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Crossover networks are introduced as a new type of interconnection network for applications in optical

computing, optical switching, and signal processing. Crossover networks belong to the class of multistage

interconnection network. Two variations are presented, the half-crossover network and the full crossover
network. An optical system which implements both networks is proposed and demonstrated. Crossover

networks can be implemented using the full space-bandwidth product of the optical system with minimal loss

of light. It is shown that crossover networks are isomorphic to other multistage networks such as the Banyan

and perfect shuffle.

I. Free-Space Architectures for Optical Digital

Computers

The interest attracted by optical digital computing is
mainly stimulated by its potential to implement mas-
sively parallel architectures. This holds especially for
free-space optical systems where 2-D arrays of logic
elements can be connected using imaging setups.
Free-space optical interconnections also offer the po-
tential to do the communications in a computer at an
extremely high temporal bandwidth without introduc-
ing problems such as clock skew or crosstalk.1

The use of optical imaging setups for parallel inter-
connects, however, limits the variety of feasible topolo-
gies to regular interconnects. The space-bandwidth
product (SBP) of an optical system, i.e., the number of
connections, reduces with increasing complexity of the
interconnection scheme. For this reason, interest has
grown in regular interconnection networks such as the
perfect shuffle2 or the Banyan. 3 The use of regular
networks seems to limit the flexibility of designing a
digital general purpose computer. It has been shown,
however, that they can be used for general purpose
computers efficiently in terms of gate count and
throughput.4

The perfect shuffle and the Banyan both belong to
the class of multistage interconnection network
(MINs). For interconnecting N inputs to N outputs,
perfect shuffle and Banyan require log2(N) stages.
Throughout this paper we shall assume that N is a
power of 2. MINs are of great importance, for exam-
ple, in digital signal processing for the design of fast
algorithms 5 or in computing for the realization of sort-
ing networks. 6 Various authors have addressed the
use of multistage networks in optical data processing.7 -12

The authors are with AT&T Bell Laboratories, Holmdel, New
Jersey 07733.

Received 2 November 1987.
0003-6935/88/153155-06$02.00/0.
© 1988 Optical Society of America.

One problem which arises for the implementation of
MINs is the fact that they represent space-variant
operations. Optical systems, however, offer a large
SBP only for space-invariant operations. It is, there-
fore, necessary to find a way of implementing a specific
network without losing too much of the space-band-
width product.

In this paper, we present crossover interconnects as
a new interconnection network, which is an interesting
alternative to the Banyan and the perfect shuffle.
Crossover networks offer the potential for a simple
optical implementation. Specifically, it is possible to
use the full SBP of an optical system. This means that
the number of connections is limited, in principle, only
by diffraction. Two versions of crossover networks
will be presented in Sec. II, the half-crossover network
and the full crossover network. An optical implemen-
tation for both, which is based on a Michelson setup, is
proposed in Sec. III. Special optical components are
used which are called prism gratings. Practical limita-
tions for the implementation of the network arising
from the use of these components are discussed in Sec.
IV. In Sec. V we shall present several experimental
results, and finally, in Sec. VI we show that crossover
networks are isomorphic to the Banyan and the perfect
shuffle.

I. Crossover Networks

This work was initially stimulated by a proposal for a
VLSI interconnection network which was made by
Wise.13 This proposal was motivated by the need to
have wires of exactly the same length to reduce path
length differences between signals. The diagram of
Wise's network is shown in Fig. 1.

The functional boxes as indicated by the shaded
rectangles are not important for our discussion. Their
function may vary with the specific application for
which the network is used. Each box may in fact be
composed of a mininetwork of its own. The light
boxes are to be considered as mirrors which reflect the
signal path. It is obvious then that this network is
composed of signal paths of identical lengths. The
name crossover network illustrates the pattern of the
signal paths.
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Fig. 1. Crossover network for VLSI circuits.' 3
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Fig. 2. (a) Bipartite graph of the first stage of the network shown in
Fig. 1; (b) rearranged graph.

The diagram in Fig. 1 might lend itself to a wave-
guide optical implementation. The lines would di-
rectly represent the waveguides. For a free-space op-
tical implementation it is useful to rearrange the
interconnections. To this end we represent the first
stage of the network shown in Fig. 1 by a bipartite
graph, which shows the input ports of the stage, the
output ports, and the connections between them [Fig.
2(a)]. The input ports are numbered by integers
which run from 0 to 7. On the output side, the boxes
are labeled according to where the connections origi-
nate.

Figure 2(b) shows the rearranged version of the
graph. On the output side still the same combinations
of numbers appear. However, they now appear in a
different order. We note that the graph in Fig. 2(b) is
very regularly structured. The interconnection pat-
tern consists of straight-through connections and
crossover connections. The straight-through connec-
tions can be implemented optically by a simple imag-
ing step. The crossover can be implemented by imag-
ing as well, but a spatial inversion with respect to the
first image has to be introduced. We shall discuss a
possibility to achieve this inversion in some detail in
the next section.

We consider the diagram in Fig. 2(b) to be the first
stage of our new network and assign to it the index m =
0. The higher stages are then obtained by the follow-
ing rule. For stage m we subdivide the input into 2m
partitions. For each partition, we copy the input pix-
els to the output side. Furthermore, we apply a cross-

Fig. 3. Half-crossover network for eight input ports. The index m
indicates the number of a specific stage.

m=0 m=1 m=2

Fig. 4. Full crossover network for N = 8.

over within each partition. The whole network con-
sists of log2(N) stages where N is the width of the
network. For N = 8, the complete network is shown in
Fig. 3. The boxes were labeled according to their
physical addresses. We will refer to the network
shown in Fig. 3 as the half crossover network (HCN).

A variation of the half-crossover network is obtained
in the following way. We subdivide the input ports to
the mth stage into 2m+1 partitions. Then we replace
the straight-through connections with crossover con-
nections within each partition. This results in the full
crossover network (FCN) shown in Fig. 4.

For simplicity, the networks are shown in Figs. 3 and
4 for 1-D inputs. For 2-D input data it is necessary to
modify the operation of the network so that first the
rows are processed in log2(N) steps. Then columns are
processed using also log2(N) stages.

Ill. Optical Implementation of the Crossover Network

Figure 5 shows an optical setup which implements
one stage of the crossover network. It is based on a
Michelson setup. It should be noted, however, that
the performance of the setup is not based on interfer-
ence. The use of optical architectures which are de-
rived from two-beam interferometers is simply a con-
venient way of implementing the splitting and
combining of 2-D arrays of pixels. The setup shown in
Fig. 5 implements the HCN. As we shall see, only a
minor change has to be made to realize the connections
for the FCN.
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Fig. 5. Optical setup for the implementation of one stage.
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Fig. 7. Operation of the reflective 900 prism.
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Fig. 6. Flipping of the input pixels using partitioned prisms.

The beam splitter BS splits the input signal into two
different paths. The planes P, P2, P3, and P4 are
related to each other by imaging steps. The path Pi
P2 - P4 with a mirror in P2 implements the straight-
through connections. The path Pi - P3 - P4 imple-
ments the crossover connections. This is achieved for
the first stage of the network by placing a reflective 900
prism in P3. The effect of the prism is visualized in
Fig. 6(a). It illustrates the flipping of the input pixels
with respect to one symmetry axis as required for the
first stage. To implement the crossover connections
for the higher stages, we have to partition the prism. A
double prism is required for the second stage (m = 1), a
quadruple prism for the third stage (m = 2), etc. [see
Figs. 6(b) and (c)].

Figure 7 depicts the use of the 900 prism by showing
the light paths. Light that would be focused to a
position S in the back focal plane of the lens is reflected
twice and is sent back into the optical system as if it
would emerge from position S'. S and S' are symmet-
ric with respect to the center position of the prism. It
is important to note that, for light traveling to different
positions, i.e., for different pixels, the path lengths to
travel are exactly the same. Therefore, no relative
time delays are introduced between different signals.

Two features should also be mentioned. First, the
setup shown in Fig. 5 implements one stage of the
network. For the complete network one has to use
log2(N) such setups. Second, the use of polarization
optics allows us to implement each stage without losing
light energy except for Fresnel losses.

The full crossover network can be realized with the
same setup as shown in Fig. 5. The only change which
has to be made is that the mirror in P2 is replaced by a
prism grating.

IV. Practical Limitations for the Implementation of

Crossover Networks

In this section we will address a problem which
occurs when using prism gratings for implementation
of the higher stages (m # 0) of the network. The
situation is shown in Fig. 8(a). Here the optical setup
for implementing the second stage is shown with a
double prism in plane P3. For simplification the opti-
cal path P, - P3 is displayed in an unfolded way. As
shown in the drawing, some of the light which is sup-
posed to be focused down to a spot close to the center
will hit the wrong facet of the prism grating. After
reflection from this facet the light will be reflected out
of the optical system and will be lost. This situation
occurs when the numerical aperture of lens 3 is too
large.

The situation will be most severe for the pixel closest
to the optical axis. Only light traveling under an angle
which is smaller than fl/2 will arrive at this spot R.
Assuming a pixel separation in the input array of 6x
and an optical setup with a 1:1 magnification, R will be
at a distance Ax/2 from the center. To avoid losses the
numerical aperture of the light on the right-hand side
of the optical setup has to be smaller than a certain
maximum value N.A.3,max-

This value is determined by

N.A. 3 max = tan(0/2). (1)

The value for 4/2 depends on the stage number m and
on the size N of the input array. To compute f(m)/2
we have to make a few geometrical considerations.
The height of the prism which is used for the mth stage
is
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Fig. 8. (a) Light losses due to a large numerical aperture. The
situation is shown for the second stage. Dark lines indicate the light
path for a fully opened aperture. The dashed lines indicate the light
path for a reduced aperture. The reflected light rays are not shown
for simplicity. (b) Reduction of the numerical aperture using mag-

nification.

h(m) = (N/2m+l)bx, m = 0....M,

where M is defined as

M = log2(N) - 1.

From this it follows that

ax 2=
N.A.3,ma.() (m) = = - = .. M.

(2)

(3)

(4)

Equation (4) indicates that the problem is most severe
for the second stage (m = 1) where N.A.3,max takes on
very small values. For example, for an array with N =
64 pixels in one dimension one obtains N.A.3,max = 1/
32. This would be a severe restriction to the use of
crossover interconnects especially, since the SBP of
the setup is proportional to the numerical aperture.
Without taking any measures one would either lose
light for the pixels close to the center or be restricted to
relatively large pixels with a diameter 2X/N.A.3 ,max-

However, there is a simple way to circumvent this
problem completely. By using magnification it is pos-
sible to reduce the numerical aperture of the light
cones. Magnification is introduced by making the
focal length f3 of lens 3 larger than the focal length f of
lens 1 [Fig. 8(b)]. The spot pattern will then be magni-
fied by a factor V:

V f- (5)
fl

Accordingly the numerical aperture of the light on the
right-hand side of the setup will be reduced by V.

(b)
Fig. 9. Experimental setup (a) and the prism grating with a period

of 640,um (b).

N.A3 = N.A.

This results in a larger value for N.A.3,max:

N.A.3,max(m) = 2m -

(6)

(7)

As an example we consider again the case that N = 64
and that on the input side we use a lens with a numeri-
cal aperture N.A., = 0.25. This corresponds to a lens
with /4. Then for the second stage of the network (m
= 1) a magnification factor V = 8 would be required to
achieve a lossless implementation. For the higher
stages the required magnification is reduced signifi-
cantly.

We would like to add the remark that besides saving
light energy the magnification trick has another bene-
ficial side effect. Since the spot pattern is magnified it
is possible to use relatively coarse prism gratings which
are easier to fabricate than very fine ones. Therefore,
magnification can be used specifically to select a cer-
tain period for the prism grating.

It is also worthwhile to note that the overall magnifi-
cation between planes P and P 4 is not affected by the
focal length of lens 3. Instead it is strictly determined
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Fig. 10. Experimental results: (a) input object: Chinese character (light). Output of the first (b) and second (c) stage.

by the ratio 4/fl where f is the focal length of the lens
near plane P4 (Fig. 5).

V. Experimental Results

The experimental results which are presented in this
section were obtained by using the Michelson setup
shown in Fig. 5 and prism gratings. The photograph
in Fig. 9(a) shows the actual optical system. Two
different prism gratings were used for the experiments.
One had a period of 640 gim, the second had a period of
10 gim. Figure 9(b) shows a photograph of the coarse
grating.

Using the 640-gim grating the first and the second
stages of the half-crossover network were implement-
ed. For clarity, only the output patterns due to the
crossover connections are shown in Figs. 10(b) and (c).
In both cases the input pattern was the Chinese char-
acter shown in Fig. 10(a). It consists of 10-gm spots on
a grid of 32 X 32 pixels. The spots were separated by
20 gAm. The same grating was used for implementa-
tion of both stages. For the first stage a 1:1 magnifica-
tion was used and a 2:1 magnification for the second
stage.

With regard to the question how practical prism
gratings are in general, a grating with a very fine period
of 10 gm was tested. A regular spot pattern was used
as the input. The spots were (3 gm)2 in size. They
were separated by 10gm in the x direction and by 5 Am
in the y direction. The setup was used to implement
the crossover connections of the final stage of the net-
work. After reflection from the grating the output
pattern looks the same as the input pattern. The
output pattern is shown in Fig. 11. Obviously, the
pattern has a good contrast indicating that the use of
prism gratings is feasible even in the range of a few
micrometers. For this experiment, microscope objec-
tive lenses (/2) were used at their diffraction limit (X =
0.633 gim). Some losses occurred due to light sur-
rounding the center spots of the Airy disks hitting the
corners of the prism grating and scattering out of the
optical system.

f

-* x

Fig. 11. Output pattern of an experiment with the 10-,um prism
grating.

VI. Isomorphism of Crossover Networks with Banyan
and Perfect Shuffle

Finally, we would like to point out that the crossover
networks are topologically equivalent to other MINs
like the Banyan and the perfect shuffle. This is im-
portant because it allows Banyan-based algorithms
such as the fast Fourier transformation to be trans-
formed to a crossover-based implementation.

First, we note that each stage of the crossover can be
described mathematically in terms of two permuta-
tions. In the following we denote the binary address of
the nth pixel (0• n • N - 1) by (n). For example, for
N = 8 the binary address is a 3-tuple (n2,n1,no), where

n=4n 2 +2n1+n 0, nk=Oorl.

We put

(n) = (n2,nl,no)

and write (n)k when we invert the kth bit; e.g.,

(n)1 = (n2,n 1,no).

(8)

(9)

(10)
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Fig. 12. Diagram for the Banyan network (N = 8).
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Fig. 13. Buddy property of switching nodes.

With this notation we can describe the permutations
ll~m ) and I(m) for the mth stage of the HCN as follows:

II(): (n) (n); (11)

I(m): (n) - (n)Mm. (12)

For showing the isomorphism of the crossover and
other MINs we make use of a proof which was given by
Agrawal.14 It says that two MINs are equivalent if two
conditions are fulfilled. First, both have to be con-
structed out of nodes with two inputs and two outputs.
This is obviously the case for the crossover networks
(Figs. 3 and 4) as well as for the Banyan network which
is shown in Fig. 12. Second, there has to hold a so-
called buddy condition. This means that each pair of
nodes of stage m is connected with only one pair of
nodes of stage m + 1. This buddy property is repre-
sented graphically in Fig. 13.

In a formal way the buddy property can be shown for
the half-crossover network by using the permutation
formalism introduced earlier. Equations (11) and (12)
show that the pixel with address (n) in the mth stage is
connected to two pixels in the m + 1st stage with
addresses (n) and (n)Mm. The same is true for the
pixel with the address (n)M-m in stage m because

H('m): (n)m-,n (Mm (13)

II(m): (n)Mm, (n). (14)

From Eqs. (13) and (14) we can conclude that the
crossover network falls into the class of MIN satisfying
both conditions as given above. Similarly the buddy

property can be shown to hold for the Banyan. There-
fore, the equivalence between the HCN and the Ban-
yan is proved according to Ref. 14. We would like to
add the remark that a formal proof for the isomor-
phism between the half-crossover and the Banyan was
given by Cloonan.1 5

VII. Conclusion

The crossover network was introduced as a new mul-
tistage interconnection network with applications for
optical computing and photonic switching. We have
presented two variations of crossover networks, the
half- and the full crossover. Both are isomorphic to
the more familiar Banyan and perfect shuffle. The
crossover network was designed specifically for a free-
space optical implementation. An optical system for
the implementation of crossover interconnections was
proposed and demonstrated. It makes use of special
optical components which are called prism gratings.
The use of these prism gratings is possible down to very
small feature sizes in the micron range. It is possible
to implement the crossover network with a large
space-bandwidth product and a high light efficiency.

The authors would like to thank Vijay Kumar for
bringing their attention to the work of D.S. Wise and
Alan Huang for helpful comments on this subject.
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