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Abstract

Background: Gene regulatory networks control the global gene expression and the dynamics of protein output in

living cells. In multicellular organisms, transcription factors and microRNAs are the major families of gene

regulators. Recent studies have suggested that these two kinds of regulators share similar regulatory logics and

participate in cooperative activities in the gene regulatory network; however, their combinational regulatory effects

and preferences on the protein interaction network remain unclear.

Methods: In this study, we constructed a global human gene regulatory network comprising both transcriptional

and post-transcriptional regulatory relationships, and integrated the protein interactome into this network. We then

screened the integrated network for four types of regulatory motifs: single-regulation, co-regulation, crosstalk, and

independent, and investigated their topological properties in the protein interaction network.

Results: Among the four types of network motifs, the crosstalk was found to have the most enriched protein-

protein interactions in their downstream regulatory targets. The topological properties of these motifs also revealed

that they target crucial proteins in the protein interaction network and may serve important roles of biological

functions.

Conclusions: Altogether, these results reveal the combinatorial regulatory patterns of transcription factors and

microRNAs on the protein interactome, and provide further evidence to suggest the connection between gene

regulatory network and protein interaction network.

Background
A gene regulatory network (GRN) is a comprehensive

collection of regulatory relationships that controls the

global gene expression and the dynamics of protein out-

put in a living cell [1-6]. These regulatory relationships

may be derived from different layers in the gene regula-

tory system. Hence, a GRN can be roughly separated

into two major levels: the transcriptional and the post-

transcriptional levels.

At the transcriptional level, a class of DNA-binding

proteins, known as transcription factors (TFs), plays a

major role in regulating gene expression. By binding to

specific regions of DNA sequences, TFs can control the

transcription activities of target genes, thus regulating

the production of mRNA transcripts [7-9]. Since it has

been widely believed that TFs are the primary regulators

of gene expression, previous research on GRNs has

mainly focused on the regulatory relationships at the

transcriptional level [5,10,11]. However, there is increas-

ing evidence suggesting that, at the post-transcriptional

level, microRNAs (miRNAs) may also contribute to

modulation of gene expression on a large scale [1-3].

miRNAs are small non-coding, single stranded RNAs of

~22 nucleotides in length that are abundantly found in

eukaryotic cells [1-3]. By binding to complementary

sequences (a.k.a. miRNA binding-sites) on target mes-

senger RNA transcripts (mRNAs), miRNAs can trigger

translational repression or gene silencing, thus regulat-

ing the expression of their target genes at the post-tran-

scriptional level [12,13]. In recent years, miRNAs have

been reported to control many biological processes,

such as development, differentiation, growth, and even

cancer development and progression [1-3]. Therefore, it

has become critical to construct an integrated GRN that
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comprises both transcriptional and post-transcriptional

regulatory interactions.

Similar to other biological networks, a GRN usually

consists of several types of sub-network patterns known

as network motifs, such as feedback and feedforward

loops. Previous studies [5,10,11] have shown that certain

types of network motifs are more overrepresented in

GRNs[14]. These network motifs, such as feedback

loops and co-regulation, are found to play pivotal roles

in gene regulation [15-17]. For example, in E. coli, ~35%

TFs participate in negative autoregulation motifs which

can significantly speed up the transcriptional response

time [15] and smooth the fluctuations of protein expres-

sion [16]. In addition to TFs, miRNAs may also form

specific network motifs in the GRN. Previous studies

[17-20] investigating the co-regulation between miRNAs

and TFs found a variety of significant network motifs

overrepresented in the co-regulation network, suggesting

that the gene regulatory system requires close coopera-

tion between transcriptional and post-transcriptional

layers. These studies each proposed that the network

motifs might be used as building blocks in GRNs. In

order to understand how these motifs in the GRN influ-

ence the downstream biological processes, further stu-

dies on the protein interactome are essential.

Proteins are the major functional units in living cells,

and usually do not work alone. Protein-protein interac-

tions (PPIs), formed by two physically interacting pro-

teins, are fundamental to most biological processes. In

addition, proteins are translated from mRNAs, and

therefore their abundance may be affected by upstream

miRNAs and TFs. Consequently, investigating the corre-

lations between PPIs and their upstream regulators

could facilitate the understanding of biological mechan-

isms within living cells. Recently, the correlations

between miRNAs and PPIs have been investigated

[21,22]. Liang and Li [21] revealed that proteins regu-

lated by more miRNAs tend to possess higher degree,

more interacting partners, in a protein interaction net-

work (PIN). Furthermore, Hsu et. al. [22] provided a

comprehensive analysis and suggested that miRNAs

could influence specific biological processes through

regulating a small number of selected proteins in a PIN,

such as hub and bottleneck proteins. These studies have

revealed some connection principles between upstream

regulators and downstream PINs. However, the specifics

of the cooperation between TFs and miRNAs and their

combinational regulatory effects on human PINs remain

unclear.

In this study, we firstly collected human TF and

miRNA regulatory relationships and integrated them

into a global GRN. Next, we imported the human pro-

tein interactome into the GRN and screened the inte-

grated network for four pre-defined regulatory patterns

(Figure 1). Among the four patterns, the crosstalk was

found to have the most enriched PPIs interconnected in

their downstream regulatory target sets. Notably, the

observed correlation between PPIs and the crosstalk

motif has not been previously reported. Further investi-

gation into the topological properties of the crosstalk

motifs also revealed that they might serve important

roles of biological functions. We thus propose that the

crosstalk motifs may play significant roles in PINs,

which may have important downstream effects on sev-

eral biological processes in living cells via regulating cor-

responding PPIs.

Methods
Gene regulatory networks and protein-protein

interactions

To construct the human GRN for our analysis, we col-

lected TF and miRNA regulatory relationships from

three online databases: TRED (Transcriptional Regula-

tory Element Database) [23], UCSC genome browser at

http://genome.ucsc.edu/, and TargetScanHuman (release

6.0, November 2011) [24-27]. TRED contains transcrip-

tional regulation information from experimental evi-

dence and computational prediction. We collected 6,764

transcriptional regulation relationships between 133 TFs

and 2,937 target genes from TRED. Additionally, we

obtained the conserved binding sites of 125 TFs from

UCSC genome browser. To identify the targets of these

125 TFs, the annotations of 21,368 human genes were

downloaded from UCSC genome browser. We assigned

a target gene to a TF if its promoter region (1000 bp

upstream and 500 bp downstream of the transcription

start site) covered at least one conserved binding site of

the TF [28]. After this process, we identified 52,301 reg-

ulations between 125 TFs and 12,383 targets. Then, the

union of these two transcriptional regulatory networks

from TRED and UCSC was considered as the GRN of

transcriptional level in this study, containing 58,711 reg-

ulations between 211 TFs and 13,402 targets. For

miRNA target prediction programs, previous study had

noticed that TargetScan possessed relatively higher pre-

cision and sensitivity than other programs [29]. We col-

lected 144,490 post-transcriptional regulatory

relationships between 153 miRNA families and 11,161

target genes with conserved binding sites of correspond-

ing miRNAs. Next, these regulatory relationships col-

lected from the three databases were merged together to

construct our global GRN, in which nodes represent

regulators (TFs/miRNAs) or target genes/proteins, and

edges represent the regulatory relationships between

regulators and targets.

Human PPI data were obtained from HPRD (Human

Protein Reference Database) [30], which contained

experimentally validated physical interactions among
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human proteins. In this study, we collected 37,080 inter-

actions between 9,465 proteins.

Considering the incompleteness of current human PPI

data, we performed an analogous analysis with an

expanded PIN, a union of BioGRID [31] and HPRD PPI

data, to verify our results. Additionally, since limited

reproducibility of miRNA target prediction has also

been reported [32-35], we further independently

repeated our study with another miRNA target

prediction database, miRBase [36], to confirm the

robustness of our conclusions.

Regulatory motif screening and analysis

We screened four types of regulatory motifs from GRN:

single-regulation, co-regulation, crosstalk, and indepen-

dent, considering possible synergistic regulation between

regulators. These regulatory motifs are depicted in

Figure 1. The synergistic regulation defined here is

Figure 1 The procedure for screening and analyzing the 4 types of regulatory motifs. The GRNs was combined from TF and miRNA

regulatory relationships. According to the types of synergistic regulations between regulators, 4 types of regulatory motifs were screened, single-

regulation, co-regulation, crosstalk, and independent. Then, human PINs were utilized to elucidate the significance of the correlations between

these 4 types of regulatory motifs and PPIs
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determined by whether the regulators shared at least

two common targets. A single-regulation motif consists

of one regulator and its targets. The other three motifs

consist of two regulators. The co-regulation motif is

formed by two synergistic regulators and their shared

targets. The crosstalk motif is formed by two synergistic

regulators and their private (non-shared) target sets.

The independent motif contains two non-synergistic

regulators and their respective target sets.

Next, the PPI enrichment for each type of regulatory

motif was analyzed. Specifically, for single-regulation,

PPIs between every paired target genes were analyzed;

for co-regulation motifs, only PPIs between common

target genes were analyzed; and for crosstalk and inde-

pendent motifs, only PPIs between two private target

gene sets were analyzed. Additionally, the PPI enrich-

ment analysis was performed from two directions: top-

down and bottom-up. In the bottom-up model, genes

were firstly classified into four categories analogous to

four types of regulatory motifs, and each category was

provided with one significance score. In the top-down

model, significance scores were assigned to each regula-

tor (for single-regulation motif) or to every pair of regu-

lators (for the other three types of motifs). In this study,

a significance score was defined as the z-score (standard

score) derived from statistical analysis (Methods in

Additional file 1). Furthermore, we also analyzed the sig-

nificance of several selected network properties (Meth-

ods in Additional file 1) for each type of regulatory

motif based on similar approaches adopted in the PPI

enrichment analysis. The procedures of regulatory motif

screening and analysis are depicted in Figure 1. In addi-

tion, the functional enrichment analysis of crosstalk

motifs was performed to investigate the underlying bio-

logical roles for crosstalk motifs in human PINs (Meth-

ods in Additional file 1).

Results
Gene regulatory network properties

In order to provide a global view of human GRN, both

transcriptional and post-transcriptional regulations were

analyzed jointly (the global GRN) and respectively (local

GRNs) in this study. Within the local GRNs, TF- and

miRNA-regulation displayed similar patterns of distribu-

tion with respect to the number of target genes

(Figure 2A and 2B). Most TFs and miRNAs possessed

relatively fewer targets, and only a small fraction of TFs

and miRNAs possessed a large number of targets.

To investigate the synergistic relationships between

regulators, we further analyzed the distributions of the

number of synergistic partners of miRNAs and/or TFs

(Figure 2C-F). Herein, we defined two regulators as hav-

ing a synergistic relationship if they shared at least two

common targets. Most TFs and miRNAs have at least

one synergistic TF and/or miRNA partner. In other

words, they tended to form synergistic regulations with

other regulators. Although we noticed that a small frac-

tion of TFs did not form synergistic regulations with

other TFs or miRNAs (Figure 2D and 2F), this could be

due to the lack of sufficient TF-regulation information.

PPI enrichment of regulatory motifs

From the global GRN, we screened four types of regula-

tory motifs: single-regulation, co-regulation, crosstalk,

and independent. Next, the PPI enrichment of regula-

tory motifs was investigated from two directions: top-

down and bottom-up. Based on the combinations of

regulators, the regulatory motifs of TF-TF, miRNA-

miRNA, and TF-miRNA were analyzed separately.

In the top-down analysis, the significance scores of the

motifs regulated by single TF or paired-TF are described

in Figure 3A. The single-regulation and crosstalk motifs

showed significantly enriched PPIs between regulated

genes, while the co-regulation and independent motifs

did not. Similarly, motifs regulated by miRNA or paired-

miRNA also showed significantly enriched PPIs between

regulated genes involved in the single-regulation and

crosstalk motifs, but co-regulation and independent did

not (Figure 3B). The single-regulation motif has been

reported to be highly correlated with PPIs [21,22],

which is consistent with our results. However, although

correlations between PPIs and the co-regulation motif

have also been reported and well-discussed [37,38], our

analysis was inconsistent with these findings. For co-reg-

ulation motifs, the tested sample is the common targets

between two regulators. Thus, we doubted that the

insignificance of the co-regulation motifs was due to

limited sample sizes of the common targets. To test this

hypothesis, we gradually adjusted the threshold of syner-

gistic regulation (i.e. the minimum number of shared

targets) for co-regulation motifs. As the threshold

increased, the z-scores of PPI enrichment of the co-reg-

ulation motifs also increased (Figure S1 in Additional

file). This result suggested that the significance scores of

the co-regulation motifs were truly affected by the sam-

ple size. In other words, the PPI enrichment would

emerge if we adopted a stricter definition of co-regula-

tion which means more common targets. For example,

if the threshold of the synergistic regulation between

TFs increases to 40 targets, the significance score would

be elevated to 2. This result suggested that regulator

pairs with common targets tend to regulate private tar-

gets with PPIs. The motifs regulated by TFs and miR-

NAs simultaneously were also investigated. Consistent

with the results of the TF-TF and miRNA-miRNA ana-

lyses, the crosstalk motifs showed a significant correla-

tion with PPI enrichment, while the co-regulation motifs

did not (Figure 3C). Similarly, significance scores of the
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co-regulation motifs regulated by TF-miRNA combina-

tions were affected by the sample size as well (Figure S1

in Additional file).

Considering the reported TF-TF and TF-miRNA

interactions [20], we divided each proposed motif into

two subcategories, with or without known interactions

of the regulator pairs. Motifs regulated by interacting

regulator pairs displayed higher PPI z-scores than those

without known interactions (Figure 4). Notably, the

crosstalk motifs showed the highest z-scores. This obser-

vation further confirmed our suggestions that regulatory

motifs with synergistic relationships tend to regulate

genes with PPIs, especially for crosstalk motifs.

For the bottom-up analysis, we investigated the PPI

enrichment of genes sets in four types of regulatory

motifs. The significance score and corresponding
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coverage of each type of regulatory motifs are presented

in Table 1. In all combinations of regulator pairs, target

genes of the single-regulation and co-regulation motifs

showed significant PPI enrichment, but those of the

independent motifs showed significantly insufficient PPI

contents. This suggested that the targets of the single-

regulation and co-regulation motifs preferred to form

PPIs, but those of the independent motifs did not. With

respect to the crosstalk motifs, targets regulated by TF-

TF, miRNA-miRNA, and TF-miRNA pairs showed

insignificant PPI enrichment. Here, we noticed that the

coverage of the crosstalk motifs was much higher than

Figure 3 PPI z-scores of regulatory motifs. The box-plots of PPI z-scores for regulatory motifs regulated by different combinations of

regulators: (A) TF-TF, (B) miRNA-miRNA, and (C) TF-miRNA. The numbers next to the red line in the box-plot represent the median of PPI z-

scores.
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the other three types of motifs, at almost 100%. This

high coverage means that the tested sample is nearly

identical to the whole population; therefore, the enrich-

ment could be insignificant owing to the loose definition

of crosstalk motifs. To test this hypothesis, we removed

those regulators whose target sizes were excessively lar-

ger than other regulators; in other words, we removed

the top outliers from the target-size distribution of regu-

lators. Indeed, after this procedure, the PPI enrichment

of crosstalk motifs emerged, and the results of other

types of motifs remained the same (Table 1 Figure S2 in

Additional file). In summary, genes under the control of

regulatory motifs tend to form PPIs, except for those

genes regulated by independent motifs.

According to the results of the top-down and the bot-

tom-up analyses, we came to three conclusions: 1) the sin-

gle-regulation motifs tend to regulate genes with PPIs. 2)

Regulatory motifs with synergistic relationships (i.e. co-

regulation and crosstalk) favor gene regulation with PPIs,

especially for crosstalk motifs. 3) Gene pairs regulated by

independent regulators (i.e. without synergistic relation-

ships), in contrast, show no preference to form PPIs.

Regulatory motifs tend to regulate pivotal proteins in PIN

Genes encoding proteins with meaningful network prop-

erties in PINs have been proposed to play very impor-

tant roles in living cells [39-44]. PPI enrichment analysis

suggested that the single-regulation, co-regulation, and

crosstalk motifs are highly correlated with PPIs. Herein,

we further investigated the network properties of target

genes (Methods in Additional file 1) involved in these

three types of motifs. The z-scores of each of the net-

work properties for regulatory motifs are summarized in

Table 2 (more details in Figure S3 in Additional file).

Network properties can be classified into two categories:

1) for individual genes–degree and closeness centrality;

2) for gene sets–density, clique level, and path length.

With respect to individual genes, most regulatory

motifs tend to regulate those genes with higher degree

and closeness centrality (z-score > 1). Degree represents

the connectivity of proteins in a PIN, and closeness cen-

trality represents how close proteins are to the center of

a PIN. These results suggested that the regulatory motifs

tend to regulate hub and central proteins. On the other

hand, most regulatory motifs tend to regulate those

gene sets with higher density (z-score > 1), larger clique

levels (z-score > 1), and significantly shorter path

lengths (z-score < -2). Density provides a quantitative

measure of how tested gene sets group together to form

a community in a PIN, clique level represents the level

of maximal clique in which a tested gene can join, and

path length describes how close tested proteins are to

each other in a PIN. Briefly, these three network proper-

ties were usually used to evaluate the modularity of

tested proteins. Hence, the results presented here imply

that the regulatory motifs tend to control those proteins

that form biological communities. Notably, the crosstalk

motifs showed more significant z-scores than other

types of regulatory motifs, suggesting they play more

roles that are important in PINs.

Biological processes of the crosstalk motifs

After investigating the PPI enrichment and network

properties of the screened regulatory motifs, we noticed

Table 1 PPI z-score and the coverage of gene sets

involved in regulatory motifs

Single-
regulation

Co-
regulation

Crosstalk Independent

TF-TF

z-score 62.17 62.10 -0.80 -27.32

coverage 16.19% 4.31% 96.65% 83.81%

z-score* 56.43 51.37 11.37 -15.14

coverage* 6.72% 0.92% 70.60% 93.28%

miRNA-miRNA

z-score 35.37 38.15 1.52 -20.79

coverage 25.68% 9.14% 96.60% 74.32%

z-score* 34.74 32.16 14.37 -12.08

coverage* 10.79% 2.15% 69.08% 89.21%

TF-miRNA

z-score - 62.44 -0.09 -55.91

coverage - 6.65% 97.42% 73.52%

z-score* - 47.94 15.71 -33.91

coverage* - 1.18% 70.49% 88.31%

*The asterisk represents the filtered values. The upper limit of target gene size

for filtration of TF-TF, miRNA-miRNA, and TF-miRNA motifs is 781, 789, and

789, respectively.

*The coverage represents the ratio of gene pairs in regulatory motifs to all

possible gene pairs in HPRD PIN.

Table 2 Z-scores of each network properties for

regulatory motifs

Motif Single-
regulation

Co-regulation Crosstalk

Regulator
(s)

TF miR TF miR TF-
miR

TF miR TF-
miR

Degree 1.52 1.29 1.95 0.72 0.83 2.35 1.80 1.59

Closeness 1.55 1.86 2.02 1.22 1.26 2.45 2.73 2.12

Density 2.31 3.88 1.60 0.96 1.28 13.74 4.33 5.27

Clique
level

1.51 1.46 1.53 1.19 1.00 2.14 2.02 1.63

Path
length

-15.58 -24.10 -10.25 -6.66 -7.52 -21.27 -38.25 -50.47

*For single-regulation motifs, there are two types of regulators, TF and miRNA

(miR). For co-regulation and crosstalk motifs, there are three types of

regulators, TF-TF, miRNA-miRNA, and TF-miRNA. Here, we used TF and miR to

represent TF-TF and miRNA-miRNA respectively. Path length represents the

characteristic path length of the gene set.

Lin et al. BMC Systems Biology 2012, 6:18

http://www.biomedcentral.com/1752-0509/6/18

Page 7 of 13



that the crosstalk motifs played a pivotal role in human

PINs, and hence further studied their biological pro-

cesses. First, we analyzed the functional similarity

between two regulators. The results are shown in

Figure 5A. Functional similarities between regulator

pairs of crosstalk motifs, ranked in descending order,

are as follows: miRNA-miRNA, TF-miRNA, and TF-TF

(avg., 0.62, 0.42, and 0.37, respectively). Lower functional

similarity in TF-TF and TF-miRNA pairs might reflect

the dominant positions of TFs in global regulatory sys-

tem (i.e. at the transcriptional level) [45]. Contrarily,

higher functional similarity in miRNA-miRNA pairs

might be due to the downstream positions of miRNAs

in the global regulatory system (i.e. at the post-tran-

scriptional level) [45]. In addition, we observed that a

notable proportion of crosstalk motifs are with zero

functional similarity (TF-TF: 29%; TF-miRNA: 22%;

miRNA-miRNA: 14%, Figure S4 in additional file), i.e.

no common enriched functions between two regulators.

To investigate this observation further, we compared the

PPI z-scores and the averaging network property z-

scores of crosstalk motifs with zero versus non-zero

functional similarity. For all regulator combinations, the

crosstalk motifs with non-zero functional similarity

showed significantly higher PPI z-scores and network

property z-scores than those with zero functional simi-

larity (Figure 5B-G and Table 3). Therefore, the zero

functional similarity might be due to the lack of PPIs

between regulated private targets involved in the cross-

talk motifs. This result suggests that the functional

synergistic regulations of the crosstalk motifs could be

based on the PPIs between regulated private target

genes, highlighting the functional features of the cross-

talk motifs.

Figure 5 Functional features of the crosstalk motifs. (A) The functional similarity between two regulators in the crosstalk motifs. The

rectangular markers indicate the average values and error bars indicate the 95% confidence intervals. (B)–(G) Comparison of PPI z-score and

average network property z-score between the crosstalk motifs with zero and non-zero functional similarity. Average z-score represented the

averaged network property z-score.
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We then studied the underlying biological processes

between private targets of crosstalk motifs (Methods in

Additional file 1). For each combination of regulator

pair, we selected top 20 biological processes ranked by

proportions of involved motifs, respectively (Additional

file 1 Figure S5 - S7). These biological processes cov-

ered nearly all the crosstalk motifs (TF-TF: 98.02%;

TF-miRNA: 100%; miRNA-miRNA: 99.88%). Figure 6

shows a summary of these processes. The majority of

selected processes for all three types of regulator pairs

are associated with positive/negative regulation of cel-

lular metabolic process. Notably, TF-TF crosstalk

motifs also favor the processes associated with regula-

tion of programmed cell death (apoptosis); miRNA-

miRNA ones favor those with response to insulin sti-

mulus; and TF-miRNA with both. These results not

only displayed the functional homogeneity between

regulators of crosstalk motifs, but also demonstrated

the difference between TF and miRNA at regulatory

level.

Table 3 PPI and network property z-score of crosstalk

motifs with zero and non-zero functional similarity

TF TF-miRNA miRNA

z-score PPI Network PPI Network PPI Network

0 5.71 12.96 6.15 11.81 5.68 9.63

> 0 8.89 16.43 8.68 14.59 8.03 12.38

p-value 2.07E-15 1.89E-11 8.29E-29 2.31E-13 3.87E-42 2.02E-24

*P-values were derived from Wilcoxon rank-sum test. TF and miRNA

represented TF-TF and miRNA-miRNA combinations respectively. Network

represented the average z-score of the network properties. Z-scores in this

table were averaged.

Figure 6 Crosstalk Functions of the crosstalk motifs. The summary of enriched crosstalk functions in the crosstalk motifs.
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We further inspected the potential biological processes

of the TP53-miR-200bc/429/548a crosstalk motif

(Figure 7) as it possessed the highest PPI z-score. In this

crosstalk motif, there are 1,918 PPIs between target

genes: around 25.02% and 25.50% PPIs formed intra-

connections within TP53 and miR-200bc/429/548a regu-

lated-private target genes, respectively, and around

39.05% PPIs formed inter-connections between two pri-

vate target sets. The enriched interconnected PPIs

within these motifs might imply massive crosstalk

between regulators in their downstream regulatory path-

ways. PPIs between private targets of TP53-miR-200bc/

429/548a were enriched in positive/negative regulation

of cell death, response to insulin stimulus, epidermal

growth factor receptor signaling pathway, toll-like recep-

tor signaling pathway, positive regulation of cell differ-

entiation/proliferation, regulation of protein kinase

activity, protein phosphorylation, and regulation of cell

migration. TP53 is a well-studied cancer-related gene

which encodes the tumor-suppressor protein p53

[46-48], and miR-200bc/429/548a has been reported to

be significantly down-regulated in and related to several

cancers [49-53]. For example, Shimon Y. et al. reported

that miR-200bc/429/548a suppressed the ability of

tumor formation driven by human breast cancer stem

cell in vivo [50]; and Hu X. et al. reported that the over-

expression of miR-200bc/429/548a could inhibit the cell

migration of ovarian cancer cell and thus suggested that

this miRNA should be strongly associated with cancer

recurrence and overall survival [51]. Therefore, the

TP53-miR-200bc/429/548a crosstalk motif might be a

potential cancer-related regulatory motif.

Discussion and conclusions
In this study, we incorporated miRNAs into a traditional

GRN to investigate the correlations between PPIs and

Figure 7 The TP53-miR-200bc/429/548a crosstalk motif. The visualization of the TP53-miR-200bc/429/548a crosstalk motif. There are 1,918

PPIs between target genes in this motif. 25.02% and 25.50% PPIs formed intra-connections within TP53 and mi-200bc/429/548a regulated-private

target genes, respectively; 39.05% PPIs formed inter-connections between two private target sets.
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regulatory motifs formed by miRNAs, TFs, and target

proteins/genes. The regulatory motifs were classified

into four types: single-regulation, co-regulation, cross-

talk, and independent. Traditionally, random sampling

methods are usually applied to evaluate the significance

of PPI numbers among a group of proteins, but this is

very time-consuming. In addition, random sampling is

not suitable for analyzing complicated regulatory net-

works, because the whole process should be redesigned

for different motif members. In order to improve the

efficiency of the evaluation process without loss of gen-

eral applicability, we calculated the significance of PPI

enrichment for different motifs based on the Bernoulli

distribution; in other words, we regarded PPI gain and

lost as a Bernoulli process. This allowed the whole eva-

luation process to be kept under constant time (O(1)).

Among the four types of motifs, the strong correlation

between single-regulation and PINs has been well-dis-

cussed [21,22], and a correlation with the co-regulation

type has also been reported [37,38]. Single-regulation

motifs analyzed here showed consistent conclusions

with previous studies. Our investigation into co-regula-

tion motifs has further provided complementary analysis

and given insights that have not been addressed in any

previous studies. More importantly, we proposed that

the third type of motif – the crosstalk motif – could be

another prominent pattern in GRNs. Crosstalk motifs

were defined as the private target gene sets of two cor-

responding regulators, TFs and/or miRNAs, which

shared at least two targets. In human PINs, crosstalk

motifs were significantly enriched in PPI contents and

network properties. To summarize the analysis of net-

work properties, crosstalk motifs displayed several fea-

tures: 1) high degree, 2) high closeness, 3) high density,

4) high clique level, and 5) short characteristic path

length. In PINs, proteins with a high degree are usually

called “hub proteins”, those with high closeness central-

ity are usually called “central proteins”, and those with

high density, short characteristic path length, and high

clique level are usually called “modular proteins”. There-

fore, the regulators which participate in crosstalk motifs

tend to regulate hub proteins, which are usually more

essential than non-hub proteins [39-41], and modular

proteins, which usually form important protein com-

plexes or modules in human PINs [42-44]. Additionally,

we investigated the enriched functions of the crosstalk

motifs. For all three types of regulator pairs, the major-

ity of enriched crosstalk functions are associated with

positive/negative regulation of cellular metabolic pro-

cesses. Notably, miRNA-miRNA crosstalk motifs are not

only associated with regulation-related functions, but

also response to insulin stimulus. This is consistent with

previous findings that miRNAs preferentially regulate

downstream components, such as TFs, in signaling

networks [19]. Moreover, we demonstrated the func-

tional features within the crosstalk motifs with the high-

est PPI z-score and proposed a potential cancer-related

motif, TP53-miR-200bc/429/548a. Consequently, this

crosstalk motif might play an important role in living

cells through regulating those essential or pivot proteins

in human PINs.

Since our analysis relies on limited data sources from

online databases to construct human PINs and GRNs,

we carried out further examinations to test the robust-

ness of our conclusions. With respect to miRNA regula-

tion, all current online databases which provide

predicted human miRNA targets still have room for

improvement both in approach and performance

[32-35]. Accordingly, we repeated our analysis with

another database, miRBase [36], and were able to reach

a consistent conclusion (Figure S8-S13, Table S1 and S2

in Additional file 1). Considering the incomplete and

noisy human PPI data, we performed the same analysis

with combined PPI data from HPRD and BioGRID [31]

databases and also obtained consistent conclusions (Fig-

ure S14-S22, Table S3-S5 in Additional file 1). There-

fore, these re-analyses provide further evidence to

support the robustness of our conclusions. With

ongoing efforts to improve the completeness of PPI data

and GRNs, we will be able to further investigate and

confirm the correlations between PPIs and regulatory

motifs in the future.

In summary, we proposed a computational approach

to investigate the significance of regulatory motifs

formed by TFs/miRNAs and their corresponding targets

in human PINs. With this approach, we screened four

types of regulatory motifs, single-regulation, co-regula-

tion, crosstalk, and independent, from human GRNs

and investigated their correlations with PPIs. Among the

four types of motifs, the crosstalk motif emerged as a

potentially significant motif with important roles in

PINs, which has not been previously reported. We sug-

gested that this motif might play an important role in

living cells because of its strong correlations with PPIs

and significant network properties in human PINs.

Additional material

Additional file 1: Supplementary methods, figures, and tables. This

file contains supplementary methods and results, and the repeat analysis

for confirming the robustness of our results with different datasets,

miRNA-target prediction and PPI data.
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