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ABSTRACT We present a novel algorithm called crosspatch-based rolling label expansion for accurate

stereo matching. This optimization-based approach can effectively estimate the 3D label of each pixel from

huge and infinite label space and then generate a continuous disparity map. The algorithm has two obvious

characteristics when compared with the traditional label expansion algorithms. The first feature is the cross-

basedmultilayer structure, where each layer contains a series of cross patches with adaptive shapes, reflecting

the edge structure of objects on the image. Besides, such cross patches are non-overlapping and independent,

satisfying the submodular property for employing graph cuts. The second feature is the rolling optimization,

that firstly generates new label proposal by expanding candidate labels within cross patches, then globally

updates labels for the whole image using a proposed rolling move. The experimental results show the high

matching accuracy of our method, both in pixel level and subpixel level. According to the latest ranking list

of Middlebury 3.0 benchmark, our method is one of the best stereo matching algorithms.

INDEX TERMS Stereomatching, label expansion, PatchMatch, rolling optimization, cross-basedmultilayer

structure.

I. INTRODUCTION

Stereo matching is one basic task of computer vision, whose

goal is to estimate disparity when inputting an image pair [1],

which is widely applied in navigation [2], 3D construction [3]

and virtual viewpoint imaging [4]. Estimating accurate and

continuously varying disparities is the key to stereomatching,

and many related algorithms have been proposed and they

can output dense and continuous disparity map [5]–[7]. These

methods estimate successive disparities by assigning continu-

ous 3D labels [5] to neighboring pixels, and then mapping the

labels to disparities. Compared with traditional discrete 1D

label [8], using the 3D label can free from the fronto-parallel

bias [5], leading to a higher matching accuracy.

Given the 3D label fp =
(
ap, bp, cp

)
of each pixel p,

the disparity dp can be uniquely determined by the ternary

primary function

dp = apu+ bpv+ cp. (1)

The associate editor coordinating the review of this manuscript and

approving it for publication was Ivan Lee .

Here (u, v) are the coordinates in the image domain. However,

since the 3D label space (R3) is huge and infinite, two diffi-

culties occur during label assignment, namely, how to reduce

the search space of candidate labels to decrease the computa-

tional complexity, and how to assign labels accurately.

In order to reduce the search space, a useful technique is

spatial nearby propagation [5], that is inspired by approxi-

mate nearest-neighbor field in PatchMatch [9], [10] and based

on the fact that spatial neighboring pixels are likely to have

similar labels in stereo matching. This technique updates the

label of each pixel successively, and constrains the search

region in a limited label space centered on the label of the

previous pixel. Although this raster-scan order search mode

can reduce the search space to some degree, the amount

of computation is still very huge when dealing with high-

resolution images. To this end, an effective solution is to intro-

duce segmentation information [7], [11], [12]. For example,

when updating labels, the pixels in the same superpixel [13]

share the same candidate label space, which is based on the

assumption that the pixels in the same superpixel belong to

a same continuous 3D surface and have similar 3D labels.
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In this work, we also consider the segmentation information

and adopt a simpler way than superpixel, which can effec-

tively cooperate with the proposed label optimization process.

In order to assign 3D labels accurately, one successful way

is to combine second-order disparity smoothness [14], [15]

and PatchMatch Stereo [5] to find the optimal label proposal

(consisting of labels of the interest pixels) via constructing

pairwise Markov random field (MRF) [16]. To solve the

above optimization problem, there are several effective opti-

mizers, such as graph cuts (GC) [17], [18] and belief propaga-

tion (BP) [19], [20]. BP, as a sequential optimizer, keeps the

labels of other pixels fixed when estimating the label of target

pixel, that sometimes falls into the local minimum problem.

On the contrary, GC estimates the labels of all pixels at the

same time, so it has a global property and is more suitable and

accurate for label assignment.

In this paper, we propose a crosspatch-based rolling label

expansion algorithm. It belongs to global optimization algo-

rithms [21] of stereomatching and it combines the advantages

of PatchMatch Stereo [5], segmentation [22] and GC [17].

Firstly, we construct a cross-based multilayer structure that

contains cross patches [22]–[25] with segmentation infor-

mation. The pixels in each cross patch share a candidate

label space, so their 3D labels can be updated at the same

time. Secondly, we use a rolling move to optimize the label

proposal as well as transfer the updated labels to neighboring

pixels. Through the rollingmove, the globally optimized label

proposal can be obtained. Our approach has the following

advantages. 1) On each layer of the cross-based multilayer

structure, all cross patches are independent, that not only

ensures the submodular requirement [26], [27] for graph cuts

[17], but also makes use of the multi-core parallel operation

of CPU to accelerate the algorithm. 2) During the rolling

move, the algorithm regards cross patch as a mask to discard

the updated label results near the edge of the object, which

strengthens the updating constraint and improves the accu-

racy of label estimation. 3) Due to the good global properties

of graph cuts and rolling move, our method can effectively

suppress the local minimum errors when optimizing labels.

Overall, our contributions are mainly threefold. 1) We

propose a cross-based multilayer structure, which contains

the object edge information. The cross patches of each layer

of the structure are independent and do not overlap each other.

2) We design a rolling optimization strategy to update labels

globally. The optimization process is divided into two stages:

coarse optimization and fine-grained stage. And the cross-

based multilayer structure is used to guide the optimization.

3) According to the disparity map accuracy, our algorithm is

one of the best stereo matching methods in new Middlebury

3.0 benchmark; especially, its performances rank first in pixel

and subpixel levels among published methods of the bench-

mark.

In the rest of this paper, Section II reviews the related work.

Section III describes the proposed label expansion algo-

rithm in detail from formulation, cross patch construction,

cross-based multilayer structure and optimization procedure.

Section IV shows the performance of the proposed method,

comparative experiments results as well as qualitative and

quantitative analysis. Section V concludes the whole paper.

II. RELATED WORK

A. GLOBAL STEREO MATCHING FOR HIGH-RESOLUTION

IMAGES

Global stereo matching transforms the disparity estimation

task into an optimization problem based on a pairwise

MRF [16]. Specifically, it looks for the label mapping f that

minimizes the following energy functions [14], [17], [28],

E (f ) = Edata (f )+ λEsmooth (f ) . (2)

Here, data term Edata (f ) measures the photo-difference

between matching pixels, smoothness term Esmooth (f ) pun-

ishes the disparity discontinuity of adjacent pixels and a coef-

ficient λ is used to balance data term and smoothness term.

The traditional global stereo matching methods [18], [20]

are very time-consuming when dealing with high-resolution

images. To solve this problem, two effective techniques have

been used in recent years. one is the fusion move [29], that

combines label proposals generated from cheap-to-compute

solutions and then gets a better proposal by binary fusion.

However, the candidate label proposals are not accurate

enough, which unavoidably affects the accuracy of the final

fusion result [7]. The second is spatial propagation [5], [30],

[31], that first optimizes some labels of pixels and then prop-

agates the updated labels to adjacent pixels. This technique,

also utilized in our algorithm, can effectively reduce the label

search space of adjacent pixels and speed up the algorithm.

In addition, it can combine with the global optimizer (e.g.,

GC) to avoid some local minimum errors and obtain the

accurate label proposal.

B. GLOBAL PATCHMATCH-BASED METHODS

Global stereo matching methods, based on spatial propa-

gation, are also known as global PatchMatch-based meth-

ods [6], [7], [32]. The basic method of them, PatchMatch

Stereo [5], can’t deal well with the noise and low texture areas

in the image. That is because PatchMatch Stereo is a local

stereo method and it lacks the attention to the smoothness

constraints of adjacent pixel labels. To overcome this defi-

ciency, our algorithm, as well as other global PatchMatch-

based methods, adds a smoothness term constraint to the

energy function to keep the neighboring labels and disparities

continuous in the image.

For further improvement of stereo matching accuracy,

some global PatchMatch-based methods propose to employ

image segmentation information, such as superpixel [13].

Compared with the fixed window [30], superpixel has a free

contour retaining the edge structure of the object. It means

that a superpixel has less noise and it is easier to obtain

accurate labels during optimization. A specific example is

PMSC [7], whose idea is close to our algorithm. It firstly

uses simple linear iterative clustering (SLIC) [33] to construct

a multilayer superpixel structure, then generates a series of
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FIGURE 1. The pipeline of the proposed method. Our algorithm inputs an image pair, circularly updates the label of each pixel
according to the cross-based multilayer structure, and outputs the post-processed disparity map.

label proposals by random sampling, and finally fuses them.

However, in PMSC, the process of generating label proposals

is separate from the process of fusion, which results in that the

label information cannot be updated in time during fusion.

By contrast, our method employs the iterative idea and every

time we generate a new label proposal, it is based on the

previous one. Under this mechanism, accurate labels can

be quickly and thoroughly transferred on the image by our

rolling move.

III. PROPOSED METHOD

The proposed method uses rolling optimization to iteratively

optimize label proposal. During each iteration, we take one

layer and its cross patches from the cross-based multilayer

structure, and then update the label proposal within cross

patches. After a series of iterations, the label proposal is

globally updated. And the disparity map can be calculated

by the final label proposal in terms of the relationship

between label and disparity (Eq.1). Fig.1 shows the pipeline

of the proposed method, that inputs an image pair and out-

puts its disparity map with post process. Section III-A to

section III-D are going to describe the steps of the proposed

method in detail.

A. FORMULATION

Our goal is to estimate the optimal 3D label proposal f

by minimizing the pairwise MRF energy function, which is

described as Eq.2 in Section II and composed of data term

and smoothness term (that are also known as unary term and

pairwise term in some other works of literature [14], [27]).

1) DATA TERM

To evaluate the photo-difference between matching pixels,

we define the data term Edata (f ) as the sum of matching costs

of all pixels in image domain �,

Edata (f ) =
∑

p∈�

8p

(
fp

)
. (3)

The cost function 8p

(
fp

)
is defined as Eq.4 using a main-

stream and effective manner [34], [35], that combines the

advantages of the similarity prediction via CNN [25], [36]

and the slanted patch matching [5]: CNN has good robust-

ness for different situations, and slanted patch matching has

subpixel accuracy.

8p

(
fp

)
=

∑

s∈Wp

ωpsmin
(
CCNN

(
s, s′

)
, τCNN

)
. (4)

Here, Wp is a square window centered on pixel p. Func-

tion CCNN
(
s, s′

)
calculates the dissimilarity between support

pixel s = (us, vs) of Wp in the left image and its matching

pixel s′ = s−
(
apus + bpvs + cp, 0

)
in the right image. τCNN

is a truncation coefficient to prevent the cost value from being

too large when pixels are on some irregular and unsmooth

surfaces. The aggregation weight ωps is the guided image

filtering weight [8], [37], [38] with edge-awareness property,

ωps =
1

|W ′|

∑

k:(p,s)∈W ′k

(
1+

(
Ip−µk

)T
(6k+ε)−1 (Is−µk)

)
.

(5)

Here, Ip and Is are normalized 3× 1 color vectors. µk and

6k are the mean and the variance of Ip in the squared support

windowW ′k , centered on pixel k , where the number of pixels

in this window is
∣∣W ′

∣∣. ε is a regularization term with a small

positive value to avoid ωps being too large. The guide filter

weight has a small computation complexity with a value of

O (1), which means it is independent of the size of support

window, and it helps to speed up the algorithm.

2) SMOOTHNESS TERM

To evaluate the discontinuity of the disparity map, we define

the smoothness term Esmooth (f ) as a sum of the discontinuity

penalties9pq

(
fp, fq

)
of all adjacent pixel pairs (p, q) in image

domain �, where the smaller value the smoothness term has,
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FIGURE 2. The left part shows cross skeletons with randomly selected anchor pixels as the centers. The
white regions in the middle image are constructed cross patches. The right image shows one cross patch
construction detail: the cross patch is made up of the union of horizontal arms (Lq and Rq), whose center
pixel q is on the vertical arms (Tp and Bp) of pixel p.

the more continuous the disparity map is.

Esmooth (f ) =
∑

p∈�

∑

q∈N (p)

9pq

(
fp, fq

)
, (6)

where N (p) represents the neighborhood pixels of pixel

p. Discontinuity penalty term 9pq

(
fp, fq

)
uses a curvature-

based second-order smooth regularization, following [7], [14]

and defined as

9pq

(
fp, fq

)
= max

(
ωpq, e

)
min

(
9̃pq

(
fp, fq

)
, τdis

)
, (7)

where the weight ωpq is defined as

ωpq = exp
(
−‖IL (p)− IL (q)‖1 /γ

)
(8)

to describe the similarity of pixels p and q in color space.

Here, ‖IL (p)− IL (q)‖1 calculates the l1 norm of the differ-

ence between p and q in RGB space. γ is a user-defined

parameter. Besides, the truncation threshold e limits the lower

bound of the weight for increasing robustness. Function

9̃pq

(
fp, fq

)
is defined as

9̃pq

(
fp, fq

)
=

∣∣dp
(
fp

)
− dp

(
fq

)∣∣+
∣∣dq

(
fq

)
− dq

(
fp

)∣∣ , (9)

where disparity dp
(
fq

)
= aqup + bqvp + cq. Function

9̃pq

(
fp, fq

)
calculates the disparity differences corresponding

to two different 3D labels
(
fp, fq

)
at pixel p and pixel q, that in

other words reflects the second-order discontinuity of fp and

fq. The truncation parameter τdis limits the upper bound of the

weight for reducing the influence of sharp disparity jumps in

edge areas.

B. CROSS PATCH CONSTRUCTION

We construct patches with adaptive shapes, which have depth

discontinuity awareness. In other words, the pixels in the

same patch are approximately considered from the same

physical plane, and they have similar 3D labels. Compared

with the fixed patch which assumes constant depth within a

square region, the adaptive patch is more reasonable and has

less interference noise when optimizing the label proposal,

helping to obtain a more accurate optimization result.

Here, we use the cross patch as above adaptive patch,

because of its good edge awareness and small computa-

tion [22]. Such cross patches are centered on a set of

anchor pixels on the image. Each anchor pixel is ran-

domly selected in a constrained region (the center region

described in Section III-C). The construction method of

cross patch is simple. Generally speaking, it begins by

forming an adaptive pixel-wise cross that consists of two

orthogonal line segments, then uses this cross to con-

struct a support patch. In detail, given a central pixel

p as shown in the right part of Fig.2, we construct the

left arm Lp of pixel p by a set of pixels, in which

pl =
(
up − l, vp

)
∈ Lp satisfies the following rules simul-

taneously,

|I (p)− I (pl)|i < ηcolor , (10)

‖p− pl‖2 < ηdistance, (11)

where |I (p)− I (pl)|i is the difference between pixels p and

pl of the ith color component, ‖·‖2 is the L2 norm represent-

ing the distance on the image, and (ηcolor , ηdistance) are user-

defined threshold values. Similarly, we construct right arm

Rp, bottom arm Bp and top arm Tp of pixel p, constituting a

cross skeleton shown in the right part of Fig.2. We extend the

cross skeleton to the cross patch U (p) through a union of all

horizontal arms

U (p) =
{
Lq ∪ Rq|q ∈

(
Tp ∪ Bp

)}
. (12)

These horizontal arms Lq and Rq are constructed around

the pixels in top arm Tp and bottom arm Bp. It is obvious

that the cross patch contains the segmentation information of

the image, that is, the cross patch with non fixed shape can

effectively capture the local texture information on the image.

Cross patch technology is proved to be effective in the cost

aggregation of local stereo matching [23], [25], to optimize

the cost value of each pixel. Here, we use this technique for

label expansion for the first time. In the following content,

we will construct a multilayer structure containing cross

patches, and use this structure to globally optimize 3D label

assignment.

C. CROSS-BASED MULTILAYER STRUCTURE

In this section, we describe the construction of proposed

cross-based multilayer structure. Benefiting from the care-

ful design of the structure, our label expansion method of

stereo matching has the advantage of small candidate label

space. Because the pixels in the same cross patch have sim-

ilar labels and they share the same candidate label space.

This is more efficient than many other pixel-wise stereo
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FIGURE 3. The process of cross-based multilayer structure construction.
The areas within red boxes are the center regions. Anchor pixel p is
randomly selected. A cross patch is constructed such as the orange area
with p as the center, and its size shall not exceed the border region with a
blue color. After N1 times operations on the input image, a cross-based
multilayer structure of N1 layers is output.

FIGURE 4. Two modes of the changes of center and border regions,
namely, location move and size change. The dotted frames correspond to
the positions of old central and boundary regions. Areas within red solid
boxes and areas in gray are new regions. Cross patches are constructed
as orange areas.

methods [5], [6], [17], which struggle with a large

number of label spaces, because each pixel in these

methods has a huge and independent candidate label

space.

Fig.3 shows the construction detail of our cross-based mul-

tilayer structure. Firstly, we define some center regions on the

image. Then we define the border regions that do not overlap

each other. A border region, composed of a center region

and its eight neighboring areas, is to limit the size of cross

patch.We randomly select anchor pixels in the center regions,

and generate cross patches with anchor pixels as the centers.

After such an operation, a piece of layer with non intersecting

cross patches is formed. After N1 times operations on the

input image, we obtain a cross-based multilayer structure

with N1 layers.

To increase the types and quantity of the layers in the cross-

based multilayer structure, we use two modes to change the

center and border regions in each layer. These two modes

are namely location move and size change. They are com-

patible with the spatial propagation technology [5], thus the

Algorithm 1 Construction of Multilayer Structure

Input: image I .

Output: cross-based multilayer structure.

1 for i = 1, 2, . . . ,N3 (N3 is the number of size changes)

do

2 for j = 1, 2, . . . ,N2 (N2 is the number of location

moves) do

3 Define the center region set {C} and the border

region set {B}.
4 for k = 1, 2, . . . ,N1 (N1 is the number of the

rounds of selecting anchor pixels) do

5 for each Ci ∈ {C} do
6 Select an anchor pixel pi.

7 Construct a cross patch Pi

8 Output a cross-based layer.

multilayer structure can be applied in the global label expan-

sion process. In the location move mode, we translate the

position of the center region from dotted box to solid box as

shown in the first line of Fig.4. Then a new border region B′i
is constructed based on the new central region C ′i . The size

change mode is to change the sizes of Ci and Bi as shown in

the second line of Fig.4. Correspondingly, the new cross patch

P′i can break through the border limitation set by the previous

border region so that updated labels can be expanded much

further on the image during optimization process.

The complete construction steps of multilayer structure

is shown as Algorithm1. It contains the two change modes

described above (see line 1 and line 2 in the algorithm). The

input of the algorithm is a color image, and its output is a

multilayer structure withN1×N2×N3 layers containing cross

patches. Similar to PMSC algorithm [7], our constructedmul-

tilayer structure will be also used to guide the label optimiza-

tion process. In addition, this carefully designed structure

meets the submodularity [26], which ensures thatα expansion

move [17], [18] can be carried out simultaneously in different

cross patches of one layer. In other words, α expansion move

can reach the global minimum energy in each cross patch only

if the pairwise penal term 9pq of the energy function Eq.2

meets the following condition:

9pq

(
cp, cq

)
+9pq

(
fp, fq

)
≤ 9pq

(
fp, cq

)
+9pq

(
cp, fq

)
,

(13)

where label cp is set to αi which is a candidate label of the

cross patch Pi when pixel p ∈ Pi. In another situation where

p is located between cross patches and it does not belong to

any patch, we assign an infinite cost value to the data term

8p

(
fp

)
for forcing the pixel to fix its original label, that is,

cp = fp. Since it is easy to prove that Eq.13 relationship

is valid for our multilayer structure by introducing Eq.7 and

Eq.9 into Eq.13, so we don’t present the detailed process of

proof here.
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Algorithm 2 Optimization Procedure

Input: stereo image pair, cross-based multilayer

structure.

Output: optimal label mapping f .

1 Initialize the mapping f randomly.

2 // The first-stage rolling optimization T1.

3 for updating round n = 1, 2, . . . ,T1 do

4 Initialize the perturbation 1i randomly.

5 for each layer in multilayer structure do

6 for each Bi ∈ {B} do
7 αi← lanchor +1i.

8 Do label expansion move
(
f B, αi

)
.

9 1max
d ←

(
1max
d /2

)
, 1max

n ←
(
1max
n /2

)
.

10 if size or location of {B} is changed then

11 1max
d = maxdisp/2, 1max

n = 1.

12 // The second-stage rolling optimization T2.

13 for updating round m= 1,2,. . . ,T2 do

14 Initialize the perturbation 1i randomly.

15 for each layer in multilayer structure do

16 for each Bi ∈ {B} do
17 αi← lanchor +1i.

18 Do α expansion move
(
f ′, αi

)
.

19 f B← M
(
f B, f ′,Pi

)
.

20 1max
d ←

(
1max
d /2

)
, 1max

n ←
(
1max
n /2

)
.

21 if size or location of {B} is changed then

22 1max
d = maxdisp/2, 1max

n = 1.

D. OPTIMIZATION PROCEDURE

We propose a rolling optimization strategy to optimize the

label proposal globally, using the cross-based multilayer

structure as well as α expansion move. We present the opti-

mization details in this section and summarize the optimiza-

tion procedure as Algorithm 2. Rolling optimization is like

a roller repeatedly updating the label mapping f . Then the

disparity map can be generated by the label mapping. The

optimization process is divided into two parts: first-stage

rolling optimization (lines 2-11) and second-stage rolling

optimization (lines 12-22). The first stage aims at fast rough

matching. In this stage, label expansion is carried out in the

border region (line 8), and labels are updated multiple times

(lines 6-8). At the same time, the perturbation component of

the candidate label is gradually reduced due to its gradually

decreased selection range (line 9), so that labels in the bor-

der region can be optimized more and more finely. When

the size or location of {B} is changed, the boundary of the

selection range is reinitialized (line 11). In the second stage,

the mapping refinement is carried out, which is different from

the first stage in that α expansion move (line 18) and mask

operation (line 19) are used. After the second stage, the label

mapping and the disparity map are smoother than before,

because this stage optimization is based on minimizing the

MRF energy function [14], [17] that considers the label and

disparity continuity of neighboring pixels.

Perturbation term 1i consists of a disparity increment 1d

and a normal vector increment E1n. Correspondingly, the label

of anchor pixel lanchor can also be converted to the form of

a disparity d and a normal vector En [5]. 1d randomly takes

value from
[
−1max

d , 1max
d

]
, and the three elements of E1n

all randomly take values from
[
−1max

n , 1max
n

]
. At line 7 in

Algorithm 2, we add permutations 1d and E1n to d and En,

and normalize the vector as En = u
(
En+ E1n

)
. Then the new

disparity and normal vector are translated to a candidate label

αi. It should be noted that we start 1
max
d and 1max

n by setting

1max
d = maxdisp/2 and 1max

n = 1, and after one time

expansion move, 1max
d and 1max

n are reduced to half of the

original as at line 9 of Algorithm 2.

At line 8 in Algorithm 2, label expansion move only

focuses on the minimization of data term, avoiding the

complex computation of optimization process that considers

data term and smoothness term simultaneously. Specifically,

the local label mapping f B in each border region Bi is updated

by

f B = argminEdata

(
f B|f Bp ∈

{
f Bp , αi

}
, p ∈ Bi

)
, (14)

where the candidate label αi is equal to the label of the anchor

pixel plus the disturbance component, that is, αi = lanchor +
1. Whether the candidate label can replace the original label

of pixel p depends on whether the candidate label can reduce

the value of the data term.

However, the label expansion move does not consider the

smoothness of the labels of neighboring pixels, it is easy

to fall into local minimum errors. The second-stage opti-

mization can solve this problem better. We first calculates a

mapping f ′ using α expansion [17] (line 18 in Algorithm 2),

f ′ = argminE
(
f ′|f ′p ∈

{
f ′p, αi

}
, p ∈ Bi

)
. (15)

The above formula can be solved via min-cut/max-flow algo-

rithms [18], which can effectively deal with the situation

where multiple labels become αi at the same time. Then we

perform mask operation as line 19 in Algorithm 2 which

updates each member f Bp of f B by

f Bp =

{
f ′p, p ∈ Pi

f Bp , p /∈ Pi,
(16)

where Pi is the cross patch contained in border region Bi.

In the process of α expansion move, the edge pixels have

less smoothness term information. And the reliability of their

optimized labels is not as high as that of the pixels close to

the center region. Based on this, mask operation can discard

some incorrect labels and improve the whole accuracy of

label proposal.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we first introduce the running environment

and core parameter settings of our algorithm. Then we use
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TABLE 1. Snapshot of ranks on the test set of Middlebury 3.0 benchmark under the criterion ‘‘bad 2.0’’ by the time of submission (December 2019). Eight
top-performance algorithms with published papers are listed here. The best results are in bold. Blue numbers represent rankings and black numbers
represent error rates.

TABLE 2. Snapshot of ranks on the test set of Middlebury 3.0 benchmark under the criterion ‘‘bad 1.0’’ by the time of submission (December 2019). Eight
top-performance algorithms with published papers are listed here. The best results are in bold. Blue numbers represent rankings and black numbers
represent error rates.

TABLE 3. Snapshot of ranks on the test set of Middlebury 3.0 benchmark under the criterion ‘‘bad 0.5’’ by the time of submission (December 2019). Eight
top-performance algorithms with published papers are listed here. The best results are in bold. Blue numbers represent rankings and black numbers
represent error rates.

the 2014 datasets, the latest Middlebury stereo datasets gen-

erated by the technique of [45], to test our algorithm, and we

compare our method with other state-of-the-art algorithms.

In addition, in both qualitative and quantitative aspects,

we compare the proposed algorithm with PatchMatch Stereo

[5] and other global PatchMatch-based methods such as

PMSC [7], LocalExp [30]. Finally, we verify the effective-

ness of the core modules of the algorithm, namely first-

stage rolling optimization, second-stage rolling optimization

and cross-based multilayer structure, through the ablation

analysis.

A. PARAMETER SETTINGS

Our algorithm is conducted on a PC equipped with an i5-7400

3.0GHz CPU. During the test, 4 cores of CPU are used for

parallel acceleration. When we test the performance of our

method on stereo datasets, the parameters of the algorithm

are required to remain constant for all experiments. The

following are the settings of the parameters mentioned in our

algorithm. With reference to [30], the coefficient λ, used to

balance data term and smoothness term, is set to 0.5. The

reason for this setting is that the smoothness term has a less

impact on matching accuracy than data term, so we give it a

relatively lower attention degree. The parameter γ for pixel

similarity weight ωpq is set to 10, referring to [5], [30], [31].

The truncation thresholds τCNN , τdis, e and ε are set to 0.5,

1, 0.01, 0.012 respectively. To construct the adaptive cross

patch, the threshold of color difference ηcolor is set to 100,

and the threshold of distance ηdistance is set to the width of

border region. For the multilayer structure, the central regions

have three different sizes with widths of (14, 14× 3, 14× 9)

pixels. And the number of the total layers of multilayer struc-

ture (N1 × N2 × N3) is set to (7× 16× 3). For the rolling

optimization process, the iteration numbers of the first stage

and the second stage (T1,T2) are set to 10 and 20 respectively.

B. EVALUATION ON MIDDLEBURY BENCHMARK

We test our algorithm on Middlebury stereo 3.0 benchmark

[45]. It contains 30 pairs of high-resolution image pairs,

15 pairs for training and 15 pairs for test. The datasets of

this benchmark provide various challenges, such as rich and

complex scenes, large field of view (disparity range from

200 to 800 pixels), incomplete correction as well as different

illumination and exposure in left and right images. Consistent

with other algorithms [7], [30], we use half-resolution image

pairs to estimate disparity, then interpolate the disparity map
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FIGURE 5. Qualitative comparison between PatchMatch Stereo and our algorithm. From row 1 to row 3 are Cones, Teddy and Tsukuba respectively. The
pictures in columns 2 and 3 are the disparity maps corresponding to the input images (column 1). The pictures in columns 4 and 5 are error maps, where
black areas indicate the pixels with wrong disparities.

to restore the full resolution. Three evaluation criteria are used

to evaluate the accuracy of disparity map, which are bad 2.0,

bad 1.0 and bad 0.5, respectively. They are defined as the

proportion of the error pixels with mismatches > 2.0, 1.0 and

0.5 pixels in the whole map. They reflect the matching perfor-

mances at different pixel levels, where the smaller proportion

represents the better matching accuracy.

We generate the disparity maps of test images via the

proposed algorithm, submit them to Middlebury benchmark

to calculate the matching error rates under different criteria

online, and publish the performance evaluation results of our

algorithm. Table 1, Table 2 and Table 3 are the snapshots

of ranks on Middlebury 3.0 benchmark under bad 2.0, bad

1.0 and bad 0.5 criteria respectively, in which the overall

weighted error rates of our algorithm are 5.75%, 13.4% and

38.1% respectively. Correspondingly, our algorithm ranks the

second, the first and the first among all published algorithms

under above three criteria. This demonstrates the excellent

performance of our algorithm. Especially, our algorithm out-

performs current state-of-the-art methods at the pixel level

and sub-pixel level, that benefits from our rolling optimiza-

tion and adaptive update region constraint.

C. COMPARISON WITH PATCHMATCH STEREO

We compare our algorithm with PatchMatch Stereo [5],

from which many stereo matching algorithms, including

ours, are derived [6], [7], [30], [31]. PatchMatch Stereo is

designed for low-resolution images of about 0.1 Mpixel,

TABLE 4. The quantitative comparison between PatchMatch Stereo and
our algorithm. The table shows the matching error rates. The best results
are in bold.

TABLE 5. The quantitative comparison of global PatchMatch-based
algorithms. The table shows the matching error rates and disparity error
quantiles under different criteria. The best results are in bold.

and the performance of this algorithm can not be evalu-

ated using the datasets from Middlebury 3.0 benchmark,

but from the old Middlebury 2.0 benchmark [1]. There-

fore, we select ‘‘Cones’’, ‘‘Teddy’’ and ‘‘Tsukuba’’ from

Middlebury 2.0 benchmark to compare our algorithm with

PatchMatch Stereo.

Table 4 shows the matching error rates of the two algo-

rithms. The error threshold is 0.5 pixels. The error rates of

our algorithm are (3.71%, 3.62%, 10.3%) respectively, which
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FIGURE 6. Qualitative comparison of global PatchMatch algorithms. The pictures in columns 2, 3 and 4 are the disparity maps with rainbow colors. The
pictures in columns 5, 6 and 7 are error maps, where black areas indicate the pixels with wrong disparities.

TABLE 6. Ablation analysis of different modules. X indicates that the corresponding module is included, and × indicates that the module has been
removed. We test the matching error rates when using different variants of the algorithm. The last column is the average error rate.

are less than those of PatchMatch Stereo (3.80%, 5.66%,

15.0%). Fig. 5 shows disparity maps generated by the two

algorithms and corresponding error maps. The error maps of

our algorithm have fewer and smaller black areas than those

of PatchMatch Stereo, where black area marks the pixels with

wrong disparities. The scene of the last row in Fig. 5 is com-

plex. In this situation, PatchMatch Stereo has many discretely

distributed disparity errors (see its black areas in error map),

reflecting that it has many local minimum errors. This is

an unavoidable problem for local stereo matching algorithm,

because it only focuses on neighborhood information and

ignores global information. On the contrary, our algorithm

adopts the pairwise MRF model to ensure the global smooth-

ness of disparity map, guaranteeing the effective suppression

of local minimum errors.

D. COMPARISON WITH GLOBAL PATCHMATCH-BASED

METHODS

We compare our algorithm with LocalExp [30] and

PMSC [7]. The same thing is that both of them and our

algorithm are global PatchMatch-based methods, and all are

designed to process high-resolution image pairs larger than

1 Mpixel. The differences are that we construct cross-based

patches to adaptively constrain the label updating region,

instead of using fixed rectangular windows like LocalExp;

besides, we use rolling optimization strategy to generate more

abundant and continuously changing candidate labels than

PMSC. When evaluating the algorithms, we use 15 high-

resolution test image pairs from Middlebury 3.0 benchmark

for test targets, employ bad 2.0, bad 1.0 and bad 0.5 error

rates to evaluate matching accuracy, and employ error quan-

tiles A50 (Media error) and A95 to evaluate robustness.

Besides, two kinds of masks are used, namely, ‘‘nonocc’’

(non-occluded pixels visible in both views) and ‘‘all’’ (all

pixels).

The quantitative comparison is shown in Table 5. On the

one hand, the average error rates (38.1%, 43.5%, 13.4%,

20.3%) of the proposed algorithm are smaller than those of

LocalExp (38.7%, 44.2%, 13.9%, 21.0%) and PMSC (39.1%,

45.4%, 14.8%, 22.8%), that demonstrates more accuracy of

our method at pixel level and sub-pixel level than PMSC and

LocalExp. On the other hand, our algorithm has error quan-

tiles which are similar to LocalExp but smaller than PMSC,

in other words, our method has smaller values of big disparity

errors than PMSC, reflecting less abnormal matching and

better robustness than PMSC. The qualitative comparison is

shown in Fig. 6, where rainbow-color disparity maps and

corresponding error maps are presented. It is obvious that in
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FIGURE 7. Qualitative analysis of the function of different modules. We present the disparity maps obtained by using different algorithm
variants, as well as the ground truth, shown in columns 1 and 4. Columns 2, 3 and 5 are the local magnifications of the disparity maps.

weak texture regions (red boxes in Fig. 6), our algorithm has

fewer mismatches than LocalExp and PMSC (comparing the

black area sizes within the red boxes of error maps), indicat-

ing that our algorithm is able to solve the matching ambiguity

of weak texture, and has better matching performance than

other two algorithms.

E. EFFECTIVENESS OF EACH MODULE

To demonstrate the effectiveness of first-stage optimization,

second-stage optimization, and cross-based multilayer struc-

ture, we employ ablation experiments to analyze the signif-

icance of each core module of our algorithm. We observe

the change of matching accuracy after the removal of each

module. It should be noted that when cross-based multilayer

structure is removed, a fixed size multilayer structure is used

instead; specifically, border regions are used to replace cross

patches during the construction of multilayer structure (in

Sec. III-C). We use the error rate of threshold = 1.0 pixel

to evaluate matching accuracy. This criterion is commonly

concerned in practical application, and reflects pixel level

matching accuracy. Six image pairs from the training datasets

of Middlebury 3.0 benchmark are used to test algorithm vari-

ants. Unlike the image pairs in test datasets, these image pairs

have the corresponding published ground truth of disparity

maps, so that users can calculate matching error rates flexibly.

Quantitative experimental results are listed in Table 6.

Compared with other variants, the full version algorithm (last

row in Table 6), including first-stage optimization, second-

stage optimization and cross-based multilayer, has a mini-

mum average error rate of 12.60%. In contrast, without any

core module, the error rate will increase to a certain extent; in

the absence of second-stage optimization, the average error

rate increases the most, with an increase of 3.59%. This illus-

trates that first-stage optimization, second-stage optimization

and cross-based multilayer structure all have positive effects

to the improvement of matching accuracy, and second-stage

optimization, considering the disparity smoothness of neigh-

borhood pixels, contributes the most.

Fig.7 qualitatively explains the functions of the two opti-

mization stages. First-stage optimization estimates the label

and disparity of each pixel separately, and suppresses the

matching errors that are easy to occur at the edge of the

object (see local magnified disparity maps in column 2,

rows 1 and 3 of Fig.7). Second-stage optimization is helpful to

solve the local minimum problem of energy function by intro-

ducing the disparity smoothness constraint, so as to suppress

the occurrence of local mismatching (the local mismatches,
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indicated by the arrows in row 2 and column 3, no longer exist

in the disparity map of row 3 and column 3). Besides, it also

effectively guarantees the continuity of the object contour

(see the pipes in column 5, rows 2 and 3).

V. CONCLUSION

In this paper, we have presented a novel global stereo match-

ing approach for the accurate estimation of 3D label and

sub-pixel disparity. To adaptively constrain the region of 3D

label expansion, we proposed a cross-based multilayer struc-

ture which includes a series of cross patches with adaptive

shapes.We proposed a rolling optimization strategy, using the

constructed cross-based multilayer to guide label updating,

so that the randomly initialized label proposal converges

to the optimal solution through the rolling optimization.

Experimental results showed that our method can obtain a

highly accurate disparity map, and it is one of the best stereo

matching algorithms onMiddlebury 3.0 benchmark.Whether

compared with similar methods or other approaches with

published papers on the benchmark, our algorithm has higher

matching accuracy at pixel level and subpixel level.
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