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Abstract 

The performance of Genetic Algorithm (GA) depends on various 

operators. Crossover operator is one of them. Crossover operators are 

mainly classified as application dependent crossover operators and 

application independent crossover operators. Effect of crossover 

operators in GA is application as well as encoding dependent. This 

paper will help researchers in selecting appropriate crossover 

operator for better results. The paper contains description about 

classical standard crossover operators, binary crossover operators, 

and application dependant crossover operators. Each crossover 

operator has its own advantages and disadvantages under various 

circumstances. This paper reviews the crossover operators proposed 

and experimented by various researchers. 
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1. INTRODUCTION

Genetic algorithm is a method of searching. It searches a 

result equal to or close to the answer of a given problem. New 

generation of solutions is created from solutions in previous 

generation. Basic strategy used in GA to create the best 

solutions/offspring is to crossover the parent genes. Various 

crossover techniques are built to get the optimum solution as 

early as possible in minimum generations. The selection of 

crossover operator has more impact on the performance of GA. 

The premature convergence [38] in GA can be avoided by 

selecting appropriate breeding operators. In this paper, the 

crossover operators are classified in three categories such as 

standard crossovers, binary crossovers and real/tree crossover s 

which are application dependant.  

The Section 2 explains standard crossovers, which are 

application independent. Section 3 explains the binary 

crossovers with some modified crossovers to improve 

performance of GA. Section 4 explains the application 

dependant crossovers (real/tress). Section 5 discusses the 

findings of this review work. 

2. STANDARD CROSSOVERS

2.1 1-POINT CROSSOVER 

It is one of the simple crossover technique used for random 

GA applications. This crossover uses the single point 

fragmentation of the parents and then combines the parents at 

the crossover point to create the offspring or child. 

1-Point crossover first selects two parents used for crossover 

and then randomly selects any crossover point pi (i = 0 to n-1). 

Two offspring are created by combining the parents at crossover 

point. A simple example is shown below which performs one 

point crossover and creates two parents. 

Parent 1:  1 0 1 0  1 0 0 1 0 

Parent 2:  1 0 1 1  1 0 1 1 0 

Offspring 1:  1 0 1 0  1 0 1 1 0 

Offspring 2:  1 0 1 1  1 0 0 1 0 

In above example, point between 4th and 5th gene is selected 

as crossover point. 

2.2 K-POINT CROSSOVER 

It uses the random crossover point to combine the parents 

same as per 1-Point crossover. To provide the great combination 

of parents it selects more than one crossover points to create the 

offspring or child [1]. 

K-Point Crossover first selects the two parents used for 

crossover and then randomly select K crossover points P1i to Pk-1i 

(i = 0 to n  1). Two offspring are created by combining the 

parents at crossover point. A simple example is shown below 

which performs one point crossover and creates two parents. 

Parent 1: 1 0  1 0  1 0 0  1 0 

Parent 2: 1 1  0 0  1 0 1  1 0 

Offspring 1: 1 0  0 0  1 0 0  1 0 

Offspring 2: 1 1  1 0  1 0 1  1 0 

In above example, the points between 2nd and 3rd, 4th and 5th 

and 7th and 8th gene are selected as crossover points. 

2.3 SHUFFLE CROSSOVER 

Shuffle Crossover helps in creation of offspring which have 

independent of crossover point in their parents. It uses the same 

1-Point Crossover technique in addition to shuffle. 

Shuffle Crossover selects the two parents for crossover. It 

firstly randomly shuffles the genes in the both parents but in the 

same way. Then it applies the 1-Point crossover technique by 

randomly selecting a point as crossover point and then combines 

both parents to create two offspring. After performing 1-point 

crossover the genes in offspring are then unshuffled in same way 

as they have been shuffled. 

Select Shuffle Points 

Parent 1: 1 1 1 0 1 0 0 1 0 

Parent 2: 1 0 0 0 1 0 1 1 0 

Shuffle genes as Shuffle Points 

Parent 1: 0 1 0 1 1 0 1 1 0 

Parent 2: 0 0 1 1 1 0 0 1 0 
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Select 1- Point Crossover Point 

Parent 1: 0 1 0 1 | 1 0 1 1 0 

Parent 2: 0 0 1 1 | 1 0 0 1 0 

Perform 1-Point Crossover Point 

Offspring 1: 0 1 0 1 | 1 0 0 1 0 

Offspring 2: 0 0 1 1 | 1 0 1 1 0 

Select unshuffled points same as shuffled points 

Offspring 1: 0 1 0 1 1 0 0 1 0 

Offspring 2: 0 0 1 1 1 0 1 1 0 

Unshuffled the genes in Offspring 

Offspring 1: 1 1 0 0 1 0 0 1 0 

Offspring 2: 1 0 1 0 1 0 1 1 0 

2.4 REDUCED SURROGATE CROSSOVER  

Reduced Surrogate Crossover minimizes the unwanted 

crossover operations in case of the parents having same genes. In 

these cases the Reduced Surrogate Crossover first checks for the 

individual genes in the parents. It creates list of all possible 

crossover points where the genes of the both parents are 

different. 

After performing this check, if no crossover point is there 

then no action is taken. But in case, if parents are differing in 

more than 1 gene then it keeps the list of all crossover points. It 

then randomly selects one crossover point from the list and 

performs 1-point crossover to create the offspring. 

2.5 UNIFORM CROSSOVER  

Uniform crossover provides the uniformity in combining the 

bits of both parents. It performs this operation of swapping bits 

in the parents to be included in the offspring by choosing a 

uniform random real number u (between 0 to 1).  

Uniform crossover selects the two parents for crossover. It 

creates two child offspring of n genes selected from both of the 

parents uniformly. The random real number decides whether the 

first child select the ith genes from first or second parent [1]. 

Parent 1: 1 1 1 0 1 0 0 1 0 

Parent 2: 1 0 0 0 1 0 1 1 0 

Offspring 1: 1 1 0 0 1 0 1 1 0 

Offspring 2: 1 0 1 0 1 0 0 1 0 

2.6 AVERAGE CROSSOVER (AX)  

Average Crossover is the value based crossover technique. It 

uses two parents to perform crossover and creates only one 

offspring [1]. Average Crossover creates one offspring from 

taking average of the two parents. It selects two parents as X and 

Y and generate the child Z as follows: each gene in a child is 

taken by averaging genes from both parents.  

Parent 1: 5 3 3 2 3 9 7 6 5 

Parent 2: 5 4 7 6 5 2 6 1 3 

Offspring 1: 5 3 5 4 4 5 6 3 4 

 

 

2.7 DISCRETE CROSSOVER (DC)  

Discrete Crossover uses the random real number to create 

one child from two parents.  

Unlike the uniform crossover only one child is generated in 

Discrete Crossover. It selects two parents as X and Y and 

generate the child Z such that it select genes of both the parents 

uniformly. The random real number decides from which parent 

to take the genes for child. [1] 

Parent 1: 1 1 1 0 1 0 0 1 0 

Parent 2: 1 0 0 0 1 0 1 1 0 

Offspring 1: 1 1 0 0 1 0 1 1 0 

2.8 FLAT CROSSOVER (FC)  

Flat Crossover uses the random real number to create one 

child from two parents.  

Same as of Discrete Crossover it selects the genes from 

parent based on uniform random real number. But the selected 

random real number should be a subset of set having the 

minimum and maximum of the genes of the both parents. It 

selects two parents as X and Y and generate the child Z such that 

it selects random real number which is either min or max from 

genes in both parents and then assign this real number in child 

gene. 

2.9 HEURISTIC CROSSOVER/INTERMEDIATE 

CROSSOVER (HC/IC) 

Heuristic Crossover creates one child offspring from two 

parents. It uses the α ε < 0, 1 > assuming xi <= yi. For each gene 

in the child it select the uniform random real number α. And the 

child gene is calculated from above equation. 

 xi (t+1) = xi(t) + α (yi(t) – xi(t)) 

Parameter α may be of constant value equal to 0.5 or may be 

selected by a draw from interval <0,1 (row: 5). 

2.10 STATISTICS-BASED ADAPTIVE NON-

UNIFORM CROSSOVER (SANUX) 

It is based on the concepts of intrinsic attribute and extrinsic 

tendency of valuing allele for a gene locus. In optimal solution 

(encoded in binary string) of a given problem, for a gene locus if 

its allele is 1 it is called 1-intrinsic, if its allele is 0 it is called 0-

intrinsic, otherwise if its allele either 0 or 1 it is called neutral. 

During the running of a GA, for a gene locus, if the frequency of 

1’s in its alleles over, the population tends to increase with time 

(generation), it called 1-inclined; if the frequency of 1’s tends to 

decrease, it is called 0-inclined; otherwise it is called non-

inclined. [13] 

Usually and hopefully as the GA progresses, the gene loci 

which are 1-intrinsic will appear to be 1-inclined. SANUX 

makes use of this convergence information as feedback 

information to direct the crossover by adjusting the swapping 

probability of each locus. 

Now during the evolution of the GA, after generation of new 

population the distribution of 1’s f1(i, t) from each locus over the 

population is calculated. Then SANUX operation is performed. 

After applying SANUX, the mask is generated bit by bit by 
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flipping a coin biased to generate “1” with probability ps(i, t). 

Finally, the generated mask is used to guide the crossover in the 

same way it guides the traditional uniform crossover. 

1’s Frq. in loci: 0.4  0.2  0.6  0.9  0.9  0.2 

Calculating:                                  

Swapping prob: 0.4  0.2  0.4  0.1  0.1  0.2 

biased flipping:                                 

Created mask:  1     0     1     0     0      0 

Applying mask:                

Parent P1:  0     1     0     1     1      1 

Parent P2:  1     1     1     1     1      0 

Swapping:                 

Child C1:  1     1     1     1     1      1 

Child C2:  0     1     0     1     1      0 

 SANUX 

3. BINARY CROSSOVERS 

3.1 RANDOM RESPECTFUL CROSSOVER (RRC)  

It selects two parents for crossover and offspring is generated 

based on the similarity vector of the parents. It first creates 

similarity vector Sab = (S1ab,…,Snab) such that if both genes of 

parents have the same values then the similarity vector contains 

the values of the parent  else similarity vector contain null value 

for that gene [1]. 

After creation of similarity vector S, two children are created 

according to the values of the similarity vector. If similarity 

vector contains 1 then gene of both children is set to 1 and if it 

contains 9 then genes of both children are set to 0. Apart from 

this if similarity vector contains null value for any gene then the 

child gene is selected by taking a uniform random real number. 

If this number is < 0.5 then 1 is stored otherwise 0 is stored. 

Parent 1:  1 1 1 0 1 0 0 1 0 

Parent 2:  1 0 0 0 1 0 1 1 0 

Offspring 1: 1 1 0 0 1 0 1 1 0 

Offspring 1: 1 0 0 0 1 0 0 1 0 

This algorithm duplicates genes of parents in an offspring at 

every position wherever they are identical.  

3.2 MASKED CROSSOVER (MX)  

The MX operator uses a mask vector to determine which bits 

of which parent are inherited by the offspring. The first step is 

the duplication of the bits of the parents. The bits of the first 

parent are copied to the first offspring and, accordingly, of the 

second parent to the second offspring. In the second step, the 

offspring exchange bits among each other at those positions 

where the mask vectors of the parent were equal to 1, indicated 

domination of that parent at that position and the mask vectors of 

the other parent were equal to 0. 

The mask vectors are initiated in P(0) randomly. During 

every iteration of GA, the mask vectors are inherited by each 

offspring from its parent. Then the mask vectors of the offspring 

as well as the parents undergo modification. The modification 

process is based on comparison of fitness of offspring and the 

parents. If good offspring are created, the masks of the parents 

do not need to be modified and the masks of the offspring may 

be very similar to those of the parents. In a situation where bad 

offspring were created the masks of the parents as well as of the 

offspring need to be modified. 

3.3 1- BIT ADAPTATION CROSSOVER (1BX)  

In the 1 BX method, the last bit of the solution vector is 

reserved for the code of one of the two of the applied crossover 

operators. Assuming “0” corresponds to Uniform Crossover 

(UX) operator and “1” corresponds to 2-Point Crossover (2-PX) 

operator, the choice of one of them is made according to the 

rule: if the last bit of the parents is off the same value then 

choose the operator indicated by this bit. Otherwise chooses the 

operator through the selection by a draw i.e. select the uniform 

random real number from 0 to 1. If this value is <0.5, then 

Uniform Crossover is performed otherwise 2-Point Crossover is 

used. 

Application of the described crossover scheme combines the 

choice of the operator with the solution vector. Moreover, this 

choice is carried out separately for each parent pair; hence this 

scheme is called local adaptation. Global adaptation version has 

also presented, but as it was emphasized by the author, 

significantly worse results were obtained by its application. 

3.4 MULTIVARIATE CROSSOVER (MC)  

MC divides the whole parent string into the q substrings. The 

crossover is performed based on random value selected for each 

substring. If this value is < Pc then crossover is performed other 

only parent genes are copied into child offspring. It performs the 

standard 1-Point Crossover for the substring when the condition 

is satisfied [1]. 

The most fundamental difference between the MC operator 

and other operators using variable-to-variable recombination is 

that the answer to the question “whether to crossover” is 

checked in the MC method separately for each substring. As for 

other operators, the answer to that question refers to parent 

vector as a whole. 

3.5 HOMOLOGOUS CROSSOVER (HX)  

The HX operator is based on the standard K-Point Crossover 

operator. Introduced modification relies on the fact that only 

strings of bits which are at least of a certain length or of an 

admissible degree of similarity are allowed to participate in 

crossover. Determination of the degree of similarity is based on 

the XOR operator. 

This strategy is aimed at transferring strings with specified 

parameters to the next generation. In HX, the value of o and r is 

determined a priori as constant or dynamically changed in the 

GA run. 

3.6 COUNT PRESERVING CROSSOVER (CPC) 

The CPC operator carries out its task by assuming that the 

number of bits equal to “1” in every chromosome in the initial 

population P(0) is the same.  
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CPC may guarantee the preservation of the constant number 

of bits equal to “1” due to application of two lists noting the 

differences between the parents. List Lup includes positions of 

those bits, on which there are differences between the parents, 

but the first parent at a given position holds a bit equal to “1” 

and the second equal to “0”. List L down similarly notes the 

positions of differences, but the first parent at a given position 

holds a bit equal to “0” and the second equal to “1”. The 

offspring creation process which makes use of those lists is 

based on the exchange of bits between the offspring at those 

positions which, are indicated by subsequent element pairs from 

lists Lup and Ldown. 

Number of elements in Lup and in Ldown is the same, which is 

a direct result of the assumption, that the number of bits equal to 

“1” is constant for all chromosomes in P(0). 

3.7 ELITIST CROSSOVER (EX)  

In the standard genetic algorithm, the selection process is 

always preceded by the crossover process. In the EX method, 

both processes are integrated. During the first step of the entire 

population is randomly shuffled. Then from each successive pair 

of parental vectors, two new vectors are created by crossover. 

From a ‘family’ created, two best vectors are singled out and 

implemented as offspring to the next population. 

Application of elitist selection in the traditional way that is 

on the level of the entire population may often be the reason for 

the premature convergence of the algorithm. An EX elitist 

selection applied on the “family” level eliminates this danger 

according to the authors. 

3.8 SCANNING CROSSOVER (SCAN), UNIFORM 

SCANNING CROSSOVER (U-SCAN), 

OCCURRENCE BASED SCANNING 

CROSSOVER (OB-SCAN) FITNESS BASED 

SCANNING CROSSOVER (FB-SCAN) 

Depending on the heuristics applied to scanning crossover, 

three variations are: uniform scanning crossover (U-Scan), 

occurrence based scanning crossover (OB-Scan), and fitness 

based scanning crossover (FB-Scan).  

Increasing the number of parents in OB-Scan leads to a 

higher probability for the major alleles in the population to exist 

in every offspring, which will cause the population to 

concentrate on a certain region and thus lose the diversity 

rapidly [18], [19]. This situation is called premature 

convergence, a result of unbalanced exploitation and 

exploration. 

3.9 SELF-ADAPTIVE SIMULATED BINARY 

CROSSOVER (SBX) 

A self-adaptive procedure for updating the distribution index 

used in the simulated binary crossover or SBX operator which is 

a commonly-used real-parameter recombination operator. This 

crossover is also good for multi-objective optimization problem. 

3.10 OTHER BINARY CROSSOVER 

Some binary crossover is proposed by researchers are -

Circ1e-ring crossover, Sufficient Exchanging crossover [12], 

Adaptive crossovers [12], Diagonal crossover [21, 22], Best 

combinatorial crossover (BCX) and Hybridization crossover 

(HX) [14].  

4. APPLICATION DEPEDANT CROSSOVERS 

(REAL/TREE) 

4.1 CROSSOVER FOR TSP PROBLEMS  

4.1.1 Order Based Crossover (OBX): 

The order based crossover operator selects at random several 

positions in one of the parent tours, and the order of the cities in 

the selected positions of this parent is imposed on the other 

parent to produce one child. The other child is generated in an 

analogous manner for the other parent [1]. 

4.1.2 Modified Order Crossover (MOC): 

A randomly chosen crossover point divides the parent strings 

in left and right substrings. The right substrings of the parent s1 

and s2 are selected. After selection of cities the process is the 

same as the order crossover. Only difference is that instead of 

selecting random several positions in a parent tour all the 

positions to the right of the randomly chosen crossover point are 

selected [1]. 

For example with the following parents and crossover point 

s1 = (1 2 3 4  6 9 8 5 7) and 

s2 = (2 1 9 8 5 6 3 7 4) 

After position selection 

s1 = (1 2 * * * 9 8 * *) and 

s2 = (2 1 * * * * 3 * 4) 

Now obtain the generated pair of children as 

b1 = (1 2 5 6 3 9 8 7 4) and 

b2 = (2 1 6 9 8 5 3 7 4) 

Clearly this method allows only the generation of valid 

strings. 

4.1.3 Partially-Mapped Crossover (PMX): 

It transmits ordering and values information from the parent 

strings to the offspring. A portion of one parent string is mapped 

onto a portion of the other parent string and the remaining 

information is exchanged. Consider, for example, the following 

two parents: (1 2 3 4 5 6 7 8) and (3 7 5 1 6 8 2 4). The PMX 

operator creates an offspring in the following way. It begins by 

selecting uniformly at random two cut points along the strings, 

which represent the parents. Suppose, for example, that the first 

cut point is selected between the third and the fourth string 

element, and the second one between the sixth and the seventh 

string element. Hence, (1 2 3  4 5 6  7 8) and (3 7 5 | 1 6 8 I 2 

4). The substrings between the cut points are called the mapping 

sections. In our example, they define the mappings 4 <-> 1, 5 <-

> 6, and 6 <-> 8. Now the mapping section of the first parent is 

copied into the second offspring, and the mapping section of the 

second parent is copied into the first offspring: offspring 1: (x x 

x  l 6 8  x x) and offspring 2: (x x x  4 5 6  x x). Then offspring 

i (i = 1, 2) is filled up by copying the elements of the ith parent. 

In case, a number is already present in the offspring it is replaced 

according to the mappings [2]. 
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For example, the first element of offspring 1 would be a 1, 

like the first element of the first parent. However, there is 

already a 1 present in offspring 1. Hence, because of the 

mapping 1 <-> 4 choose the first element of offspring 1 to be a 

4. The second, third and seventh elements of offspring 1 can be 

taken from the first parent. However, the last element of 

offspring 1 would be an 8, which is already present. Because of 

the mappings 8 <-> 6, and 6 <-> 5, it is chosen to be a 5. Hence, 

offspring 1: (4 2 3  1 6 8  7 5). Analogously, we find offspring 

2: (3 7 8  4 5 6  2 1). The absolute positions of some elements 

of both parents are preserved. 

4.1.4 Modified Partially-Mapped Crossover (MPMX): 

Modified PMX (MPMX) crossover operator was proposed 

(independently) by Brown [39] in the late 80’s. The MPMX 

operator initially partitions the parents’ solution strings and the 

offspring strings into three sections (left, middle and right). 

These sections are randomly created through the selection of two 

random crossover points that will be used for both the parents 

and offspring for this instance of the crossover in the GA. Stage 

two provides the offspring with the middle section of its solution 

string. This is the donated middle section of parent 1. The third 

stage, is the insertion of elements into the left and right sections 

of the offspring. This is accomplished using parent 2 as the 

donator. Corresponding positions in the parents donate elements 

to the offspring, provided they have not already been donated by 

parent 1. The final stage is to complete the offspring using a 

random permutation of the elements not yet allocated to the 

offspring over the previous stages. The following example 

illustrates the: 

Parent 1 - (0 8  4 5 6 7  1 2 3 9) 

Parent 2 - (6 7  1 2 4 8  3 5 9 0) 

Offspring stage1- (- -  - - - -  - - - -) 

Offspring stage2- (- -  4 5 6 7  - - - -) 

Offspring stage3- (- -  4 5 6 7  3 - 9 0) 

Offspring stage4- (8 1 4 5 6 7 3 2 9 0) 

4.1.5 Cycle Crossover (CX) [3]: 

It attempts to create an offspring from the parents where 

every position is occupied by a corresponding element from one 

of the parents. For example, consider again the parents (1 2 3 4 5 

6 7 8) and (2 4 6 8 7 5 3 1). Now choose the first element of the 

offspring equal to either the first element of the first parent string 

or the first element of the second parent string. Hence, the first 

element of the offspring has to be a 1 or a 2. Suppose choose it 

to be 1, (1 * * * * * * *). Now consider the last element of the 

offspring. Since this element has to be chosen from one of the 

parents, it can only be an 8 or a 1. If a 1 were selected, the 

offspring would not represent a legal individual. Therefore, an 8 

is chosen, (1 * * * * * * 8). It finds that the fourth and the second 

element of the offspring also have to be selected from the first 

parent, which results in (1 2 * 4 * * * 8). The positions of the 

elements chosen up to now are said to be a cycle. Now consider 

the third element of the offspring. This element it may choose 

from any of the parents. Suppose that we select it to be from 

parent 2. This implies that the fifth, sixth and seventh elements 

of the offspring also have to be chosen from the second parent, 

as they form another cycle. Thus, we find the following 

offspring: (1 2 6 4 7 5 3 8). The absolute positions, of on average 

half the elements of both parents are preserved. 

4.1.6 Order Crossover Operator (0X1): 

It constructs an offspring by choosing a substring of one parent 

and preserving the relative order of the elements of the other 

parent. For example, consider the following two parent strings: (1 

2 3 4 5 6 7 8) and (2 4 6 8 7 5 3 l), and suppose that we select a 

first cut point between the second and the third bit and a second 

one between the fifth and the sixth bit. Hence, (1 2  3 4 5  6 7 8) 

and (2 4  6 8 7  5 3 1). The offspring are created in the following 

way. Firstly, the string segments between the cut point are copied 

into the offspring, which give (* *  3 4 5  * * *) and (* *  6 8 7  

* * *). Next, starting from the second cut point of one parent, the 

rest of the elements are copied in the order in which they appear in 

the other parent, also starting from the second cut point and 

omitting the elements that are already present. When the end of 

the parent string is reached, we continue from its first position. In 

our example, this gives the following children: (8 7  3 4 5  1 2 6) 

and (4 5  6 8 7  1 2 3) [4]. 

4.1.7 Order-based Crossover (OX2): 

OX2 was suggested in connection with schedule problems, is 

a modification of the OX1 operator. The OX2 operator selects at 

random several positions in a parent string, and the order of the 

elements in the selected positions of this parent is imposed on 

the other parent. For example, consider again the parents (1 2 3 4 

5 6 7 8) and (2 4 6 8 7 5 3 I), and suppose that in the second 

parent in the second, third and sixth positions are selected. The 

elements in these positions are 4, 6 and 5 respectively. In the 

first parent, these elements are present at the fourth, fifth and 

sixth positions. Now the offspring are equal to parent 1 except in 

the fourth, fifth and sixth positions: (1 2 3 * * * 7 8). We add the 

missing elements to the offspring in the same order in which 

they appear in the second parent. This results in (1 2 3 4 6 5 7 8). 

Exchanging the role of the first parent and the second parent 

gives, using the same selected positions, (2 4 3 8 7 5 6 1) [5].  

The position-based crossover operator (POS), which was 

also suggested in connection with schedule problems, is a 

second modification of the OX1 operator. It also starts with 

selecting a random set of positions in the parent strings. 

However, this operator imposes the position of the selected 

elements on the corresponding elements of the other parent. For 

example, consider the parents (1 2 3 4 5 6 7 8) and (2 4 6 8 7 5 3 

l), and suppose that the second, third and sixth positions are 

selected. This leads to the following offspring: (1 4 6 2 3 5 7 8) 

and (4 2 3 8 7 6 5 1). 

4.1.8 Voting Recombination Crossover operator (VR): 

It can be seen as a P-sexual crossover operator, where p is a 

natural number greater than, or equal to, 2. It starts by defining a 

threshold, which is a natural number smaller than, or equal to p. 

Next, for every; i  {l, 2, . . .N} the set of ith elements of all the 

parents is considered. If in this set an element occurs at least the 

threshold number of times, it is copied into the offspring. For 

example, if we consider the parents (p = 4) (1 4 3 5 2 6), (1 2 4 3 

5 6), (3 2 1 5 4 6), (1 2 3 4 5 6) and we define the threshold to be 

equal to 3 we find (1 2 x x x 6). The remaining positions of the 

offspring are filled with mutations. Hence, our example might 

result in (1 2 4 5 3 6) [6].  
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4.1.9 Maximal Preservation crossover (MPX): 

The MPX operator was developed by Gorges-Schleuter and 

Mülhelenbein [42] in 1988 specifically for the TSP. It is closely 

related to the PMX crossover operator [48]. MPX operates by 

initially selecting a random substring (the TSP this is a subtler) 

from the first parent (called the donor). This subtour is usually 

defined as being a tour with string length less than or equal to 

the TSP problem size n divided by 2. A minimum subtour length 

is also set, typically at 10 elements (unless the TSP problem size 

is very small), as substrings that are very short are ineffective 

and substrings that are too large do not allow for meaningful 

variation. Selecting appropriate sized substrings provides a 

suitable means for parents to transmit significant loci 

information to the offspring. The second stage of MPX is to 

remove the elements currently in the offspring from the second 

parent. Then the remaining elements are inserted into the 

offspring, the first parent’s substring having been placed at the 

start of the offspring and the remaining free elements of the 

offspring being filled by the clean parent 2 strings. This three 

stage operation of MPX is illustrated in following example:  

Parent 1 - (1 4 3 5 2 6) 

Parent 2 - (1 2 4 3 5 6) 

Offspring (1 4 3 x x x) 

Cleaned Parent 2 - ( - 2 - - 5 6) 

Offspring (1 4 3 2 5 6) 

With regard to the MPX and its application to the TSP, 

although the MPX prevents invalid tour generation in the 

offspring, they are liable to be produced with few building 

blocks being inherited from both parents due to the cleaning of 

the second parent’s string prior to completing the offspring 

strings. 

4.1.10 Masked crossover (MkX): 

The Masked Crossover (MkX) technique was first proposed 

by Louis and Rawlins in 1991 [43] as a crossover operator which 

would efficiently operate in the combinatorial logic design 

problem area rather than as a combinatorial optimization 

technique. MkX [48] attempts to impart loci information from 

parent to offspring in a more effective manner than previous 

crossover methods. Louis and Rawlins state that MkX tries to 

preserve schemas identified by the masks and they identify this 

as one of their key goals [43]. The MkX operator assigns each 

parent a mask that biases crossover. Once these masks have been 

positioned then the operation is as following: 

1. Copy Parent1 to Offspring1 and Parent2 to Offspring2 

2. For (i from 1 to string-length) 

if Mask2i = 1 and Mask1i = 0 

3. Copy the ith bit from Parent2 to Offspring1 

if Mask1i = 1 and Mask2i = 0 

4. Copy the ith bit from Parent1 to Offspring2 

The offspring of MkX also require masks, should they be 

selected to be parents in another generation. The masks are 

normally provided to the offspring by the parents. Typically the 

parent that is designated the dominant parent is called Parent1 

the dominant parent with respect to Offspring1 as Offspring1 

inherits Parent1’s bits unless Parent2 feels strongly (Mask2i = 1) 

and Parent1 does not (Mask1i = 0). A number of mask rules are 

also defined by Louis and Rawlins. Two of which are used when 

the simple rule of assigning masks from dominant parent to 

offspring don’t apply. Chan [47] notes that the MkX is an 

ineffective crossover operator for the TSP as it fails to preserve 

the ordering of the solutions. Validity of solution is problematic 

and (in conjunction with the selected mutation operator) 

typically involves a repair or penalty function. 

4.1.11 Position crossover (PX): 

The Position Crossover (PX) operator was developed by 

Syswerda in 1991 [5], [48]. PX was later evaluated by 

Barbulescu [44] where she examined and compared PX’s 

operation to similar operators for scheduling problems. This 

crossover technique is closely related to OX and OX2 crossover 

techniques. PX operates by selecting several random locations 

along the parent strings. The elements are then inherited by the 

offspring in the order that they occur in the first parent (P). The 

remaining elements required to complete the offspring (O) are 

donated by the second parent (with the elements donated by the 

first parent omitted) in the order that they appear in the second 

parent. Each step of the operation is illustrated as follows: 

 

4.1.12 Complete Subtour Exchange Crossover: 

The complete subtour exchange crossover (CSEX) operator is 

designed to operate with the path representation. CSEX was 

proposed by Katayama and Narihisa [45] to be used specifically 

for permutation problems (such as the TSP). The philosophy 

behind CSEX [48] is to encourage the offspring to inherit as many 

good traits (substance) from the parents as possible. CSEX 

enumerates substance that have the same direction (or reversed 

direction) on two permutations as common substance.  

Parent 1 - (0 1 2 3 4 5 6 7 8 9) 

Parent 2 - (4 9 7 6 5 0 8 2 1 3) 

Offspring 1- (0 2 1 3 4 5 6 7 8 9) 

Offspring 2- (0 1 2 3 4 7 6 5 8 9) 

Offspring 3- (0 2 1 3 4 7 6 5 8 9) 

Offspring 4- (4 9 5 6 7 0 8 2 1 3) 

Offspring 5- (4 9 7 6 5 0 8 1 2 3) 

Offspring 6- (4 9 5 6 7 0 8 1 2 3) 

In above see an example of CSEX in operation. The common 

subtours are 12 and 5 6 7 in parent 1, and 7 6 5 and 2 1 in parent 2. 

It should be noted that CSEX does not include the subtour 1 2 3 

from parent 1 and 2 1 3 from parent 2 as they are not the same or 

symmetrical. CSEX by allowing only the same (or symmetrical) 

subtours can enumerate all the common subtours with O(n) time. 

Having selected the common subtours, the offspring are produced 

by inverting the common subtours from the parent. In the 

example, parent 1 produces offspring 1, 2 and 3 by inverting a 

common subtour for each offspring. This is then repeated for 

parent 2 which produces offspring 4, 5 and 6. Once all the 

offspring are produced they are evaluated for fitness and the two 

fittest offspring survive to the next generation. 

P1 – (0 8 4 5 6 7 1 2 3 9) P2 – (6 7 1 2 4 8 3 5 9 0) 

P1 – (0 4 1 5 6 8 7 2 9 3) P2 – (6 1 4 2 8 7 5 9 3 0) 
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4.1.13 Heuristic crossover (HX): 

It is worth noting that the previous crossover operators did not 

exploit the distances between the cities (i.e. the length of the 

edges). In fact, it is a characteristic of the genetic approach to 

avoid any heuristic information about a specific application 

domain, apart from the overall evaluation or fitness of each 

chromosome. This characteristic explains the robustness of the 

genetic search and its wide applicability [9] [10] [48]. 

However, some researchers departed from this line of thinking 

and introduced domain-dependent heuristics into the genetic 

search, to create “hybrid” genetic algorithms. They have sacrificed 

robustness over a wide class of problems, for better performance 

on a specific problem. The heuristic crossover HX is an example 

of this approach and can be described as follows: 

1. Pick a random starting city at one of the two parents. 

2. Compare the edges leaving the current city in both parents 

and select the shorter edge. 

3. If the shorter parental edge introduces a cycle in the partial 

tour, then extend the tour with a random edge that does not 

introduce a cycle.  

4. Repeat Steps 2 and 3 until all cities are included in the tour.  

4.1.14 Edge Recombination crossover (ER): 

Quite often, the alternate edge operator introduces many 

random edges in the offspring, particularly the last edges, when 

the choices for extending the tour are limited. Since the offspring 

must inherit as many edges as possible from the parents, the 

introduction of random edges should be minimized. The edge 

recombination operator reduces the myopic behavior of the 

alternate edge approach with a special data structure called the 

“edge map”. 

Basically, the edge map maintains the list of edges that are 

incident to each city in the parent tours, and lead to cities not yet 

included in the offspring. Hence, these edges are still available for 

extending the tour, and are said to be active. The strategy is to 

extend the tour by selecting the edge that leads to the city with the 

minimum number of active edges. In case of equality between two 

or more cities, one of these cities is selected at random. With this 

strategy, the approach is less likely to get trapped in a “dead end”, 

namely, a city with no remaining active edges that require the 

selection of a random edge [8] [48]. 

For tours of 13564287 and 14236578 (path representation), the 

initial edge map is shown below: 

City 1 has edges to: 3 4 7 8 

City 2 has edges to: 3 4 8 

City 3 has edges to: 1 2 5 6 

City 4 has edges to: 1 2 6 

City 5 has edges to: 3 6 7 

City 6 has edges to: 3 4 5 

City 7 has edges to: 1 5 8 

City 8 has edges to: 1 2 7 

Fig.1. Edge Map 

Let us assume that city 1 is selected as the starting city. 

Accordingly, all edges incident to city 1 must be deleted from 

the initial edge map. From city 1, we can go to city 3, 4, 7 or 8. 

City 3 has three active edges, while cities 4, 7 and 8 have two 

active edges, as shown by the edge map (a) in Fig.1. Hence, a 

random choice is made between cities 4, 7 and 8. We assume 

that city 8 is selected. At 8, we can go to cities 2 and 7. As 

indicated in the edge map (b), city 2 has two active edges and 

city 7 only one, so the latter is selected. From 7, there is no 

choice, but to go to city 5. From this point, edge map (d) offers a 

choice between cities 3 and 6 with two active edges. Let us 

assume that city 6 is randomly selected. From city 6, we can go 

to cities 3 and 4, and edge map (e) indicates that both cities have 

one active edge. We assume that city 4 is randomly selected. 

Finally, from city 4 we can only go to city 2, and from city 2 we 

must go to the city 3. 

Some modified edge recombination crossover are Edge 

Exchange Crossover (EXX) and Edge Assembly Crossover 

(EAX) [31]. 

4.1.15 Alternate Edges Crossover: 

It is a good introduction to other edge-preserving operators. 

Here, a starting edge (i, j) is selected at random in one parent. 

Then, the tour is extended by selecting the edge (j, k) in the other 

parent. The tour is progressively extended in this way by 

alternatively selecting edges from the two parents. When an 

edge introduces a cycle, the new edge is selected at random (and 

is not inherited from the parents) [9] [48]. 

In following example, an offspring is generated from two 

parent chromosomes that encode the tours 13564287 and 

14236578, respectively, using the adjacency representation. 

Here, edge (1, 4) is first selected in parent 2, and city 4 in 

position 1 of parent 2 is copied at the same position in the 

offspring. Then, the edges (4, 2) in parent 1, (2, 3) in parent 2, 

(3, 5) in parent 1 and (5, 7) in parent 2 are selected and inserted 

in the offspring. Then, edge (7, 1) is selected in parent 1. 

However, this edge introduces a cycle and a new edge incident 

to 7 and to a city not yet visited is selected at random. Let us 

assume that (7, 6) is chosen. Then, edge (6, 5) is selected in 

parent 2, but it also introduces a cycle. At this point, (6, 8) is the 

only selection that does not introduce a cycle. Finally, the tour is 

completed with edge (8, 1). 

parent 1: 3 8 5 2 6 4 1 7 

parent 2: 4 3 6 2 7 5 8 1 

offspring: 4 3 5 2 7 8 6 1 

The Alternate Edges Crossover 

The final offspring encodes the tour 14235768, and all edges 

in the offspring are inherited from the parents, apart from the 

edges (7, 6) and (6, 8). In the above description, an implicit 

orientation of the parent tours is assumed. For symmetric 

problems, the two edges that are incident to a given city can be 

considered. In the above example, when we get to city 7 and 

select the next edge in parent 1, edges 

(7, 1) and (7, 8) can both be considered. Since (7, 1) 

introduces a cycle, edge (7, 8) is selected. Finally, edges (8, 6) 

and (6, 1) complete the tour. 

parent 1:  3 8 5 2 6 4 1 7 

parent 2:  4 3 6 2 7 5 8 1 

offspring: 4 3 5 2 7 1 8 6 

It is alternate edges crossover. 
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4.1.16 Greedy Subtour Crossover: 

New crossover operator named `Greedy Subtour Crossover 

(GSX)’ that acquires the longest possible sequence of parents' 

subtours. Using GSX the solution can pop up from local minima 

more effectively than by using simulated annealing (SA) 

methods. 

In the GSX, we use the path representation for a genetic 

coding. For example, chromosome g = (D, H, B, A, C, F, G, E) 

means that the salesperson visits towns D, H, B, A,.., E, 

successively, and returns to town D. 

Suppose that chromosomes of parents are ga = (D, H, B, A, 

C, F, G, E) and gb = (B, C, D, G, H, F, E, A). First, choose one 

town at random. In this example, town C is chosen. Then, x = 4 

and y = 1 because a4 = C and b1 = C respectively. Now the child 

g is (C).  

Next, pick up towns from the parents alternately. Begin with 

a3 (town A) because x <- 4 <- 1 = 3, and next is b2 (town D) 

because y <- 1<- 1 = 2. The child becomes g = (A, C, D). 

In the same way, add a2 (town B), b3 (town G), a1 (town H), 

and the child becomes g = (H, B, A, C, D, G). Now the next 

town is b4 = H and town H has already appeared in the child 

(remember the salesperson may not visit the same town twice), 

so we can't add any more towns from parent gb. Therefore we 

add towns from parent ga. The next town is a0 = D, but D is 

already used. Thus we can't add towns from parent ga, either. 

Then, we add the rest of the towns, i.e., E and F, to the child in 

the random order. Finally the child is g = (H, B, A, C, D, G, F, 

E) [11] [48]. 

4.1.17 Edge Assembly Crossover: 

EAX [48] has two important features—preserving parents’ 

edges using a novel technique and adding new edges by a greedy 

method, analogous to a minimal spanning tree. Several issues, 

including the selection mechanism and heuristic methods, which 

affect the performance of EAX have been considered. 

4.2 CROSSOVER FOR OBJECT CLASSIFICATION 

PROBLEMS 

 Object classification problems: Looseness control 

crossover (LCC) and Headless chicken crossover (HCC) 

[32]  

 Crossover for Sudoku problem: Product Geometric 

Crossover (PMX) [33] 

 Crossover for grouping, graph, sequence and glude 

space applications: Quotient Geometric Crossovers [34] 

and Merge Crossover (MX) [46]. 

 Crossover for Graph Partitioning Problems: Geometric 

Crossover (GX) & Geometric Crossover Labeling-

independent (LI) GX Crossover and Landscape of 

Labeling-independent Crossover [36]. 

 Crossover for Graph Colouring Problem (for Parallel 

GA): Conflict elimination crossover (CEX), Greedy 

partition crossover (GPX), Union Independent set 

crossover (UISX) and Sum product crossover (SPPX) [37]. 

 Multi-Parent Crossover/ Multi-Parent feature 

Crossover (MFX), Multicut crossover (MX) and Seed 

crossover (SX) [14],[15]and[16]: The increase of parents 

brings about a more comprehensive survey for determining 

the offspring genes and leads to a stronger tendency 

towards exploitation or exploration or both [18], [19], [20]. 

 Center of mass crossover (CMX): These multi-parent 

crossovers can lead to better performance although the 

performance is problem-dependent [14, 15]. 

 Unimodal normal distribution crossover (UNDX): 
Multiple parents into unimodal normal distribution 

crossover (UNDX) to enhance the diversity of offspring. 

This multi-parent extension of UNDX exhibits its 

improvement in search ability on highly epistatic problems 

[24]. 

 Simplex crossover (SPX): SPX performs well with three 

or four parents for multimodal and epistatic problems [17].  

4.3 CROSSOVER FOR SUDOKU PROBLEM 

Knowledge-Based Nonuniform Crossover [26], Strong 

Context Preserving Crossover (SCPC) Weak Context Preserving 

Crossover (SCPC) [27], Hierarchical Crossover [28], Selective 

crossover [29], Rank & proximity Based Crossover (RPC) [30], 

Depth-Dependent Crossover (DDX) [35], Alternating-Position 

Crossover (AP) [7], Circle Ring Crossover [12] and Sufficient 

Exchanging [12]. 

5. CONCLUSION 

Many crossover operators are present in GA that are used in 

applications. The encoding type used in GA is the major criteria 

for selecting the crossover. The global convergence and search 

space must be considered while selecting the crossover operators. 

Effect of crossover operators in GA is application as well as 

encoding dependent. Many researchers say that the value of 

crossover probability is in between 0.6 and 1.0 and it also depends 

on the type of crossover used. Increasing crossover probability 

increases the opportunity for recombination but also may disrupt 

in good combination. Depending on encoding, standard crossover 

can have high chance to produce illegal offspring (it is application 

dependent e.g. TSP). The application to be solved must consider 

for all the crossover operators available along with possible 

encoding methods to get good results.  

Many new applications are solved by existing crossover 

operators by considering their effectiveness in related 

applications. Most of time new crossover operators use old 

crossover operators along with additional changes. To get the 

proper crossover operators for a new problem it is recommended 

that, to see similar types of problems solved using GA along 

with various crossover operators used. It is recommended that 

for solving any problem it is important to overview the search 

space with modality extremes. Continuity (nature of search 

space), study existing crossover operators and then select or 

create a new crossover (by mixing). 
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