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Crosstalk-Driven Interconnect Optimization by
Simultaneous Gate and Wire Sizing
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Abstract—Noise, as well as area, delay, and power, is one of theSo far, the typical strategies to minimize the on-chip inductance

most important concerns in the design of deep submicrometer in- are shielding wires and/or shielding layers. The inductive effects
tegrated circuits. Currently existing algorithms do not handle si- are beyond the scope of this paper.

multaneous switching conditions of signals for noise minimization. In thi f th iti ffects of talk
In this paper, we model not only physical coupling capacitance, but n this paper, we tocus on the capacitive efiects or crosstalk.

also simultaneous switching behavior for noise optimization. Based We refer to the capacitance created by the physical geometry as
on Lagrangian relaxation, we present an algorithm which can op- the physical coupling capacitanc&he physical coupling ca-
timally solve the simultaneous noise, area, delay, and power op- pacitance is directly proportional to the overlap length of adja-
timization problem by sizing circuit components. Our algorithm, et wires and is inversely proportional to the distance between

with linear memory requirement and linear runtime, is very effec- th C " isting literat handl v bhvsical
tive and efficient. For example, for a circuit of 6144 wires and 3512 em. Lurrently existing literature handles only physical cou-

gates, our algorithm solves the simultaneous optimization problem Pling capacitance. Miscellaneous heuristics and techniques have
using only 2.1-MB memory and 19.4-min runtime to achieve the been proposed to minimize the overlap length or to maximize
precision of within 1% error on a SUN Sparc Ultra-I workstation.  the distance between the wires; these methods include track per-

Index Terms—Deep submicrometer, gate sizing, interconnect, mutation [12], [13] and wire spacing [21], [24], [26], etc.

performance optimization, physical design, routing. In fact, coupling capacitance is dominated not only by phys-
ical geometry, but also by switching conditions [16]. The in-
|. INTRODUCTION fluence of switching conditions can be explained by the Miller

and the anti-Miller effects [2]. Assume that the physical cou-

WITH decreasing feature sizes, higher clock rates, and iﬁﬁng capacitance between two neighboring wire€is The
creasing interconnect densities, noise is getting a greaf@ler effect occurs when the adjacent wires switch in oppo-
concern of comparable importance to power, area, and timigge directions. In this case, the equivalent coupling@s. On
in integrated circuits [22], [23]. While power, area, and timinghe contrary, the anti-Miller effect happens when the adjacent
have been extensively discussed in the recent literature, egres switching in the same direction. In this case, the equiv-
[31-{7], [10], [18], and [20], relatively less work has been dongjent coupling is zero. In other words, the coupling effect is
on noise. o not always undesirable. In the appearance of the anti-Miller ef-
~Noise profoundly affects the performance of a circuit, €spgsct, the wires are charged or discharged by the currents from all
C|aI_Iy in the Qeep submicrometer regime. Noise is an unwgntaqvers_ Thus, the transition of wires can be shortened so that the
variation which makes the behavior of a manufactured circy¥gic values become stable earlier. If two wires have very large
deviate from the expected response [19]. The deleterious infihysical coupling capacitance but possess the same switching
ences of noise can be classified into two categories. One is Mghavior, the inter-wire crosstalk can be very small. Hence, it is
functioning, which makes the logic values of nodes differ fromten too pessimistic if we only consider the Miller effect. How-
what we desire; the other is timing change, which is caused BYer, the anti-Miller effect is hard to be considered because of
switching behavior. its uncertainty. Though some previous work has mentioned this
Generally, crosstalk is a type of noises which is introducegtoplem, yet there is no literature solving this problem so far.
by an unwanted coupling between a node and its neighboringy, this paper, we model not only physical coupling capaci-
wire or between two neighboring wires. For example, two adjgsnce but also simultaneous switching behavior for crosstalk op-

cent wires form a coupling capacitor and a mutual inductor. finization. We first consider a more accurate model of crosstalk
voltage or a current change on one wire can thus interfere §i@ween wire and wirej:

signal on the other wire. The inductive effects [15], [17] must
be considered as circuit frequencies increase above 500 MHz. crosstalk(i, j) = switching dissimilarity(i, )

, _ _ x coupling_capacitance(i, j).
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problem. In the second stage, we minimize the inter-wire phys-
ical coupling capacitance by sizing wires. We formulate the con-
straints for physical coupling capacitance in a posynomial (pos-
itive polynomial) form [14], which can optimally be solved by
Lagrangian relaxation.

The second stage not only deals with the crosstalk problem
but also optimizes area, power and delay by sizing gates and
wires. Gate and wire sizing has been extensively studied in R3
the literature for optimizing area, power, and/or delay, e.g.,

[3]-[7], etc. In the previous work, Lagrangian relaxation hagg. 1. A combinational circuit with three input drivers, seven wires, three
been proven to be an effective approach for simultaneogses, and one output load, in which the gate and wire sizes can be varied for
performance optimization [4]-[6]; this fact encourages us fptimization.

adopt the Lagrangian relaxation method for our problem. In
this paper, based on Lagrangian relaxation, we present an &
gorithm which can optimally solve the simultaneous crosstalk, // %
area, power, and delay optimization problem by sizing circuit / 10
components. Our algorithm, with linear memory requirement%-— "¢
and linear runtime, is very effective and efficient. For example,

for a circuit of 6144 wires and 3512 gates, our algorithm solves '\
the simultaneous optimization problem using only 2.1-MB
memory and 19.4-min. runtime to achieve the precision of
within 1% error on a SUN Sparc Ultra-1 workstation.

The remainder of this paper is organized as follows. Sec:
tion Il gives a circuit model and the problem description. The 4

11 Cﬁ

crosstalk modeling is detailed in Section Ill, in which coupling 0/ _——— ? . 12 13,_%4
capacitance and simultaneous switching are discussed. IOV\

Section 1V, based on Lagrangian relaxation, we propose ai ™ 11

algorithm to minimize the total area under noise, power, anc ~—ad 9

delay constraints. Section V shows the experimental results. s ©

Concluding remarks are given in Section IV. Fig. 2. (a) Two artificial nodes, 0 and 14, are added into the circuit depicted in

Fig. 1. (b) The corresponding circuit graph.
[I. CIRCUIT MODELING AND PROBLEM DESCRIPTION

In this section, we introduce the representation of a circur?gOle Is located at the OUtD.Ut ofa component, which either con-
and some notati,()n used throughout the paper, present cirn %‘ts fwo components or Ilnks_one primary output to_one output
and delay models, and formulate a performanée optimizati é_d. B_ecause every node obviously conn_ects to ad_lstmct node,
oroblem ' g.%II’C.UIt he.m{rs node;. Inorder to conyemently manlpulat(_a thg

' circuit, a circuit graph is constructed. Fig. 2 illustrates the circuit

graph of the circuit given in Fig. 1. A circuit graghh = (V, E)
is a directed acyclic graph which contaims- s + 2 nodes. The

For a digital circuit, we can patrtition it into two groups—comsetV of nodes consists of two additional artificial nodes as well
binational and sequential parts. We can improve the perfasn + s nodes corresponding to the+ s components. One
mance by optimizing the combinational part. For example, edded node is viewed as theurce s, connected to every input
order to speed up the working frequency, we have to minimiziiver; the other is viewed as thénk, £, linked to all output
the clock period. We may achieve this goal by minimizintpads. LetS = {5} and7 = {f}. Therefore, the node s&t,
the delay of the critical path in any combinational subcircul’ = GU W U R U S U T, contains the seff of gates, the
between two latch elements. Hence, we can focus on thetWW of wires, the setR of input drivers, the sourc#, and
combinational circuits. The way we interpret a circuit is similathe sinkZ’. The index of a node is labeled such that if nade
to that used in [5]. the input of nodej, theni < j. For an acyclic directed graph,

Given a combinational circuit witl primary inputs,t pri- this indexing can be labeled by topological sorting [9] with run-
mary outputs aneh gates/wires. The sizes of gates and wirgime linear in the graph size. Hence, the index of the source is
can be changed according to our objectives. Foittherimary zero, and that of the sink is + s + 1. Forl < ¢ < n + s,
input,1 < ¢ < s, we have one corresponding input resistomdex is referred to a gate, a wire, or an input driver. On the
RP, as its input driver. Similarly, for thgth primary output, other hand, the set of edges expresses the connections be-
1 < 5 < t, we have one corresponding output capac'(ﬁjr, as tween nodes. An edgg, j), an ordered pair, connects nodle
its output load. Fig. 1 depicts a combinational circuit with thre® nodej, 1 < i < 7 < n + s, if data flow from node to node
input drivers and one output load. 4. Additional edges are added to connect the sourceimput

A componenis a circuit element which can be a gate, a wirgJrivers and connectprimary outputs to the sink. The connec-
or an input driver. An input driver is considered as a gate. #vity relationship between parents and children are defined by

A. Circuit Representation
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sgi‘zléexi_ o0 T reachable drivers; similarlylownstream(i) means the proper
y ;Ci n set containing all the nodes on the paths from néde all
‘b_o reachable loads. For instance, in Figuéstream(10) = {6}

Ei// . anddownstream(2) = {2, 5, 7}. We adopt the EImore delay

model [11] to compute the delays of gates and wires. The delay
Fig. 3. Agate orawire is modeled as a combination of resistance—capacitafi¢g of node: is »; C;, whereC; is the downstream capacitance of
(RO elements. A_ gate is the loading of its upstream, but is the driver of i?including self-loading. For the time being; is referred to the
downstream. A wire is represented by thenodel. . . .
upstream resistance of notlevhereask; means the weighted
upstream resistance of nodlen Section IV.
In the circuit graphd of a circuit, each nodeis tagged with
some attributes, including size;, node typeG, W, R, S or
T, unit-width resistancé;, unit-width capacitancé;, fringing
capacitancef; (f; = 0if ¢ € G U R), and information about
coupling capacitance detailed in Section Ill. Thus, we shall op-
timize a circuit through manipulating the corresponding circuit
graph but ignoring the transform&LC network.

C. Problem Description

Fig. 4. Before being analyzed, a circuit is transformed toRahnetwork. . . . L
Hence, the delayD; lumped inr; can be computed by;C;. For example, For practlcal requwement, area is the greatest concern in Cir-

the delay of node 2 i®2 C,, whereC represents the capacitance for all theCuit design. This paper targets to minimize area subject to noise,
capacitors in the shaded area. timing, and power constraints. Let, X, D, and P denote the
total area, the total crosstalk, the delay on the critical path, and
input( ) andoutput( ), whereinput(i) = {j|(j, i) € E, 0 < the total power of the circuit, respectively, ane?, D, and
J < i< n+ s+ 1}, andoutput(i) = {j|(i. j) € E,0 < PB denote the upper bound of the total crosstalk, the delay on
i < j < n+ s+ 1}. Furthermore; belongs toinput(j) the critical path, and the total power of the circuit, respectively.
if and only if j belongs tooutput(i). For example, in Fig. 2, A generic formulation of this problem is given as follows:
nput(6) = {4, 5}, output(0) = {1, 2, 3}.

M: Minimize
B. Circuit and Delay Models A
In order to explore a circuit, we shall model the circuit elesypject to
ments by analyzable electric components, like resistors and ca- B
. . ) ) e X <X7
pacitors. Fig. 3 illustrates the gate and wire models used in this D < DB

paper. For a gateof sizex,, the resistance; is #; /z;, and the
capacitance; is ¢;x;, wherer; and¢; are the resistance and ca- P <PEB.
pacitance of gateé of unit size, respectively. In addition, the ] o ] o
of aninputdriver, 1 < i < s, is equal to the input resistdt”. In Section IV, we will give more detailed problem definitions
However, same as [5], the intrinsic gate delay is ignored in tHi&d Present our algorithms for the problem.
model for simplicity. To conquer this problem, we could attach
the self-loading capacitance at the output node of each gate. The Ill. CROSSTALK MODELING
self-loading capacitance can be approximateé:pfor a gate: In the preceding section, we have introduced preliminaries
with 7 inputs. Note that the derivations of Theorems 4-7 remaiibout representing and interpreting a circuit. In this section, we
the same if the intrinsic gate delay is considered, and the c@yil focus on the crosstalk problem, which has been briefly de-
responding properties still hold. We choose theodel [19] to  scribed in Section |. We compute the physical coupling capaci-
approximate wire behavior. For awijef sizex;, the resistance tance between two wiresand;j using the model mentioned in
r;is7;/x;, and the capacitaneg is ¢;x ;4 f; +2C. ,, wherer;  Section |
and¢; are the respective resistance and capacitance ofjwife
unit size, f; is the fringing capacitance of wirg andC.., is the crosstalk(i, j) = switching_dissimilarity(i, j)
coupling capacitance of wire Section 111-B will detail the cou- x coupling_capacitance(i, j).
pling capacitanc&’.,. The term2C., represents the coupling
capacitance of wirg in the worst case. By incorporating theWe will deal in turn with the two crucial factors which affect
coupling capacitance into the wire capacitance, this wire modBp crosstalk—switching behavior and physical coupling capac-
considers the impacts of crosstalk on delay and power. itance.

With the gate and wire models, a combinational circuit can be o )
transformed to a network with resistors and capacitors. Fig” SWwitching Behavior
illustrates the resultant circuit modeling for the circuit shown For two adjacent wires with coupling., when one switches,
in Fig. 1. In the transformed circuit, for < ¢ < n + s, the current may flow throughk’, to the other wire, thus inter-
upstream(i) means the proper set (all elements are distindgring the signal on the other wire. In the worst case, the two
containing all the nodes excepbn the paths from nodeto all  wires simultaneously switch in different directions. As a result,
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the transitions on these wires are longer than expected. This phi 7§

nomenon, called the Miller effect [2], is like the effect caused #igh 007 093

by large loading. On the contrary, the anti-Miller effect benefits fow L— -t H o 5 U 35

the transitions. While two neighboring wires toggle in the same " _0,07< >< >O,93’1m< ‘ 007

direction, they can help each other. Consequently, the transitioigh| -~ 093 Ny YgTos Ny

time is reduced. This phenomenon is like the effect caused b low i s 095 193

small loading. oo ’ Labelcachedge  Label each edge
In order to take advantage of the switching conditions for righ| = o by similarity ?Z;‘:}l‘i‘;tfifywe‘gh‘

crosstalk minimization, we shall analyze the switching behavior fow L2 i ;

of signals. In real applications, the information of switching /8 B The wire ordering with the

behavior can be retrieved during the logic simulation stage otrign| - f;“g‘;“fgi?ﬂg%ﬁ‘?;“g

based on the patterns in previous designs. When analyzing th lew b2 (& :

switching behavior, we first assume each gate or wire is of the °
minimum size or of Othe_r Sizes eXtraC_tEd from profiles. Therﬁrg. 5. The waveforms of wires and the similarity between each pair of the
fore, the similarity of switching behavior between two wikies wires.

and;j can be defined as follows:

Tp .
. . Algorithm: WOSD
S f(5,t) dt (Wire Ordering for the Switching Dissimilarity Problem)
similarity(i, j) = 22 Input: the complete graph K, for n wires
Ip Output: A wire ordering O
. . . . R . . Al. Select anode r tobe theroot, 1 <r < mn.
whereZ’p is the_ S|mulaf[|on durationf (i, ¢) is the norma!lzed A2. Grow a minimum spanning tree T for K, from root 7.
waveform of wirei at timet¢. f(i,¢) = 1 if node is high; A3. O « the list of nodes visited in a preorder tree walk of T
otherwise,f (¢, t) = —1 if node is low. For any two wires

¢t andj, —1 < similarity(i, j) < 1. The closer to—1 for Fia 6. The heuristic of wire ordering for the switching dissimilarity brobl
. . . L. . . 1g. 6. € neuristic ot wire ordering ror thne switchin Issimiiari ropiem.
similarity, the less similar their behavior; the closer to 1 for'® 9 9 yp

stmilarity, the more similar their behavior.

Two wires with most similar switching behavior are assigneld can be seen tha¥ has a Hamiltonian path if and only if the
to closer tracks to minimize the effective loading. We caffinimum total effective loading of the ordering & is . — 1.
show that the problem for minimizing the effective loading ig herefore, theSD problem is NP-hard.
equivalent to a graph-theoretic one. We build a complete graphSince theSD problem is NP-hard, we resort to heuristics.
K, for n wires. In K,,, each node corresponds to a wirg Specifically, we need an approximation algorithm with a perfor-
and every edgéi, j) is associated with dissimilarity(i, j) Mance guarantee. However, we have a negative result described
equal tol — similarity(i, j). An ordering is a sequencein the following theorem.
composed of all nodes{w,, ws, ---, w,). Accordingly, ~ Theorem 2:If P # NP andp > 1, there is no polyno-
the total effective loading between neighboring wires i&lal-time approximation algorithm with ratio boundfor the
E:’z_ll dissimilarity(w;, w;y1). Hence, theSwitching Dis- SD problem.

similarity problemSD is defined in the following: The above theorem can be proved by contradiction. The de-
tails of its proof is similar to that of no polynomial-time approx-
SD: Given  n wires and their switching behavior. imation algorithm with the traveling-salesman problem [9].
Find an ordering for the wires, By the above two theorems, tiD problem is NP-hard and
such that  the total cf fective loading between there exists no efficient approximation algorithm. We propose
neighboring wires is minimized. an efficient minimum spanning tree based heuristic forgte
We have the following theorem for the complexity of ti® Problem as shown in Fig. 6. The running time of constructing
problem. a minimum spanning tree for a complete gralgh is O(n?).
Theorem 1:The Switching Dissimilarity problensD is A preorder tree walk recursively visits each node in a tree. The
NP-hard. walk lists a node when the node is first encountered and before

The SP problem can be reduced from the Hamiltonian pat@ny of its ghildren is visited. The time gomplexity of a preorder
problem, which is NP-hard. The reduction is similar to thdfeée walk isO(n). Therefore, the running time of thR&OSD
from the Hamiltonian cycle problem to the traveling-salesmaHg@orithmisO(n?). Fig. 7 illustrates the operation of ti¢OSD
problem in [9]. We briefly describe the reduction in the fol2gorithm on the example shown in Fig. 5. _
lowing. Given a general grapft = (V, E), the existence of Solving the SW|_tch|ng d|SS|m|Iar|ty problem,_we can obtf';un
a Hamiltonian path irG is NP-hard. We construct a complete? 9€ometry ordering for all wires with the minimum effective

graphG’ = (V, E') by adding all nonedges @, thusE’ = loading. Therefore, we can know the adjacency relationship be-
{(i, j)Ji, j € V'}. In addition, the weight of each edge j)is tween wires. Th@eighborhoodV (¢) of wire ¢ is defined as the
assigned as follows: set of adjacent wires; thdominating indexof N (<), denoted

by I(i), of wire 7 is defined as the set of adjacent wires with

L if () ek the indexes greater thanFor instance, in Fig. 5, if these four

disstmilarity(i. 1) = : - _
issimilarity(i, j) {27 if (4,5) ¢ E. wires are routed in the same channel, the geometry ordering
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i.e., short/contact, with each other wher> 1, and it is impos-

sible thatr = 0 becauser; andx; are two positive quantities.

For the term(1/(1 — x)), we have the following properties.
Theorem 3:Let f(z) = (1/(1 — ), |z| < 1.

© ) 1) flz) =272z

A k—1 p _ _
Fig. 7. The execution of th&/OSD algorithm on the graph from Fig. 5. (a) 2) If f( ) E" 0 =™, then error ratice = ((f(a:)
The complete graph from Fig. 5, where wire 5 is the root. (b) The minimum ( ))/f( ))
spanning tred” is identified by the bold lines. (c) The full walk f is in the The proof is s|mp|e Which can be done by the expansion of

order (5, 7, 5, 4, 8, 4), yielding the preorder walk3, 7, 4, 8). (d) A wire ; i _

ordering generated by tWWOSD algorithm. Taylor series. Theorem 3 revedls/(1 . z)) can be approx
imated byzn o @™, the firstk terms in the summation. The
error ratio is small; for example, for the case = 0.25

e, £l
- L
wies ¢ wilh sizs (widh) £ k- % == ||||'."' ."f k =2, error ratio < 6.3%; k = 3, error ratio < 1.6%;
l. s 2 . .
b __—— k =4, error ratio < 0.4%; k = 5, error ratio < 0.1%.
- = r ; n-,-nuj
wire | with wive {witsh) £; For the purpose of easier presentation, we chéose2, and

ol th urii—bemgth inuging capaciiane thus f(z) ~ Y.'_, 2" = 1+ x. Extensions to largek are
Sopy S simple. Therefore, (1) can be approximated as follows:

ool ; h ; h
- %% <1+m> — <1+%> @
(] )

Fig. 8. The physical coupling capacitance between two wires.

is equivalent to track assignment. If we chod@se7, 4, 8) as
the resulting track aSS|gnmerN,(5.) :r{?}' N(7) = {5, 4}, whereé;; = (fi;lij/di;) is a constant. Note that (2) is in a
N(4) = {7, 8} and N(8) = {4}; I(5) = {7}, I[(7) = 0, posynomial (positive polynomial) form [14]. It will be clear that

I(4) = {7, 8} andI(8) = 0. this is an important property for guaranteeing the optimality of
. ) . our algorithm to be presented in Section IV.
B. Physical Coupling Capacitance Recall that, in Section II-B, the capacitaneeof wire i is

A multiterminal net is decomposed into wire segments. Eachr; + f; + 2C.;. The coupling capacitaneg.; of wire : can be
line between two junction is treated as a wire. Fig. 8 depictscamputed by (2) as follows:
case where two wiresand, belonging to different nets, have

coupling capacitance. .= o - <1 L + xj) _
According to Fig. 8, the physical coupling capacitangge . Z i Z i 2d;;

_ _ _ Fared Fared
between two neighboring wiresand j can be calculated as JeN@ JEN@
follows: Hence,c; can be calculated in the following:
£l )
cij = 7]&;;;_’_ - ¢ =& + fi +2 Z Cij
= 5 J JCN ()
X T +x,
_ f“lU =¢x; + fz +2 Z C“ <]_ + Z2d J)
z; + JEN(3) K
2d“
iy SRS (E3 SR PRV S (R ]
- d“ 1 T; +x; JCN (D) JCN ()
Zdij
where IV. OPTIMAL AREA MINIMIZATION UNDER CROSSTALK,
z; andz; sizes of wireg andj (z;, z; > 0); DELAY, AND POWER CONSTRAINTS
fij unit-length fringing capacitance between wites | this section, we give the problem formulation and an al-
andj; o . gorithm for simultaneous area, crosstalk, delay, and power op-
lij overlap length of wires and j; N timization. Since area is typically the most important concern
dij distance from the center line of witelo that of iy v|.S| design, we formulate the performance optimization
wire j. problem as to minimize the total area of a circuit subject to

In (1), the first term,(f;;1;;/d;;), is a constant which can becyosstalk, delay and power constraints.
computed by technology files, and the second tefti(1 —

x; + x;)/2d;;)), is what we are concerned. Let= ((z;
(i + @)/ 2dij)) (@i + 1In our experiments, the averagesofs about 0.12 (ranging from 0.09-0.15),

xj)/Qdij)v the Se(?ond term of (1) becom(ds/(l N 37)) More- which gives the error ratios of less than 1.5% and 0.2%:fer 2 and 3, respec-
over,0 < z < 1, since the two wires woulghysically overlap tively; thus, the empirical errors are very small.
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We summarize the Lagrangian relaxation method here [Note that, though not presented here, the above crosstalk con-
Consider the following generic geometric optimization methostraint can easily be extended to the case with a distributed

formulated in terms of a vectar of decision variables: crosstalk bound on each net or a crosstalk bound on the sum
S of the square of each crosstalk. Further, all corresponding the-
Minimize orems and properties still hold for the extended formulation.
cx Therefore, the optimization problem addressed here can be for-
subject to mulated as follows.
Az <b, P: Minimize
zeX. n+s
> O
The decision variableslie in a given constraint seX . The La- imat1
grangian relaxation method relaxes the set of constramts.  subject to
b to the objective function by introducirligagrange multipliers
L . D; < Apg, Vée A, /*Del
A, resulting in thd_agrangian subproblem z&; =B < [+ Delay = /
Minimize Z Z cij <X, / * Crosstalk « /
cx + ANAz — b) €W jEI(d)
. n+s
subject to
J Vonf Z «;¢; < Pp, / * Power x [
z e X. i=s+1

Since the constraints are relaxed, the Lagrangian subproblem is
easier to be solved. By theagrangian Bounding Principl§l],

; . S ) By the delay constraint in Probler®?, the delay for each
theL functior.(X) = A(Ax—b): X
theLagrangian functio (A) mmf{chr ( . ) ze ; Lﬁaource—to-sink path cannot exceed the delay bodpd The

éosstalk and power constraints mean that the total crosstalk

coupling capacitance) for all nets and total power consumption
ng all gates and wires cannot exceed the crosstalk and power

ounds. From Section I1I-B, the crosstalk between two adjacent

Section IV-A formulates the primal problem in the Iinea?fv"es'i andy is their inter-wire pNhys_icaI coupling capacitance,
programming form. Section IV-B relaxes the primal problerﬁ“(1 + (@i + x)/2d;;), wherec;; is a constant. Hence, the
to a Lagrangian relaxation problem and simplifies the relaX%rjosstalk constramNt can be S|mpI|_f|ed by subtracting both sides
problem. We demonstrate how to solve the correspondi ézicw Zjd(i) ¢;; the constraint becomes
Lagrangian relaxation subproblem in Section IV-C. In Sec-
tion IV-D, we present the Lagrangian dual problem and solve Z Z & <a:7 +x;
it by the subgradient optimization technique. iCW jCI() 2dy

of the original problem. Lagrangian relaxation method can sol
a problem optimally when all of the constraints areds < b
or in Az = b form, and the objective and constraints are in
posynomiaform [14].

JEECED D OH
iCW jCI(i)
A. Problem Formulation |f~we define Xo as Xp — Y iew Zjd@ ¢j; and &; as
For each componenits + 1 < i < n + s, the corresponding (¢;;/2d;;), the modified crosstalk constraint is
area is proportional to its sizg. Given the unit-sized area;,

the area of components [, z;; the total area of a circuit is thus Z Z &l + ;) < Xo.
E;‘:J’SSH [0;«;. The areas occupied by input drivers and output iEW jEI(3)

loads are ignored because their areas are fixed. If the respective
crosstalk, power, and delay bounds of a circuit &g, Pz and ~ Assume the supply voltageépp and frequencyf are fixed.
Apg, we have The power constraint can be simplified by dividing both sides by
Vi, f. Let Py be(Pg/V3,f). The power constraint becomes
Z Z cij £ X,

€W jeI(3) n+s
nds Z &;C; S Po.
VinS Z a;c; < Pp, =l
e Since the interconnect densities of a circuit can be very high
z D; < A, véeaA, in deep submicrometer technology, the circuit graph could be
ico very dense. Hence, the path 2etan be far greater than or even
where grows exponentially with the circuit size. It is prohibitively ex-
Vbp  supply voltage; pensive to traverse all paths to check the constraints. To conquer
i working frequency; this problem, we associate to each nodeé, which represents
y switching activity of component the arrival time of that node. This technique was also used in

6 path in the path seA. [5]. Therefore, we distribute the delay constraint into each edge
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in the circuit graphH. Letmm = n+ s+ 1andAy = Ag inthe The corresponding Lagrangian relaxation subproblem is

following discussion. We have

LRS 1: Minimize

a; <A J € input(m) / * primary outputs * /
a;+D; <q t=s+1,---,n+s andVyj € input(s)
D; <aq; t=1, -+, s/ *primary inputs * /

Consequently, the problefd can be modified as follows.

L)\, ,8,"/(-1"’ 0,)

subject to

L; < < U,

Vs+1<i:<n+s.

To solve the Lagrangian relaxation subproblem, we derive the

PP: Minimize optimality conditions by Kuhn—Tucker conditions [25].
nts Theorem 4: The optimality conditions on Lagrange multi-
> O pliers are given by
7=s+1
@y S AO’ Je LTLPUt(m)’ k€output(i) j€input(i)
a; +D; <ajy, t=s+1,---,n+s
andv j € input(i), Proof: By Kuhn—Tucker conditions [25], if the optimal so-
D; <a, i=1 - s lution (*, a*) of the Lagrangian relaxation subprobl&l® S1
s - T is the optimal solution of primal proble®P, then (z*, a*)
Z e < Py, must satisfy
1=s5+1 oL
Yo >0 (e +ay) < Xo, ﬁjﬁ(w*’a*):&
i€EW jeI(d)
L; < =z <U;, Inspired by the work [5] on the optimality conditions for
Vs+1<i<n+s. Lagrange multipliers, we have the following by rearranging
L)\“&,y:

The objective function and constraints of the probiff are

all in the posynomial form. Through variable transformation, 7., , J(z, a)

a convex programming problem is obtained. It is known that
a convex programming problem has a unique global optimum
[14]. Hence, problenP? has a unique global optimum, and it
is ensured that each local optimum is the global optimum.
Note that in the formulations for Probler# and PP, we
did not consider the switching conditions mentioned in Sec-
tion IlI-A. To incorporate switching behavior, we can simply
multiply ¢;; by dissimilarity(i, j) in the formulations.

B. Lagrangian Relaxation

To solve the problenPP, we apply Lagrangian relaxation
by introducing one Lagrange multiplier to each constraénio
the power constrainty to the crosstalk constraink,;; to each
delay constraintd;; can be viewed as a timing weight on edge
(j, ©). Letz = (Zs41, "+, Tnys) @Nda = (a1, - -, Apts).
The Lagrangian function, therefore, is

n+s

=2 2

=1 \ k€output(i)

n+s

7=s+1

ik — Z Aji | a;

jEinput(i)

n+s
+ Z Dia:i—i-ﬁ(z OéiCi—P0>

1=s5+1

+ Z Z Gij(xi + ;) — Xo

€W jeI(s)

n+s

- Z )\ijo-l-Z Z Aji | Di.

jEinput(m)

=1 \ j€input(i)

By checking Kuhn—Tucker conditions, this theorem thus
follows.
Theorem 4 reveals the sum of in-degree multipliers equals to

n+s that of out-degree multipliers for every node except the source.
Ly g +(x, a)= Z Lz + Z Ajm(a; — Ao) This theorem is analogous to tKérchhoff’s Current Law{8]:
s+1 jEinput(m) The algebraic sum of the currents flowing into a node equals
n+s that of the currents leaving from the node for all times.

+ Z Z )\ji(aj + D; — ai)

Theorem 5: For any A satisfying (3) in Theorem 4, solving

i=s+1 jCinput(s) LRS1 is equivalent to solving

Kl n+s
+3 Aol Di —ai) + < > e - Po) LRS2: Minimize
=1

1=s+1

L,, ,ﬁ,w(z)

+v (D0 D dimita) - Xo|. subject to

PEW FET(i)

L; <z U,

Vs+1<i<n+s
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Where[l, = (ulv T an)i Hi = ZJEanut(z) )‘jz for 1 < 1 <
m, and
n+s n+s
L, s +(x Z Dxﬁ'ﬁ(Z OéiCi—Po>
7=s+1 1=s+1
+v Z Z Cij(zi +x;) — Xo
iEW jeI(i)
n+s
+ Z wiD
=1
Proof: Applying the optimality condition, we get
Ly, s.+(®)
n—+s n—+s
= Z Di$i+/3< Z aici_P0>
1=s5+1 1=s5+1
+ v Z Z Cij(z +25) — Xo
iEW FCI(i)
n—+s
= > Mmdet | X M| Di
JjCinput(m) i= jCinput(i)

n+s

Z ;C; — Po

=s+1

Since; = 3 jcinputiy Aii 1 < @ <m, we have
n+s
Z Oz + 5

1=s+1 <z

+7 Z Z Cij(xi + )
W jeI(i)
n+s
— tim Ao+ Y piD

i=1

Ly g ~(x

)

- X,

For a fixed multiplier vector,,, Ao is a constant. Further, min-
imizing Ly, g, equals minimizing

n+s n+s
HQ"/ Z Da:z—i—/}(z: aici—P())
7=s+1 1=s5+1
+ Z Z éij(wi + ;) — Xo
€W jeI(i)
n+s

+ > mD
=1

C. Lagrangian Relaxation Subproblem

GN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 9, SEPTEMBER 2000

Theorem 6:Letz = (#,41, -+, Znts) b€ a solution, then
the optimal resizing of componentis given by

H in | U;, ma O
Z; = Imin 7y 11AX
! 02403
where
Oy = 1;i7:C,  Ox =0 + (B + R;) &,

O3 = Z & (20 + v+ 2R; + 2p57y).
JEN()

Proof: C! is the portion of downstream capacitanCe
which is independent of the sizg. Hence,C! is defined as
follows:

K2

G R .
EZ—FZCU T, if i e W;

' _
¢ JENG)
G, otherwise.
We have
Ly, p.+(x)
n—+s n—+s
= Z Di$i+/3<z aici_P0>
1=s+1 1=s5+1
n—+s
+’Y Z Z CU $7+$J rO +Z//L7
tCW 5CI(%)
n—+s n—+s
= Z Di$i+/3<z aici_P0>
1=s+1 1=s5+1
+ v Z Z Cij(x; +x5) — Xo
iCW §CI(4)

+ZNN C +Zﬂz7 C

1€G
+Zum Ci + %—i— Z Cij | @i

icW FEN(4)

n—+s n+s
= Z Lz + 5 < Z ic; — Po)
1=s+1 1=s+1
+ Z Z Gz +25) — Xo
iEW JEI()

n—+s

+Z HiTs C + Z it + Z CZJ (4)
ieW JEN()

We extract the terms dependent onas follows. LetR; be a

Inthe preceding subsection, we have obtained the Lagrangweighted upstream resistance

relaxation subproblemdRS2. In this subsection, we will derive

the optimal sizing solution and present a greedy, optimal algo-

rithm to solve this subproblem.

R;

>

kCupstream(s)

HETE-
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Rewriting (4), we have

Lu,ﬂ,w(x)

n—+s n+s

1=s+1 1=s+1

+ Z Z Gij(as +25) — Xo

€W jcI(s)
n—+s
+ZI’LZ7C+ZI’LZ7Z _+ Z CZJ
€W JEN(3)

= 0w + Boy | &y +2 Z Cijxi + fi

JEN()
+ Ba; | 2 Z Cij <1+ 2d“>
JEN(3)

, piti G
+7 Z Cij | @i+ %
JEN()

¢ +2 Z Cij | i +
JEN(E)

+ termsindependent of x;
= (0, + (Ba, + R;)é)x;

E 2uj7’jcija:i

JEN()

+ Z Cij (2B + v+ 2R; + 2p5m5) | @i
JON (&)

3 70
+ —1t HiT + terms independent of ;.
Ty

The minimum occurs when

aLu By
—=2 L =0,
8a:i
Therefore,
O
X; >
024 O3
where
Oy =1;#:C}, Oz =0; + (B + R;) ¢,
Os= Y &j(2Bci+v+2Ri +2u,m;).

JEN()
Considering the upper bound and lower bound:gfwe have
the optimal resizing for component
%
Oy + O3

2 = min <UZ, max <

where
O1 =70, Oz =0 + (Bay + Ry)é,
O3 = Z 6“(2/3047 +v+ 2R, + 2/1j7’j). (5)
JCN()
| ]
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Subroutine: LRS (Lagrangian Relaxation Subroutine)
Input: the circuit graph H and Lagrange multipliers g, 3, v
Output: x=(z,41, ..., Znts) Which minimizes L, 5., (x)
Sl. ;< L;,,Vs+1<i<n+s.
§2. Compute Cj,Vs+1<i<n+s
by traversing H in the reverse topological order.
Compute R;,Vs+1<i<n+s
by traversing H in the topological order.
fori=s+1ton+sdo

z; + min (Ui,max (L,—, ’/o_ﬁﬁ ’) ,where

O1 = pit iO{,

Oz = 0; + (Ba; + Ri)é,

O3 = Tjeng) 6ij (2B + v + 2R; + 2575).
Repeat S2-S4 until no improvement.

S3.

S4.

S5.

Fig. 9. Lagrangian relaxation subroutine.

By (5), the optimal resizing for a gate is mainly determined by
its upstream and downstream; that for a wire is dominated by not
only the upstream and downstream but also its neighborhood.

In summary, we have the following theorem.

Theorem 7: (z*, a*) is an optimal sizing solution if and only

if there exists a vectoh™ = (A\§,, ---, X5, _1,,,), 8%, and~*
such that
1) ZkEoutput(z) Alk = 2 jcinput(i) )\jl’ Vi<i<n+s
2) Ai(a; — Ag) =0,V € input(m
3) )\*(aj—i—D ai):(),‘v’s—i—lgign—i—s;
4) )\31‘( a;) =0,V1<i< s

5) 5(515; cwes — o) = 0

6) ry*(ZzEVI ZJEI(i) CU(‘T: +‘Tj)
7 a; < Ao, Vj € input(m);

8) a;+D; <af,Vs+1<i<n+s;
9) D; <af,V1<i<s

10) Zn+15 aic; < Fy;

11) Ezeﬂ Eje[(z) < Xo;
12))\§i20,1<L<m,

— Xp) =0;

13) p* = 0;
14) v* = 0;
15)
o
2 = min <Ui, max <Li, OQT103>>
where
Os= > &;(2Bai+v+2R: +2u,m)).
JEN(E)

In the above theorem, 1) is the optimality condition; 2)—6)
are the complementary slackness conditions; 7)-11) are con-
straints; 12)—14) restrict nonnegative multipliers; 15) is the op-
timal sizing.

We propose a greedy algorithbRS in Fig. 9 to optimally
solve the Lagrangian relaxation subprobléRS2 (and equiv-
alently to solveLRS1). As mentioned earlier, the Lagrangian
relaxation problem has a unique global optimum. In other
words, if we find a local optimum, this local optimum equals
the global optimum. This property guarantees that a greedy
algorithm can find the optimal solution.
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Algorithm: OGWS (Optimal Gate and Wire Sizing)
Input: the circuit graph H
Output: X which maximize min.L) g ,(x)
Al k<« 1;
A <+ arbitrary vector in the optimality condition;
3 « an arbitrary positive number;
v < an arbitrary positive number.
A2 p= (1, s bntst1). Where py = 3 cimpury Asic
A3. CallLRS;
Compute ay, ...0n45.
Ad. Adjust multipliers Aj;’s, 8, v:
fori=1ten+s+1do
forall j € input(7) do
{ )\ji-’rek(aj—Ao) ifieT
/\ji —

i + 0u(D; — a5) ifie R
B B+ 0k(Ti 0 — Po)
Y =7+ 0 (Ziew Zjerq G (@i + 35) — Xo)
where the step size 8y, satisfies limg_,o0 6, = 0
and ©F_, 6; — oo,
AS. Project A onto the nearest point in optimality condition.

/\ji+9k(aj+Di—a,—) ifite GUW
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TABLE |
RC PARAMETERS AND SizE BOUNDS OF A
GATE OR A WIRE

&(fF/pm) | 7(Q - pm) | Li(pm) | Ui(pm)
gate 8.8 4.73x 10° | 0.36 50
wire | 0.206 053 0.36 1.8

Theorem 9: Algorithm OGWS converges to the global op-
timal.

V. EXPERIMENTAL RESULTS

We implemented our algorithm in the C language on a Sun
SPARC Ultra-I workstation and tested on the ISCAS85 bench-
mark circuits. The circuit sizes ranged from 640-9656. The
supply voltage was set to 2.5V, and the working frequency was
set to 400 MHz. Listed in Table I, the unit-sized resistance and

A6. k—Ek+1.
A7. Repeat A2-A6 until
(0 Oiw; — Ly g 4(x)) < error bound.

capacitance of a gate wet&r3 x 10® - ym and 8.8 fFim, and
those of a wire were 5.2 - xm and 2.06 fRkm, respectively.
The respective lower and upper bounds for a gate were;h86
and 5.m; those of a wire were 0.36m and 1.8um. Initially,
the sizes of gates and wires were set to Q:86and 1.8um,
respectively. Table Il shows the experimental results, where #G
) ] ) ) ] denotes the number of gates, #W denotes the number of wires,
Theorem 8: Subroutind RS runs inO(n) time per iteration o+ genotes the total number of gates and wires, Init denotes the
usingO(n) storage, where is the number of gates and wires.jnitia| values before sizing, Fin denotes the final values after
sizing, ite denotes the number of iterations, time denotes the
runtime, mem denotes the memory requirement, and Impr(%)

_ denotes the average improvement in %. The improvement for
It can be shown that there exists a vector of Lagrange mulfiz - term is calculated WyInit — Fin)/Init) x 100%.

pliers such thatthe optimal solution 8RR 51 is also the optimal Our algorithm is effective and efficient. The results show that
solution of the. original problgrfPP. The problem of finding our algorithm, on the average, improved the respective area,
such a vector is the Lagrangian dual problem described as fl%‘ise, power, and delay by 79.98%, 80.00%, 16.02%, and 1.77%
lows. after wire and gate sizing. For the largest circuit, c7552, with
3512 gates and 6144 wires, our algorithm needed only 19.4-min

Fig. 10. Optimal gate and wire sizing algorithm.

D. Lagrangian Dual Problem

LDP: Maximize runtime and 2.1-MB storage to achieve the precision of within
DX, B, 7v) 1% error.
subject to Note that the results show that sizing benefits delay not

much. When a component is enlarged, it will increase ont only
the loading of the components on the upstream path of the
sized component and the driving capability for the components
where on the downstream path but the physical coupling capacitance
also. Consequently, up-sizing causes that the delay for the
upstream part increases, while the delay for the downstream
part decreases. Similarly, down-sizing reduces the delay for
We present AlgorithnhOGWS listed in Fig. 10to solv&EDP.  the upstream part and harms that for the downstream part.
Initially, an arbitrary multiplier vector in the optimality condi- As a result, the delay over the whole circuit would not be
tion is chosen as the initial one afid~ are assigned to positive significantly improved.
numbers iml. In A2, u are calculated with respect oin Al. In Fig. 11, the storage requirement (denoted by the vertical
A3 calls theLRS subroutine. IlA4, theOGWS algorithm iter-  axis) is plotted as a function of the total number of gates and
atively adjusts the multipliers by the subgradient optimizatiomires in a circuit (represented by the horizontal axis). Similarly,
method. Itis well-known that if the step-size seque{t;g sat- the relationship between the runtime and the circuit size is de-
isfies the conditiorlimy ... 6 = 0 and>_;~, 6, = oo [e.g., picted in Fig. 12. Figs. 11 and 12 show that the runtime and
8. = (1/k)], the subgradient optimization method will alwayshe storage requirements of our algorithm approach linear in the
converge to the global optimal. IA5, the updated Lagrangetotal number of gates and wires. As revealed by Fig. 12, some
multipliers are projected onto the nearest point in the optimalipoints deviate from the linear line; a probable reason is that these
condition.A6 updates the iteration counter, wh& checks if circuits are not regular and their structures are different from
the stop criteria holds. each other.

A in optimal condition,

D(X, B, v) =min Ly g ,(z, a).
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TABLE I
EXPERIMENTAL RESULTS IN NOISE, DELAY, POWER, AND AREA
Ckt Ckt Size Noise (fF) Delay (ns) Power (mW) Area (kum?) ite time | mem
Name #G | #W tot Init | Fin Init Fin Init Fin Init | Fin (sec) | (KB)
c1355 546 | 1064 | 1610 3.69 | 0.74 || 274.81 | 272.89 373 3.08 1915.59 383.49 2 342 | 1096
c1908 880 | 1498 | 2378 5.19 | 1.04 || 280.15 | 277.20 534 | 4.40 2696.96 539.90 2 70.8 | 1184
c2670 1193 | 2076 | 3269 721 | 1.44 || 280.59 | 275.95 7.37 6.06 3737.55 748.19 2 134 | 1320
¢3540 1669 | 2939 | 4608 || 10.20 | 2.04 || 283.38 | 279.92 || 10.43 8.54 5291.24 | 1059.21 2 265.5 | 1472
c432 214 | 426 640 1.47 | 0.29 || 280.15 | 272.62 1.49 1.26 766.96 153.59 2 4 976
¢499 514 | 928 | 1442 322 | 0.64 || 273.24 | 271.58 3.28 271 1670.75 334.48 2 252 | 1072
¢5315 2307 | 4386 | 6693 || 15.22 | 3.05 || 282.62 | 279.19 || 15.43 | 12.58 7896.31 | 1580.67 2 596.8 | 1752
c6288 2416 | 4800 | 7216 || 16.66 | 3.33 || 321.82 | 303.15 || 16.81 | 13.82 8641.53 |. 1730.02 2 716.0 | 1808
c7552 3512 | 6144 | 9656 || 21.33 | 426 (| 282.21 | 277.49 || 21.81 | 17.79 || 11061.42 | 2214.19 2 | 1163.5 | 2120
c880 383 729 | 1112 2.53 ] 0.51 || 273.91 | 270.94 256 | 2.12 1312.47 262.75 2 144 | 1032
Impr(%) - 80.00% 1.77% 16.02% || 79.98% -
MB Storage vs. Circuit Size secx 10° Runtime vs. Circuit Size
T I I I 120 = T | T T R
210 |
110 [~ —]
2.00— —
1.00 |- —
1.90— -
090 |
1.80— -
0.80 |- —
1.70~ —
, 070 |- —
1.60— —
0.60 — —
1.50 —
' 0.50 |- -
1.40 —
0.40 |- —
1.30— —
0.30 |- —]
1.20— —
0.20 |- —
1.10 ]
0.10 - -
1.00— |
| | | | | 000 | | | | |l
2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
#gates+#wires #gates+#wires
Fig. 11. The storage requirement of our algorithm versus circuit size. Fig. 12. The runtime requirement of our algorithm versus circuit size.

VI. CONCLUDING REMARKS . . T .
is very effective for performance optimization, especially for

Noise immunity is of significant importance for a deep subnoise, area, and power minimization.
micrometer digital circuit; it, as well as area, delay, and power,
has become an important design metric. Switching conditions
and coupling capacitance are two dominating considerations
for crosstalk optimization; nevertheless, the switching condi- The authors would like to thank Prof. C.-P. Chen of Univer-
tion is often neglected in previous work. We have modelegity of Wisconsin at Madison for his suggestions and help. They
the crosstalk optimization problem by considering both ofould also like to thank the anonymous reviewers for their con-
switching conditions and physical coupling capacitance. gructive comments.
have proposed a two-stage method for crosstalk minimization:
the first stage handles geometry wire ordering by exploiting REEERENCES
the switching conditions to reduce the effective loading; the . . . i

d st further. optimizes not onl hvsical couplin [1] R K.'AhUja, T. L. Magnati, and J. B. Orllri,\le_:twork Flows: Theory,
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