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Abstract

Due to experimental evidence it is incontestable that crossover is es-
sential for some fitness functions. However, theoretical results without
assumptions are difficult. So-called real royal road functions are known
where crossover is proved to be essential, i. e., mutation-based algorithms
have an exponential expected runtime while the expected runtime of a
genetic algorithm is polynomially bounded. However, these functions are
artificial and have been designed in such a way that crossover is essential
only at the very end (or at other well-specified points) of the optimization
process.

Here, a more natural fitness function based on a generalized Ising
model is presented where crossover is essential throughout the whole op-
timization process. Mutation-based algorithms such as (µ+λ) EAs with
constant population size are proved to have an exponential expected run-
time while the expected runtime of a simple genetic algorithm with pop-
ulation size 2 and fitness sharing is polynomially bounded.

1 Introduction

In the history of evolutionary algorithms there have been long debates whether
mutation or crossover is the “more important” search operator. Despite much
experimental evidence of functions where crossover is indispensable it has long
been an open question to prove rigorously (without assumptions) for a function
that crossover is essential. Jansen and Wegener [7] present a simple fitness
function and prove that a genetic algorithm optimizes the function in polynomial
expected runtime while the expected runtime of mutation-based algorithms is
superpolynomial.

In [6], Jansen and Wegener present a class of so-called real royal road func-
tions where the performance gap between mutation-based algorithms and a
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genetic algorithm is even larger. They prove that mutation-based algorithms
have an exponential expected runtime on real royal road functions while the
expected runtime of a simple genetic algorithm is polynomially bounded. How-
ever, the population size of this genetic algorithm grows with the search space
dimension.

Due to the large population size of Jansen’s and Wegener’s genetic algorithm,
the question remains whether similar effects can be obtained if one restricts both
types of algorithms to constant population sizes. Storch and Wegener [8] present
another class of real royal road functions for constant population size where a
genetic algorithm with the smallest possible population size, namely 2, suffices
to obtain a polynomial expected runtime.

Both classes of real royal road functions have been constructed explicitly
for the comparison of mutation and crossover and are rather artificial. In the
analysis of genetic algorithms on real royal road functions, crossover is used
only in one single step, namely in the very last step of the optimization process
which creates a global optimum.

In this paper, we present another class of functions where (µ+λ) EAs with
constant population size need an exponential runtime while a simple genetic
algorithm with population size 2 and fitness sharing needs only polynomial ex-
pected runtime. In contrast to the functions presented by Jansen and Wegener
and Storch and Wegener, this class of function has not been constructed explic-
itly to show the real royal road property; it has been derived more naturally
from the investigation of generalized Ising models.

In Section 2, we define the generalized Ising model and the aforementioned
class of fitness functions. Section 3 shows that (µ+λ) EAs with constant µ
have an exponential expected runtime on these fitness functions. In Section 4,
we define a simple genetic algorithm with fitness sharing, the (2+2) GA, and
prove a polynomial upper bound for its expected runtime. Finally, Section 5
determines the practical behavior of the (2+2) GA with a closer look on the
average runtime from an experimental perspective.

2 The Ising Model on Binary Trees

The Ising model from physics due to Ernst Ising [5] has become a popular model
for the investigation of adaptation capabilities of evolutionary algorithms. It
is based on an undirected graph G = (V, E), V = {1, . . . , n} and a search
point x = (x1, . . . , xn) represents a coloring of V . In its original form, an edge
e = {u, v} contributes the value fe(x) := w(e) · xu · xv to the fitness where w(e)
is the weight of the edge e and xu, xv ∈ {−1, +1}. The fitness of x, which is to
be maximized, is the sum of all fe(x). In case of positive weights w(e), the Ising
model can be seen as an inverse graph coloring problem since the Ising function
rewards monochromatic edges, i. e., edges e = {u, v} where xu = xv .

Here, we only consider the simple case w(e) = 1 for all e ∈ E and we apply
an affine transformation to obtain the search space {0, 1}n instead of {−1, +1}n.
In this formulation, the Ising function IsingG on G = (V, E) simply counts the
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number of monochromatic edges. Since xuxv +(1−xu)(1−xv) = 1 iff xu = xv ,
the Ising function can be defined as quadratic function

IsingG :=
∑

{u,v}∈E

(xuxv + (1 − xu)(1 − xv)).

An important property of IsingG is bit-flip symmetry or spin-flip symmetry, i. e.,
f(x) = f(x) if x is the bitwise complement of x.

The optimization of the Ising function is trivial since 0n and 1n are always
global optima. However, on most graph classes it is likely that, due to bit-
flip symmetry, different parts of the graph may be colored with different colors.
Connected subgraphs can be seen as building blocks and thus, 0-colored building
blocks compete with 1-colored building blocks. This may lead to problems called
synchronization problems by Goldberg, van Hoyweghen, and Naudts [4].

The two most known graph classes for the Ising model are the one-dimen-
sional Ising model, also called ring, and the two-dimensional Ising model, also
called torus. Fischer and Wegener [3] investigate the one-dimensional Ising
model and compare the effects of mutation and crossover. They prove an upper
bound of O(n2) for a genetic algorithm and an upper bound of O(n3) for the
(1+1) EA which is asymptotically sharp under a reasonable assumption. The
two-dimensional Ising model has been investigated by Fischer [2] and Briest et
al. [1]. The latter also investigate other graph classes like partially connected
cliques and the Boolean hypercube.

Here, we investigate another graph class, the class of complete binary trees.
Let G = (V, E) be a complete binary tree, then IsingG can be seen as a hier-
archical function where all subtrees represent building blocks. Since two-point
crossover should be able to select building blocks, we choose an encoding that
ensures that all vertices of a subtree form a coherent sequence within the bit
string. This aim is accomplished by enumerating the vertices in V with an
inorder traversal as seen in Figure 1. Note that we draw trees in downward
direction, with the root at the top.

The hierarchical building block structure sketched in Figure 1 resembles the
building block structure of H-IFF, see, e. g., Watson and Pollack [9]. Both func-
tions are hierarchically consistent as defined in [9]. However, in H-IFF, the
building blocks fit together tightly and the fitness contribution of monochro-
matic building blocks differs from the Ising function. While in the Ising function
on trees, monochromatic building blocks of size m contribute the value m − 1
to the fitness, monochromatic building blocks of size m in H-IFF contribute the
value m·((log m)+1). Due to this superlinear function, H-IFF rewards few large
monochromatic building blocks more than many small monochromatic building
blocks. This strengthens the hierarchical structure of building blocks in H-IFF
in comparison with the Ising function.

Let x, y ∈ {0, 1}n, n := |V |, be colorings of V and {u, v} ∈ E, u parent of v,
be dichromatic in x as well as in y. Let T (v) be the subtree of v, then the bits
belonging to T (v) form a building block in x and y. If T (v) is 0-colored in x and
1-colored in y, two-point crossover may exchange the colorings of the building
block T (v) in x and y, creating offspring x′, y′ where {u, v} is monochromatic.
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Figure 1: A visualization of the encoding of binary trees (top) and the resulting
building block structure (bottom). The vertices are labelled with the inorder
enumeration.

Since T (v) may help to increase the fitness, T (v) is called an improving
subtree (see Figure 2 for an example).

Definition 1 Let G = (V, E), n := |V |, be a complete binary tree, v ∈ V , and
x ∈ {0, 1}n. A subtree T (v) is called an improving subtree in x iff there is a
parent u ∈ V of v and xu 6= xv.

We can relax the condition that T (v) is monochromatic in x as well as in y
as follows. If T (v) is an improving tree in x as well as in y and xv 6= yv, two-
point crossover selecting T (v) for exchange creates offspring x′, y′ where {u, v}
is monochromatic. Since the colorings of T (v) are exchanged between x and y,
the sum of the fitness values increases yielding f(x′) + f(y′) = f(x) + f(y) + 2.
In case x′, y′ replace their parents x, y in the population, the fitness of the
population increases.

We further remark that there are
(

n
2

)

possibilities for choosing two crossover
points while there are only n building blocks representing subtrees. Most two-
point crossover operations choose a sequence within the bitstring not corre-
sponding to subtrees. However, in the following we focus our analysis on two-
point crossover operations selecting the bits belonging to a single subtree.

3 Expected Run Time of (µ+λ) EAs

The class of (µ+λ) EAs contains algorithms with population size µ working as
follows.

Algorithm 1 (Scheme of a (µ+λ) EA)

1. Choose a multiset P of µ individuals uniformly at random.
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Figure 2: An example of a coloring with two colors. The coloring displayed
contains three improving subtrees.

2. Select a multiset P ′ ⊆ P of λ individuals according to some selection
strategy.

3. For all y ∈ P ′: flip each bit in y independently with a fixed mutation
probability pm.

4. Select a multiset P ∗ ⊆ (P ∪P ′) of µ individuals with maximal fitness value
according to some selection strategy. P := P ∗.

5. Repeat steps 2–4.

We regard the algorithm as an infinite stochastic process and are interested in
results on the expected runtime, i. e., the expected time until a global optimum is
evaluated. We do not further specify the selection strategies since the following
lower bound holds for all non-specialized strategies.

Theorem 1 Let G = (V, E) be a complete binary tree with n := |V | vertices and
depth d. The expected number of mutation steps of an arbitrary non-specialized
(µ+λ) EA with µ = O(1) and mutation probability pm on f := IsingG is bounded
below by 2Ω(n).

Sketch of Proof. Due to bit-flip symmetry, a mutation operator with mutation
probability pm ≥ 1/2 works like a mutation operator with mutation probability
1 − pm ≤ 1/2. So, w. l. o. g., we assume pm ≤ 1/2.

If pm < 2−(4µ+1), we assume the (µ+λ) EA starts with a population of worst-
case search points, i. e., in all x ∈ P , both subtrees of the root are monochro-
matic and colored with different colors. This event occurs with probability
Ω(2−µn) and then, all individuals in P have fitness n − 2. In such a situation,
there are only O(n) different search points in {0, 1}n which can be accepted for
the next generation, namely all search points with at most one improving tree.
Since the Hamming distance from any worst-case search point to both global
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optima and to all search points with improving subtrees of depth d′ < d − 1
is at least (n + 1)/4, the expected number of mutation steps until a non-worst
case search point is created and accepted is bounded below by

Ω(2−µn) · p−(n+1)/4
m /O(n)

< Ω(2−µn) · 2(n+1)·(4µ+1)/4/O(n) = 2−Ω(n).

If 2−(4µ+1) ≤ pm ≤ 1/2, the (µ+λ) EA resembles purely random search and it is
hard to hit a specific search point. With probability 1− 2−Ω(n), the (µ+λ) EA
starts with a population of non-optimal search points. The probability to create
a global optimum out of an arbitrary non-optimal search point is 2−Ω(n). Thus,
the expected number of mutation steps is bounded below by (1−2−Ω(n))·2Ω(n) =
2Ω(n). �

4 Expected Run Time of a Simple GA with Fit-
ness Sharing

Fitness sharing derates the “real” fitness of individuals by dividing the fitness
f(x) by the sharing function Sh(x, P ). The sharing function Sh(x, P ) measures
the closeness from x to all individuals in the population P and a common
formulation for Sh(x, P ) is

Sh(x, P ) =
∑

y∈P

max{0, (1− d(x, y)/σ)α}

where d(x, y) is a measure for the distance between x and y. Here, we choose
the Hamming distance d(x, y) := H(x, y) and α := 1. The σ-value indicates up
to which distance two individuals should share their fitness. We choose σ := n
if n is the search space dimension so that individuals always share their fitness.
Another consequence of this choice is that we can omit the max operator.

Definition 2 Let H(x, y) be the Hamming distance between x and y. If n is the
search space dimension and f is the real fitness, we define the sharing function
as Sh(x, P ) :=

∑

y∈P (1 − H(x, y)/n). The fitness of x with fitness sharing
w. r. t. the population P is defined as

f(x, P ) :=
f(x)

Sh(x, P )
=

f(x)
∑

y∈P (1 − H(x, y)/n)
.

The fitness of the population is then f(P ) :=
∑

x∈P f(x, P ).

If P = {x, y}, the definition of f(P ) can be simplified to

f(P ) :=
f(x) + f(y)

2 − H(x, y)/n
.
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This term consists of two components: the Hamming distance H(x, y) and the
sum of the fitness values f(x) + f(y). We will refer to the latter as the fitness
component.

Now, we define a (2+2) GA with fitness sharing resembling the algorithm
analyzed by Fischer and Wegener [3].

Algorithm 2 ((2+2) GA with fitness sharing)

1. Choose x, y ∈ {0, 1}n uniformly at random.
P := {x, y}.

2. With probability 1/2 execute only Step 3a, else execute only Step 3b.

3a (x′, y′) := two-point-crossover(x, y). P ′ := {x′, y′}.

3b x′ := mutate(x), y′ := mutate(y). P ′ := {x′, y′}.

4. Replace P by P ′ iff f(P ′) ≥ f(P ).

5. Repeat Steps 2–4.

The mutation operator flips each bit independently with probability pm :=
1/n. With a probability of approximately 1/e, e = 2.718 . . . the Eulerian con-
stant, the mutation operator creates an offspring where no bit is flipped. So, the
algorithm has the chance to execute steps where only one individual is really
modified.

The selection operator selects either P = {x, y} or P ′ = {x′, y′}; these two
populations are compared as a whole. This differs from the common strategy
where a population P̂ := P ∪ P ′ of both parents and offspring is created and
the individuals are evaluated with respect to P̂ . By comparing f(P ′) with f(P )
directly, we evaluate both parents and offspring in their corresponding contexts
and make sure the fitness of the current population is monotone over time.

Theorem 2 Let G = (V, E) be a complete binary tree with n := |V | vertices
and depth d. The expected time until the (2+2) GA with fitness sharing on
IsingG reaches the optimal population {0n, 1n} is bounded by O(n3).

Proof. We prove the theorem by showing that given a non-optimal population
P , the probability of increasing f(P ) by at least 1/64 in one generation is
Ω(1/n2). Since f(P ) is monotone and the maximum value is f({0n, 1n}) =
2n−2, the expected time until P = {0n, 1n} is reached is bounded by 64 · (2n−
2) · O(n2) = O(n3).

First, we compute the change in the f(P ) value according to changes in the
two components. Let P = {x, y} be the current population and P ′ = {x′, y′}
be the population created in Step 3. Let ∆H := H(x′, y′)−H(x, y) and ∆f :=
(f(x′) + f(y′)) − (f(x) + f(y)). Then,

f(P ′) − f(P ) =
f(x) + f(y) + ∆f

2 − (H(x, y) + ∆H)/n
−

f(x) + f(y)

2 − H(x, y)/n

=
∆f(2 − H(x, y)/n) + ∆H(f(x) + f(y))/n

(2 − (H(x, y) + ∆H)/n)(2 − H(x, y)/n)
.
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Since the denominator is bounded above by 4,

f(P ′) − f(P ) ≥
∆f(2 − H(x, y)/n) + ∆H(f(x) + f(y))/n

4

=
∆f(2n − H(x, y)) + ∆H(f(x) + f(y))

4n
(∗)

if the nominator is positive (this will be the case in all applications of (∗)).
An operation creating P ′ out of P is called an improving operation if f(P ′)−

f(P ) ≥ 1/64. In different situations, there are different types of improving
operations. We now present four cases of non-optimal populations and show for
each case that the probability of an improving operation is Ω(1/n2).

Case 1 H(x, y) = n.
Since P 6= {0n, 1n} and x = y, there is at least one subtree T (v) such that

T (v) is an improving subtree in x as well as in y and xv 6= yv. Two-point
crossover selecting T (v) yields ∆f = 2 and ∆H = 0. The probability of such
an operation is Ω(1/n2) and

f(P ′) − f(P )
(∗)

≥
2n

4n
=

1

2
.

Case 2 H(x, y) < n and H(x, y) + f(x) + f(y) < (3n − 3)/2.
We show that there is a 1-bit-mutation increasing the (real) fitness of a

search point by at least 1.
Let z be a search point without fitness-improving 1-bit-mutations and let

deg+
z (v) for v ∈ V denote the number of monochromatic edges adjacent to

vertex v w. r. t. the coloring z. Then the root and the (n + 1)/2 leaves must be
adjacent to at least one monochromatic edge and the (n − 3)/2 other vertices
must be adjacent to at least two monochromatic edges. Hence,

∑

v∈V

deg+
z (v) ≥ 1 +

n + 1

2
+ 2 ·

n − 3

2
=

3n− 3

2
.

Since the sum counts all monochromatic edges twice, f(z) ≥ (3n−3)/4. If there
is no fitness-improving 1-bit-mutation in x and y, this implies f(x) + f(y) ≥
(3n − 3)/2 in contradiction to H(x, y) + f(x) + f(y) < (3n − 3)/2.

We have shown that there is a fitness-improving 1-bit-mutation in a search
point z ∈ {x, y}. If the (2+2) GA executes Step 3b, performs a fitness-improving
1-bit-mutation on z and a 0-bit-mutation on the other search point, ∆f ≥ 1
and ∆H ≥ −1. The probability for such an operation is Ω(1/n) and

f(P ′) − f(P )
(∗)

≥
2n − H(x, y) − f(x) − f(y)

4n

>
2n − (3n − 3)/2

4n
>

1

8
.
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Case 3 H(x, y) < n and H(x, y) + f(x) + f(y) > (33/16)n.
In this case, we rely on 1-bit-mutations increasing the Hamming distance at

the expense of the fitness component. To be precise, we show that there is a
1-bit-mutation flipping a vertex u in a search point z ∈ {x, y} yielding ∆H = 1
and ∆f ≥ −1, so the loss in the fitness component is rather small.

Since H(x, y) < n there is a vertex v with xv = yv. If v is a leaf or if there is
a dichromatic edge adjacent to v in a search point z ∈ {x, y}, we choose u := v
and a 1-bit-mutation flipping zu has the desired properties. Otherwise, if v is
an inner vertex and all edges incident on v are monochromatic in x and y, there
is a child v′ of v and we consider v′ instead of v. This process terminates with
an appropriate vertex u at the latest in case a leaf is reached.

If the (2+2) GA executes Step 3b, performs a 1-bit-mutation flipping zu on
z and a 0-bit-mutation on the other search point,

f(P ′) − f(P )
(∗)

≥
−2n + H(x, y) + f(x) + f(y)

4n

>
−2n + (33/16)n

4n
=

1

64
.

The probability for such an operation is Ω(1/n).

Case 4 H(x, y) < n and (3n − 3)/2 ≤ H(x, y) + f(x) + f(y) ≤ (33/16)n.
In this special case, we cannot rely on 1-bit-mutations described in Cases 2

and 3 since the existence of fitness-improving 1-bit-mutations cannot be guaran-
teed and even if these 1-bit-mutations exist, the gain in f(P ) is very low. Hence,
we search for more gainful operations, e. g. operations where ∆f + ∆H > 0.

Operations increasing one component and not decreasing the other one yield
a gain in f(P ) of at least 1/8−O(1/n), since H(x, y)+f(x)+f(y) ≥ (3n−3)/2 ⇒
f(x) + f(y) ≥ n/2−O(1) and in (∗) both ∆-values are weighted by terms of at
least 1/8−O(1/n). For sufficiently large n, 1/8−O(1/n) ≥ 1/64, so that these
operations are improving operations.

We now describe three scenarios of partial colorings where improving oper-
ations can be found. Afterwards, we prove the existence of sufficiently many
instances of these scenarios yielding a lower bound of Ω(1/n2) for the probability
to execute an improving operation.

Scenario 1 There is an inner vertex v where all incident edges are dichromatic
in a search point z ∈ {x, y}.

Since deg(v) ≥ 2, the fitness value f(z) is raised by at least 2 if a 1-bit-
mutation flips zv. The (2+2) GA may execute Step 3b, perform a 1-bit-mutation
of zv and flip no bit in the other search point, yielding ∆f ≥ 2 and ∆H ≥ −1.
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Figure 3: An example of a subtree of depth 1 and its partial coloring in x and y.

The probability for such an operation is Ω(1/n) and

f(P ′) − f(P )
(∗)

≥
4n − 2H(x, y) − f(x) − f(y)

4n

=
4n− (H(x, y) − f(x) − f(y)) − H(x, y)

4n

>
4n− (33/16) · n − H(x, y)

4n
>

15

64
.

Scenario 2 There is a subtree T (v) such that T (v) is an improving tree in x
as well as in y and xv 6= yv.

Two-point-crossover selecting T (v) yields ∆f = 2 and ∆H = 0. The proba-
bility for such an operation is Ω(1/n2) and f(P ′) − f(P ) ≥ 1/64.

Scenario 3 There is a subtree T (u) of depth 1 (two leaves v, w with their
common parent u) such that

¬(xu = xv = xw 6= yu = yv = yw)

(see Figure 3 for an example).
A coloring with xu = xv = xw 6= yu = yv = yw is called a locally optimal

coloring since in the subgraph induced by T (u) both Hamming distance and
fitness component is maximized. If T (u) is not colored locally optimal, there
is a mutation of at most 3 bits in B := {xu, xv , xw, yu, yv, yw} leading to the
nearest locally optimal coloring. A closer examination of all non-locally optimal
colorings of bits in B reveals that this operation is an improving operation. This
holds even if we pessimistically assume that if xu or yu is flipped, the edge from
u to its parent becomes dichromatic in the corresponding coloring.

We only present the resulting ∆-values of a mutation leading to a nearest
locally optimal coloring. If T (u) is monochromatic in x as well as in y, ∆f ≥ −1
and ∆H = 3 holds and it is easy to show that f(P ′)−f(P ) ≥ 1/64. Otherwise,
the result of such a mutation is either ∆f ≥ 0 and ∆H ≥ 1 or, if the colorings
of T (u) are complementary, ∆f ≥ 2 and ∆H ≥ 0. So, in all cases there is an
improving operation occurring with probability Ω(1/n3).

We have shown that there are many different scenarios that guarantee im-
proving operations. Due to the variety of scenarios, it is likely that in the
current population, several instances of these scenarios are given. To complete
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Coloring in x Coloring in y

Ed−1,d

Ed−2,d−1

E0,d−2

Figure 4: An extract of two colorings x and y and an edge {u, v} leading to
a locally optimal colored subtree T (v) of depth 1, thus creating an instance of
Scenario 2.

the analysis of Case 4, we now show that there are more than cn improving
operations for a constant c > 0. We do this by contradiction. If there are at
most cn instances of Scenarios 1–3, we conclude that H(x, y) + f(x) + f(y) is
large, contradicting the assumption H(x, y) + f(x) + f(y) ≤ (33/16)n.

Assume that there are at most cn improving operations described in Sce-
nario 3. Since there are (n+1)/4 disjoint subtrees of depth 1, s := (n+1)/4−cn
subtrees of depth 1 must be colored locally optimal. This is a clue for large
values of both Hamming distance H(x, y) and f(x) + f(y). There are 3s =
3(n + 1)/4 − 3cn vertices on the last two levels whose bits are complementary
in x and y, thus

H(x, y) ≥ 3(n + 1)/4− 3cn.

Let Ei,j ⊆ E for i < j be the set of edges {u, v} ∈ E such that u and v
each are located on levels in the interval [i, j]. For E ′ ⊆ E, let fx,y(E

′) be
the number of edges in E′ monochromatic in x plus the number of edges in E ′

monochromatic in y. It is obvious that f(x) + f(y) = fx,y(E).
In Ed−1,d, 2s = (n + 1)/2− 2cn edges are monochromatic in x as well as in

y, thus contributing to f(x) + f(y) an additive term of

fx,y(Ed−1,d) ≥ n + 1 − 4cn.

If, in addition, there are at most cn improving operations described in Sce-
nario 2, we show that the edges in Ed−1,d−2 also contribute a large value to
f(x) + f(y). Let e = {u, v} ∈ Ed−2 be an edge leading to a locally optimal
colored subtree T (v) of depth 1. If e is dichromatic in x as well as in y, T (v) is
an improving subtree in x as well as in y and xv 6= yv. This corresponds to the
situation described in Scenario 2; an example is sketched in Figure 4.

So, if there are at most cn improving operations in Scenario 2, at least
s − cn = (n + 1)/4 − 2cn edges in Ed−2 have to be monochromatic either in x
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or in y. The edges in Ed−2 contribute to f(x) + f(y) another additive term of

fx,y(Ed−2,d−1) ≥
n + 1

4
− 2cn.

The remaining edges in E0,d−2 cannot all be dichromatic since we assume
that there are at most cn improving operations in Scenario 1. Let V ′

z ⊆ V for
z ∈ {x, y} be the set of vertices v such that all edges incident to v are in E0,d−2

and not all edges incident to v are dichromatic in z: deg+
z (v) ≥ 1. If we subtract

the numbers of vertices on levels d, d − 1, and d − 2, we obtain

|V ′| =

(

n −
n + 1

2
−

n + 1

4
−

n + 1

8

)

− cn =
n − 7

8
− cn

and
∑

v∈V ′

deg+
z (v) ≥

n − 7

8
− cn.

Since every edge monochromatic in z contributes at most 2 to this sum, the
number of monochromatic edges in E0,d−2 w. r. t. z is at least (n−7)/16−cn/2.
Thus,

fx,y(E0,d−2) =
n − 7

8
− cn.

Adding up all three fitness contributions yields

f(x) + f(y) = fx,y(E0,d−2) + fx,y(Ed−2,d−1) + fx,y(Ed−1,d)

≥ n + 1 − 4cn +
n + 1

4
− 2cn +

n − 7

8
− cn

>
11

8
· n − 7cn.

Hence,

H(x, y) + f(x) + f(y) >
17

8
· n − 10cn

and, choosing c ≤ 1/160, this contradicts H(x, y) + f(x) + f(y) ≥ (33/16) · n.
Since there are Ω(n) improving operations and every improving operation is

executed with probability Ω(1/n3), the probability of executing any improving
operation is Ω(1/n2) completing the analysis of Case 4 and proving the theorem.

�

5 Experimental Supplements

The question remains whether the good performance of the (2+2) GA with fit-
ness sharing is really based on crossover or if fitness sharing is the key component
for an efficient optimization. If we modify the (2+2) GA with fitness sharing
by omitting crossover and always executing Step 3b, we obtain the (2+2) EA
with fitness sharing. The lower bound presented in Theorem 1 also holds for
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n (2+2) GA (2+2) EA
3 39.019 2.511
7 127.950 61.955

15 471.141 26,739,085.010
31 2,029.305 –
63 9,672.528 –

127 47,511.313 –
255 224,340.916 –
511 1,072,733.151 –

1023 5,032,030.214 –
2047 22,223,437.900 –

Table 1: Average runtimes of the (2+2) GA with fitness sharing and the
(2+2) EA with fitness sharing.

the (2+2) EA with fitness sharing (in the case of small pm, we assume the
population is initialized with two complementary worst-case search points).

In addition to this theoretical result, experiments were done to compare the
two algorithms. Experiments for the (2+2) GA were run on complete binary
trees of depth 1–10, i. e., n = 3, 7, 15, . . . , 2047, the experiments for the (2+2) EA
were run on trees of depth 1–3. The average runtime in independent runs was
measured; the number of runs was 1,000 runs for each setup except for 100 runs
for n = 15 and the (2+2) EA and 30 runs for n = 2047 and the (2+2) GA. The
results are shown in Table 1.

For n = 15, the (2+2) GA with fitness sharing clearly outperforms the
(2+2) EA with fitness sharing. Note that for very small n, n ≤ 7, the opposite
holds. This does not contradict our theoretical results since these results are
asymptotic ones and they do not make assertions for small n such as n ≤ 7. We
conclude that, for n large enough, fitness sharing alone does not suffice for an
efficient optimization.

Another interesting question is whether the upper bound O(n3) of Theo-
rem 2 is sharp. Experiments show that in a typical run of the (2+2) GA with
fitness sharing, the algorithm reaches a population with two complementary
search points rather quickly. Then, the algorithm is likely to maintain the max-
imal Hamming distance and spends most of the runtime waiting for the right
crossover operations. It is easy to show that, in case the algorithm maintains a
maximal Hamming distance, the expected waiting time for the right crossover
operations is bounded by

∑n−2
i=1 2/i ·

(

n
2

)

= O(n2 log n). So, we expect the true
average runtime to be Θ(n2 log n).

The average runtimes for the (2+2) GA from Table 1 were used in a regres-
sion analysis with gnuplot 3.7 using the standard settings. Among the function
classes an2, an2 log n, and an3, the function 0.69545n2 log n resulted in the best
fit with a mean square error of 4.49334 · 108. The results of the regression anal-
ysis are shown in Table 2, a plot of the data and the fitted functions is shown in

13



function class a mean square error
an2 5.26988 3.60934 · 1010

an2 log n 0.69545 4.49334 · 108

an3 0.00262463 5.57783 · 1011

Table 2: The results of a regression analysis with the function classes an2,
an2 log n, and an3.
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Figure 5: The average runtime of the (2+2) GA and the three fitted functions.

Figure 5. The observable differences are in accordance with differences in mean
square errors.

6 Conclusions

We have presented a fitness function derived from a generalized Ising model
and proved that, for this specific fitness function, crossover is essential for evo-
lutionary algorithms with constant population size. (µ+λ) EAs with constant
population size using the common mutation operator have an exponential run-
time. A simple (2+2) GA with fitness sharing is proved to have an expected
runtime bounded by O(n3). Experiments show that this bound differs from the
true average optimization time by a factor of n/ logn.

Moreover, both theory and experiments show that fitness sharing alone does
not suffice for an efficient optimization implying that crossover is an essential
component for the problem investigated here.
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