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Besides its important role in embryonic development and homeostatic self-renewal in 

adult tissues, Wnt/β-catenin signaling exerts both anti-in�ammatory and proin�ammatory 

functions. This is, at least partially, due to either repressing or enhancing the NF-κB path-

way. Similarly, the NF-κB pathway either positively or negatively regulates Wnt/β-catenin 

signaling. Different components of the two pathways are involved in this crosstalk, form-

ing a complex regulatory network. This review summarizes our current understanding of 

the molecular mechanisms underlying the cross-regulation between the two pathways 

and discusses their involvement in in�ammation and in�ammation-associated diseases  

such as cancer.
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INTRODUCTION

Wnt/β-catenin and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) sign-
aling both are conserved pathways that regulate a variety of biological processes throughout the 
development and adult lifetime of mammals. Aberrations within these two pathways result in a 
wide range of pathologies, such as cancer, in�ammatory and immune diseases, as well as metabolic 
diseases (1–4). �e Wnt/β-catenin and NF-κB signaling pathways regulate, through independent 
cascades, the expression of di�erent subsets of target genes controlling cell proliferation, cell survival, 
and di�erentiation. In addition to these shared functions, Wnt/β-catenin signaling is crucial for 
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diphtheria toxin-like 1; BCR, B-cell receptor; CBP, cAMP response element-binding protein-binding protein; CKI, casein 

kinase I; ConA, concanavalin A; COX-2, cyclooxygenase-2; CRD-BP, coding region determinant-binding protein; CREB, 

cAMP response element-binding protein; CRP, C-reactive protein; CtBP1, C-terminal binding protein-1; DCs, dendritic cells; 

DKK1, Dickkopf1; DVL, disheveled; EDA, ectodysplasin; EDAR, ectodysplasin receptor; ER, endoplasmic reticulum; FOXO, 
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development and tissue regeneration, whereas NF-κB is a key 
master of  in�ammation. Recent �ndings suggest that the two 
signaling pathways cross-regulate each of their activities and 
functions.

Crosstalk of signaling pathways extends the functions of 
individual pathways and results in a more complex regulatory 
network, inherent to the diversity and homeostasis of biological 
systems. Wnt/β-catenin pathway components modulate in�am-
matory and immune responses via the interaction with NF-κB 
(5). Reciprocally, NF-κB also in�uences the activity of Wnt/β-
catenin signaling pathway. Depending on the cellular or tissue 
context, both positive and negative cross-regulation has been 
observed. �e crosstalk between these two pathways can thus 
signi�cantly in�uence the progression of in�ammation and 
cancer. Intensive research has revealed NF-κB signaling as an 
attractive target for the treatment of in�ammatory diseases and 
 in�ammation-associated cancer (6–8). Members of the Wnt/β-
catenin pathway also serve as potential therapeutic targets for 
many types of cancer (9). Understanding the molecular basis 
for the cross-regulation thus helps elucidating the underlying 
pathophysiological mechanisms for in�ammation-involved dis-
eases and for developing more speci�c and e�ective therapeutic 
options against these diseases.

In this review, we summarize the current evidence for both 
positive and negative regulation of NF-κB-mediated in�amma-
tion by Wnt/β-catenin signaling and elaborate on the underlying 
molecular mechanisms. We also describe the reciprocal regula-
tion of Wnt/β-catenin signaling by the NF-κB pathway and novel 
models for the cooperation of these two pathways in regulating 
gene transcription. �e major components involved in the cross-
regulation are discussed. We sought to describe the complexity of 
the crosstalk between Wnt/β-catenin and NF-κB signaling to link 
it with the biological importance for in�ammation and cancer, 
and to discuss its potential impact on the development of new 
therapeutic options.

WNT/β-CATENIN SIGNALING PATHWAY

Wnt proteins are lipid-modi�ed in the endoplasmic reticulum 
(ER), tra�c through the Golgi to the plasma membrane, and are 
secreted into the extracellular space (1). Both the human and 
mouse genome harbors 19 Wnt genes (10). �ese Wnt proteins 
are structurally and functionally conserved, and selectively 
expressed in certain cell types. Extracellular Wnt proteins 
activate either the β-catenin-dependent, canonical signaling 
pathway through engagement of the co-receptors frizzled (FZD) 
and low-density lipoprotein receptor-related protein (LRP) or 
the β-catenin-independent, non-canonical pathway via various 
receptors such as FZD, receptor tyrosine kinase (Ryk), and 
receptor tyrosine kinase-like orphan receptor (Ror). β-Catenin 
is the central mediator of the canonical signaling cascade and 
functions as an adhesion molecule at the plasma membrane (11). 
In the absence of Wnt stimulation, β-catenin in the cytoplasm is 
constitutively targeted for degradation by the destruction com-
plex consisting of adenoma polyposis coli (APC), axin, glycogen 
synthase kinase 3 (GSK-3), and casein kinase I (CKI) (Figure 1). 
�is complex binds to cytosolic β-catenin and facilitates the 

latter’s sequential phosphorylation by CKI (at S45) and GSK-3 
(at S33/S37/T41). Phosphorylated β-catenin is then recognized 
and ubiquitinated by β-transducing repeat-containing protein 
(βTrCP), which tags it for degradation by the proteasome. In the 
absence of Wnt stimulation, the cytoplasmic levels of β-catenin 
are thus tightly controlled by this degradation complex. Upon 
binding of Wnt proteins to the FZD receptor and LRP5/6 co-
receptor, the intracellular phosphoprotein disheveled (DVL) is 
activated, causing the inactivation of the degradation complex 
and cytoplasmic accumulation of β-catenin. A�er transloca-
tion into the nucleus, β-catenin associates with T cell factor/
lymphoid enhancer factor (TCF/LEF) transcription factors and 
promotes the transcription of its target genes. �ere are four 
TCF/LEF transcription factor members in vertebrates: TCF1, 
TCF3, TCF4, and LEF1. �ey all contain a β-catenin interaction 
domain at the N-terminus and recognize the same consensus 
DNA-binding sequences but are structurally and functionally 
somewhat di�erent (12). Interestingly, the β-catenin:TCF/
LEF machinery not only activates gene expression but also 
directly represses the transcription of certain target genes (13). 
Additional co-factors, e.g., cAMP response element-binding 
protein (CREB)-binding protein (CBP)/p300 (14) and ADP-
ribosyltransferase diphtheria toxin-like 1 (ARTD1, also known 
as PARP1) (15), are involved in the transcriptional regulation 
of Wnt signaling.

Expression of Wnt/β-catenin signaling target genes regulates 
stemness (e.g., NANOG and OCT4), proliferation (e.g., CCND1 
and MYC), di�erentiation (e.g., SOX9 and RUNX2), and immune 
responses (e.g., CTLA4 and TNFSF9), revealing a broad control of 
organismal and cellular functions by the Wnt/β-catenin pathway 
(http://web.stanford.edu/group/nusselab/cgi-bin/wnt/). Aberrant 
constitutive activation of Wnt/β-catenin signaling caused by muta-
tions in genes, such as APC or CTNNB1 (encoding β-catenin), is 
involved in tumorigenesis of many organs including intestine, 
stomach, liver, ovaries, and pancreas (9, 16). Repression of the Wnt 
pathway by extracellular inhibitors, such as Dickkopf1 (DKK1), 
Wnt inhibitory factor 1 (WIF1), or secreted frizzled-related pro-
teins (SFRPs), has also been observed in human cancers (16, 17).

Many chemical inhibitors against the Wnt/β-catenin pathway, 
targeting various components such as porcupine, DVL, tankyrase, 
or TCF/LEF, have been developed (9). Some reduce Wnt ligand 
activity and/or the β-catenin protein level, while some directly 
block transcriptional activity. Wnt/β-catenin signaling has been 
reported to crosstalk with many other signaling pathways, includ-
ing NF-κB, mothers against decapentaplegic homolog 3 (Smad3), 
Notch, forkhead box O (FOXO), and hypoxia-inducible factor-1α 
(HIF-1α), extending the spectrum of biological functions of this 
pathway (18–22).

NF-κB SIGNALING PATHWAY

�e NF-κB transcription factor family consists of �ve members 
trapped in the cytoplasm under non-activated conditions: NF-κB1 
(p50/p105), NF-κB2 (p52/p100), RelA (p65), RelB, and c-Rel 
(23). �ey all possess a structurally conserved amino-terminal 
Rel-homology domain (RHD), which contains the dimerization, 
nuclear localization, and DNA-binding domains. RelA, RelB, and 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
http://web.stanford.edu/group/nusselab/cgi-bin/wnt/


FIGURE 1 | Current knowledge on the cell type/context-dependent regulation of NF-κB signaling by Wnt/β-catenin pathway. Boxes in red and green 

colors indicate negative and positive regulations, respectively. Box 1: inhibition of NF-κB nuclear translocation by β-catenin-mediated sequestration or upregulation 

of IκB; Box 2: downregulation of TLR4 expression by β-catenin; Box 3: repression of NF-κB target gene expression through recruitment of corepressor at 

NF-κB-binding elements; Box 4: downregulation of NF-κB target gene expression through inhibition of CBP-mediated acetylation of NF-κB; Box 5: induction of p38 

activity and p38-mediated NF-κB activation by β-catenin; Box 6: promotion of βTrCP-mediated IκB degradation through transcriptional upregulation of CRDBP by 

Wnt/β-catenin and CRD-BP-mediated BTRC (βTrCP) mRNA stabilization; Box 7: induction of NF-κB activity through transcriptional upregulation of TNFRSF19 

mRNA; and Box 8: enhancement of NF-κB target gene expression through cooperation of β-catenin:TCF/LEF and NF-κB transcriptional complexes. PAMPs, 

pathogen-associated molecular patterns; DAMPs, danger-associated molecular pattern molecules; β-Cat, β-catenin; P, phospho; ac, acetyl.
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c-Rel (but not p50 or p52) also have a transactivation domain 
that promotes gene transcription. Upon activation, the NF-κB 
subunits form either a homo- or heterodimer. NF-κB signaling is 
divided into the NF-κB essential modulator (NEMO)-dependent, 
canonical pathway and the NEMO-independent, non-canonical 
pathway. Various signals, including cytokines, growth factors, 
microbial products, stress-inducing stimuli such as radiation 
and oxidative stress, and engagement of T cell receptor (TCR), 
induce canonical NF-κB signaling (4, 8, 24). �ese stimuli acti-
vate membrane-bound receptors, including the tumor necrosis 
factor receptor superfamily (TNFRSF) and interleukin-1 receptor 
(IL-1R)/Toll-like receptor (TLR) superfamily as well as TCR, 
or intracellular mediators, culminating in the activation of the 
inhibitor of kappa B (IκB) kinase (IKK) complex, composed of 
the sca�old protein NEMO (IKKγ) and two IKK subunits (IKKα 
and IKKβ). �e IKK complex subsequently phosphorylates IκB 
proteins, resulting in their ubiquitination and subsequent protea-
somal degradation. As a result, the NF-κB dimers now translocate 
to the nucleus, where they regulate the expression of target genes. 

�e main activated NF-κB dimers formed in the canonical path-
way are RelA/p50 and RelA/p52 (4). Co-factors, such as CBP/
p300 and ARTD1, participate in the regulation of NF-κB target 
gene transcription (25, 26).

By controlling the expression of a broad spectrum of target 
genes, such as for cytokines, chemokines, growth factors, immune 
receptors, transcription factors, and repressors of apoptosis, 
NF-κB functions as a crucial coordinator of in�ammatory and 
immune responses, as well as cell di�erentiation, proliferation, 
and survival. Dysregulation of NF-κB has been implicated in 
diverse in�ammatory disorders such as rheumatoid arthritis, 
multiple sclerosis, asthma, and in�ammatory bowel disease (3, 
7, 8). NF-κB also regulates cancer development, either through 
direct control of cell proliferation and apoptosis or induction of 
cancer-related in�ammation and tumor immunity (6, 7). �us, 
NF-κB is an attractive therapeutic target for treating in�am-
matory diseases and cancers. �is review focuses on canonical 
NF-κB signaling, as it is the main cascade that crosstalks with 
Wnt/β-catenin.
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REGULATION OF NF-κB SIGNALING  
BY THE WNT/β-CATENIN PATHWAY

Negative Regulation of NF-κB Signaling  
by Wnt/β-Catenin
�e �rst compelling evidence that Wnt/β-catenin negatively 
regulates NF-κB activity came from the observation that overex-
pressed β-catenin physically interacted with and inhibited NF-κB 
function in human colon and breast cancer cells (18) (Table 1). 
In this study, β-catenin was found to form a complex with RelA 
and p50, leading to a decrease in NF-κB DNA binding and trans-
activation activity, and target gene expression. Interestingly, the 
protein–protein interaction between β-catenin and NF-κB was 
only indirect, as these two proteins did not bind to each other 
in an in vitro pull down assay using only β-catenin and NF-κB 
recombinant proteins, while the formation of a complex occurred 
when cell lysates were supplemented. Activated β-catenin inhib-
ited the expression of the NF-κB target gene FAS, thus possibly 
contributing to tumorigenesis through repression of Fas-mediated 
apoptosis. A strong inverse correlation between β-catenin and 
Fas expression was also identi�ed in primary human colon and 
breast tumor samples, supporting an in vivo regulation of NF-κB 
by β-catenin. Further studies also revealed a negative e�ect of 
β-catenin on NF-κB activity and expression of downstream target 
genes in liver, breast, and colon cancer cells (27, 28). However, 
such correlation was not seen in head and neck cancer (29), 
indicating a tissue-speci�c mechanism and/or more complex 
regulatory network for these genes. �e physical interaction and 
functional inhibition of NF-κB by β-catenin in colorectal cancer 
cells was demonstrated to require phosphatidylinositide 3-kinase 
(PI3K) (30). Blockade of PI3K by chemical inhibitors abrogated 
the formation of β-catenin and NF-κB protein complexes. In 
resting colorectal cancer cells, β-catenin and NF-κB colocalized 
in the cytoplasm, and treatment with PI3K inhibitor resulted in 
the nuclear translocation of NF-κB and membrane retention of 
β-catenin. However, it is not clear whether PI3K directly serves 
as a bridging factor between β-catenin and NF-κB or alternatively 
plays a role in β-catenin-mediated repression of NF-κB activated 
by di�erent stimuli.

�e inhibitory e�ect of β-catenin on NF-κB activity has also 
been found in many non-tumor cell types, including chondro-
cytes (31), �broblasts (32), epithelial cells (33, 34), osteoblasts 
(35), and hepatocytes (5, 36) (Table 1). In human chondrocytes, 
Wnt-3A stimulation or overexpression of Wnt-7B or β-catenin 
repressed IL-1β-induced expression of IL6 and matrix metallo-
proteinase (MMP) genes, including MMP1, MMP3, and MMP13 
(31). Physical interaction of β-catenin with RelA and p50 and 
a reduction in NF-κB reporter activity by Wnt-3A stimulation 
were observed in this cell type. Notably, a recent study in human 
�broblasts showed that IL-1β-induced nuclear translocation of 
RelA was not directly regulated by Wnt-3A co-stimulation in the 
initial phase (i.e., 4 h) a�er NF-κB activation (32). �e repression 
of NF-κB activity by Wnt/β-catenin was rather achieved through 
a reduction in CBP-mediated acetylation of RelA (Figure 1). �e 
negative e�ect of Wnt/β-catenin on NF-κB was mediated through 
CBP, since knockdown of CBP eliminated the downregulation 
of IL-1β-elicited cytokine expression by Wnt-3A. �e selective 

repression of a subset of proin�ammatory cytokine expression by 
Wnt/β-catenin might be attributed to RelA acetylation-dependent 
gene expression.

Also in bacteria-colonized intestinal epithelial cells, overex-
pression of constitutively active mutant β-catenin or activation 
of β-catenin by GSK-3 inhibition lead to a reduction in NF-κB 
activity and expression of the target genes IL6, IL8, and TNFA 
[encoding tumor necrosis factor-α (TNF-α)], indicating an anti-
in�ammatory function of β-catenin (33, 34). In line with this 
notion, lipopolysaccharide (LPS) or concanavalin A (ConA)/
TNF-α-induced IκB-α phosphorylation and nuclear transloca-
tion of RelA were decreased in osteoblasts treated with GSK-3 
inhibitor (35) or in hepatocytes with higher β-catenin levels (36). 
Moreover, cisplatin- or virus-induced nuclear translocation of 
RelA was also found to be impaired in cochlea cell line HEI-OC1, 
monkey kidney MARC-145 cells, and pulmonary alveolar mac-
rophages PAM-CD163 treated with a GSK-3 inhibitor (37, 38). 
Comparably, bacteria or TNF-α-induced IκB-α degradation was 
decreased in HCT116 epithelial cells overexpressing constitu-
tively active β-catenin (33) (Figure 1). However, IκB-α was not 
able to complex with β-catenin in these cells, suggesting that 
IκB-α stabilization is independent of direct β-catenin binding. It 
is conceivable that a reduction in IκB-α degradation by β-catenin 
increases the cytoplasmic retention of NF-κB. �e discrepancy 
of the e�ect of Wnt/β-catenin on IκB-α degradation and NF-κB 
nuclear translocation between di�erent studies might be due to 
di�erent cell types used and/or ways to modulate Wnt/β-catenin 
and NF-κB signaling. Compared to blocking the overall nuclear 
translocation of NF-κB, which might in�uence all target genes, 
the regulatory e�ect of β-catenin on RelA post-translational 
modi�cations provides a more elaborate and selective control.

In a study of the transcriptional regulation of the tumor 
metastasis suppressor gene KAI1 in prostate cancer cells, 

β-catenin functioned as corepressor, in association with reptin, 

to inhibit p50-mediated KAI1 expression (39) (Figure  1). In 

non-metastatic cells, KAI1 was actively transcribed by p50 and 

the transcriptional coactivator Tip60. In metastatic cells where 

β-catenin was upregulated, β-catenin–reptin complex displaced 
Tip60, bound to p50 at the KAI1 promoter and recruited histone 
deacetylase (HDAC), eventually leading to transcriptional repres-
sion. �e balance between the transcriptional coactivator and 
corepressor complexes determined the expression level of KAI1 
and metastatic potential of cancer cells. �is cell-type-speci�c 
and promoter-speci�c property underlying β-catenin and NF-κB 
crosstalk was a unique molecular mechanism for selectively 
regulating the function of Wnt/β-catenin and might be crucial 
for cancer metastasis.

A negative regulation of NF-κB signaling by Wnt/β-catenin 
was also observed in hepatocytes from conditional β-catenin 
knockout (KO) mice, where lack of β-catenin was found to 
increase RelA protein levels and LPS-induced NF-κB activation 
(26). A survival bene�t was also observed in d-galactosamine 
(GalN)/LPS-challenged β-catenin KO mice but not in KO mice 
with Fas activation, indicating an NF-κB-dependent e�ect, as the 
NF-κB-mediated anti-apoptotic e�ect was enhanced in hepato-
cytes of GalN/LPS-challenged KO mice, whereas Fas ligand/
caspase-mediated apoptosis remained unchanged.
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TABLE 1 | Overview of cell type/context-dependent regulatory effects of Wnt/β-catenin pathway on NF-κB signaling.

Wnt/β-catenin modulation Cell types NF-κB stimulus Effect on NF-κB signaling Effect of Wnt/β-catenin on cells Reference

Part A. Negative regulation

↑ β-Catenin overexpression Colon and breast 

cancer cells

TNF-α Inhibitory physical interaction of β-catenin with 

NF-κB

Inhibition of Fas expression and cell apoptosis by β-catenin (18, 30)

↑ β-Catenin overexpression;  

↓ APC overexpression

Colon and liver 

cancer cells

TNF-α; 

TNF-α + IL-1β + IFNγ

Inhibitory physical interaction of β-catenin with 

NF-κB

Inhibition of iNos and Fas expression by β-catenin (27)

↑ GSK3 inhibitor LiCl;  

↑ β-catenin overexpression;  

↓ β-catenin knockdown

Colon and breast 

cancer cells

None Increased NF-κB nuclear accumulation and 

activation by β-catenin knockdown

Downregulation of uPA/uPAR expression and promotion of 

cancer cell invasion by β-catenin activation

(28)

↑ Wnt-3A;  

↑ GSK3 inhibitor BIO;  

↓ β-catenin knockdown

Human 

chondrocytes

IL-1β Inhibitory physical interaction of β-catenin with 

NF-κB

Downregulation of MMP and IL6 expression by β-catenin 

activation

(31)

↑ Wnt-3A;  

↑ β-catenin overexpression

Human �broblasts IL-1β; TNF-α Reduction in CBP-mediated acetylation of  

RelA by β-catenin

Decrease in expression of cytokines including IL-1β and IL-6 by 

β-catenin activation

(32)

↑ GSK3 inhibitor LiCl;  

↑ mutation-induced stabilization 

of β-catenin

Intestinal epithelial 

cells

Salmonella  

typhimurium; TNF-α

Decrease in bacteria- or TNF-α-induced IκB-α 

degradation and NF-κB activity by β-catenin 

activation

Reduction in expression of cytokines including IL-6, IL-8, and 

TNF-α by β-catenin activation

(33, 34)

↑ GSK3 inhibitor SB216763;  

↓ β-catenin knockdown

Osteoblasts LPS Decrease in IκB-α phosphorylation, RelA nuclear 

translocation and RelA DNA-binding activity by 

β-catenin

Repression of CD40 expression and production of cytokines 

including IL-6, TNF-α, and IL-1β

(35)

↑ Enhanced β-catenin in PTPRO 

knockout mice

Hepatocytes Concanavalin A Attenuated NF-κB nuclear translocation and 

activation by complexing of β-catenin and NF-κB

Increase in hepatocyte apoptosis and decrease in cytokine 

secretion in T and NK/NKT cells 

(36)

↑ Differential intrinsic β-catenin 

levels in cell lines;  

↑ β-catenin overexpression;  

↓ β-catenin knockdown

Prostate cancer IL-1β Recruitment of transcriptional corepressors reptin 

and HDAC to p50 on KAI promoter by β-catenin

Downregulation of tumor metastasis suppressor KAI1 and 

metastatic potential of cancer cells by β-catenin

(39)

↑ GSK3 inhibitor LiCl;  

↓ β-catenin knockdown

Diffuse large B-cell 

lymphoma cells

None Differential regulations of NF-κB target genes by 

β-catenin

Suppression of antitumoral CCL3 by activated β-catenin in 

conjunction with NF-κB

(48)

↓ β-Catenin conditional knockout 

in mouse liver;  

↓ β-catenin knockdown

Hepatocytes D-galactosamine + LPS;  

LPS

Enhanced NF-κB activation by dissociation of 

β-catenin from the RelA/β-catenin complex

Increase in hepatocyte survival and decrease in morbidity and 

liver injury 

(5)

↓ β-Catenin knockdown Dendritic cells  

(DCs)

LPS Upregulation of PTEN/TLR4 expression and  

NF-κB by β-catenin knockdown

Increase in proin�ammatory cytokine programs in DCs and liver 

ischemia–reperfusion injury by β-catenin knockdown in mice

(40)

Part B. Positive regulation

↑ Overexpression of Wnt-1,  

Wnt-2, β-catenin, or TCF4;  

↓ dnTCF4 overexpression

293T cells, primary 

human tumors

IKK overexpression Induction of BRTC (βTrCP) mRNA stabilization,  

βTrCP-mediated IκB-α degradation, and NF-κB 

activation by β-catenin/TCF

Enhancement of NF-κB-mediated anti-apoptotic function by 

β-catenin/TCF in cancers

(43, 45)

↑ Overexpression of Wnt-1  

or β-catenin;  

↓ dnTCF4 overexpression

Vascular smooth 

muscle cells

TNF-α Increase of BRTC (βTrCP) mRNA level and 

subsequent NF-κB activation by β-catenin/TCF

(44)

↑ Apc conditional knockout in 

mouse liver

Hepatocytes LPS Upregulation of NF-κB activity by β-catenin Induction of in�ammatory program by β-catenin (51)

↑ Accumulation of β-catenin by 

E-cadherin loss;  

↑ β-catenin overexpression

Melanoma cells None Induction of p38 activity and p38-mediated  

NF-κB activation by β-catenin

(53)

(Continued)
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In dendritic cells (DCs), knockdown of β-catenin enhanced 
TLR4 expression, and LPS-induced NF-κB activation and proin-
�ammatory cytokine programs, providing a potential regulatory 
mechanism independent of physical interaction of β-catenin 
with NF-κB (40) (Figure 1). Disruption of β-catenin upregulated 
phosphatase and tensin homolog deleted on chromosome 10 
(PTEN), leading to reduced Akt phosphorylation and Akt-
mediated suppression of TLR4. Enhanced TLR4 signaling might 
thus result in NF-κB activation and increased DC expression of 
proin�ammatory mediators. Elevated in�ammatory responses by 
ablation of β-catenin in DCs were also observed in a mouse model 
of in�ammatory bowel disease, although the dependency of this 
e�ect on NF-κB regulation was not investigated (41). In sum-
mary, these studies reveal an anti-in�ammatory role of β-catenin 
and that β-catenin signaling programs DCs to a tolerogenic state, 
limiting the in�ammatory response.

�ese evidences clearly indicate a repressive e�ect of the 
Wnt/β-catenin pathway on basal or stimuli-induced NF-κB 
activity in various cell types via di�erent mechanisms. However, 
the underlying molecular mechanisms seem to be cell type- and/
or gene-speci�c.

Positive Modulation of NF-κB Activity  
by Wnt/β-Catenin
While many studies have revealed a negative regulation of NF-κB 
activity by Wnt/β-catenin, stimulatory e�ects of Wnt/β-catenin on 
NF-κB activity have also been reported (Table 1). βTrCP (encoded 
by the BTRC gene) is an E3 ubiquitin ligase receptor targeting 
the ubiquitination and subsequent degradation of both β-catenin 
and IκB-α (42). Wnt/β-catenin activation by overexpression of 
β-catenin or Wnt proteins elevated βTrCP expression, resulting in 
enhanced degradation of IκB-α and consequently NF-κB transac-
tivation without a�ecting IKK activity (43). Induction of βTrCP 
by β-catenin/TCF also accelerated the degradation of β-catenin, 
serving as an indirect negative feedback loop. In vascular smooth 
muscle cells, Wnt-1 activated β-catenin/TCF4-mediated βTrCP 
expression and NF-κB activity (44). Furthermore, it was demon-
strated that βTrCP mRNA was stabilized by β-catenin/TCF via 
transcriptional upregulation of its target gene CRDBP. Coding 
region determinant-binding protein (CRD-BP, encoded by the 
CRDBP gene) was found to bind the coding region of βTrCP 
mRNA, stabilized βTrCP mRNA, and elevated its protein level 
(45) (Figure  1). Induced BTRC and CRDBP expression was 
associated with the activation of both β-catenin and NF-κB in 
colorectal cancer, implying that integration of these pathways by 
βTrCP and CRD-BP might contribute to a reduction in tumor 
cell apoptosis and promotion of tumor metastasis (45, 46). �ese 
results suggest that βTrCP and CRD-BP levels are important for 
coordinating β-catenin/TCF and NF-κB signaling.

It has been demonstrated that stimulation of TLR3 drives 
breast cancer cells toward a cancer stem cell phenotype, which 
requires simultaneous activation of the β-catenin and NF-κB 
signaling pathway, implying a cooperative and synergistic 
function of β-catenin in TLR3-activated NF-κB signaling (47). 
A recent study illustrated that the oncogenic mutant sca�old pro-
tein CARMA1 causes β-catenin stabilization and connects B-cell 
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receptor (BCR) signaling to NF-κB signaling, thereby coupling 
β-catenin and NF-κB pathways in di�use large B-cell lymphomas 
(48). Increased β-catenin levels were su�cient to induce classical 
Wnt target gene signatures and additionally were able to augment 
expression of the immunosuppressive IL10 and to suppress the 
antitumoral CCL3 in conjunction with NF-κB (Figure 1), thus 
inducing a favorable tumor microenvironment. �ese data indi-
cate that the e�ects of β-catenin on NF-κB target gene expression 
could be gene-dependent in the same cellular context. In line with 
this notion, downregulation of proin�ammatory cytokine expres-
sion and synergistic upregulation of adhesion molecule VCAM1 
by Wnt/β-catenin activation were observed in human �broblasts 
stimulated with IL-1β (32). Interestingly, a β-catenin:TCF/LEF 
complex has been shown to bind to promoters of NF-κB target 
genes, such as CRP (C-reactive protein) and MMP13, and posi-
tively regulate gene transcription through gene looping in concert 
with NF-κB (49, 50) (Figure 1). In 293T and HepG2 cells treated 
with TNF-α, both β-catenin and p50 were required for CRP 
expression (49). β-Catenin/TCF4 bound to the CRP gene at a site 
distant to the p50 binding element and physically interacted with 
p50 through changes in chromosome conformation as detected 
by 3C chromosome capture assay. �e β-catenin/TCF4 complex 
might constitute the necessary transcriptional machinery, since 
p50 lacks a transactivation domain. Similarly, in mouse chondro-
cytes stimulated with IL-1β, β-catenin/LEF1 together with RelA 
formed a transcriptional complex through gene looping in the 
Mmp13 genomic locus to regulate gene transcription (50).

Intriguingly, in contrast to the study in which deletion of 
β-catenin increased RelA protein levels and target gene expression 
in hepatocytes from conditional β-catenin KO mice challenged 
with LPS (5), β-catenin activation in hepatocytes of Apc KO mice 
also potentiated NF-κB activity as judged from electrophoretic 
mobility shi� assay (EMSA) experiments and an in�ammatory 
program including upregulation of NF-κB-induced chemokines 
(51). �ese discrepant �ndings might be explained by β-catenin 
and Apc KO leading to the same e�ect but by di�erent mechanisms. 
Although β-catenin and Apc KO lead to inactivation and activation 
of the canonical Wnt pathway, respectively, the elevated NF-κB 
activity in the liver of Apc KO mice might be caused indirectly by 
tumor-triggered-in�ammation, e.g., recruitment of immune cells 
and subsequent in�ammatory responses in tumor microenviron-
ment. Moreover, Wnt/β-catenin signaling-independent functions 
of APC has also been proposed, such as control of C-terminal 
binding protein-1 (CtBP1) degradation, retinoic acid (RA) bio-
synthesis, and cyclooxygenase-2 (COX-2) expression (52), which 
may as well in�uence the in�ammatory response. In addition, it is 
possible that the use of di�erent promoter-driven Cre to generate 
conditional KO in di�erent cell populations might have invariant 
e�ects, as the e�ect of Wnt/β-catenin activation may di�er in dif-
ferent subpopulations of cells. In melanoma cells, E-cadherin loss 
and cytoplasmic β-catenin accumulation triggered p38-mediated 
NF-κB activation (53). Similarly, E-cadherin disassembly and 
concomitant GSK-3β inactivation and β-catenin accumulation 
induced NF-κB-dependent inducible nitric oxide synthase (iNOS) 
gene expression in hepatocytes (54). Furthermore, E-cadherin in 
mesenchymal cells formed a complex with β-catenin and RelA 
and prevented RelA nuclear translocation, thus downregulating 

�bronectin gene expression, which is positively regulated by 
both proteins (55). �ese evidences suggest that E-cadherin is 
involved in the interaction of β-catenin and NF-κB. In THP-1 
cells, stimulation with recombinant Wnt-1 proteins or over-
expression of Wnt-1 induced increased RelA protein levels 
and production of proin�ammatory cytokines, including IL-6 
and TNF-α, through induction of scavenger receptor A (SRA) 
expression, which activated NF-κB in response to LPS, although 
the involvement of β-catenin was not con�rmed (56). In another 
study using colorectal cancer cells, TNFRSF19 was identi�ed 
as target gene downstream of the Wnt/β-catenin pathway and 
TNFRSF19 ligands activated NF-κB signaling, thus revealing 
an indirect way by which β-catenin positively regulates NF-κB 
activity (57). In human bronchial epithelial cells, depletion of 
β-catenin by siRNA reduced LPS-induced NF-κB activation and 
proin�ammatory cytokine expression (58). Overexpression of 
TCF4 in human chondrocytes augmented NF-κB activity and 
expression of downstream target genes for several MMPs and 
proin�ammatory cytokines, while LEF1 did not exhibit the same 
e�ect (59), suggesting that the synergistic e�ect of β-catenin and 
NF-κB transcriptional activity might depend on the TCF/LEF 
family member depending on the context of genes or cell type. 
In summary, these studies suggest a potential proin�ammatory 
function of Wnt/β-catenin, which, however, still needs further 
clari�cation.

Importantly, the same treatment condition (e.g., with receptor 
agonists/antagonists or enzyme inhibitors) can in�uence NF-κB 
activity di�erently, depending on whether it is basal or stimulus-
induced. For example, it has been shown that hypoxia or prolyl-
hydroxylase inhibition upregulates basal NF-κB activity, while it 
downregulates IL-1β-induced NF-κB activity in HeLa cells (60, 
61). �erefore, although not reported yet, it is possible that under 
certain conditions, opposing e�ects of Wnt/β-catenin on NF-κB 
activity might also be observed between a basal and an induced 
NF-κB status, or even among di�erent NF-κB-inducing stimuli, 
as di�erent NF-κB pathway components might be involved under 
these conditions.

Control of NF-κB Signaling  
Activity by GSK-3
While GSK-3 inhibition induced a β-catenin-dependent, nega-
tive e�ect on NF-κB activation and expression of subsets of target 
genes, β-catenin-independent regulation of NF-κB activity by 
GSK-3 has also been reported (62, 63). �ese two branches might 
be induced simultaneously to regulate the same targets and might 
as well as control di�erent target genes and biological functions. 
Overexpression of GSK-3β resulted in repression of TNF-α-
induced NF-κB activation, while overexpression of β-catenin 
had a minimal e�ect on NF-κB activity in endometrial carcinoma 
cells (62). GSK-3β overexpression stabilized IκB, thereby inhibit-
ing NF-κB signaling. GSK-3β directly phosphorylated RelA and 
negatively controlled the basal activity of NF-κB (63). In contrast 
to the negative role of GSK-3 in NF-κB activation, GSK-3β also 
positively regulated NF-κB activity without changing IκB deg-
radation or NF-κB nuclear translocation in mouse embryonic 
�broblasts (MEFs) (64).
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In monocytes treated with TLR agonists, GSK-3 inhibition 
enhanced CREB-mediated IL10 expression but repressed the pro-
duction of NF-κB-mediated proin�ammatory cytokines through 
di�erentially a�ecting the interaction of nuclear RelA and CREB 
with coactivator CBP (65). GSK-3 inhibition increased binding 
of CBP to CREB but suppressed the binding of CBP to nuclear 
RelA. In glioma cells, GSK-3 inhibition caused a drastic decrease 
in NF-κB activity (66). A study in mice also showed that GSK-3 
inhibition signi�cantly reduced TLR-mediated chronic intestinal 
in�ammation (67). However, the involvement of β-catenin in the 
regulatory function of GSK-3 inhibition was not explored in these 
studies.

It would be interesting to further investigate if di�erent GSK-3 
pools are used in Wnt and NF-κB pathways, respectively, upon 
induction of these pathways and whether also extracellular Wnt-
induced signaling regulates NF-κB activity through GSK-3.

Anti- and Proin�ammatory  
Roles of Wnt/β-Catenin Signaling
Given both repressing and stimulating e�ects of Wnt/β-catenin 
signaling on NF-κB activity, it is not surprising that Wnt/β-
catenin possesses both anti- and proin�ammatory functions 
at the organismal level. �e exact outcome might thus be 
context-dependent and/or a question of the balance between two 
contrary functions. So far, most evidence supports that Wnt/β-
catenin signaling downregulates production of proin�ammatory 
cytokines, including IL-1β, IL-6, IL-8, and TNF-α, in di�erent cell 
types and stimulated with various stimuli, such as LPS, cytokines, 
viruses, and bacteria, regardless of the responsible mechanisms 
for Wnt/β-catenin-mediated repression of NF-κB activity (31–35, 
37, 38).

An anti-in�ammatory role of Wnt/β-catenin pathway in vivo 
has been demonstrated in mice (40, 41). In a mouse model of 
warm liver ischemia and reperfusion injury (IRI), disruption 
of β-catenin signaling increased hepatocellular damage and 
enhanced hepatic DC maturation/function and PTEN/TLR4 
local in�ammation (40). �e protective e�ect of β-catenin was, at 
least partly, due to induction of PI3K/Akt signaling and a reduced 
TLR4-driven in�ammatory response in DCs. In agreement with 
this study, another study also points out an anti-in�ammatory 
role of β-catenin by demonstrating that depletion of β-catenin 
in DCs leads to enhanced in�ammatory responses and disease 
onset in a mouse model of in�ammatory bowel disease (41). In 
addition, GSK-3 inhibition potently suppressed in�ammatory 
responses in mice challenged with LPS (65). However, a cross-
regulation between NF-κB and β-catenin in these speci�c studies 
has yet to be proven.

Conversely, a proin�ammatory role of Wnt/β-catenin pathway 
in vivo has been observed in hepatocellular carcinoma in Apc KO 
mice (51). Oncogenic β-catenin signaling induced an in�amma-
tory program in hepatocytes that involved a direct transcriptional 
control by β-catenin and activation of the NF-κB pathway. A 
subset of chemokines was induced by β-catenin activation while 
none of the canonical proin�ammatory cytokines was in�uenced, 
implying that oncogenic β-catenin signaling may promote 
tumor-associated in�ammation indirectly through shaping the 

cellular compositions in the microenvironment. Another study 
also reported a positive e�ect of β-catenin in LPS-induced proin-
�ammatory cytokine production in human bronchial epithelial 
cells (58).

In conclusion, both anti-in�ammatory and proin�ammatory 
functions of Wnt/β-catenin pathway were observed, depending 
on the conditions and regulated through di�erent mechanisms. 
Wnt/β-catenin also di�erentially a�ects NF-κB-mediated subsets 
of target genes and biological functions (e.g., in�ammation, cell 
proliferation, and apoptosis) in response to di�erent stimuli. It 
will be crucial to disentangle the precise role of Wnt/β-catenin 
signaling in in�ammation in a cell/tissue- and physiology/
pathology-speci�c context.

REGULATION OF WNT/β-CATENIN 
SIGNALING BY THE NF-κB PATHWAY

Crosstalk between Wnt/β-catenin signaling and the NF-κB path-
way not only consists of Wnt/β-catenin regulating NF-κB activity 
but also the reverse e�ect of NF-κB on Wnt/β-catenin signaling.

Negative Regulation of Wnt/β-Catenin 
Signaling by NF-κB Pathway
Several studies have reported a negative regulation of Wnt/β-
catenin by NF-κB (Table 2). NF-κB has been shown to indirectly 
regulate the Wnt/β-catenin pathway through regulation of target 
genes that a�ect β-catenin activity or stability. Leucine zipper 
tumor suppressor 2 (LZTS2), a putative tumor suppressor, has 
been shown to interact with β-catenin and inhibit its nuclear 
localization and transcriptional activity (68). Intriguingly, NF-κB 
activation was found to inhibit β-catenin/TCF activity through 
upregulation of LZTS2 in colon, liver, and breast cancer cells 
(Figure 2) but downregulate LZTS2 in glioma cells to promote 
β-catenin/TCF activity, strongly indicating a cell type-speci�c 
e�ect (69). Furthermore, NF-κB inhibited osteogenic di�erentia-
tion of mesenchymal stem cells (MSCs) by promoting β-catenin 
degradation through induction of the E3 ubiquitin protein ligases 
SMAD ubiquitination regulatory factor 1 (Smurf1) and Smurf2 
(70). In colon cancer cells, an extract of Polysiphonia japonica 
downregulated transcriptional activity of Wnt/β-catenin signal-
ing and downstream target gene expression through activation 
of NF-κB without altering β-catenin levels (71). However, the 
underlying molecular mechanisms of this �nding remain to 
be elucidated. It is possible that NF-κB activation inhibits the 
nuclear translocation of β-catenin, as previously described (68), 
or represses the activity or expression levels of Wnt pathway 
transcriptional (co-)factors other than β-catenin.

In endometrial carcinoma cells, overexpression of RelA nega-
tively regulated transcriptional activity of β-catenin/TCF (62). 
In this study, RelA was proposed to inhibit β-catenin-mediated 
transcription via sequestration of the transcriptional coactivator 
p300 (Figure 2).

In summary, NF-κB signaling negatively regulates Wnt/β-
catenin pathway either indirectly through the functions of NF-κB 
target genes (e.g., LZTS2 and SMURF) or directly by interfering 
with the formation of transcriptional complex β-catenin/TCF/
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TABLE 2 | Overview of cell type/context-dependent regulatory effects of NF-κB pathway on Wnt/β-catenin signaling.

NF-κB modulation Cell types Wnt/β-catenin modulation Effect on Wnt/β-catenin signaling Effect of NF-κB on cells Reference

Part A. Negative regulation

↑ RelA overexpression Endometrial 

carcinoma cells

β-Catenin overexpression Sequestration of transcriptional co-factor p300 

from β-catenin and inhibition of β-catenin-mediated 

transcriptional activity by RelA

(62)

↑ Extract of Polysiphonia japonica 

(EPJ)

HEK293 cells, colon 

cancer cells

Wnt-3A; GSK-3 inhibitor LiCl Inhibition of Wnt/β-catenin transcriptional activity 

without altering β-catenin protein level by EPJ 

stimulation

Downregulation of Wnt/β-catenin 

target gene CCND1 by EPJ 

stimulation

(71)

↓ IKKβ small molecule inhibitor  

IKKVI;  

↑ TNF-α;  

↑ IL-17

Mesenchymal stem 

cells (MSCs)

None Induction of E3 ubiquitin-protein ligases Smurf1 and 

Smurf2 and promotion of Smurf-mediated degradation 

of β-catenin by NF-κB activation

Inhibition of osteogenic differentiation 

of MSCs by NF-κB activation

(70)

↑ RelA overexpression;  

↓ overexpression of NF-κB decoy;  

↓ NF-κB inhibitor SN50

Colon, liver and breast 

cancer cells

None Upregulation of LZTS2, decrease in nuclear 

translocation of β-catenin, and repression of β-catenin/

TCF transcriptional activity by NF-κB

(69)

↓ IKKβ knockout;  

↑ IKKβ overexpression

SW480 colon cancer 

cells, COS-7 kidney 

cells, MEFs

Overexpression of β-catenin or LEF1 Interaction of β-catenin with IKKβ, phosphorylation of 

β-catenin, and downregulation of β-catenin protein 

level by IKKβ

(72, 73)

Part B. Positive regulation

↑ RelA overexpression;  

↓ overexpression of NF-κB decoy;  

↓ NF-κB inhibitor SN50

Glioma cells, Human 

adipose tissue- or 

bone marrow-derived 

MSCs

None Downregulation of LZTS2, increase in nuclear 

translocation of β-catenin, and enhancement of 

β-catenin/TCF transcriptional activity by NF-κB

(69, 78)

↓ IKKα knockout;  

↑ IKKα overexpression

SW480 colon cancer 

cells, COS-7 kidney 

cells, MEFs

Overexpression of β-catenin or LEF1 Interaction of β-catenin with IKKα, phosphorylation of 

β-catenin, and upregulation of β-catenin protein level 

by IKKα

Upregulation of Wnt/β-catenin target 

gene CCND1 by IKKα

(72, 73)

↑ IKKα overexpression 293T cells Overexpression of β-catenin Inhibition of both GSK-3β/APC-dependent canonical 

and SIAH1-mediated non-canonical degradation 

pathways, and stabilization of cytosolic β-catenin 

proteins by IKKα

(74)

↓ RelA knockout in mouse intestines; 

↑ IκB-α knockout in mouse intestines; 

↑ RelA overexpression

Mouse intestinal 

epithelial cells, 293 

cells

β-Catenin stabilization mutation or 

Apc knockout in mouse intestines; 

overexpression of β-catenin or TCF4

Formation of transcriptional complex of RelA/p50 and 

β-catenin/TCF through CBP and enhancement of 

β-catenin/TCF transcriptional activity by NF-κB

Synergistic induction of β-catenin-

mediated stem cell signature gene 

expression and dedifferentiation of 

non-stem cells by NF-κB activation

(75)

↑ IL-1β;  

↓ NF-κB inhibitor SN50

Mouse chondrocytes None Direct binding of NF-κB to Lef1 promoter to induce 

transcription and enhancement of β-catenin/LEF1 

transcriptional activity by NF-κB

(77)

↑ TNF-α;  

↓ RelA knockout in mice

Macrophages, lung 

cancer cells

None Activation of β-catenin in tumor cells by NF-κB-

induced TNF-α from macrophages

Requirement of RelA for cigarette 

smoke-induced TNF-α production in 

macrophages and tumor cell growth

(76)
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FIGURE 2 | Current knowledge on the cell type/context-dependent regulation of Wnt/β-catenin signaling by NF-κB pathway. Boxes in red and green 

colors indicate negative and positive regulations, respectively. Box 1: inhibition of β-catenin nuclear translocation through NF-κB-induced transcriptional upregulation 

of LZTS2; Box 2: promotion of β-catenin degradation through NF-κB-induced transcriptional upregulation of Smurf; Box 3: promotion of β-catenin degradation by 

IKKβ; Box 4: reduction in Wnt/β-catenin target gene expression through sequestration of transcriptional co-factor p300 from β-catenin by NF-κB; Box 5: inhibition of 

β-catenin degradation by IKKα; Box 6: increase of β-catenin nuclear translocation by inhibition of LZTS2 expression by NF-κB; Box 7: enhancement of Wnt/β-

catenin target gene expression through cooperation of NF-κB and β-catenin:TCF/LEF transcriptional complexes; and Box 8: enhancement of β-catenin:TCF/LEF 

transcriptional activity through transcriptional upregulation of Lef1 expression by NF-κB. PAMPs, pathogen-associated molecular patterns; DAMPs, danger-

associated molecular pattern molecules; β-Cat, β-catenin; P, phospho.

10

Ma and Hottiger Wnt/β-Catenin and NF-κB Crosstalk

Frontiers in Immunology | www.frontiersin.org September 2016 | Volume 7 | Article 378

p300. �e direct mechanism may represent a more rapid and 
instant way to modulate Wnt/β-catenin signaling activity.

Positive Regulation of Wnt/β-Catenin 
Signaling by NF-κB Pathway
Several components of the NF-κB signaling pathway, including 
IKK (72–74) and RelA (75, 76), also seemed to be involved in the 
positive regulation of Wnt/β-catenin signaling (Table 2). IKKα 
and IKKβ, the critical activators of the NF-κB pathway, di�er-
ently regulated β-catenin-dependent transcriptional activity (72). 
IKKα increased β-catenin turnover, whereas IKKβ had a negative 
e�ect on β-catenin levels, although both IKKs interacted with and 
phosphorylated β-catenin. However, this study did not reveal 
any conclusive molecular mechanisms for the opposing e�ects 
of IKKα and IKKβ on β-catenin protein levels. In agreement with 
this study, IKKα, but not IKKβ, was found to upregulate β-catenin/
TCF transcriptional activity and expression of the downstream 
target gene CCND1 (encoding cyclin D1) (73). Furthermore, 
IKKα stabilized cytosolic β-catenin through inhibition of both 

the GSK-3β/APC-dependent canonical degradation pathway and 
seven in absentia homolog 1 (SIAH1)-mediated non-canonical 
degradation pathway (74) (Figure 2).

A novel role for NF-κB as transcriptional co-factors for 
β-catenin/TCF has been discovered in the study of dedi�eren-
tiation-induced intestinal tumorigenesis in mouse models (75). 
NF-κB activation potentiated Wnt/β-catenin signaling activity 
and induced dedi�erentiation of non-stem cells that acquired 
tumor-initiating capacity. �e RelA/p50 dimer was bound 
through CBP to the β-catenin/TCF transcription complex at tar-
get gene promoters and augmented the expression of a subset of 
stem cell signature genes such as Lgr5, Ascl2, and Sox9 (Figure 2).

NF-κB also positively regulated Wnt/β-catenin signaling by 
a�ecting expression of Wnt/β-catenin pathway genes (Table  2; 
Figure  2). In mouse chondrocytes, IL-1β-mediated NF-κB 
activation induced the expression of the Wnt/β-catenin pathway 
transcription factor Lef1, presumably the transcriptional activ-
ity of β-catenin/LEF, providing an indirect mechanism for the 
control of Wnt/β-catenin signaling pathway activity by NF-κB 
(77). In human adipose tissue-derived MSCs and bone marrow 
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stromal cells, activated NF-κB repressed the expression of LZTS2, 
which inhibited nuclear localization and transcriptional activity 
of β-catenin (78). �is is consistent with the observation in glioma 
but not breast cancer cells or colon and liver tissue, as discussed 
above (69). Interestingly, the regulation of Wnt/β-catenin signal-
ing by NF-κB can also be observed in between cells. Deletion of 
RelA largely inhibited cigarette smoke-induced TNF-α produc-
tion in macrophages as well as TNF-α-mediated β-catenin activa-
tion and lung cancer cell growth in mice (76). TNF-α released 
from macrophages was proposed to activate β-catenin through 
GSK-3β and Akt signaling in tumor cells, thereby promoting 
proliferation of the latter.

Evidently, the e�ects of NF-κB signaling on Wnt/β-catenin 
activity and the underlying molecular mechanisms are cell type 
dependent. However, it cannot be excluded that both positive and 
negative regulations can co-exist in the same cell type, employing 
di�erent molecular mechanisms, and that the overall observed 
e�ect is the sum of two opposing mechanisms.

WNT/β-CATENIN AND NF-κB CROSSTALK 
LINKS INFLAMMATION WITH 
TUMORIGENESIS

Tumor-promoting in�ammation has been recognized as one 
of the hallmarks of cancer (79). NF-κB serves as a critical link 
between in�ammation and cancer through its ability to upregu-
late the expression of tumor-promoting cytokines, such as IL6 
and TNFA, and survival genes, such as BCL2L1 (BCLXL). Besides 
the direct control of cell proliferation/survival by NF-κB, the 
crosstalk between NF-κB and Wnt/β-catenin provides another 
important intracellular basis for in�ammation-induced tumo-
rigenesis. Since Wnt/β-catenin signaling has been shown to be 
oncogenic in a wide range of tumor types, the positive regulation 
of Wnt/β-catenin by the NF-κB pathway may contribute to cancer 
development. A convincing example is the synergistic coopera-
tion between NF-κB and β-catenin/TCF4 on the expression of a 
subset of Wnt target genes in colon cancer (75). In this model, 
activated NF-κB functions as a transcriptional coactivator in 
conjunction with β-catenin/TCF4 to induce a set of stem cell 
signature genes, such as Lgr5, Ascl2, and Sox9, and subsequent 
tumor cell growth.

�e Wnt/β-catenin and NF-κB cross-regulation linking 
in�ammation and tumorigenesis not only occur within cells 
but also in between cells. In a gastric tumor model, Helicobacter 
infection-activated macrophages elicited NF-κB-mediated pro-
duction of TNF-α, which then inactivated GSK-3β and enhanced 
the oncogenic Wnt/β-catenin signaling in the gastric cancer cells 
(80). �is model provides a missing link of how Helicobacter-
induced chronic in�ammation prompts oncogenic signaling.

In addition to creating a tumor-favorable microenvironment 
consisting of various tumor-promoting in�ammatory cells (7), 
NF-κB-mediated in�ammation has now been demonstrated to 
enhance the tumorigenic potential of cancerous cells through 
upregulation of Wnt/β-catenin signaling, further strengthening 
the idea that NF-κB may be an attractive therapeutic target for 
in�ammation-associated cancer.

MUTUAL REGULATION OF WNT/β-
CATENIN AND NF-κB SIGNALING

In most biological processes, crosstalk of Wnt/β-catenin and 
NF-κB signaling is bidirectional, meaning that both pathways 
reciprocally regulate each other. Such mutual regulations are 
critical for either enforcement or limitation of downstream 
responses. In a hair follicle development model, Wnt/β-catenin 
and NF-κB signaling was interdependent for their regulatory 
activities in hair follicle formation (81). Binding of the A1 isoform 
of the TNF-α family member ectodysplasin (EDA) and its recep-
tor EDAR induced NF-κB nuclear translocation and activation 
in developing hair follicle placodes. Edar was a direct target of 
Wnt/β-catenin, and Eda/Edar/NF-κB signaling was required 
to re�ne the pattern of Wnt/β-catenin activity and maintain 
this activity by promoting Wnt10b production at later stages 
of hair follicle placode development. However, Wnt/β-catenin 
signaling was initially activated independently of EDA/EDAR/
NF-κB activity in primary hair follicle primordia. Maintenance 
of localized expression of Wnt10b and Wnt10a required NF-κB 
signaling and Wnt10b was a direct transcriptional target gene of 
NF-κB, providing a molecular explanation for this observation. 
Moreover, the Wnt/β-catenin signaling antagonist DKK4 was a 
target gene of the EDA/EDAR/NF-κB pathway, serving as a nega-
tive feedback to limit β-catenin signaling (82). �ese data reveal 
a complex interplay and interdependence of Wnt/β-catenin and 
NF-κB pathways in the initiation and maintenance of primary 
hair follicle placodes.

Mutations or expression levels of APC and β-catenin levels 
were found to control the outcome of TLR4 activation by LPS 
on proliferation of colon cancer cells (83). LPS enhanced cell 
proliferation in APC mutated or depleted cells but inhibited 
cell proliferation in APC wild-type cells. It was proposed that 
high β-catenin levels blocked NF-κB-mediated cell apoptosis 
and LPS-induced NF-κB promoted β-catenin expression and 
β-catenin-regulated proliferation in APC mutated or depleted 
cells where β-catenin degradation was compromised. �ese data 
revealed that the reciprocal modulation between β-catenin and 
NF-κB was involved in the regulation of tumor growth by APC 
status and TLR4 activation.

Together, the mutual regulation of Wnt/β-catenin and NF-κB 
signaling is observed in a large number of cell and tissue types and 
is important for the maintenance of cellular/tissue homeostasis or 
the reinforcement of cell fate.

CONCLUDING REMARKS

Given the crucial biological functions of the Wnt/β-catenin and 
NF-κB signaling pathways, it is of particular biomedical interest 
and importance to understand their crosstalk. A lot of e�orts in 
recent years have revealed a complex network of Wnt/β-catenin 
and NF-κB signaling interaction. �ese two pathways are 
interconnected through physical interactions of mediators and 
regulation of target genes in the convergence. �e regulatory 
e�ects are o�en cell/tissue-dependent or even gene-speci�c, 
suggesting that cross-regulation needs to be investigated in a 
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context-oriented fashion. Additional e�orts using appropri-
ate cell or animal models are required to understand how the 
Wnt/β-catenin and NF-κB pathways crosstalk in in�ammation 
and in�ammation-associated diseases such as cancer. �e further 
knowledge will eventually help design better interventions for the 
treatment of in�ammatory diseases. When interfering with one of 
the two pathways, the other pathway might also be changed due 
to their cross-regulation, thereby potentially causing additional, 
secondary e�ects not investigated. It is not just a matter of which 
molecule to target but also how to interfere with it (e.g., blocking 
activity without altering the protein level or reducing expression 
a�ecting both protein level and activity). For example, when 
treating cancer with Wnt/β-catenin pathway blockers, one could 
think about whether this might cause undesired proin�amma-
tory e�ects due to upregulation of NF-κB activity by elevated 
β-catenin levels, as hinted from the abovementioned evidence. 
One potential approach to circumvent the negative feedback is to 
target the transcriptional activity of β-catenin:TCF/LEF or other 
coactivators, rather that a�ecting β-catenin protein turnover. 
Targeting both pathways simultaneously might also be promising 
in this case, as well as for other in�ammation-associated diseases.

Taken together, the existence of a crosstalk between the Wnt/β-
catenin and NF-κB signaling pathways provides new opportuni-
ties to treat in�ammatory and in�ammation-associated diseases 
such as cancer. Although due to the complex interactions, 
manipulation of this crosstalk might be challenging to achieve 
a desired and tissue-speci�c outcome, our increasing knowledge 
of mechanisms underlying Wnt/β-catenin and NF-κB signaling 
cross-regulation will hopefully help resolve these obstacles, so 
that more e�ective treatments can be designed.
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