
ISSN: 2229-6956 (ONLINE)

DOI: 10.21917/ijsc.2015.0150
 ICTACT JOURNAL ON SOFT COMPUTING, OCTOBER 2015, VOLUME: 06, ISSUE: 01

1083

CROSSOVER OPERATORS IN GENETIC ALGORITHMS: A REVIEW

A.J. Umbarkar1 and P.D. Sheth2
1Department of Information Technology, Walchand College of Engineering, India

E-mail: anantumbarkar@rediffmail.com
2Department of Master of Computer Applications, Government College of Engineering, Karad, India

E-mail: pranalisheth@gmail.com

Abstract

The performance of Genetic Algorithm (GA) depends on various

operators. Crossover operator is one of them. Crossover operators are

mainly classified as application dependent crossover operators and

application independent crossover operators. Effect of crossover

operators in GA is application as well as encoding dependent. This

paper will help researchers in selecting appropriate crossover

operator for better results. The paper contains description about

classical standard crossover operators, binary crossover operators,

and application dependant crossover operators. Each crossover

operator has its own advantages and disadvantages under various

circumstances. This paper reviews the crossover operators proposed

and experimented by various researchers.

Keywords:

Evolutionary Algorithm, Genetic Algorithm, Crossover, Genetic

Operators

1. INTRODUCTION

Genetic algorithm is a method of searching. It searches a

result equal to or close to the answer of a given problem. New

generation of solutions is created from solutions in previous

generation. Basic strategy used in GA to create the best

solutions/offspring is to crossover the parent genes. Various

crossover techniques are built to get the optimum solution as

early as possible in minimum generations. The selection of

crossover operator has more impact on the performance of GA.

The premature convergence [38] in GA can be avoided by

selecting appropriate breeding operators. In this paper, the

crossover operators are classified in three categories such as

standard crossovers, binary crossovers and real/tree crossover s

which are application dependant.

The Section 2 explains standard crossovers, which are

application independent. Section 3 explains the binary

crossovers with some modified crossovers to improve

performance of GA. Section 4 explains the application

dependant crossovers (real/tress). Section 5 discusses the

findings of this review work.

2. STANDARD CROSSOVERS

2.1 1-POINT CROSSOVER

It is one of the simple crossover technique used for random

GA applications. This crossover uses the single point

fragmentation of the parents and then combines the parents at

the crossover point to create the offspring or child.

1-Point crossover first selects two parents used for crossover

and then randomly selects any crossover point pi (i = 0 to n-1).

Two offspring are created by combining the parents at crossover

point. A simple example is shown below which performs one

point crossover and creates two parents.

Parent 1: 1 0 1 0  1 0 0 1 0

Parent 2: 1 0 1 1  1 0 1 1 0

Offspring 1: 1 0 1 0  1 0 1 1 0

Offspring 2: 1 0 1 1  1 0 0 1 0

In above example, point between 4th and 5th gene is selected

as crossover point.

2.2 K-POINT CROSSOVER

It uses the random crossover point to combine the parents

same as per 1-Point crossover. To provide the great combination

of parents it selects more than one crossover points to create the

offspring or child [1].

K-Point Crossover first selects the two parents used for

crossover and then randomly select K crossover points P1i to Pk-1i

(i = 0 to n  1). Two offspring are created by combining the

parents at crossover point. A simple example is shown below

which performs one point crossover and creates two parents.

Parent 1: 1 0  1 0  1 0 0  1 0

Parent 2: 1 1  0 0  1 0 1  1 0

Offspring 1: 1 0  0 0  1 0 0  1 0

Offspring 2: 1 1  1 0  1 0 1  1 0

In above example, the points between 2nd and 3rd, 4th and 5th

and 7th and 8th gene are selected as crossover points.

2.3 SHUFFLE CROSSOVER

Shuffle Crossover helps in creation of offspring which have

independent of crossover point in their parents. It uses the same

1-Point Crossover technique in addition to shuffle.

Shuffle Crossover selects the two parents for crossover. It

firstly randomly shuffles the genes in the both parents but in the

same way. Then it applies the 1-Point crossover technique by

randomly selecting a point as crossover point and then combines

both parents to create two offspring. After performing 1-point

crossover the genes in offspring are then unshuffled in same way

as they have been shuffled.

Select Shuffle Points

Parent 1: 1 1 1 0 1 0 0 1 0

Parent 2: 1 0 0 0 1 0 1 1 0

Shuffle genes as Shuffle Points

Parent 1: 0 1 0 1 1 0 1 1 0

Parent 2: 0 0 1 1 1 0 0 1 0

A J UMBARKAR AND P D SETH: CROSSOVER OPERATORS IN GENETIC ALGORITHMS: A REVIEW

1084

Select 1- Point Crossover Point

Parent 1: 0 1 0 1 | 1 0 1 1 0

Parent 2: 0 0 1 1 | 1 0 0 1 0

Perform 1-Point Crossover Point

Offspring 1: 0 1 0 1 | 1 0 0 1 0

Offspring 2: 0 0 1 1 | 1 0 1 1 0

Select unshuffled points same as shuffled points

Offspring 1: 0 1 0 1 1 0 0 1 0

Offspring 2: 0 0 1 1 1 0 1 1 0

Unshuffled the genes in Offspring

Offspring 1: 1 1 0 0 1 0 0 1 0

Offspring 2: 1 0 1 0 1 0 1 1 0

2.4 REDUCED SURROGATE CROSSOVER

Reduced Surrogate Crossover minimizes the unwanted

crossover operations in case of the parents having same genes. In

these cases the Reduced Surrogate Crossover first checks for the

individual genes in the parents. It creates list of all possible

crossover points where the genes of the both parents are

different.

After performing this check, if no crossover point is there

then no action is taken. But in case, if parents are differing in

more than 1 gene then it keeps the list of all crossover points. It

then randomly selects one crossover point from the list and

performs 1-point crossover to create the offspring.

2.5 UNIFORM CROSSOVER

Uniform crossover provides the uniformity in combining the

bits of both parents. It performs this operation of swapping bits

in the parents to be included in the offspring by choosing a

uniform random real number u (between 0 to 1).

Uniform crossover selects the two parents for crossover. It

creates two child offspring of n genes selected from both of the

parents uniformly. The random real number decides whether the

first child select the ith genes from first or second parent [1].

Parent 1: 1 1 1 0 1 0 0 1 0

Parent 2: 1 0 0 0 1 0 1 1 0

Offspring 1: 1 1 0 0 1 0 1 1 0

Offspring 2: 1 0 1 0 1 0 0 1 0

2.6 AVERAGE CROSSOVER (AX)

Average Crossover is the value based crossover technique. It

uses two parents to perform crossover and creates only one

offspring [1]. Average Crossover creates one offspring from

taking average of the two parents. It selects two parents as X and

Y and generate the child Z as follows: each gene in a child is

taken by averaging genes from both parents.

Parent 1: 5 3 3 2 3 9 7 6 5

Parent 2: 5 4 7 6 5 2 6 1 3

Offspring 1: 5 3 5 4 4 5 6 3 4

2.7 DISCRETE CROSSOVER (DC)

Discrete Crossover uses the random real number to create

one child from two parents.

Unlike the uniform crossover only one child is generated in

Discrete Crossover. It selects two parents as X and Y and

generate the child Z such that it select genes of both the parents

uniformly. The random real number decides from which parent

to take the genes for child. [1]

Parent 1: 1 1 1 0 1 0 0 1 0

Parent 2: 1 0 0 0 1 0 1 1 0

Offspring 1: 1 1 0 0 1 0 1 1 0

2.8 FLAT CROSSOVER (FC)

Flat Crossover uses the random real number to create one

child from two parents.

Same as of Discrete Crossover it selects the genes from

parent based on uniform random real number. But the selected

random real number should be a subset of set having the

minimum and maximum of the genes of the both parents. It

selects two parents as X and Y and generate the child Z such that

it selects random real number which is either min or max from

genes in both parents and then assign this real number in child

gene.

2.9 HEURISTIC CROSSOVER/INTERMEDIATE

CROSSOVER (HC/IC)

Heuristic Crossover creates one child offspring from two

parents. It uses the α ε < 0, 1 > assuming xi <= yi. For each gene

in the child it select the uniform random real number α. And the

child gene is calculated from above equation.

 xi (t+1) = xi(t) + α (yi(t) – xi(t))

Parameter α may be of constant value equal to 0.5 or may be

selected by a draw from interval <0,1 (row: 5).

2.10 STATISTICS-BASED ADAPTIVE NON-

UNIFORM CROSSOVER (SANUX)

It is based on the concepts of intrinsic attribute and extrinsic

tendency of valuing allele for a gene locus. In optimal solution

(encoded in binary string) of a given problem, for a gene locus if

its allele is 1 it is called 1-intrinsic, if its allele is 0 it is called 0-

intrinsic, otherwise if its allele either 0 or 1 it is called neutral.

During the running of a GA, for a gene locus, if the frequency of

1’s in its alleles over, the population tends to increase with time

(generation), it called 1-inclined; if the frequency of 1’s tends to

decrease, it is called 0-inclined; otherwise it is called non-

inclined. [13]

Usually and hopefully as the GA progresses, the gene loci

which are 1-intrinsic will appear to be 1-inclined. SANUX

makes use of this convergence information as feedback

information to direct the crossover by adjusting the swapping

probability of each locus.

Now during the evolution of the GA, after generation of new

population the distribution of 1’s f1(i, t) from each locus over the

population is calculated. Then SANUX operation is performed.

After applying SANUX, the mask is generated bit by bit by

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, OCTOBER 2015, VOLUME: 06, ISSUE: 01

1085

flipping a coin biased to generate “1” with probability ps(i, t).

Finally, the generated mask is used to guide the crossover in the

same way it guides the traditional uniform crossover.

1’s Frq. in loci: 0.4 0.2 0.6 0.9 0.9 0.2

Calculating:      

Swapping prob: 0.4 0.2 0.4 0.1 0.1 0.2

biased flipping:      

Created mask: 1 0 1 0 0 0

Applying mask:  

Parent P1: 0 1 0 1 1 1

Parent P2: 1 1 1 1 1 0

Swapping:  

Child C1: 1 1 1 1 1 1

Child C2: 0 1 0 1 1 0

 SANUX

3. BINARY CROSSOVERS

3.1 RANDOM RESPECTFUL CROSSOVER (RRC)

It selects two parents for crossover and offspring is generated

based on the similarity vector of the parents. It first creates

similarity vector Sab = (S1ab,…,Snab) such that if both genes of

parents have the same values then the similarity vector contains

the values of the parent else similarity vector contain null value

for that gene [1].

After creation of similarity vector S, two children are created

according to the values of the similarity vector. If similarity

vector contains 1 then gene of both children is set to 1 and if it

contains 9 then genes of both children are set to 0. Apart from

this if similarity vector contains null value for any gene then the

child gene is selected by taking a uniform random real number.

If this number is < 0.5 then 1 is stored otherwise 0 is stored.

Parent 1: 1 1 1 0 1 0 0 1 0

Parent 2: 1 0 0 0 1 0 1 1 0

Offspring 1: 1 1 0 0 1 0 1 1 0

Offspring 1: 1 0 0 0 1 0 0 1 0

This algorithm duplicates genes of parents in an offspring at

every position wherever they are identical.

3.2 MASKED CROSSOVER (MX)

The MX operator uses a mask vector to determine which bits

of which parent are inherited by the offspring. The first step is

the duplication of the bits of the parents. The bits of the first

parent are copied to the first offspring and, accordingly, of the

second parent to the second offspring. In the second step, the

offspring exchange bits among each other at those positions

where the mask vectors of the parent were equal to 1, indicated

domination of that parent at that position and the mask vectors of

the other parent were equal to 0.

The mask vectors are initiated in P(0) randomly. During

every iteration of GA, the mask vectors are inherited by each

offspring from its parent. Then the mask vectors of the offspring

as well as the parents undergo modification. The modification

process is based on comparison of fitness of offspring and the

parents. If good offspring are created, the masks of the parents

do not need to be modified and the masks of the offspring may

be very similar to those of the parents. In a situation where bad

offspring were created the masks of the parents as well as of the

offspring need to be modified.

3.3 1- BIT ADAPTATION CROSSOVER (1BX)

In the 1 BX method, the last bit of the solution vector is

reserved for the code of one of the two of the applied crossover

operators. Assuming “0” corresponds to Uniform Crossover

(UX) operator and “1” corresponds to 2-Point Crossover (2-PX)

operator, the choice of one of them is made according to the

rule: if the last bit of the parents is off the same value then

choose the operator indicated by this bit. Otherwise chooses the

operator through the selection by a draw i.e. select the uniform

random real number from 0 to 1. If this value is <0.5, then

Uniform Crossover is performed otherwise 2-Point Crossover is

used.

Application of the described crossover scheme combines the

choice of the operator with the solution vector. Moreover, this

choice is carried out separately for each parent pair; hence this

scheme is called local adaptation. Global adaptation version has

also presented, but as it was emphasized by the author,

significantly worse results were obtained by its application.

3.4 MULTIVARIATE CROSSOVER (MC)

MC divides the whole parent string into the q substrings. The

crossover is performed based on random value selected for each

substring. If this value is < Pc then crossover is performed other

only parent genes are copied into child offspring. It performs the

standard 1-Point Crossover for the substring when the condition

is satisfied [1].

The most fundamental difference between the MC operator

and other operators using variable-to-variable recombination is

that the answer to the question “whether to crossover” is

checked in the MC method separately for each substring. As for

other operators, the answer to that question refers to parent

vector as a whole.

3.5 HOMOLOGOUS CROSSOVER (HX)

The HX operator is based on the standard K-Point Crossover

operator. Introduced modification relies on the fact that only

strings of bits which are at least of a certain length or of an

admissible degree of similarity are allowed to participate in

crossover. Determination of the degree of similarity is based on

the XOR operator.

This strategy is aimed at transferring strings with specified

parameters to the next generation. In HX, the value of o and r is

determined a priori as constant or dynamically changed in the

GA run.

3.6 COUNT PRESERVING CROSSOVER (CPC)

The CPC operator carries out its task by assuming that the

number of bits equal to “1” in every chromosome in the initial

population P(0) is the same.

A J UMBARKAR AND P D SETH: CROSSOVER OPERATORS IN GENETIC ALGORITHMS: A REVIEW

1086

CPC may guarantee the preservation of the constant number

of bits equal to “1” due to application of two lists noting the

differences between the parents. List Lup includes positions of

those bits, on which there are differences between the parents,

but the first parent at a given position holds a bit equal to “1”

and the second equal to “0”. List L down similarly notes the

positions of differences, but the first parent at a given position

holds a bit equal to “0” and the second equal to “1”. The

offspring creation process which makes use of those lists is

based on the exchange of bits between the offspring at those

positions which, are indicated by subsequent element pairs from

lists Lup and Ldown.

Number of elements in Lup and in Ldown is the same, which is

a direct result of the assumption, that the number of bits equal to

“1” is constant for all chromosomes in P(0).

3.7 ELITIST CROSSOVER (EX)

In the standard genetic algorithm, the selection process is

always preceded by the crossover process. In the EX method,

both processes are integrated. During the first step of the entire

population is randomly shuffled. Then from each successive pair

of parental vectors, two new vectors are created by crossover.

From a ‘family’ created, two best vectors are singled out and

implemented as offspring to the next population.

Application of elitist selection in the traditional way that is

on the level of the entire population may often be the reason for

the premature convergence of the algorithm. An EX elitist

selection applied on the “family” level eliminates this danger

according to the authors.

3.8 SCANNING CROSSOVER (SCAN), UNIFORM

SCANNING CROSSOVER (U-SCAN),

OCCURRENCE BASED SCANNING

CROSSOVER (OB-SCAN) FITNESS BASED

SCANNING CROSSOVER (FB-SCAN)

Depending on the heuristics applied to scanning crossover,

three variations are: uniform scanning crossover (U-Scan),

occurrence based scanning crossover (OB-Scan), and fitness

based scanning crossover (FB-Scan).

Increasing the number of parents in OB-Scan leads to a

higher probability for the major alleles in the population to exist

in every offspring, which will cause the population to

concentrate on a certain region and thus lose the diversity

rapidly [18], [19]. This situation is called premature

convergence, a result of unbalanced exploitation and

exploration.

3.9 SELF-ADAPTIVE SIMULATED BINARY

CROSSOVER (SBX)

A self-adaptive procedure for updating the distribution index

used in the simulated binary crossover or SBX operator which is

a commonly-used real-parameter recombination operator. This

crossover is also good for multi-objective optimization problem.

3.10 OTHER BINARY CROSSOVER

Some binary crossover is proposed by researchers are -

Circ1e-ring crossover, Sufficient Exchanging crossover [12],

Adaptive crossovers [12], Diagonal crossover [21, 22], Best

combinatorial crossover (BCX) and Hybridization crossover

(HX) [14].

4. APPLICATION DEPEDANT CROSSOVERS

(REAL/TREE)

4.1 CROSSOVER FOR TSP PROBLEMS

4.1.1 Order Based Crossover (OBX):

The order based crossover operator selects at random several

positions in one of the parent tours, and the order of the cities in

the selected positions of this parent is imposed on the other

parent to produce one child. The other child is generated in an

analogous manner for the other parent [1].

4.1.2 Modified Order Crossover (MOC):

A randomly chosen crossover point divides the parent strings

in left and right substrings. The right substrings of the parent s1

and s2 are selected. After selection of cities the process is the

same as the order crossover. Only difference is that instead of

selecting random several positions in a parent tour all the

positions to the right of the randomly chosen crossover point are

selected [1].

For example with the following parents and crossover point

s1 = (1 2 3 4  6 9 8 5 7) and

s2 = (2 1 9 8 5 6 3 7 4)

After position selection

s1 = (1 2 * * * 9 8 * *) and

s2 = (2 1 * * * * 3 * 4)

Now obtain the generated pair of children as

b1 = (1 2 5 6 3 9 8 7 4) and

b2 = (2 1 6 9 8 5 3 7 4)

Clearly this method allows only the generation of valid

strings.

4.1.3 Partially-Mapped Crossover (PMX):

It transmits ordering and values information from the parent

strings to the offspring. A portion of one parent string is mapped

onto a portion of the other parent string and the remaining

information is exchanged. Consider, for example, the following

two parents: (1 2 3 4 5 6 7 8) and (3 7 5 1 6 8 2 4). The PMX

operator creates an offspring in the following way. It begins by

selecting uniformly at random two cut points along the strings,

which represent the parents. Suppose, for example, that the first

cut point is selected between the third and the fourth string

element, and the second one between the sixth and the seventh

string element. Hence, (1 2 3  4 5 6  7 8) and (3 7 5 | 1 6 8 I 2

4). The substrings between the cut points are called the mapping

sections. In our example, they define the mappings 4 <-> 1, 5 <-

> 6, and 6 <-> 8. Now the mapping section of the first parent is

copied into the second offspring, and the mapping section of the

second parent is copied into the first offspring: offspring 1: (x x

x  l 6 8  x x) and offspring 2: (x x x  4 5 6  x x). Then offspring

i (i = 1, 2) is filled up by copying the elements of the ith parent.

In case, a number is already present in the offspring it is replaced

according to the mappings [2].

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, OCTOBER 2015, VOLUME: 06, ISSUE: 01

1087

For example, the first element of offspring 1 would be a 1,

like the first element of the first parent. However, there is

already a 1 present in offspring 1. Hence, because of the

mapping 1 <-> 4 choose the first element of offspring 1 to be a

4. The second, third and seventh elements of offspring 1 can be

taken from the first parent. However, the last element of

offspring 1 would be an 8, which is already present. Because of

the mappings 8 <-> 6, and 6 <-> 5, it is chosen to be a 5. Hence,

offspring 1: (4 2 3  1 6 8  7 5). Analogously, we find offspring

2: (3 7 8  4 5 6  2 1). The absolute positions of some elements

of both parents are preserved.

4.1.4 Modified Partially-Mapped Crossover (MPMX):

Modified PMX (MPMX) crossover operator was proposed

(independently) by Brown [39] in the late 80’s. The MPMX

operator initially partitions the parents’ solution strings and the

offspring strings into three sections (left, middle and right).

These sections are randomly created through the selection of two

random crossover points that will be used for both the parents

and offspring for this instance of the crossover in the GA. Stage

two provides the offspring with the middle section of its solution

string. This is the donated middle section of parent 1. The third

stage, is the insertion of elements into the left and right sections

of the offspring. This is accomplished using parent 2 as the

donator. Corresponding positions in the parents donate elements

to the offspring, provided they have not already been donated by

parent 1. The final stage is to complete the offspring using a

random permutation of the elements not yet allocated to the

offspring over the previous stages. The following example

illustrates the:

Parent 1 - (0 8  4 5 6 7  1 2 3 9)

Parent 2 - (6 7  1 2 4 8  3 5 9 0)

Offspring stage1- (- -  - - - -  - - - -)

Offspring stage2- (- -  4 5 6 7  - - - -)

Offspring stage3- (- -  4 5 6 7  3 - 9 0)

Offspring stage4- (8 1 4 5 6 7 3 2 9 0)

4.1.5 Cycle Crossover (CX) [3]:

It attempts to create an offspring from the parents where

every position is occupied by a corresponding element from one

of the parents. For example, consider again the parents (1 2 3 4 5

6 7 8) and (2 4 6 8 7 5 3 1). Now choose the first element of the

offspring equal to either the first element of the first parent string

or the first element of the second parent string. Hence, the first

element of the offspring has to be a 1 or a 2. Suppose choose it

to be 1, (1 * * * * * * *). Now consider the last element of the

offspring. Since this element has to be chosen from one of the

parents, it can only be an 8 or a 1. If a 1 were selected, the

offspring would not represent a legal individual. Therefore, an 8

is chosen, (1 * * * * * * 8). It finds that the fourth and the second

element of the offspring also have to be selected from the first

parent, which results in (1 2 * 4 * * * 8). The positions of the

elements chosen up to now are said to be a cycle. Now consider

the third element of the offspring. This element it may choose

from any of the parents. Suppose that we select it to be from

parent 2. This implies that the fifth, sixth and seventh elements

of the offspring also have to be chosen from the second parent,

as they form another cycle. Thus, we find the following

offspring: (1 2 6 4 7 5 3 8). The absolute positions, of on average

half the elements of both parents are preserved.

4.1.6 Order Crossover Operator (0X1):

It constructs an offspring by choosing a substring of one parent

and preserving the relative order of the elements of the other

parent. For example, consider the following two parent strings: (1

2 3 4 5 6 7 8) and (2 4 6 8 7 5 3 l), and suppose that we select a

first cut point between the second and the third bit and a second

one between the fifth and the sixth bit. Hence, (1 2  3 4 5  6 7 8)

and (2 4  6 8 7  5 3 1). The offspring are created in the following

way. Firstly, the string segments between the cut point are copied

into the offspring, which give (* *  3 4 5  * * *) and (* *  6 8 7 

* * *). Next, starting from the second cut point of one parent, the

rest of the elements are copied in the order in which they appear in

the other parent, also starting from the second cut point and

omitting the elements that are already present. When the end of

the parent string is reached, we continue from its first position. In

our example, this gives the following children: (8 7  3 4 5  1 2 6)

and (4 5  6 8 7  1 2 3) [4].

4.1.7 Order-based Crossover (OX2):

OX2 was suggested in connection with schedule problems, is

a modification of the OX1 operator. The OX2 operator selects at

random several positions in a parent string, and the order of the

elements in the selected positions of this parent is imposed on

the other parent. For example, consider again the parents (1 2 3 4

5 6 7 8) and (2 4 6 8 7 5 3 I), and suppose that in the second

parent in the second, third and sixth positions are selected. The

elements in these positions are 4, 6 and 5 respectively. In the

first parent, these elements are present at the fourth, fifth and

sixth positions. Now the offspring are equal to parent 1 except in

the fourth, fifth and sixth positions: (1 2 3 * * * 7 8). We add the

missing elements to the offspring in the same order in which

they appear in the second parent. This results in (1 2 3 4 6 5 7 8).

Exchanging the role of the first parent and the second parent

gives, using the same selected positions, (2 4 3 8 7 5 6 1) [5].

The position-based crossover operator (POS), which was

also suggested in connection with schedule problems, is a

second modification of the OX1 operator. It also starts with

selecting a random set of positions in the parent strings.

However, this operator imposes the position of the selected

elements on the corresponding elements of the other parent. For

example, consider the parents (1 2 3 4 5 6 7 8) and (2 4 6 8 7 5 3

l), and suppose that the second, third and sixth positions are

selected. This leads to the following offspring: (1 4 6 2 3 5 7 8)

and (4 2 3 8 7 6 5 1).

4.1.8 Voting Recombination Crossover operator (VR):

It can be seen as a P-sexual crossover operator, where p is a

natural number greater than, or equal to, 2. It starts by defining a

threshold, which is a natural number smaller than, or equal to p.

Next, for every; i  {l, 2, . . .N} the set of ith elements of all the

parents is considered. If in this set an element occurs at least the

threshold number of times, it is copied into the offspring. For

example, if we consider the parents (p = 4) (1 4 3 5 2 6), (1 2 4 3

5 6), (3 2 1 5 4 6), (1 2 3 4 5 6) and we define the threshold to be

equal to 3 we find (1 2 x x x 6). The remaining positions of the

offspring are filled with mutations. Hence, our example might

result in (1 2 4 5 3 6) [6].

A J UMBARKAR AND P D SETH: CROSSOVER OPERATORS IN GENETIC ALGORITHMS: A REVIEW

1088

4.1.9 Maximal Preservation crossover (MPX):

The MPX operator was developed by Gorges-Schleuter and

Mülhelenbein [42] in 1988 specifically for the TSP. It is closely

related to the PMX crossover operator [48]. MPX operates by

initially selecting a random substring (the TSP this is a subtler)

from the first parent (called the donor). This subtour is usually

defined as being a tour with string length less than or equal to

the TSP problem size n divided by 2. A minimum subtour length

is also set, typically at 10 elements (unless the TSP problem size

is very small), as substrings that are very short are ineffective

and substrings that are too large do not allow for meaningful

variation. Selecting appropriate sized substrings provides a

suitable means for parents to transmit significant loci

information to the offspring. The second stage of MPX is to

remove the elements currently in the offspring from the second

parent. Then the remaining elements are inserted into the

offspring, the first parent’s substring having been placed at the

start of the offspring and the remaining free elements of the

offspring being filled by the clean parent 2 strings. This three

stage operation of MPX is illustrated in following example:

Parent 1 - (1 4 3 5 2 6)

Parent 2 - (1 2 4 3 5 6)

Offspring (1 4 3 x x x)

Cleaned Parent 2 - (- 2 - - 5 6)

Offspring (1 4 3 2 5 6)

With regard to the MPX and its application to the TSP,

although the MPX prevents invalid tour generation in the

offspring, they are liable to be produced with few building

blocks being inherited from both parents due to the cleaning of

the second parent’s string prior to completing the offspring

strings.

4.1.10 Masked crossover (MkX):

The Masked Crossover (MkX) technique was first proposed

by Louis and Rawlins in 1991 [43] as a crossover operator which

would efficiently operate in the combinatorial logic design

problem area rather than as a combinatorial optimization

technique. MkX [48] attempts to impart loci information from

parent to offspring in a more effective manner than previous

crossover methods. Louis and Rawlins state that MkX tries to

preserve schemas identified by the masks and they identify this

as one of their key goals [43]. The MkX operator assigns each

parent a mask that biases crossover. Once these masks have been

positioned then the operation is as following:

1. Copy Parent1 to Offspring1 and Parent2 to Offspring2

2. For (i from 1 to string-length)

if Mask2i = 1 and Mask1i = 0

3. Copy the ith bit from Parent2 to Offspring1

if Mask1i = 1 and Mask2i = 0

4. Copy the ith bit from Parent1 to Offspring2

The offspring of MkX also require masks, should they be

selected to be parents in another generation. The masks are

normally provided to the offspring by the parents. Typically the

parent that is designated the dominant parent is called Parent1

the dominant parent with respect to Offspring1 as Offspring1

inherits Parent1’s bits unless Parent2 feels strongly (Mask2i = 1)

and Parent1 does not (Mask1i = 0). A number of mask rules are

also defined by Louis and Rawlins. Two of which are used when

the simple rule of assigning masks from dominant parent to

offspring don’t apply. Chan [47] notes that the MkX is an

ineffective crossover operator for the TSP as it fails to preserve

the ordering of the solutions. Validity of solution is problematic

and (in conjunction with the selected mutation operator)

typically involves a repair or penalty function.

4.1.11 Position crossover (PX):

The Position Crossover (PX) operator was developed by

Syswerda in 1991 [5], [48]. PX was later evaluated by

Barbulescu [44] where she examined and compared PX’s

operation to similar operators for scheduling problems. This

crossover technique is closely related to OX and OX2 crossover

techniques. PX operates by selecting several random locations

along the parent strings. The elements are then inherited by the

offspring in the order that they occur in the first parent (P). The

remaining elements required to complete the offspring (O) are

donated by the second parent (with the elements donated by the

first parent omitted) in the order that they appear in the second

parent. Each step of the operation is illustrated as follows:

4.1.12 Complete Subtour Exchange Crossover:

The complete subtour exchange crossover (CSEX) operator is

designed to operate with the path representation. CSEX was

proposed by Katayama and Narihisa [45] to be used specifically

for permutation problems (such as the TSP). The philosophy

behind CSEX [48] is to encourage the offspring to inherit as many

good traits (substance) from the parents as possible. CSEX

enumerates substance that have the same direction (or reversed

direction) on two permutations as common substance.

Parent 1 - (0 1 2 3 4 5 6 7 8 9)

Parent 2 - (4 9 7 6 5 0 8 2 1 3)

Offspring 1- (0 2 1 3 4 5 6 7 8 9)

Offspring 2- (0 1 2 3 4 7 6 5 8 9)

Offspring 3- (0 2 1 3 4 7 6 5 8 9)

Offspring 4- (4 9 5 6 7 0 8 2 1 3)

Offspring 5- (4 9 7 6 5 0 8 1 2 3)

Offspring 6- (4 9 5 6 7 0 8 1 2 3)

In above see an example of CSEX in operation. The common

subtours are 12 and 5 6 7 in parent 1, and 7 6 5 and 2 1 in parent 2.

It should be noted that CSEX does not include the subtour 1 2 3

from parent 1 and 2 1 3 from parent 2 as they are not the same or

symmetrical. CSEX by allowing only the same (or symmetrical)

subtours can enumerate all the common subtours with O(n) time.

Having selected the common subtours, the offspring are produced

by inverting the common subtours from the parent. In the

example, parent 1 produces offspring 1, 2 and 3 by inverting a

common subtour for each offspring. This is then repeated for

parent 2 which produces offspring 4, 5 and 6. Once all the

offspring are produced they are evaluated for fitness and the two

fittest offspring survive to the next generation.

P1 – (0 8 4 5 6 7 1 2 3 9) P2 – (6 7 1 2 4 8 3 5 9 0)

P1 – (0 4 1 5 6 8 7 2 9 3) P2 – (6 1 4 2 8 7 5 9 3 0)

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, OCTOBER 2015, VOLUME: 06, ISSUE: 01

1089

4.1.13 Heuristic crossover (HX):

It is worth noting that the previous crossover operators did not

exploit the distances between the cities (i.e. the length of the

edges). In fact, it is a characteristic of the genetic approach to

avoid any heuristic information about a specific application

domain, apart from the overall evaluation or fitness of each

chromosome. This characteristic explains the robustness of the

genetic search and its wide applicability [9] [10] [48].

However, some researchers departed from this line of thinking

and introduced domain-dependent heuristics into the genetic

search, to create “hybrid” genetic algorithms. They have sacrificed

robustness over a wide class of problems, for better performance

on a specific problem. The heuristic crossover HX is an example

of this approach and can be described as follows:

1. Pick a random starting city at one of the two parents.

2. Compare the edges leaving the current city in both parents

and select the shorter edge.

3. If the shorter parental edge introduces a cycle in the partial

tour, then extend the tour with a random edge that does not

introduce a cycle.

4. Repeat Steps 2 and 3 until all cities are included in the tour.

4.1.14 Edge Recombination crossover (ER):

Quite often, the alternate edge operator introduces many

random edges in the offspring, particularly the last edges, when

the choices for extending the tour are limited. Since the offspring

must inherit as many edges as possible from the parents, the

introduction of random edges should be minimized. The edge

recombination operator reduces the myopic behavior of the

alternate edge approach with a special data structure called the

“edge map”.

Basically, the edge map maintains the list of edges that are

incident to each city in the parent tours, and lead to cities not yet

included in the offspring. Hence, these edges are still available for

extending the tour, and are said to be active. The strategy is to

extend the tour by selecting the edge that leads to the city with the

minimum number of active edges. In case of equality between two

or more cities, one of these cities is selected at random. With this

strategy, the approach is less likely to get trapped in a “dead end”,

namely, a city with no remaining active edges that require the

selection of a random edge [8] [48].

For tours of 13564287 and 14236578 (path representation), the

initial edge map is shown below:

City 1 has edges to: 3 4 7 8

City 2 has edges to: 3 4 8

City 3 has edges to: 1 2 5 6

City 4 has edges to: 1 2 6

City 5 has edges to: 3 6 7

City 6 has edges to: 3 4 5

City 7 has edges to: 1 5 8

City 8 has edges to: 1 2 7

Fig.1. Edge Map

Let us assume that city 1 is selected as the starting city.

Accordingly, all edges incident to city 1 must be deleted from

the initial edge map. From city 1, we can go to city 3, 4, 7 or 8.

City 3 has three active edges, while cities 4, 7 and 8 have two

active edges, as shown by the edge map (a) in Fig.1. Hence, a

random choice is made between cities 4, 7 and 8. We assume

that city 8 is selected. At 8, we can go to cities 2 and 7. As

indicated in the edge map (b), city 2 has two active edges and

city 7 only one, so the latter is selected. From 7, there is no

choice, but to go to city 5. From this point, edge map (d) offers a

choice between cities 3 and 6 with two active edges. Let us

assume that city 6 is randomly selected. From city 6, we can go

to cities 3 and 4, and edge map (e) indicates that both cities have

one active edge. We assume that city 4 is randomly selected.

Finally, from city 4 we can only go to city 2, and from city 2 we

must go to the city 3.

Some modified edge recombination crossover are Edge

Exchange Crossover (EXX) and Edge Assembly Crossover

(EAX) [31].

4.1.15 Alternate Edges Crossover:

It is a good introduction to other edge-preserving operators.

Here, a starting edge (i, j) is selected at random in one parent.

Then, the tour is extended by selecting the edge (j, k) in the other

parent. The tour is progressively extended in this way by

alternatively selecting edges from the two parents. When an

edge introduces a cycle, the new edge is selected at random (and

is not inherited from the parents) [9] [48].

In following example, an offspring is generated from two

parent chromosomes that encode the tours 13564287 and

14236578, respectively, using the adjacency representation.

Here, edge (1, 4) is first selected in parent 2, and city 4 in

position 1 of parent 2 is copied at the same position in the

offspring. Then, the edges (4, 2) in parent 1, (2, 3) in parent 2,

(3, 5) in parent 1 and (5, 7) in parent 2 are selected and inserted

in the offspring. Then, edge (7, 1) is selected in parent 1.

However, this edge introduces a cycle and a new edge incident

to 7 and to a city not yet visited is selected at random. Let us

assume that (7, 6) is chosen. Then, edge (6, 5) is selected in

parent 2, but it also introduces a cycle. At this point, (6, 8) is the

only selection that does not introduce a cycle. Finally, the tour is

completed with edge (8, 1).

parent 1: 3 8 5 2 6 4 1 7

parent 2: 4 3 6 2 7 5 8 1

offspring: 4 3 5 2 7 8 6 1

The Alternate Edges Crossover

The final offspring encodes the tour 14235768, and all edges

in the offspring are inherited from the parents, apart from the

edges (7, 6) and (6, 8). In the above description, an implicit

orientation of the parent tours is assumed. For symmetric

problems, the two edges that are incident to a given city can be

considered. In the above example, when we get to city 7 and

select the next edge in parent 1, edges

(7, 1) and (7, 8) can both be considered. Since (7, 1)

introduces a cycle, edge (7, 8) is selected. Finally, edges (8, 6)

and (6, 1) complete the tour.

parent 1: 3 8 5 2 6 4 1 7

parent 2: 4 3 6 2 7 5 8 1

offspring: 4 3 5 2 7 1 8 6

It is alternate edges crossover.

A J UMBARKAR AND P D SETH: CROSSOVER OPERATORS IN GENETIC ALGORITHMS: A REVIEW

1090

4.1.16 Greedy Subtour Crossover:

New crossover operator named `Greedy Subtour Crossover

(GSX)’ that acquires the longest possible sequence of parents'

subtours. Using GSX the solution can pop up from local minima

more effectively than by using simulated annealing (SA)

methods.

In the GSX, we use the path representation for a genetic

coding. For example, chromosome g = (D, H, B, A, C, F, G, E)

means that the salesperson visits towns D, H, B, A,.., E,

successively, and returns to town D.

Suppose that chromosomes of parents are ga = (D, H, B, A,

C, F, G, E) and gb = (B, C, D, G, H, F, E, A). First, choose one

town at random. In this example, town C is chosen. Then, x = 4

and y = 1 because a4 = C and b1 = C respectively. Now the child

g is (C).

Next, pick up towns from the parents alternately. Begin with

a3 (town A) because x <- 4 <- 1 = 3, and next is b2 (town D)

because y <- 1<- 1 = 2. The child becomes g = (A, C, D).

In the same way, add a2 (town B), b3 (town G), a1 (town H),

and the child becomes g = (H, B, A, C, D, G). Now the next

town is b4 = H and town H has already appeared in the child

(remember the salesperson may not visit the same town twice),

so we can't add any more towns from parent gb. Therefore we

add towns from parent ga. The next town is a0 = D, but D is

already used. Thus we can't add towns from parent ga, either.

Then, we add the rest of the towns, i.e., E and F, to the child in

the random order. Finally the child is g = (H, B, A, C, D, G, F,

E) [11] [48].

4.1.17 Edge Assembly Crossover:

EAX [48] has two important features—preserving parents’

edges using a novel technique and adding new edges by a greedy

method, analogous to a minimal spanning tree. Several issues,

including the selection mechanism and heuristic methods, which

affect the performance of EAX have been considered.

4.2 CROSSOVER FOR OBJECT CLASSIFICATION

PROBLEMS

 Object classification problems: Looseness control

crossover (LCC) and Headless chicken crossover (HCC)

[32]

 Crossover for Sudoku problem: Product Geometric

Crossover (PMX) [33]

 Crossover for grouping, graph, sequence and glude

space applications: Quotient Geometric Crossovers [34]

and Merge Crossover (MX) [46].

 Crossover for Graph Partitioning Problems: Geometric

Crossover (GX) & Geometric Crossover Labeling-

independent (LI) GX Crossover and Landscape of

Labeling-independent Crossover [36].

 Crossover for Graph Colouring Problem (for Parallel

GA): Conflict elimination crossover (CEX), Greedy

partition crossover (GPX), Union Independent set

crossover (UISX) and Sum product crossover (SPPX) [37].

 Multi-Parent Crossover/ Multi-Parent feature

Crossover (MFX), Multicut crossover (MX) and Seed

crossover (SX) [14],[15]and[16]: The increase of parents

brings about a more comprehensive survey for determining

the offspring genes and leads to a stronger tendency

towards exploitation or exploration or both [18], [19], [20].

 Center of mass crossover (CMX): These multi-parent

crossovers can lead to better performance although the

performance is problem-dependent [14, 15].

 Unimodal normal distribution crossover (UNDX):
Multiple parents into unimodal normal distribution

crossover (UNDX) to enhance the diversity of offspring.

This multi-parent extension of UNDX exhibits its

improvement in search ability on highly epistatic problems

[24].

 Simplex crossover (SPX): SPX performs well with three

or four parents for multimodal and epistatic problems [17].

4.3 CROSSOVER FOR SUDOKU PROBLEM

Knowledge-Based Nonuniform Crossover [26], Strong

Context Preserving Crossover (SCPC) Weak Context Preserving

Crossover (SCPC) [27], Hierarchical Crossover [28], Selective

crossover [29], Rank & proximity Based Crossover (RPC) [30],

Depth-Dependent Crossover (DDX) [35], Alternating-Position

Crossover (AP) [7], Circle Ring Crossover [12] and Sufficient

Exchanging [12].

5. CONCLUSION

Many crossover operators are present in GA that are used in

applications. The encoding type used in GA is the major criteria

for selecting the crossover. The global convergence and search

space must be considered while selecting the crossover operators.

Effect of crossover operators in GA is application as well as

encoding dependent. Many researchers say that the value of

crossover probability is in between 0.6 and 1.0 and it also depends

on the type of crossover used. Increasing crossover probability

increases the opportunity for recombination but also may disrupt

in good combination. Depending on encoding, standard crossover

can have high chance to produce illegal offspring (it is application

dependent e.g. TSP). The application to be solved must consider

for all the crossover operators available along with possible

encoding methods to get good results.

Many new applications are solved by existing crossover

operators by considering their effectiveness in related

applications. Most of time new crossover operators use old

crossover operators along with additional changes. To get the

proper crossover operators for a new problem it is recommended

that, to see similar types of problems solved using GA along

with various crossover operators used. It is recommended that

for solving any problem it is important to overview the search

space with modality extremes. Continuity (nature of search

space), study existing crossover operators and then select or

create a new crossover (by mixing).

ACKNOWLEDGMENTS

Our special thanks to Dr. Tomasz Dominik Gwiazda for his

e-book “Genetic Reference Volume–I Crossover for Single

objective numerical optimization” and Dr. George G. Mitchell

for his Ph.D Thesis “Evolutionary Computation Applied to

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, OCTOBER 2015, VOLUME: 06, ISSUE: 01

1091

Combinatorial Optimization Problems” for inspiring to write

review paper on crossover operator.

REFERENCES

[1] Tomasz Dominik Gwiazda, “Genetic Algorithms

Reference”, Volume –I, Poland: Tomasz Gwiazda, 2006

[2] David E. Goldberg and Robert Lingle Jr., “Alleles, loci and

the traveling salesman problem”, Proceedings of the 1st

International Conference on Genetic Algorithms, pp. 154-

159, 1985.

[3] I. M. Oliver, D. J. Smith, and J. R. C. Holland, “A study of

permutation crossover operators on the TSP”, Proceedings

of the 2nd International Conference on Genetic Algorithms

on Genetic Algorithms and their Application, pp. 224-230,

1987.

[4] Lawrence Davis, “Applying adaptive algorithms to

epistatic domains”, Proceedings of the 9th international

joint conference on Artificial Intelligence, Vol. 1, pp. 162-

164, 1985.

[5] Gilbert Syswerda, “Schedule optimization using genetic

algorithms”, Handbook of Genetic Algorithms, pp. 332-

349, New York: Van Nostrand Reinhold, 1991.

[6] H. Muhlenbein, “Parallel genetic algorithms, population

genetics and combinatorial optimization”, Proceedings of

Workshop on Parallel Processing: Logic, Organization

and Technology, pp. 398-406, 1991.

[7] P. Larranaga, C. M. H. Kuijpers, M. Poza, and R. H.

Murga, “Optimal Decomposition of Bayesian Networks by

Genetic Algorithms”, Internal Report, EHU-KZAA-IKT-3-

94, Department of Computer Science and Artificial

Intelligence, University of the Basque Country, 1994.

[8] L. Darrell Whitley, Timothy Starkweather and D’Ann

Fuquay, “Scheduling Problems and Traveling Salesmen:

The Genetic Edge Recombination Operator”, Proceedings

of the 3rd International Conference on Genetic Algorithms,

pp. 133-140, 1989.

[9] John J. Grefenstette, Rajeev Gopal, Brian J. Rosmaita and

Dirk Van Gucht, “Genetic Algorithms for the Traveling

Salesman Problem”, Proceedings of the 1st International

Conference on Genetic Algorithms, pp. 160-168, 1985.

[10] J. Grefenstette, “Incorporating Problem Specific

Knowledge into Genetic Algorithms”, In L. Davis (ed.)

“Genetic Algorithms and Simulated Annealing”, Morgan

Kaufmann, pp. 42-60, 1987.

[11] Sengoku, H., Yoshihara, I., “A Fast TSP Solution using

Genetic Algorithm (Japanese)”, Proceedings of 46th

National Convention of Information Processing Society of

Japan, 1993.

[12] Liang-Jie Zhang, Mao Zhi-Hong and Li Yan-Da,

“Mathematical Analysis of Crossover Operator in Genetic

Algorithms and its Improved Strategy”, Proceedings of

IEEE International Conference on Evolutionary

Computation, pp. 412-417, 1995.

[13] Shengxiang Yang, “Adaptive Non-Uniform Crossover

Based on Statistics for Genetic Algorithms”, Proceedings

of the Genetic and Evolutionary Computation Conference,

pp. 650-657, 2002.

[14] Yoshida Junichi, Miki Mitsunori, Hiryasu Tomoyuki and

Sakata Yoshinobu, “New Crossover Scheme for Parallel

Distributed Genetic Algorithms ” Proceedings of the

IASTED International Conference on Parallel and

Distributed Computing And Systems, Vol. 1, No. 6-9, pp.

145-150, 2000.

[15] S. Shigeyoshi Tsutsui, “Multi-parent recombination in

genetic algorithms with search space boundary extension

by mirroring”, Parallel Problem Solving from Nature –

PPSN V, Lecture Notes in Computer Science, Vol. 1498,

pp. 428-437, 2006.

[16] S. Tsutsui and A. Ghosh, “A study on the effect of multi-

parent recombination in real coded genetic algorithms”,

Proceedings of IEEE World Congress on Computational

Intelligence, pp. 828-833, 1998.

[17] Chuan-Kang Ting and Chun-Cheng Chen, “The Effects of

Supermajority on Multi-Parent Crossover”, IEEE Congress

on Evolutionary Computation, pp. 4524-4530, 2007.

[18] S. Tsutsui, M. Yamamura and T. Higuchi. “Multi-parent

recombination with simplex crossover in real coded genetic

algorithms”, Proceedings of the Genetic and Evolutionary

Computation Conference, Vol. 1, pp. 657-664, 1999.

[19] Chuan-Kang Ting, “On the convergence of multi-parent

genetic algorithms”, IEEE Congress on Evolutionary

Computation, Vol. 1, pp. 396-403, 2005.

[20] Chuan-Kang Ting, “On the mean convergence time of

multi-parent genetic algorithms without selection”,

Proceedings of the 8th European Conference on Advances

in Artificial Life, Vol. 3630, pp. 403-412, 2005.

[21] A. E. Eiben, “Multiparent Recombination”, Handbook of

Evolutionary Computation, Institute of Physics Publishing

and Oxford University Press, 1997.

[22] A. E. Eiben and C.H.M. van Kemenade, “Diagonal

crossover in genetic algorithms for numerical

optimization”, Journal of Control and Cybernetics, Vol.

26, No. 3, pp. 447-465, 1997.

[23] A.E. Eiben, C.H.M. van Kemenade and J.N. Kok. “Orgy in

the Computer: Multi-parent reproduction in genetic

algorithms”, Proceedings of the 3rd European Conference

on Artificial Life, pp. 934-945, 1995.

[24] Kalyan Deb, S. Karthik and Tatsuya Okabe, “Self-Adaptive

Simulated Binary Crossover for Real-Parameter

Optimization”, Genetic and Evolutionary Computation

Conference, pp. 1187-1194, 2007.

[25] H. Kita, I. Ono and S. Kobayashi, “Multi-parental

extension of the unimodal normal distribution crossover for

real-coded genetic algorithms”, Proceedings of the

Congress on Evolutionary Computation, Vol. 2, pp. 1581-

1588, 1999.

[26] Inki Hong, Andrew B. Kahng and Byung Ro Moon,

“Exploiting Synergies of Multiple Crossovers: Initial

Studies”, Proceedings of IEEE International Conference

on Evolutionary Computation, Vol. 1, 1995.

[27] Harpal Maini, Kishan Mehrotra, Chilukuri Mohan and

Sanjay Ranka, “Knowledge-Based Nonuniform

A J UMBARKAR AND P D SETH: CROSSOVER OPERATORS IN GENETIC ALGORITHMS: A REVIEW

1092

Crossover”, Proceedings of the 1st IEEE Conference on

World Congress on Computational Intelligence

Evolutionary Computation, pp. 22-271, 1994.

[28] Patrik D'haeseleer, “Context Preserving Crossover in

Genetic Programming”, Proceedings of the 1st IEEE

Conference on World Congress on Computational

Intelligence Evolutionary Computation, Vol. 1, pp. 256-

261, 1994.

[29] P. J. Bentley and J. P. Wakefield, “Hierarchical Crossover

in Genetic Algorithms”, Proceedings of the 1st On-line

Workshop on Soft Computing, 1996.

[30] Chilkuri K. Mohan, “Selective crossover: towards fitter

offspring”, Proceedings of the ACM symposium on Applied

Computing, pp. 374-378, 1998.

[31] Goutam Chakraborty and Basabi Chakraborty, “Rank and

Proximity Based Crossover (RPC) to Improve

Convergence in Genetic Search”, IEEE Congress on

Evolutionary Computation, Vol. 2, pp. 1311-1316, 2005.

[32] Yuichi Nagata, “Criteria for designing crossovers for

TSP”, IEEE Congress on Evolutionary Computation, Vol.

2, pp. 1465-1472, 2004.

[33] Mengjie Zhang, Xiaoying Gao and Weijun Lou,

“Looseness Controlled Crossover in GP for Object

Recognition”, IEEE Congress on Evolutionary

Computation, pp.1285-1292, 2006.

[34] Alberto Moraglio, Julian Togelius and Simon Lucas,

“Product Geometric Crossover for the Sudoku Puzzle”,

IEEE Congress on Evolutionary Computation, pp. 470-

476, 2006.

[35] Yourim Yoon, YongHyuk Kim, Alberto Moraglio and

Byung Ro Moon, “Quotient Geometric Crossovers”,

Technical Report, CSM-467, Department of Computer

Science, University of Essex, 2007.

[36] Takuya Ito, Hitoshi Iba and Satoshi Sato, “Depth-

Dependent Crossover for Genetic Programming”,

Proceedings IEEE World Congress on Computational

Intelligence Evolutionary Computation, pp. 775-780, 1995.

[37] Alberto Moraglio, Yong-Hyuk Kim, Yourim Yoon and

Byung-Ro Moon, “Geometric Crossovers for Multiway

Graph Partitioning”, Evolutionary Computation, Vol. 15,

No. 4, pp. 445-474, 2007.

[38] Zbigniew Kokosiński, Marcin Kołodziej and Krzysztof

Kwarciany, “Parallel Genetic Algorithm for Graph

Coloring Problem”, Computational Science - ICCS 2004,

Vol. 3036, pp. 215-222, 2004.

[39] Jong De Jong and Kenneth Alan, “An Analysis of the

Behavior of a class of Genetic Adaptive Systems”, PhD

Thesis, University of Michigan, 1975.

[40] Donald E. Brown, Christopher L. Huntley and Andrew R.

Spillane, “A Parallel Genetic Heuristic for the Quadratic

Assignment Problem”, Proceedings of the 3rd International

Conference on Genetic Algorithms, pp. 406-415, 1989.

[41] Andrew L. Tuson, “The Implementation of a Genetic

Algorithm for the Scheduling and Topology Optimisation

of Chemical Flowshops”, Technical Report TRGA94-01,

Physical Chemistry Laboratory, Oxford University, 1994.

[42] H. Mühlenbein, M. Gorges-Schleuter, and O. Krämer,

“Evolution Algorithms in Combinatorial Optimization”,

Parallel Computing, Vol. 7, No. 1, pp. 65-85, 1988.

[43] Sushil. J. Louis and Gregory J. E. Rawlins, “Designer

Genetic Algorithms: Genetic Algorithms in Structure

Design”, Proceedings of the 4th International Conference

on Genetic Algorithms, pp. 53-60, 1991.

[44] Laura Barbulescu, Adele E. Howe, L. Darrell Whitley and

Mark Roberts, “Understanding Algorithm Performance on

an Oversubscribed Scheduling Application”, Journal of

Artificial Intelligence Research, Vol. 27, pp. 577-615,

2006.

[45] Kengo Katayama and Hiroyuki Narihisa, “An Efficient

Hybrid Genetic Algorithm for the Traveling Salesman

Problem”, Electronics and Communications in Japan, Vol.

84, No. 2, pp. 76-83, 2001.

[46] Sushil J. Louis, Xiangying Yin and Zhen Ya Yuan,

“Multiple Vehicle Routing With Time Windows Using

Genetic Algorithms”, Proceedings of the Congress on

Evolutionary Computation, 1999.

[47] Yam Ling Chan, “A Genetic Algorithm Shell for Iterative

Timetabling”, M.S. Thesis, Department of Computer

Science. RMIT University, 1994.

[48] George G. Mitchell, “Evolutionary Computation Applied to

Combinatorial Optimisation Problems,” Ph.D. Thesis,

School of Electronic Engineering, Dublin City University,

2007.

