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Abstract—AWG-based optical switching fabrics are affected by
coherent crosstalk, that can significantly impair system operation
when the same wavelength is used simultaneously on several input
ports to forward data to output ports. To permit large port coun ts
in a N×N AWG, the scheduling of transmissions across the AWG
must therefore prevent switch configurations that generate large
crosstalk. We study the properties and the existence conditions
of switch configurations able to control coherent crosstalk. Our
results show that it is possible to keep an AWG-based switch
with large port counts in the feasible operational region without
significant performance degradation, provided that a proper
scheduling algorithm is used.

I. I NTRODUCTION

Optical packet switching received a lot of attention in the
research community because optical technologies promise to
overcome intrinsic limitations of current switching architec-
tures [1], [2]. Indeed, the amount of traffic transported by
the Internet has been increasing at a pace that is faster than
Moore’s law, and electronic technologies may not be able to
support the realization of large packet switches and IP routers
in the near future. Power density and dissipation, in particular,
are becoming major bottlenecks [3].

On the other hand, photonic technologies exhibit a number
of interesting properties; prime examples are very large data
rates, a switching complexity almost independent of the data
rate, very large information densities on physical interconnec-
tions, no significant constraints on the physical size of the
switch and on the length of internal switch interconnections
(while electrical backplanes and interconnects have severe
distance limitations), and very good scalability of power
requirements. Nevertheless, all-optical packet switchesare
still far from being feasible, due to several limitations such as
the lack of optical memories, the very limited data processing
capabilities, and the inherent difficulties in realizing functions
in the time domain. Therefore, switching architectures in the
near future will probably exploit both electronics and photonic
technologies [4]: packet processing and storing will likely be
realized in electronics, while the packet forwarding from input
to output ports will likely rely on an optical switching fabric.

One of the most promising approaches to realize an optical
switching fabric is to use a passive wavelength routing device
with tunable transmitters and receivers around it. Arrayed
Waveguide Gratings (AWGs) [5] have been very successful
in the commercial deployment of Wavelength-Division Mul-
tiplexing (WDM) transmission systems. AWGs are passive
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Fig. 1. Considered routing for the AWG device.

devices behaving as multiport interferometers. In the
N × N configuration, AWGs behave as wavelength routers:
The information at an input port is forwarded to an output
port that depends on the input wavelength and the input port.
More specifically, at each input port, different wavelengths are
used to reach different output ports. Overall, anN × N
AWG can be simultaneously traversed byN2 information
flows (one for each input/output pair, leading to a full mesh
connectivity) exploiting space and wavelength separation. The
specific wavelengths used to route information through an
AWG depend on the design of the device, but are typically
on the ITU grid standard bands (with 100 GHz or 50 GHz
spacing) for commercial devices.

More precisely, although other wavelength assignments are
possible, we assume, with no loss of generality, that i) the
N × N AWG operates with a set ofN wavelengthsΛ =
{λ0, λ1, . . . , λN−1}, and ii) at inputi, information is delivered
to outputj using wavelengthλk, with k = (j − i) mod N
being the wavelength channel numbers. This cyclic behavior
is typical of the interferometric nature of the AWG, whose
routing behavior is replicated over the wavelength axis with a
period called Free Spectral Range (FSR). Our assumptions
on the AWG behavior imply that onlyN wavelengths are
necessary for theN2 connections overN input andN output
ports. Fig. 1 depicts the behavior considered in this paper for
a 4 × 4 AWG, where superscripts refer to input port indices,
and subscripts to wavelength channel numbers.

We consider a very straightforward realization of non-
blocking, cross-bar like, optical interconnection among input
and output ports, depicted in Fig. 2. Input Queueing (IQ)
slotted operation is assumed: fixed-size data units, named
cells, reach input ports where they are temporarily buffered
waiting for the availability of the output line. Although an
asynchronous switch behavior is possible, we disregard this
possibility in this paper. To balance electronic and optical



AWG

WBMRN−1

WBMR0

WBMR1

TT0

TT1

VOQN−1

VOQ1

VOQ0

TTN−1

Fig. 2. Simple single-stage AWG-based switch.

complexity, each input port is equipped with a single Tunable
Transmitter (TT) and each output port with a single wideband
receiver. Thus, at most one cell can be transmitted from
each input and to each output in each time slot, using the
proper wavelength to reach the chosen output. The adopted
switch control (scheduling) algorithm ensures that at most
one cell is forwarded to each output at the same time, thus
avoiding output contention. In addition, current schedulers
typically use Virtual Output Queueing (VOQ) at the inputs
to achieve high throughput [6], [7]: Incoming cells at each
input port are stored inN separate FIFO queues according
to their destination. Recall that, at each output port, cells
are received at a wavelength depending on the transmitting
input port. Since at each time slot at most a single cell is
received at each output, there is no need for tunable receivers
at the outputs, and wideband receivers suffice. Yet, since
each output port receives (over time) cells from different
inputs, burst-mode operation—hence, Wideband Burst Mode
Receivers (WBMR)—is necessary. Note that in this setup, the
AWG is largely under-utilized, as only at mostN out of the
possibleN2 input/output connections are used at a given time.
This under-utilization is a direct consequence of the single
transceiver architecture assumed in the paper, a constraint
normally introduced to reduce the electronic complexity ofin-
put/output line-cards. Different AWG-based optical switching
architectures have been studied in the technical literature (e.g.
[8]–[10]); although some of these architectures achieve better
performance, they require a significantly higher complexity
and are not further considered in this paper.

The physical-layer behavior of commercial AWGs is very
good, providing a uniform transfer functions, and extinction
ratios among adjacent channels in the order of 30-40 dB.
These characteristics are largely sufficient for multiplexers
and demultiplexers, which are indeed commonly used in
commercial WDM systems. However, significant coherent
crosstalk figures were reported inN × N AWGs with large
port counts [11]. In [12], the maximum possible value of
N is shown to be around 16 for currently available devices,
if the same wavelength is used at all AWG inputs. Hence,
the maximum port count is severely limited. We remark that
several proposals in the literature assume very large AWG
port counts, even if this turns out to be unfeasible without
counter-measuring the above described crosstalk impairments.
These large crosstalks can only marginally be reduced by
improving the physical layer behavior of the device [13].1

1Crosstalk prevention was studied also for other architectures, such as
Lithium niobate optical switching [15], however these results are not ap-
plicable for AWG-based switches.

One possibility to overcome this impairment is to exploit
homologous wavelengths in several FSRs (as proposed in
some studies, e.g. [14]), but this increases the operational
bandwidth of the system (possibly preventing the utilization
of optical amplifiers), and the behavior of the device outside
the principal FSR often degrades rapidly. The alternative
approach pursued in this paper is to prevent coherent crosstalk
by controlling AWG-based switches with scheduling decisions
that avoid using simultaneously the same wavelengths at too
many different inputs.

In the remainder of the paper, the crosstalk-constrained
scheduling problem is formulated in Sec. II. Sec. III shows ba-
sic properties of the permitted switch configurations. Sec.IV
elaborates on the performance obtainable with single-stage
AWG switching architectures, while in Sec. V two-stage
architectures are considered. Finally, Sec. VI summarizes
our findings.

II. PROBLEM STATEMENT

The considered IQN × N switch handles fixed-size cells
that arrive at input ports and leave output ports in a time-
slotted manner: All the switch external lines are assumed
to be synchronized [16]. Each time slot is comprised ofS
scheduling decisions, whereS is the switch speedup. At each
scheduling decision, at most one cell can be sent from each
input port and at most one cell can be sent to each output port.
Thus, each scheduling decision is apermutation(or a partial-
permutation) of port indexes. We denote these permutations
by vectorsπ = [π[0], π[1], . . . , π[N − 1]], whereπ[i] is the
output port index to which inputi forwards a cell. Clearly
each output port index can appear at most once inπ. If the
scheduling decision creates a partial permutation, some entries
in π are “don’t care”. We denote byI the unit permutation:
I = [0, 1, . . . , N − 1].

The traffic to be forwarded by the switch can be described
by a traffic matrixT = [ti,j ], whereti,j is the number of cells
(or, alternatively, the number of cells per time unit, or the
number of cells per time frame) that must be forwarded from
input i to outputj. Using a matrix notation, an input/output
permutation could also be described by anN×N permutation
matrix, i.e., a 0-1 matrixP = p[ij], where rows (columns)
represents inputs (outputs), andp[ij] = 1 if and only if input
i is connected to outputj. In a permutation matrix, at most a
single ”1” is present in each column and in each row.

Since we deal with an AWG passive router, cell forwarding
through the switching fabric is done by assigning to each cell
a wavelength out of a predetermined set ofN wavelengths
Λ = {λ0, . . . , λN−1}, according to the following rule:

A cell sent from input porti with wavelengthλk ∈ Λ
is forwarded to output porti+ k mod N2.

Given a permutationπ, we call λ(π) the wavelength assign-
ment of π; that is, the vector of indices of the wavelengths
that are needed at input ports to realize permutationπ. Note

2In the remainder of the paper themod N operator, denoting the
remainder of the division byN , may be omitted to improve readability.



that, with our wavelength assignment rule, the wavelength
used to reach outputj from input i is λ(j−i) mod N . Hence,
λ(π) = (π − I) mod N , whenI is the identity permutation.
As mentioned in Sec. I, other wavelength assignments are
possible, depending on the design of the AWG device. These
different wavelength behaviors can in some cases (for example
if output (i − k) mod N is reached from inputi using
λk) be modeled by relabeling wavelengths and ports in our
formalization, so that the properties outlined in the sequel hold
for several AWG wavelength assignments.

Recall that performance degradation due to the coherent
crosstalk arises when several different input ports in an AWG-
based switch use simultaneously the same wavelength to
send cells to different output ports. The impairments due to
coherent crosstalk increase as the number of input ports using
the same wavelength increases, up to the point in which the
switch operation becomes impossible. We focus on avoiding
such effects by restricting the switch scheduler to use onlya
certain type of permutations:

Definition 1: A permutationπ is k-legal if, in the vector
λ(π) = π − I, no index appears more thank times.
k represents the maximum number of times the same wave-

length is used at different input ports in a given scheduling
decision. Our goal is to build a switch which can handle
the incoming traffic using onlyk-legal permutations, with the
smallest possible value ofk, to minimize crosstalk.

III. PROPERTIES OFk-LEGAL PERMUTATIONS

We start by investigating the properties ofk-legal permu-
tations. Definition 1 immediately implies that a permutation
π is 1-legal if and only if its wavelength assignmentλ(π) is
also a permutation. Note that anyk-legal permutation is also
m-legal, for anym ∈ {k, . . . , N}. Furthermore,

Lemma 3.1:Let χ ∈ {0, . . . , N − 1}
N , such that all its

elements arex. If a permutationπ is k-legal, then the
permutationπ + χ is alsok-legal.

Proof: Assume towards a contradiction thatπ + χ is
not k-legal, so inψ = π + χ − I there existk + 1 indices
i1, . . . , ik+1 such thatψ[i1] = . . . = ψ[ik+1]. This implies
that π[i1] + χ[i1] − i1 = . . . = π[ik+1] + χ[ik+1] − ik+1.
Sinceχ[i1] = . . . = χ[ik+1] = x, it follows thatπ[i1] − i1 =
. . . = π[ik+1]− ik+1, implying thatπ− I hask+ 1 identical
elements. This contradicts the assumption thatπ is k-legal
and the claim follows.

Next, we show how to build1-legal permutations for odd
values ofN .

Lemma 3.2:If N is odd, then there exist a1-legal permu-
tation πodd of {0, . . . , N − 1}.

Proof: Let πodd be the following permutation:

πodd[i] = 2i mod N i ∈ {0, . . . , N − 1}.

If i 6= j, then2i− 2j is even and does not equal0. SinceN
is odd, this implies that2i − 2j 6= 0 mod N , implying that
πodd[i] 6= πodd[j]. Hence,πodd is a permutation.

The wavelength assignment ofπodd is πodd−I = 2I−I =
I which is clearly a permutation. Thus,πodd is 1-legal.

The following lemma deals withevenvalues ofN . Re-
cently, this result was independently proven in [17], thus we
omit the proof here due to lack of space.

Lemma 3.3:If N is eventhan there is no1-legal permuta-
tion of {0, . . . , N − 1}.

We next deal with2-legal permutations:
Lemma 3.4:For everyN , there is a2-legal permutation of

{0, . . . , N − 1}.
Proof: Since every1-legal permutation is also a2-legal

permutation, the claim follows immediately by Lemma 3.2 for
odd values ofN .

Assume thatN is even and consider the following assign-
ment permutation:

πeven[i] =

{

2i mod N i < N/2
2i+ 1 mod N N/2 ≤ i ≤ N − 1

Clearly, πeven is a permutation: Its first half covers all
the even output ports and its second half covers all the odd
output-ports. We now compute the wavelength assignment of
πeven:

λ(πeven)[i] =

{

i mod N i < N/2
i+ 1 mod N N/2 ≤ i ≤ N − 1

Clearly, each input port except input port0 andN − 1 has
a different wavelength assignment, while for input ports0 and
N − 1 we getλ(πeven)[0] = λ(πeven)[N − 1] = 0, implying
thatπevenis a2-legal permutation. Hence, we have a2-legal
permutation with only one wavelength repetition.

IV. SINGLE-STAGE AWG-BASED SWITCHES

We first consider a single-stage AWG switch. We start by
investigating the speedup required to realize any adversarial
traffic pattern.

A. Worst-case traffic

Due to the AWG switch crosstalk impairment, the most
difficult traffic to handle is a “generalized diagonal” traffic,
in which all cells from input porti are directed to output port
i+ x mod N (x ∈ {0, . . . , N − 1}), with the same value of
x for each input port: All inputs are forced to use the same
wavelength to reach the proper output. As a consequence,
under generalized diagonal traffic, if we are restricted tok-
legal permutations, at mostk cells can be forwarded in any
scheduling decision, implying that the required speedup is
S = N/k. Since k should be a small constant (less than
16, as shown in [12], but possibly even smaller, in case of
all-optical cascades of switching stages) to avoid coherent
crosstalk impairments, this implies that single stage AWG
switches with large port counts require prohibitive speedups to
cope with such an adversarial traffic. In contrast, a crossbar
switch, in which there is no restriction on the permutation
used, can schedule generalized diagonal traffic with speedup
S = 1.



B. Uniform traffic

Let us now focus on the classical uniform traffic pattern,
where the uniform traffic matrixT contains all “1”s. It is well
known that anN ×N uniform traffic matrix can be scheduled
using a fixedTime Division Multiplexing (TDM)approach, in
which, during a frame ofN time slots, each input is in turn
connected to the differentN outputs. This can be interpreted
as the decomposition of matrixT in a set ofN ”covering”
permutation matrices. If we ignore the constraint of using only
k-legal permutations, a possible decomposition of matrixT is
achieved through a set ofN generalized diagonal (switching)
matricesΠTDM = {π0, π1, . . . , πN−1}, whereπi = I + χi

mod N andχi is a vector in which all elements arei. For
example, forN = 3, we have the following decomposition:





1 1 1

1 1 1

1 1 1



 =





1 0 0

0 1 0

0 0 1



+





0 1 0

0 0 1

1 0 0



+





0 0 1

1 0 0

0 1 0





Next, we look for a decomposition of a uniform traffic
matrix in k-legal permutations, and we wish to determine
the minimum number ofk-legal sub-permutations needed to
decompose a uniform traffic matrix.

Scheduling Uniform Traffic Using1-legal Permutations: We
consider two cases, depending on the parity ofN .

If N is odd, we use the following covering sequence of
N 1-legal permutations, in which each input-output pair is
connected exactly once:Π = {πodd+ χx | 0 ≤ x ≤ N − 1},
whereπodd is the permutation defined in Lemma 3.2 andχx

is theN -vector whose elements are all equal tox. BeingN
odd, by Lemmas 3.2 and 3.1 all permutations inΠ are1-legal.
Furthermore, each input porti is connected to output portj if
and only if the permutationπodd+χx ∈ Π with x = (j−2i)
mod N is used.

When N is even, Lemma 3.3 implies that no1-legal
permutation exists. Thus, we cannot apply the same strategy
as with odd values ofN .

A straightforward way to get around this problem is to add
another port to the switch making its port count odd. Note that
this extra port will not be active in sending/receiving cells. The
cost of adding ports relative to the entire switch is called the
spatial speedupof the switch and in this case it is1 + 1

N
(a

single additional port should be added forN existing ports).
Usually in switch design, a spatial speedup corresponds

directly to the (time) speedup of the switch (as defined is
Sec. II). The rational behind it is that building as times
larger switch is logically equivalent (although this may not
be technologically true in the optical domain where the com-
plexity of time operation is larger) to building as time faster
switch by speeding-up the time between the ports. This leads
to a possible conclusion that an AWG-based switch with even
N can be realized by a (time) speedup of1 + 1

N
. The next

theorem shows that this is not the case:
Theorem 4.1:An AWG-based switch with evenN using1-

legal permutations requires a speedupS > 1+1/N to schedule
a uniform traffic pattern.

Proof: Let theweight of a sub-permutation be the num-
ber of input (output) ports matched in this sub-permutation.
SinceN is even, Lemma 3.3 implies that there is no1-
legal permutation of{0, . . . , N − 1}. Thus, the maximum
weight of a 1-legal partial-permutation of{0, . . . , N − 1}
is N − 1, i.e., the minimum number of repeated outputs
in π is 2. Note also that, since each input port should be
connected to each output port, the total weight of all (partial)-
permutations in anN period isN2. This implies that at least
⌈

N2

N−1

⌉

=
⌈

N + 1 + 1
N−1

⌉

= N + 2 > N + 1 scheduling
decisions are required in such a period, translating to a (time)
speedupS > 1 + 1/N .

This result highlights an interesting difference between
space and time speedup for the considered switch architecture.

Scheduling Uniform Traffic Using 2-legal Permuta-
tions: When N is odd, we already found in the
previous section a scheduling for uniform traffic
providing 100% throughput with no speedup, i.e.
relying on 1-legal permutations. WhenN is even, and
we permit 2-legal permutations, we can use the set
Π = {πeven+ χx | 0 ≤ x ≤ N − 1}, whereπeven is the
permutation defined in Lemma 3.4 andχx is an N -vector
whose all elements arex. The correctness of the construction
is identical to the one described for1-legal permutations.

In summary, in a single-stage AWG-based switch, uniform
traffic can be scheduled using1-legal permutations with no
speedup whenN is odd. WhenN is even, either a time
speedup larger than1 + 1/N or a spatial speedup of1 + 1/N
are required for1-legal permutations. Alternatively,2-legal
permutations with no time or space speedup can be used. The
worst case traffic scenario implies that a time speedup ofN/k
is required to schedule all admissible traffic patterns under the
k-legal constraint.

V. TWO-STAGE SOLUTION

In this section, we consider an AWG-based two-stage switch
architecture. We adapt the two-stage Load Balanced Switch,
introduced in [18] and briefly recalled below, and schedule the
AWGs switching stages to operate withk-legal permutations.

A. The Two-Stage Load Balanced Switch

The Load-Balanced Switch (Fig. 3) consists of two switch-
ing stages: The first stage performs load balancing of the
incoming traffic, while the second stage performs the actual
switching of cells to their destination. The basic idea is to
transform any generic traffic pattern at the switch input into
a uniform traffic at the output of the first stage, hence at the
input of the second stage. To achieve this, cells arriving at
one input in the first stage are forwarded in turn to all outputs
of the first switching stage, regardless of the final output port.
This permits to evenly distribute the considered input loadto
all first stage outputs. Since this traffic “spreading” operation
is performed at all inputs, all first-stage outputs receive,on
average, the same amount of traffic. The traffic at the input
of the second stage is therefore uniform: Same load at all
ports, and equal probability for any input-output pair. This
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Fig. 3. A two-stage AWG-based switch. Electronic paths and components are highlighted with thick lines.

uniform traffic can be easily forwarded in a Load-Balanced
switch by a fixed TDM switch schedule in the second stage,
providing 100% throughput if the traffic is stationary and
weakly mixing3, excellent delay performance and efficient
buffer usage.

It is important to notice that no cell buffering is required
at inputs, as arriving cells are immediately forwarded. VOQ
buffering is instead required between the two stages (cells
destined for different output ports are stored in separate FIFO
buffers), in which cell queues may build up in case of
congestion.

The load-balancing operation with VOQ buffering between
the two switching stages has the drawback of out-of-sequence
cell delivery. To avoid this, either resequences modules must
be introduced at the outputs of the second stage, or more
complex queuing structures and policies must be used between
the two stages [19]–[21]. Both solutions must be implemented
in the electronic domain, and increase complexity. Further-
more, the second solution has scalability problems, as its
implementation complexity grows polynomially withN .

The scheduling in the two stages can be fully distributed,
i.e., based on local decisions at each input port, without any
coordination among different ports, apart from a switch-wide
slot synchronization, provided that traffic is weakly mixing, to
avoid adversarial patterns that would impair the load-balancing
effect when the first stage is operated in fixed TDM. It can be
easily understood that, for both switch stages, the scheduling
translates into a periodic sequence ofN permutations, such
that each input-output pair is connected exactly once in
each period. This is equivalent to scheduling uniform traffic
matrices in both stages; hence, the scheduling for the two-
stageN ×N load-balanced switch must cyclically run over a
set ofN covering permutations for a uniform (i.e., comprising
all “1”) traffic matrix. While theseN covering permutations
can be found in several ways, we are interested, for the AWG-
based switch, in a set ofN k-legal permutations, which can
be obtained as described in Sec. IV-B.

Note that the twoN×N switching stages can be interpreted
as a two-fold speedup realized in the space domain: Up to2N
cells are simultaneously switched in every time slot.

Implications to AWG-based Switches:The results from the
previous sections imply that any traffic pattern in the two-stage

3A stochastic sequence{a(t), t ≥ 1} is weakly mixing if for all A, B ∈
R

(N×N)∞ , limt→∞

1
t

∑

t−1
s=0 |Pr(θsa ∈ A, a ∈ B) − Pr(a ∈ A) Pr(a ∈

B)| = 0, where θsa is the sequencea shifted by s time-slots: θsa =
{a(t + s), t ≥ 1}.

π1 π2

Fig. 5. Illustration of a1-legal decomposition of the identity permutation in
a 5×5 switch using permutationsπ1 = [0, 2, 4, 1, 3] andπ2 = [0, 3, 1, 4, 2];
both π1 andπ2 are1-legal permutations.

AWG-based load-balanced switch can be scheduled with no
speedup in each stage when the number of ports is odd. A
spatial speedup equal to1 + 1/N is needed in the case of
even number of ports. If considering the two-stage architecture
as a switch spatial speedup, a generic traffic matrix can be
scheduled with a speedup of2 (2 + 2/N ) for AWGs with
odd (even) number of ports. Since the spatial speedup avoids
any speed increase in components and transmission lines, this
architecture is well suited for the optical domain, keepingthe
electronic speed in the feasible domain of today technology.

B. Avoiding buffers in the middle-stage

A promising approach to circumvent the need of buffering
in the middle stage and resequencing at the egress is to
control the AWG in both stages simultaneously, so that their
combination will produce the desired permutation. In this
setting, suppose we have anoracle crossbar schedulerthat
produces a sequence of permutations; our goal is to realize
each of these permutationsπ using twok-legal permutations
π1 and π2 such thatπ = π1 ◦ π2 where◦ denotes function
composition. We call the pair of permutations〈π1, π2〉 a k-
legal decomposition ofπ. Since the oracle may produce any
permutation of{0, . . . , N − 1}, our algorithm must be able
to decompose all these permutations. Fig. 5 depicts a1-legal
decomposition of the identity permutation in a5 × 5 switch.

The resulting architecture is depicted in Fig. 4, where Tun-
able Wavelength Converters (TWC) (or equivalently, WBMR
followed, with no cell buffering stage, by a TT) are needed
between the two stages to create the proper permutation.
With this solution, VOQ buffering and O/E/O conversions are
no longer required between the two stages, and cell out-of-
sequence delivery is eliminated. VOQs are however needed
in front of the first stage, similarly to the classical IQ switch
architecture depicted in Fig. 2.

Besides eliminating the need for buffering in the middle
stage, our decomposition approach has another significant
advantage over the two-stage load-balanced switch approach,
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Fig. 4. A two-stage AWG-based switch with no internal buffering. Electronic paths and components are highlighted with thick lines.

as it can be adapted to work usinganyinput-queued scheduling
algorithm.

It is important to notice that while the Load Balanced
switch provides100% throughput on wide range of traffic
patterns, there are still pathological traffic patterns that make
its throughput arbitrarily small [22, Chapter 1.3.3]. Moreover,
Load Balanced switches require a full switch reconfigura-
tions at each scheduling decision; these reconfigurations may
become infeasible as the line rates grow. Lastly, the two-
stage Load Balanced switch is only aiming at providing100%
throughput; however, there is no bound or discussion on other
important performance measures such as latency, smoothness
(delay jitter) or fairness. These measures are crucial to
provide the stringent QoS demands required by contemporary
applications, and therefore a thorough research was done
in the last decade to devise scheduling algorithms which
perform better under these metrics (see, for example, [16] for
a comprehensive survey).

Our decomposition algorithms offer a modular black-box
approach in which any existing (or future) scheduling algo-
rithm can beconvertedto be a crosstalk-preventing algorithm.
In our approach, we model the switching algorithm as an
oracle whose output is its scheduling decisions (that is, a se-
quence of permutations). Our algorithms get as an input these
permutations (one by one) and produce the necessaryk-legal
permutations needed for crosstalk-preventing scheduling.

For example, to reduce the reconfigurations of the AWG
devices one can use a scheduling algorithm which takes into
account the reconfiguration delays and aims at minimizing the
total delay (e.g., [23]–[25]). Since the change in permutations
under such schedulers is not frequent, the number of needed
decompositions decreases accordingly, thus facilitatingthe
computation demands of our decomposition algorithms.

We now discuss for which values ofk a k-legal decompo-
sition exists for all permutations.

Impossibility of Using1-legal Permutations: Recall that by
Theorem 3.3, no1-legal permutation exists for evenN ; this
implies that no1-legal decomposition exists. However, we
are able to prove, by a counter example, that no1-legal
decomposition algorithm exists for anyN , regardless its parity.

Theorem 5.1:For anyN , the following permutationπ =
[0, 1, 2, . . . , N−3, N−1, N−2] has no1-legal decomposition.

Proof: Assume that there is a1-legal decomposition of
π into two 1-legal permutationsπ1 andπ2. Let λ1 = λ(π1)
and λ2 = λ(π2) the wavelength assignments ofπ1 and π2,
respectively; sinceπ1 and π2 are 1-legal, λ1 and λ2 are

permutations. Since for everyi ≤ N − 3, π[i] = i, then
λ2[π1[i]] = −λ1[i]. Thus, in the composite permutation
π[i] = π2[π1[i]] = π1[i] − λ1[i] = i + λ1[i] − λ1[i] = i,
as required.

Since λ2 is a permutation, the remaining elements
λ2[π1[N−2]] andλ2[π1[N−1]] must use the remaining values
−λ1[N−2] and−λ1[N−1]. If λ2[π1[N−2]] = −λ1[N−2],
this results inπ[N − 2] = π2[π1[N − 2]] = N − 2 6= N − 1.
Thus, we should haveλ2[π1[N − 2]] = −λ1[N − 1] and
λ2[π1[N − 1]] = −λ1[N − 2], implying that π[N − 2] =
π2[π1[N−2]] = N−2+λ1[N−2]−λ1[N−1], which in turn
implies thatλ1[N−2]−λ1[N−1] = 1 sinceπ[N−2] = N−1.
This yields thatπ1[N − 2] = N − 2 + λ1[N − 2] =
N − 1 + λ1[N − 1] = π1[N − 1], which contradicts thatπ1 is
a permutation, and the claim follows.

Decomposition Using2-legal Permutations: We continue by
investigating2-legal decomposition algorithms. First, forN =
3, Theorem 5.1 and the fact that each permutation of{0, 1, 2}
is either1-legal or3-legal immediately implies the following:

Corollary 5.2: There is no2-legal decomposition algorithm
for N = 3.

For N = 4, . . . , 12, we verified by exhaustive search
that any permutationπ of {0, . . . , N − 1} can be2-legally
decomposed. Hence, we can state that:

Theorem 5.3:There exists a2-legal decomposition for all
permutations withN ∈ {4, . . . , 12}.

Furthermore, it is important to notice that, given the per-
mutationπ, by choosing a2-legal first permutationπ1, one
only needs to verify thatπ2 = π−1

1 ◦ π is 2-legal to decide
whether the decomposition is legal. Our experiments, reported
in Tab. I, show that, to decompose any permutationπ, it
is sufficient to chooseπ1 from a small setΠ1 of 2-legal
permutations. SinceΠ1 can be pre-computed and programmed
directly to the scheduler of the AWG, it implies that it is
feasible to implement this scheduler for these values ofN .
Tab. I shows the size ofΠ1 for different values ofN .

We were not able to find an algorithm to compute a2-
legal decomposition, nor we were able to prove that2-legal
decompositions exist for everyN . We thus leave these two
issues as open research problems and formulate the following
conjecture, partially supported by our exhaustive searches for
small values ofN :

Conjecture 5.1:There exists a2-legal decomposition for all
permutations withN ≥ 4.



TABLE I
NUMBER OF FIRST-STAGE PERMUTATIONS NEEDED TO PROVIDE A

2-LEGAL DECOMPOSITION.

Number of Number of Number of2-legal Size ofΠ1

portsN permutations permutations (upper bound)

4 24 20 2
5 120 65 4
6 720 396 8
7 5040 2338 12
8 40320 16912 29
9 362880 132759 53
10 3628800 1183200 107
11 39916800 11531641 237
12 479001600 123019776 543

VI. CONCLUSIONS

In this paper we studied ways to prevent coherent crosstalk
impairments in AWG-based optical switching fabrics. The
notion of k-legal permutations was introduced, in which each
wavelength is re-used at mostk times. We first found
properties of1-legal permutations, showing that a difference
exist between odd and even values of the number of input
and output portsN . We then showed that uniform traffic
patterns can be scheduled in input-queued cell switches using
1-legal permutations with no speedup for oddN and with
a small speedup with evenN . General traffic patterns can
be instead scheduled with1-legal permutations using two-
stage load-balancing switches using the same small speedup,
VOQs between the two switching stages, and cell resequencing
at outputs. 2-legal permutations were observed to permit to
avoid intermediate VOQs and resequencing problems for small
values ofN . We left as an open research question to prove
that this holds for all values ofN .

Furthermore, we were able to formally prove that a2-stage
load-balanced switch can be configured with pairs of4-legal
permutations (or3-legal permutations, in caseN is a prime
number) with no buffering between the two stages. These
results, which are accompanied by quadratic decomposition
algorithms, are not reported here due to lack of space.
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