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Fibroblasts are primarily considered as cells that support organ structures and

are currently receiving attention for their roles in regulating immune responses

in health and disease. Fibroblasts are assigned distinct phenotypes and

functions in different organs owing to their diverse origins and functions.

Their roles in the immune system are multifaceted, ranging from supporting

homeostasis to inducing or suppressing inflammatory responses of immune

cells. As a major component of immune cells, T cells are responsible for

adaptive immune responses and are involved in the exacerbation or

alleviation of various inflammatory diseases. In this review, we discuss the

mechanisms by which fibroblasts regulate immune responses by interacting

with T cells in host health and diseases, as well as their potential as advanced

therapeutic targets.
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Introduction

As the principal components of connective tissues, fibroblasts are known to

contribute to the formation and maintenance of extracellular matrix components and

their remodeling, consequently playing pivotal roles in tissue development,

differentiation, and repair. Therefore, their roles in immune responses have long been

overlooked. Previous studies have identified the heterogeneity of fibroblasts based on

their origins, surface markers, and functions using genetic lineage-tracing and single-cell

RNA sequencing, and suggested the mechanism underlying the interaction of local

immune cells in cancers and autoimmune disorders (1). At the site of inflammation,

fibroblasts communicate with immune cells via secretion of cytokines and chemokines

and direct cell-cell contact (2, 3). These interactions induce the recruitment of immune

cells and produce inflammatory mediators; infiltrated immune cells play important roles

in the phenotypes and functions of fibroblasts (1, 3). This suggests that fibroblasts have

additional roles as members of immune networks while being a key structural

compartment in different organs.
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Fibroblasts play different roles in pathogenesis at different

anatomical positions in diseases. They have diverse phenotypes

with flexible responses to signals from microenvironmental

niches. Disease-specific fibroblasts, such as cancer-associated

fibroblasts (CAFs) and fibroblast-like synoviocytes in

rheumatoid arthritis (RA), can directly interact with immune

cells. T cells are important representatives of immune cells and are

involved in the pathogenesis of cancers and autoimmune

disorders. In addition, many studies have demonstrated that T

cells participate in the deterioration or alleviation of diseases by

interacting with tissue-specific fibroblasts.

Here, we discuss the complex crosstalk between fibroblasts

and T cells in host health and disease. Interestingly, targeting

fibroblast-T cell crosstalk could be a noteworthy therapeutic

strategy for the treatment of diseases.
Interaction of lymph node
fibroblasts and T cells in
host health and disease

Lymph nodes (LNs) are specialized organs wherein adaptive

immune response is initiated and organize into distinctive

compartments by highly specialized fibroblastic reticular cells

(FRCs) (1, 4). FRCs contribute to the maintenance of immune

homeostasis by supporting LN structures that offer distinct

microenvironments and interact with immune cells by

recruiting them and presenting antigens (5–7). Recent studies,

such as single-cell analysis, high-resolution imaging, and various

reporter mice studies, have identified the heterogeneity of FRCs.

Depending on their position, phenotypes, and functions, FRC

subtypes consist of marginal reticular cells, interfollicular FRCs,

T-B border reticular cells, T-zone reticular cells (TRC), deep

cortex periphery reticular cells, and medullary reticular cells. To

participate in immune responses, FRCs produce cytokines,

chemokines, and growth factors, thereby supporting the

survival, activation, proliferation, and differentiation of

immune cells. TRCs control T cell positioning, survival, and

differentiation. TRCs directly regulate T effector functions via

nitric oxide or constitutive cyclooxygenase enzymes (8–11). Co-

culture of human FRCs with CD8+ or CD4+ T cells shows that

FRCs can induce T cell anergy by producing indoleamine-2,3-

dioxygenase, adenosine 2A receptor, prostaglandin E2, and

transforming growth factor b (TGF-b) receptor, which limits

T cell proliferation (12). In a co-culture of mouse FRCs with

CD8+ T cells, FRCs induce an increased production of IL-2 and

tumor necrosis factor (TNF) in CD8+ T cells (13). T cell survival,

proliferation, and migration are affected by TRC-derived

molecules such as IL-7, IL-15, IL-33, delta-like 4, CXCL12,

CCL19, CCL21, and CD40 (5). T cells, which are regulated by

FRCs, can influence the FRC phenotype and function. Activated

CD8+ T ce l l s can e l i c i t TRCs to produce more
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immunostimulatory molecules, including the ICOS ligand,

CD40, and IL-6 in a co-culture system (5, 13).

LN-FRCs have received much attention as key participants in

tumor progression. In the colon adenocarcinoma model, LN-

FRCs suppress an anti-tumor immune response, consequently

contributing to the premetastatic microenvironment (14). In the

B16 melanoma model, FRCs in tumor draining LN(dLNs) alter

the secretion of ECM components, cytokines, and chemokines,

and assist immune cell recruitment, activation, and differentiation,

facilitating the establishment of immunosuppressive niches (15).

In addition, TRCs in tumor dLNs restrain the expression of

CCL21 and IL-7, thus limiting CD4+ T cell priming (15).

FRCs can support immune homeostasis and protect tissues

from autoimmune responses (5). Homeostasis of T regulatory

(Treg) cells, which have critical roles in balancing immune

responses in mouse LNs, is maintained by MHC class II FRCs

(16, 17). In addition, LN-TRCs elicit CD4+ T cell differentiation

through the trans-presentation of CD25 to naïve CD4+ T cells.

CD25-deficient LN-TRCs induce deterioration of autoimmune

diseases by enhancing IL-17-producing T helper type 17 (Th17)

cell differentiation (18).

IL-33 constitutively produced by FRCs can assist in the anti-

viral CD8+ T cell responses in acute and chronic lymphocytic

choriomeningitis virus (LCMV)-infected animal models (19,

20). In addition, FRCs present antigen to naïve LCMV-specific

CD8+ and CD4+ T cells by MHCI and MHCII, respectively (6).

In acute LCMV models, the absence of type I interferon-a
receptor on FRC impaired the expansion of LCMV specific

CD8+ T cells and the acquisition of effector phenotypes (21).

Taken together, LN-FRCs play diverse roles in the immune

system by controlling the homeostasis, proliferation, and

function of T cells.
Interaction of fibroblasts and
T cells in cancer

The tumor microenvironment (TME) is mainly composed of

tumor cells, immune cells, cancer-associated mesenchymal cells,

and endothelial cells, and it plays an instrumental role in

tumorigenesis and immune responses (1, 22, 23). CAFs, which

are important mesenchymal cells in the TME, have

heterogeneous cell phenotypes and functions. The roles of

CAFs in TME have been widely described, and CAFs have

been shown to facilitate tumor progression in most cancers

through the production of cytokines, chemokines, and growth

factors (Figure 1) (1, 22).

Distinct subsets of T cells, such as cytotoxic CD8+ T cells, Th

cells, and Treg cells, play essential roles in regulating anti-tumor

responses, and interactions between CAFs and T cells in the

TME have been reported. Infiltrating Treg cells orchestrate

immunosuppressive responses. CAFs facilitate the migration of
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Treg cells into the TME via CCL5 or CXCL12, thus increasing

the frequency of these cells (24, 25). Infiltration of Treg cells is

also enhanced by CCL17 and CCL22, which is induced by

decreased expression of CD68 in CAFs and is also maintained

by CAF-derived vascular endothelial growth factor-A (26–28).

Moreover, Treg cells are differentiated from naïve T cells by

inducing Foxp3 expression, which is facilitated by TGF-b from

CAFs (29). Contrarily, the proliferation of CD4+Foxp3+ Treg

cells has been reported to have improved due to myofibroblast

exhaustion in pancreatic ductal adenocarcinoma (PDAC) (28).

These results indicate that CAFs play an opposite role to Treg

cells in the TME.

CD8+ T cells have anti-tumor responses by promoting the

apoptosis of tumor cells. In contrast to their cytotoxic activities,

CAFs suppress the infiltration, growth, and anti-tumor response

of CD8+ T cells. Pancreatic stellate cells(PSCs), which can be

altered into activated CAFs by TGF-b and platelet-derived

growth factor (PDGF), reduces the infiltration of CD8+ T cells

into tumor sites by attracting CD8+ T cells toward PSCs through
Frontiers in Immunology 03
CXCL12 expression (30). In response to hypoxia induced by

CAF-mediated ECM modification, the angiogenic factor VEGF

secreted by CAFs hinders the migration of CD8+ T cells into the

TME (31, 32). In addition, CAFs induce the reduced CD8+ T cell

infiltration by secreting IL-6 and TGF-b, leading to a decreased

anti-tumor activity. Clinical trials on the blockade of IL-6 have

shown enhanced T cell function and improved prognosis in

pat ients (33 , 34) . In tumorigenes i s of pancreat ic

adenocarcinoma, the formation of leucine-rich-repeat-

containing protein 15(LRRC15)+ CAF is increased by TGF-b
signaling (35). The depletion of LRRC15+ CAF induces the anti-

tumor response of CD8+ T cells with increased expression of

TNF and IFN-g and also enhances the efficacy of anti-PD-L1

therapy (35).

When expressed on the surface of T cells and tumor cells,

immune checkpoint molecules prevent the function of T cells.

CAFs can disturb the anti-tumor activity of effector T cells by

inducing the expression of immune checkpoint molecules, such

as FAS/FASL and PD-1/PD-L1 or PD-L2, on their surface,
FIGURE 1

The interaction between CAFs and T cells in TME. CAFs have immunosuppressive roles by affecting Treg cells and cytotoxic CD8+ T cells. CAFs
elicit the infiltration of Treg cells by secretion of CCL5 and CXCL12 and increase the proliferation of them through VEGF. In addition, CAFs
facilitate the skewing of naïve CD4+ T cells to Treg cells. However, CAFs obstruct the migration of CD8+ T cells via various cytokines and
chemokines such as CXCL12, VEGF, IL-6, and TGF-b. CAFs decrease the frequency and the activation of CD8+ T cells by PD-L1, PD-L2 and
FASL. In addition, CAFs suppress an anti-tumor response of CD8+ T cells by upregulating PD-1 expression on the surface of T cells and by
increasing PD-L1 expression on tumor through CXCL2. LRRC15+ CAFs induced by TGF-b signaling regulate anti-tumor response of CD8+ T
cells. Furthermore, the accumulation of matrix protein, which is produced by CAFs can obstruct the migration of T cells and collagen can block
the access of T cells to tumor, limiting the anti-tumor activity of T cells. Figure is generated with biorender (www.biorender.com).
frontiersin.org

http://www.biorender.com
https://doi.org/10.3389/fimmu.2022.1103823
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lee et al. 10.3389/fimmu.2022.1103823
followed by decreased CD8+ T cell frequency and activation and,

in contrast, increased tumor cell viability (36, 37). CAFs are also

able to increase immune checkpoint molecules in tumor and

immune cells by secreting diverse cytokines (37, 38). CAFs

upregulate PD-1, CTLA-4, TIM-3, and LAG-3 expression on

both CD8+ and CD4+ T cells, resulting in hampered

proliferation of T cells and impaired recognition of tumor cells

in pancreatic cancer (39).

CAFs can inhibit T cell recruitment into the TME by having

ECM proteins as a physical barrier, thus restricting their

involvement in anti-tumor responses. A previous report

indicated that the increase of collagen in neighboring tumor

cells obstructs the interaction between T cells and tumor cells in

lung and pancreatic cancers (40). Hypoxia-derived VEGF,

caused by the accumulation of various matrix proteins in the

ECM, can also decrease the migration of T cells into the TME

(31, 32). Overall, CAFs promote the initiation and progression of

cancer through several mechanisms, such as an increase in

immunosuppressive responses of Treg cells and suppression of

anti-tumor responses of CD8+ T cells.
Interaction of fibroblasts
and T cells in autoimmune diseases

Rheumatoid arthritis

Synoviocytes, mesenchymal cells of the synovium, have

distinct characteristics in RA compared with osteoarthritis

(OA) and dermal fibroblasts in RA (Figure 2) (1, 41).

Synoviocytes in RA show increased proliferation with defective

expression of the tumor suppressor p53. Researchers have

highlighted the mutations in the gene encoding p53 in

synoviocytes of patients with RA (42). In addition, the

expression of anti-apoptotic proteins, such as sentrin and

synoviolin, is increased in the synoviocytes of patients with

RA (43, 44). Synoviocytes consistently interact with infiltrating

immune cells, especially T cells, thereby increasing the

recruitment, differentiation, activation, and survival of T cells

(45, 46). CD34- Thy1+ fibroblasts, which is highly expanded in

RA patients, induce T cell infiltration into synovium, thereby

increasing tissue inflammation (47). Increased migration of T

cells to the synovium promotes interaction between T cells and

synoviocytes, consequently contributing to disease chronicity

(48). Infiltrating T cells are retained in the synovium by

synoviocyte-derived CXCL12 and TGF-b (49, 50). Pro-

inflammatory cytokines, such as IL-1b, TNF, and IL-17,

produced by immune cells increase CCL20 secretion by

synoviocytes, subsequently enabling CCR6+ Th17 cell

recruitment (51–53).

Synoviocytes also regulate T cell differentiation via the

production of diverse cytokines. For example, TGF-b and IL-6

produced by synoviocytes facilitate Th17 differentiation (54, 55).
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Synoviocytes from RA patients also contribute to the expansion

of CD4+ T cells and increase the proportion of T cells expressing

TNF, IFN-g, and IL-17 in the synoviocyte-T cell co-culture

system (56, 57). In addition, synoviocytes suppress T cell

apoptosis by sustaining survival-related signals and restraining

cell death signals (58, 59). T cells influence synoviocytes,

increasing their proliferation, invasive capacity, and MMP

secretion (57). In RA synovium, the production of IL-22,

mainly by Th17 cells, is promoted and enhances the

proliferation of synoviocytes. In addition, activated T cells can

promote synoviocyte activation via TNF. Interactions between

synoviocytes and activated T cells improve the production of

TNF, IL-17, IFN-g, IL-6, ICAM-1, and VCAM-1 by synoviocytes

in a cell-contact-dependent manner (60). Th17 cells, but not Th1

cells, act as inducers of IL-6, IL-8, MMP1, and MMP3

production when co-cultured with synoviocytes of patients

with RA, implying that Th17 cells are crucial subtypes in a

pro-inflammatory feedback loop with synoviocytes (61). Thus,

highly proliferative synoviocytes influence the function of T cells

by expressing cytokines, chemokines, and cell adhesion

molecules that promote inflammatory responses in RA.
Psoriasis and psoriatic arthritis

Distinct types of cells are present in the skin, including

keratinocytes and skin fibroblasts in the epidermis and dermis,

respectively. Fibroblasts in psoriasis and PsA have similar

characteristics (3); they have pro-inflammatory effects by

interacting with T cells (Figure 2). Initiation of inflammation

induces T cell migration into inflamed skin via CCL27 and

CXCL16 and adhesion molecules, such as ICAM-1 and E-

selectin (3). Fibroblasts present in psoriatic lesions produce

higher levels of CCL27 than those in non-lesioned or healthy

individuals. Moreover, in the lesions of patients with psoriasis,

CCR10+ cells are more abundant than compared in healthy

individuals, facilitating T cell-mediated inflammation via

CCL27-CCR10 interaction (62).

Interactions between T cells and mesenchymal cells increase

the production of IL-17, a pivotal cytokine in the pathogenesis of

psoriasis and PsA (63). IL-17 activates skin mesenchymal cells,

including fibroblasts and keratinocytes, and induces the

production of the pro-inflammatory cytokine IL-6 and

chemokine CCL20 in mesenchymal cells (64, 65). CCL20

elicits the recruitment of CCR6+ Th17 to the lesional skin,

consequently contributing to the progression of psoriasis

(65, 66).

In the synovium of patients with PsA, the levels of ICAM-1

and VCAM-1 expression and the number of T cells are similar to

those observed in the synovium of patients with RA (67). CCR4

and CCL22, which are necessary for T cell infiltration into the

skin, are abundant in the synovial fluid of patients with PsA (68,

69). Most CCR4+ CD4+ T cells in the synovium of patients with
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PsA also express CD45RO, a memory T cell marker, implying

that the CCL22-CCR4 axis attracts memory T cells to the joint

(69). Compared to patients with OA, patients with PsA have a

higher concentration of IL-22 in the synovial fluid. T cells from

the synovial fluid of patients with PsA produce large amounts of

IL-22. In vitro studies have revealed that IL-22 facilitates

increased proliferation of PsA synoviocytes, leading to

deteriorated development of PsA (70). Further studies are

required to compare the characteristics of PsA synoviocytes

with those of RA synoviocytes, and their disease-specific

interactions with infiltrated T cells. Overall, fibroblasts

facilitate inflammatory responses by recruiting and activating

Th17 cells through the secretion of cytokines and chemokines

and increased expression of cell adhesion molecules in the skin

of psoriasis patients and in the synovium of patients with PsA.
Frontiers in Immunology 05
Interaction of fibroblasts and T cells
as a therapeutic target

As mentioned above, fibroblasts interacting with T cells

participate in the pathogenesis of cancers and autoimmune

disorders by producing cytokines and chemokines and

promoting the survival and proliferation of T cells (1, 3).

Therefore, targeting these interactions has received attention

as a potential therapeutic option. Numerous approaches have

been developed to date, such as direct targeting of cells and

indirect targeting of the cytokine-receptor required for cell

interaction (1, 3). To directly target disease-specific fibroblasts

in different diseases, identification of the specific markers of

fibroblasts in distinct disease-associated environments is

required; however, it is difficult to determine selective markers
FIGURE 2

The interaction between fibroblasts and T cells in autoimmune diseases. Fibroblasts play inflammatory roles in autoimmune disorders such as
RA, psoriasis, and PsA. In synovium of RA, synoviocytes have the mutation of p53, a tumor suppressor and increased expression of sentrin and
synoviolin, which are anti-apoptotic proteins, inducing proliferation of synoviocytes. Synoviocytes elicit the differentiation of Th17 cells from
naïve CD4+ T cells by IL-6 and TGF-b production. In addition, synoviocytes enhance the migration of Th17 cells via CXCL12 and TGF-b. IL-1b,
TNF and IL-17 secreted by immune cells facilitate the production of CCL20 in synoviocytes, increasing the infiltration of Th17 cells into
synovium. Infiltrated Th17 cells secret IL-22 and TNF, consequently improving the proliferation and activation of synoviocytes. Moreover, the
contact between Th17 cells and synoviocytes induces the secretion of IL-6, IL-8, MMP-1, and MMP3 in synoviocytes. In cell-cell contact
manner, synoviocytes increase the expression of TNF, IL-17, IFN-g, IL-6, ICAM-1, and VCAM-1 in activated T cells. Besides, synoviocytes
suppress the apoptosis of T cells by increasing survival signals and decreasing death signals. In psoriasis, fibroblasts produce CCL27, CXCL16,
ICAM-1, and E-selectin, enabling to increased migration of T cells into skin. In addition, CCL20 and IL-6 produced by fibroblasts facilitate the
infiltration of CCR6+ Th17 cells, followed by increased expression of IL-6 and CCL20 in fibroblasts. In PsA, synoviocytes elicit the migration of
CD45RO+ Th17 cells by the secretion of CCL22. Then, infiltrated Th17 cells promote the proliferation of synoviocytes via IL-22 production.
Figure is generated with biorender (www.biorender.com).
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for fibroblasts. As fibroblast activation protein (FAP) is one of

the proteins that are highly expressed on CAFs in various

cancers, FAP+ CAF is efficiently depleted by diverse

approaches like immunotoxin, antibodies, DNA vaccines, and

chimeric antigen receptor T cells, thereby contributing to the

attenuation of tumor growth (71–73). The elimination of FAP+

CAFs increases T cell infiltration and enhances the efficacy of

immune checkpoint inhibitors (74). Nevertheless, because FAP

is also expressed in normal tissues, it can cause side effects, such

as cachexia and anemia. In addition, depletion of a smooth

muscle actin in CAFs facilitates undifferentiated tumor growth

and subsequently decreases patient survival (28). Another

approach to the direct killing of fibroblasts is the induction of

apoptotic signals. To that end, delivery of PUMA, a pro-

apoptotic gene, via viral vectors facilitates extensive cell death

of synoviocytes in vitro and in the joints of rats with adjuvant-

induced arthritis, resulting in decreased joint inflammation and

destruction (75). Treatment of RA synoviocytes with cadmium

enhances cell apoptosis and inhibits the production of pro-

inflammatory cytokines. This effect was observed in rats with

adjuvant-induced arthritis, whose clinical scores were alleviated,

and joint destruction was protected (76).

An alternative strategy to indirectly target cell interactions

has also been investigated. For instance, the CXCR4 inhibitor

AMD3100 can restrict CXCL12-mediated T cell exclusion and

promote T cell infiltration into the TME (77). In RA, psoriasis,

and PsA, the infliximab (against TNF) reduces the infiltration of

T cells into the synovium, and consequently decreases T cell-

mesenchymal cell interactions (78–80). In addition, tocilizumab,

a monoclonal antibody against the IL-6 receptor, diminishes the

frequency of Th17 cells and production of cytokines secreted by

Th17 cells in RA (81). Similar to RA treatment, tofacitinib, a JAK

inhibitor, blocks the TNF-induced production of chemokines by

synoviocytes and consequently limits immune cell infiltration.

Peficitinib, another JAK inhibitor, decreases the production of

pro-inflammatory mediators and inhibits the migration and

proliferation of synoviocytes (82, 83).
Conclusion

Recently, the involvement of fibroblasts in the regulation of

immune responses by interacting with immune cells has been

investigated. Although the heterogeneous and multifaceted

characteristics of these cells have made it difficult to identify
Frontiers in Immunology 06
their roles in health and diseases, recent studies have elicited

their potential to control immune networks using advanced

technologies. Here, we have discussed the crosstalk between

fibroblasts and T cells, the modulation of immune balance, and

the pathogenesis of inflammatory diseases. Fibroblasts crucially

participate in immune responses by interacting with T cells in

secondary lymphoid organs and disease sites. Owing to their

importance, studies on the interaction between fibroblasts and T

cells as therapeutic approaches have been constantly

investigated. Nevertheless, further research is needed to

understand the interaction between fibroblasts and T cells,

which might improve the therapeutic advantages for

various diseases.
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