 2747 (1981).
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