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While the consumption of external energy (i.e., feeding)
is essential to life, this action induces a temporary dis-
turbance of homeostasis in an animal. A primary exam-
ple of this effect is found in the regulation of glycemia.
In the fasted state, stored energy is released to maintain
physiological glycemic levels. Liver glycogen is liber-
ated to glucose, glycerol and (glucogenic) amino acids
are used to build new glucosemolecules (i.e., gluconeo-
genesis), and fatty acids are oxidized to fuel long-term
energetic demands. This regulation is driven primarily by
the counterregulatory hormones epinephrine, growth hor-
mone, cortisol, and glucagon. Conversely, feeding indu-
ces a rapid influx of diverse nutrients, including glucose,
that disrupt homeostasis. Consistently, a host of hor-
monal and neural systems under the coordination of insu-
lin are engaged in the transition from fasting to prandial
states to reduce this disruption. The ultimate action of
these systems is to appropriately store the newly acquired
energy and to return to the homeostatic norm. Thus, at
first glance it is tempting to assume that glucagon is
solely antagonistic regarding the anabolic effects of insu-
lin. We have been intrigued by the role of glucagon in the
prandial transition and have attempted to delineate its
role as beneficial or inhibitory to glycemic control. The fol-
lowing review highlights this long-known yet poorly un-
derstood hormone.

THE DISCOVERY OF GLUCAGON AND INSULIN

In 1921 Banting and Best (1) identified insulin, a life-
saving therapeutic for millions of individuals with diabe-
tes, which set a new course for our understanding of glu-
cose metabolism. Two years later Kimball and Murlin (2)
described the second hormone, glucagon, which appeared
to oppose insulin and elevate blood glucose (3). Subsequent

work by Burger, Brandt, and Kramer (4–6) identified the
liver as the primary target of glucagon-stimulated hypergly-
cemia. Finally, in 1948 Sutherland and de Duve (7) pub-
lished the first evidence that glucagon was produced from
the pancreatic a-cells, closing the loop between its initial
discovery as a pancreatic hormone and its primary target
tissue, the liver.

Since this early codiscovery, the contrasting roles of insu-
lin and glucagon have been studied in detail, often with an
emphasis on the pathophysiological role of unopposed gluca-
gon action in diabetes (8–12). However, emerging preclinical
studies have highlighted potential insulin-sensitizing effects
of glucagon receptor (GCGR) agonism, both alone and in
combination with other incretin signals (i.e., glucagon-like
peptide 1 [GLP-1] and glucose-dependent insulinotropic
polypeptide [GIP]) (13–20). Consistently, clinical studies of
a single-molecule GCGR/GLP-1R coagonist uncovered re-
duced glucose excursion during a mixed-meal challenge
(21). Although individual receptor contributions to this ef-
fect were not specifically investigated, similar findings have
also been reported for single-molecule GCGR/GLP-1R/GIPR
triagonists (22). Hence, a new emphasis has emerged on
understanding the mechanisms and applications of GCGR
agonism, especially in metabolic diseases.

GLUCAGON SECRETION

Five main cell types (i.e., a-, b-, d-, g-, and e-cells) make
up the endocrine pancreas and are clustered into island-
like structures called islets of Langerhans (23). Like insu-
lin, glucagon is produced by the endocrine pancreas and se-
creted in response to changing nutritional demands (23).
Glucagon is encoded by the proglucagon gene, which also
encodes GLP-1, GLP-2, oxyntomodulin, glicentin, and the
metabolically inert cleavage products glucagon-reactive
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polypeptide and major proglucagon fragment (24). Pancre-
atic a-cells preferentially express prohormone convertase-2,
which is essential in processing the proglucagon peptide to
produce the 29-amino-acid (AA) native glucagon peptide
(25–27). Glucagon is secreted from the a-cells, which make
up 15–20% of total rodent islet cells (23) but 30–45% of
the human islet (28). Thus, in human islets there is far
greater interaction (i.e., more contact) between a- and
b-cells than in rodent islets. These compositional differ-
ences in islet morphology suggest that glucagon plays a
greater physiological role in humans than in rodents.

Glucagon secretion is influenced by nutritional state and
is best known in the context of fasting and hypoglycemia
(29,30). a-Cells preferentially express the low-Km glucose
transporter 1 (GLUT1) (31) and ATP-sensitive potassium
(KATP) channels (32). Glucose-dependent increases in cellu-
lar ATP levels close KATP channels, depolarizing the cell and
inhibiting glucagon secretion (33,34). Intriguingly, the reg-
ulation of glucagon secretion is not restricted to glucose
alone.

Free fatty acids (FFA) may stimulate glucagon secretion.
However, this regulation appears to be dependent on the
FFA characteristics and if the FFA source was exogenous or
endogenous (30). AAs, excluding the branched-chain AAs,
stimulate glucagon secretion in dogs (35). This was consis-
tent with the observation that high-protein meals (36–38),
arginine (39,40), and alanine (41,42) stimulate glucagon se-
cretion in humans. Importantly, the stimulatory effects of
these AAs on glucagon secretion are far greater than those
observed during hypoglycemia (20) yet are attenuated
(43,44) or abolished (44) in the presence of hyperglycemia.
Reciprocally, glucagon increases ureagenesis in hepatocytes
to regulate AA metabolism (45). Insulin-resistant and stea-
totic individuals exhibit hyperaminoacidemia, leading to
hyperglucagonemia and disruption of the liver–a-cell axis
in humans (45). Likewise, inhibition of hepatic GCGR sig-
naling results in increased circulating AAs and a-cell hyper-
plasia of both endogenous mouse islets and human islet
transplants (46). Importantly, a-cell hyperplasia can be
mimicked by culturing islets in high concentrations of AAs,
especially L-glutamine (46). By extension, lipid-induced dis-
ruption of hepatic glucagon sensitivity has been postulated
to contribute to impaired AA homeostasis, hyperglucagone-
mia, and eventually to type 2 diabetes (T2D) (47).

Glucagon secretion is also regulated via endocrine/
paracrine factors, including insulin, amylin, zinc, GABA,
GLP-1, GIP, and somatostatin. a-Cells express both insulin
receptors (INSR) and GABA receptors (48,49). Consistently,
insulin and GABA from neighboring b-cells both inhibit
glucagon secretion (50–52). However, work in rat islets
supports that the key inhibitory factor from b-cells may be
zinc bound to the insulin protein (53). Similarly, somato-
statin of the d-cells inhibits glucagon secretion (54). Only a
minority (�20%) of mouse, rat, and human a-cells express
GLP-1R (55,56). Thus, inhibition via GLP-1 (57–59) is
likely secondary to GLP-1R–stimulated release of zinc-

insulin, GABA, and amylin. Conversely, in healthy individuals
GIP stimulates glucagon secretion in a glucose-dependent
manner (i.e., during hypoglycemia) (60,61). Reciprocally,
glucagon acts in a paracrine manner to increase insulin
secretion through activation of both b-cell GCGR and
GLP-1R (19).

Finally, glucagon secretion is directly mediated by
the autonomic nervous system. Via their effects on in-
sulin secretion, vagal stimulation (parasympathetic) in-
hibits (62), whereas splanchnic (sympathetic) stimulation
increases, glucagon secretion (63–66). Together, these find-
ings clearly support the idea that glucagon secretion is reg-
ulated in response to multiple stimuli and systems. Among
them is a potential cosecretion with insulin in the early
prandial state. Together these observations support a more
complex role for glucagon beyond simple counterregulation
of insulin in glucose homeostasis.

GCGR TISSUE DISTRIBUTION AND HEPATIC
SIGNALING

GCGR is a member of the class B family of G protein–
coupled receptors (67). Gcgr mRNA is primarily expressed
in the liver, with low-level expression in the kidney, adipose
tissue, pancreas, spleen, lymphoblasts, brain, gastrointestinal
tract, and adrenal gland (68). Hepatic Gcgr expression and
subsequent metabolic actions are restricted to the periportal
area (69), where they overlap with INSR (Insr) expression
(70). Hepatic GCGR signaling stimulates two intracellular
cascades (Fig. 1), a cAMP stimulatory G protein, Gs, and a
Gq protein that signals via Ca21 (29,30). Canonical Gs sig-
naling activates adenylate cyclase to produce cAMP. This
second messenger stimulates both protein kinase A (PKA)
and Rap guanine nucleotide exchange factor 3 (RAPGEF3;
also known as EPAC1). EPAC1 activation stimulates the
small GTPase Rap1 and the AMP-dependent protein ki-
nase (AMPK) (71). Concomitantly, PKA phosphorylates
the cAMP response element-binding protein (CREB) and
stimulates protein phosphatase 2B-dependent dephos-
phorylation of the CREB-regulated transcription coactiva-
tor 2 (Crtc2) (72). CREB/CRTC2 signaling is associated with
gluconeogenic and glycogenolytic gene expression (e.g.,
glucose-6-phosphatase [G6pc], phosphoenolpyruvate ki-
nase [Pck1], and peroxisome proliferator-activated recep-
tor g coactivator 1-a [Ppargc1a]) (30). GCGR-stimulated
Ca21 signaling occurs downstream of Gq activation and
is associated with hepatic glycogen phosphorylase activa-
tion, bile acid homeostasis, and liver regeneration (73).

Termination of signaling is equally important to meta-
bolic regulation. GCGR signaling is terminated by internali-
zation of the ligand–receptor complex and occurs primarily
via clathrin- and arrestin-facilitated endocytosis. Intrigu-
ingly, sustained GCGR signaling has been described after
internalization, suggesting a second wave of signaling from
this receptor (30). However, the biological relevance of this
intracellular signaling has yet to be fully elucidated. Intra-
cellular GCGR palmitoylation and ubiquitination have been
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observed and may also contribute to signal termination
(30). Intriguingly, glucagon stimulates both GCGR internal-
ization and deubiquitination, facilitating rapid recycling of
the receptor (74).

METABOLIC ACTIONS OF HEPATIC GCGR
SIGNALING

As introduced above, the best-known actions of GCGR sig-
naling involve its counterregulatory effect on insulin ac-
tion. In the context of glucose metabolism, GCGR signaling
stimulates hepatic glycogenolysis and gluconeogenesis (GNG)
with concomitant inhibition of glycogen synthesis (29).
GCGR signaling rapidly increases hepatic glycogenolysis
via a signaling cascade involving the canonical cAMP–PKA
pathway. This signaling activates glycogen phosphorylase
kinase and subsequent activation of glycogen phosphory-
lase. GCGR signaling (via PKA) likewise inhibits glycogen
synthase, preventing hepatic glycogen synthesis (75).

GCGR regulation of hepatic GNG occurs via both transcrip-
tional induction and allosteric modulation of GNG enzymes.
PKA-dependent phosphorylation of phosphofructokinase 2
and pyruvate kinase shifts metabolic flux from glycolysis to
GNG. GCGR signaling stimulates CREBSer133 phosphorylation
coupled with dephosphorylation and nuclear translocation of
its coactivator, Creb-regulated transcription coactivator 2
(Crtc2). These actions not only stimulate the induction of
target GNG genes G6pc, Pck1, Ppargc1a and hepatocyte nu-
clear factor 4 (Hnf4a) but also regulate GNG-associated tran-
scription factors FOXO1 and PGC-1-a via modulation of
their acetylation states (30). Additionally, GCGR-stimulated
Ca21 signaling activates glycogenolysis and GNG via p38
kinase (76). Consistent with these signaling events,

exogenous glucagon elevates glycemia (77). Moreover, ge-
netic Gcgr deficiency and neutralizing antibodies targeting
glucagon are sufficient to reduce glycemia (78–80). In con-
trast, the antidiabetic effects of Gcgr knockout in strepto-
zotocin (STZ)-treated mice are lost when STZ is
administered prior to Gcgr ablation (81). These rodent
data must be interpreted with some caution, as GCGR an-
tagonists clearly lower glycemia in individuals with T1D
(82). Together, these findings highlight the complex and
context-dependent relationship between glucagon and
insulin in glucose homeostasis.

In addition to its effects on glucose metabolism, mount-
ing evidence suggests hepatic glucagon is a potent regulator
of energy balance, lipid homeostasis, and fat mass mobiliza-
tion (30). In the context of energy balance, glucagon both
stimulates energy expenditure and suppresses food intake,
as highlighted by the negative energy balance observed in
glucagonoma patients (83). This stimulation of energy ex-
penditure and thermogenesis is conserved across a range of
species (29). However, the conservation of this system in
humans is still controversial, with reports observing both in-
creased and unchanged energy expenditure (84,85). Energy
expenditure regulation in mice is dependent upon hepatic
GCGR signaling and is mechanistically associated with he-
patic FXR activity and endocrine FGF21 action (14,15,86).
Glucose futile cycling may also contribute to the upregu-
lation of energy expenditure following GCGR agonism
(87,88). Intriguingly, glucagon administration also de-
creases hunger and food intake in both rats (89) and hu-
man subjects (90,91). Consistently, GCGR agonism in
diet-induced obese mice suppressed food intake; how-
ever, this effect was preserved in mice lacking hepatic
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Figure 1—Overview of GCGR signaling pathways in the regulation of hepatic glucose homeostasis. Figure created with BioRender.com.

1844 INSR and GCGR Signaling Cross Talk in Hepatocytes Diabetes Volume 71, September 2022

D
ow

nloaded from
 http://diabetesjournals.org/diabetes/article-pdf/71/9/1842/687395/dbi220002.pdf by guest on 23 Septem

ber 2023

https://BioRender.com


Gcgr expression, suggesting that the liver is not the tis-
sue of origin for this regulation (14).

Glucagon also regulates multiple components of lipid me-
tabolism (29). Gcgr is expressed by rodent adipocytes (92).
Consistently, glucagon mediates rodent white adipose tissue
lipolysis (93). Conversely, evidence of Gcgr expression in hu-
man adipocytes is lacking (94), as is that for glucagon-
induced lipolysis at physiological levels in patients (95). In
rodents, glucagon-mediated white adipose tissue lipolysis
(96,97) via hormone-sensitive lipase results in the liberation
of nonesterified fatty acids (NEFA) (98). The majority of
these NEFAs are catabolized. However, in the liver, NEFAs
may be alternatively converted to ketone bodies to provide
energy during times of glucose deficiency (99,100). Consis-
tent with this shift to lipid energy substrates, glucagon
exposure inhibits hepatic lipogenesis while stimulating
FA transport and oxidation (101). Inhibition of hepatic li-
pogenesis occurs via two potential mechanisms: 1) CREB-
mediated induction of insulin-induced gene 2 (Insig2) and
sequestration of the lipogenic sterol regulatory element
binding protein (SREBP) transcription factor (102) and 2)
Ca21-dependent activation of p38 kinase and subsequent
inhibition of SREBP (76). GCGR agonism is also a potent
regulator of bile acid metabolism, stimulating robust changes
in the expression of bile acid enzymes and the composition
of circulating bile acids (14). As introduced above, emerging
data support that hepatic GCGR signaling is a crucial regula-
tor of AA metabolism. GCGR agonism stimulates hepatic AA
uptake and urea production and subsequently induces hypoa-
minoacidemia (103). Together these pieces of evidence point
to glucagon as a potent regulator of AA and lipid homeosta-
sis, energy balance, and fat mass mobilization.

INSULIN, INSULIN ACTION, AND HEPATIC INSR
SIGNALING

Insulin is a powerful anabolic factor, stimulating growth
and energy accrual throughout the organism. This pleio-
tropic hormone is essential to glucose metabolism and
crucial to lipid and AA metabolism. Insulin action in the
liver stimulates lipogenesis and glycogen synthesis while
concomitantly inhibiting glycogenolysis, GNG, and liver
fatty acid oxidation (104).

Insulin signals via the INSR, a member of the receptor
tyrosine kinase family, and, to a lesser extent, the insulin-
like growth factor 1 receptor. These receptors are endoge-
nously inhibited by the recently discovered Inceptor pro-
tein in mouse b-cells (105). Insr is expressed in the central
nervous system and a wide range of peripheral tissues. Un-
like Gcgr, hepatic Insr expression is found in both peripor-
tal and perivenous zones (70). The role of this essential
hormone and INSR signaling (summarized in Fig. 2) has
been extensively covered, including the following review
(104). Therefore, this Perspective will focus on hepatic sig-
naling and biological functions arising from INSR activation.
INSR signaling is initiated when insulin binds to the recep-
tor, derepressing the receptor’s intrinsic kinase activity.

INSR then phosphorylates intracellular substrates, including
members of the insulin/insulin-like growth factor 1 receptor
substrate (IRS) protein family, Gab-1, DOK1, Cbl, SH2B2
(APS), SHP2, and isoforms of Shc (104). Canonical insulin
regulation of hepatic glucose and lipid metabolism involves
subsequent IRS-dependent activation of phosphatidylinositol-
3-kinase, 30-phosphoinositide–dependent kinase 1 (PDK1),
and AKT/PKB (104). AKT is a central node of hepatic insulin
signaling and is crucial for both glucose and lipid metabolism.
This serine/threonine kinase is activated by phosphorylation
on two residues, Thr308 and Ser473. Thr308 phosphorylation
occurs in a PDK1-dependent manner and is essential for
AKT kinase activity. Ser473 is phosphorylated by the rapamy-
cin-insensitive mTOR complex (mTORC2) and is permissive
for full kinase activity (104). Importantly, the mechanisms of
mTORC2 regulation remain uncertain. AKT activation leads
to subsequent phosphorylation of forkhead box–containing
protein, O subfamily (FOXO). FOXO proteins (especially
members 1 and 6) are transcription factors that induce
GNG. AKT-dependent phosphorylation triggers nuclear ex-
clusion and, thus, is inhibitory to this action (106).

Insulin also regulates hepatic Ca21 signaling. INSR acti-
vation stimulates phospholipase Cg, generating inositol-
1,4,5-triphosphate (InsP3). Increased InsP3 levels stimu-
late InsP3 ligand–gated Ca21 channels of the endoplasmic
reticulum and thus increase intracellular Ca21 levels. In-
creased hepatic Ca21 levels further stimulate INSR-depen-
dent activation of the mitogen-activated protein kinase
signaling cascade and activation of transcription factors (e.g.,
MYC, FOS, and JUN) in this mitogenic pathway (107).

Diabetes, whether type 1 (T1D) or type 2 (T2D), is de-
fined by hyperglycemia and is ultimately the result of in-
sufficient insulin action. In the case of T1D, this deficiency
is caused by destruction of the pancreatic b-cell and there-
fore a lack of the insulin hormone. In T2D, insulin resis-
tance accumulates to a point where b-cell compensatory
hypersecretion is insufficient to counteract the resistance
(108). In the liver, this insufficiency is manifested as a fail-
ure to suppress hepatic glucose output (i.e., GNG and gly-
cogenolysis). Intriguingly, in T2D this resistance is often
incomplete, resulting in a preservation of insulin-stimu-
lated lipogenesis (108). Consistent with its counterregula-
tory role, both fasting and postprandial plasma glucagon
levels are elevated in diabetes (109). However, these obser-
vations have been made in individuals with established
cases of diabetes, and thus the causality of hyperglucagone-
mia is difficult to assign.

OVERLAPPING HEPATIC GCGR AND INSR
ACTIONS

As a counterregulatory hormone with a role in maintain-
ing fasting blood glucose, it is tempting to assume that
glucagon opposes all actions of insulin. Consistent with
this hypothesis, circulating glucagon levels are elevated in
all known instances of T1D or T2D, including animal
models of the disease (77). Likewise, preclinical GCGR
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ablation or pharmacological GCGR inhibition (including
neutralizing antibodies against glucagon) in individuals
with diabetes is sufficient to reduce glycemia and HbA1c.
However, many of these strategies have been slowed due
to adverse effects on liver transaminases, liver fat, and
dyslipidemia (30).

Conversely, the increased concentrations and action of
glucagon in the fasting state are well suited to potentiate
subsequent insulin-mediated glucose control. To this point,
glucagon acts in a paracrine manner to increase insulin se-
cretion through activation of both b-cell GCGR and GLP-
1R (19). Likewise, postprandial elevations of glucagon and
GLP-1 contribute to the improved postprandial glucose
profile observed in Roux-en-Y gastric bypass patients (110)
and rodent models of this powerful intervention (111).
Importantly, these physiological conditions are all charac-
terized by their heightened insulin sensitivity. Regarding
glucagon enhancement of insulin action, the use of the bi-
onic pancreas (glucagon and insulin) must be mentioned
(112). This technology was hypothesized to prevent life-
threatening hypoglycemic episodes in people with diabe-
tes. Beyond reducing hypoglycemic episodes, the bihormo-
nal (glucagon and insulin) pump reduced average glycemia
while requiring a similar total daily insulin dose in adoles-
cents (112). Likewise, 13-h glucagon infusion increased
both glucose appearance and disappearance in patients,
suggesting that its regulation of human glucose metabo-
lism is not restricted to increasing hepatic glucose output
(113). Together, these observations support the hypothe-
sis that glucagon, released during fasting and the prandial
response, acts to prime metabolic tissues for the subse-
quent nutrient challenge of feeding. Moreover, it positions
cooperative actions of glucagon and insulin as crucial to
this physiology.

INSR and GCGR signaling also converge at the hepato-
cyte. Our group described the unexpected enhancement
of insulin action in db/db mice following chronic (7-day)
treatment with the long-acting GCGR agonist IUB288
(86). This initial observation was followed by more de-
tailed investigation of acute (i.e., 60-min) GCGR agonism
and its beneficial effect on insulin sensitivity (114). This
work identified enhanced insulin-dependent signaling
in the phosphorylation of AKTSer473 in mice treated with
IUB288 60 min prior to insulin and was exclusive of
PDK1-dependent phosphorylation (Thr308) (114). This
single, acute IUB288 treatment increased insulin sensitiv-
ity, as defined by increased glucose infusion rate and im-
proved insulin-stimulated suppression of hepatic glucose
output during hyperinsulinemic-euglycemic clamps (114).
These observations suggest GCGR and INSR signaling
intersect via a TORC2-dependent phosphorylation of
AKTSer473. Our observation was quickly followed by work
by Besse-Patin et al. (115). This elegant study confirmed
glucagon-enhanced AKTSer473 phosphorylation and identi-
fied glucagon-dependent induction of Ppargc1a as a tran-
scriptional regulator of relative levels of hepatocyte
IRS1:IRS2 ratios (115). This shift toward IRS2 favors insu-
lin-dependent suppression of hepatic glucose output (115)
and is consistent with our observations in hyperinsuline-
mic-euglycemic clamps (114). Congruous with our study
and interpretation, Besse-Patin et al. concluded that gluca-
gon (via PGC-1-a) primes the liver for subsequent insu-
lin action.

However, an importation caveat to these studies is that
the observations of Besse-Patin et al. were made 4 h after
glucagon treatment. Subsequent observations in cultured
hepatocytes suggest GCGR signaling transiently stimulates
protein synthesis via an mTORC1-dependent action (116).
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Figure 2—Overview of INSR signaling pathways in the regulation of hepatic glucose homeostasis. MAPK, mitogen-activated protein ki-
nase; PI3K, phosphatidylinositol 3-kinase; PLCg, phospholipase Cg. Figure created with BioRender.com.
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This effect was also observed to be convergent with insulin
signaling and dependent on EPAC activity (116). Addition-
ally, work by Perry et al. (117) identified enhanced glucose
tolerance and insulin sensitivity in rats infused with gluca-
gon for 3.5 weeks. This work supported a role for inositol
triphosphate receptor 1 (INSP3R1)-mediated calcium sig-
naling downstream of GCGR activation. In this model, the
benefits of GCGR signaling on glucose metabolism are re-
lated to hepatic mitochondrial oxidation (117). In sum-
mary, emerging data support a beneficial role for GCGR
signaling in hepatic insulin glucose metabolism. While the
precise mechanisms have yet to be elucidated, data support
roles for mTORC1, mTORC2, and PCG1a-IRS2 as potential
points for cross talk with hepatic insulin signaling (Fig. 3).
INSP3R1 may also represent a mechanism by which he-
patic GCGR signaling benefits glucose metabolism sec-
ondary to its regulation of mitochondrial oxidation.

GCGR AND INSR CROSS TALK IN EMERGING
THERAPEUTICS

As introduced above, GCGR ablation/antagonism is benefi-
cial for glucose metabolism (78,79). Of note, treating mice
with the INSR antagonist S961 induces severe insulin re-
sistance, hyperglycemia, and ketonemia, yet the GCGR-

blocking antibody REGN1193 was sufficient to normalize
blood glucose and b-hydroxybutyrate levels in these mice
(118). Subsequent clinical investigation uncovered reduc-
tions in fasting plasma glucose and HbA1c in REGN1193-
treated T2D patients (119). Similar benefits in mice have
been reported for the monoclonal antibody and competi-
tive GCGR antagonist REMD 2.59 (120). Moreover, GCGR
antagonism, when combined with GLP-1R agonism, stimu-
lates cell regeneration in STZ-treated mice (121). However,
enthusiasm for GCGR antagonism is offset by observa-
tions of dose-dependent increases in hepatic aminotrans-
ferases (122) and induction of profound dyslipidemia
(79). Conversely, the benefits of GCGR agonism on energy
expenditure, hepatic steatosis, and lipid homeostasis are of
great therapeutic interest. Intriguingly, coupling of the anti-
diabetic properties of GLP-1R agonism with GCGR agonism
profoundly enhances the therapeutic action of both recep-
tors (17,18,123). The mechanisms underlying these benefits
are still the focus of intense investigation. GLP-1/GCGR dual
agonism drives weight loss in a synergistic manner. This
weight loss is likely due to GCGR stimulation of energy ex-
penditure and GLP-1R inhibition of gastric emptying (124),
the latter also contributing to slower glucose uptake into the
circulation. It is also likely that these compounds increase
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glucose-stimulated insulin secretion via activation of GCGR
and GLP-1R at the b-cell while concomitantly enhancing in-
sulin action via GCGR agonism at the liver. Based on this
hypothesis, coupling GCGR agonism with other known in-
sulin secretagogues should have similar effects. This hy-
pothesis is supported by the observation in mice that
tolbutamide enhanced glucagon-stimulated decreases in gly-
cemia (19). It should be noted that while GLP-1/GCGR dual
agonism drives weight loss and improves glucose homeosta-
sis in both preclinical and clinical studies (21,125), clinical
application of these molecules has targeted treatment of
nonalcoholic steatohepatitis and nonalcoholic fatty liver dis-
ease (e.g., cotadutide) (125).

In summary, the glucagon peptide was discovered a cen-
tury ago, yet our understanding of its metabolic actions is
still evolving. The original view that GCGR signaling is an-
tagonistic to insulin action is certainly true in some con-
texts yet is clearly incomplete. Studies currently underway
will continue to refine the role of this long-known hor-
mone and its therapeutic utility in metabolic diseases.
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