
1

Crosstalk-Preventing Scheduling in
Single- and Two-Stage AWG-Based Cell Switches

Andrea Bianco,Senior Member, IEEE,David Hay,Member, IEEE,and Fabio Neri,Senior Member, IEEE

Abstract—AWG-based optical switching fabrics are receiving
increasing attention due to their simplicity and good perfor-
mance. However, AWGs are affected by coherent crosstalk,
that can significantly impair system operation when the same
wavelength is used simultaneously on several input ports. To
permit large port counts in a N ×N AWG, a possible solution
is to schedule data transmissions across the AWG preventing
switch configurations that generate large crosstalk. We study the
properties and the existence conditions of switch configurations
able to control coherent crosstalk. The presented results show
that, by running a properly constrained scheduling algorithm
to avoid or minimize crosstalk, it is possible to operate an
AWG-based switch with large port counts without significant
performance degradation.

Index Terms—optical switching; AWG; coherent crosstalk;
input-queued switches; scheduling algorithms

I. I NTRODUCTION

Internet traffic has been increasing at a pace faster than
Moore’s law, and electronic technologies may not be able
to support the realization of large packet switches and IP
routers in the near future. Power density and dissipation,
in particular, are becoming major bottlenecks [1]. Optical
technologies may help in overcoming intrinsic limitationsof
current switching architectures [2], [3]. Indeed, photonic
technologies exhibit a number of interesting properties: A
switching complexity almost independent of the data rate,
very high data rates supported via large information densities
on physical interconnections, no significant constraints on the
physical size of the switch and on the length of internal switch
interconnections (while electrical backplanes and interconnects
have severe distance limitations), and very good scalability of
power requirements. Nevertheless, all-optical packet switches
are still far from being feasible, due to several limitations
such as the lack of optical memories, the very limited data
processing capabilities, and the inherent difficulties in realizing
functions in the time domain. Therefore, switching archi-
tectures in the near future will exploit both electronics and
photonic technologies [4]: packet processing and storing will
likely be realized in electronics, while packet forwardingwill
likely rely on an optical switching fabric.

A promising approach to realize an optical switching fabric
is to use a passive wavelength routing device with tunable
transmitters and receivers at device inputs/outputs. Arrayed
Waveguide Gratings (AWGs) [5] have been widely used in
the commercial deployment of Wavelength-Division Multi-
plexing (WDM) transmission systems. AWGs are passive

Dipartimento di Elettronica, Politecnico di Torino, 10129,Torino, Italy.
E-mail: hay@tlc.polito.it,andrea.bianco@polito.it,fabio.neri@polito.it

AWG
λ1

0, λ
1
1, λ

1
2, λ

1
3

λ0
0, λ

0
1, λ

0
2, λ

0
3

λ2
0, λ

2
1, λ

2
2, λ

2
3

λ3
0, λ

3
1, λ

3
2, λ

3
3

λ0
1, λ

1
0, λ

2
3, λ

3
2

λ0
2, λ

1
1, λ

2
0, λ

3
3

λ0
3, λ

1
2, λ

2
1, λ

3
0

λ0
0, λ

1
3, λ

2
2, λ

3
1

Fig. 1. Considered routing for the AWG device.

devices behaving as multiport interferometers. In the1 × N
(N × 1) configuration, AWGs act as wavelength multiplexers
(demultiplexers). In theN ×N configuration, AWGs behave
as wavelength routers: The information at an input port
is forwarded to an output port depending on the selected
wavelength. More specifically, at each input port, different
wavelengths are used to reach different output ports. Since
AWGs device are symmetrical, i.e., the role of input and
output ports, and the direction of forwarded information can
be reversed, information is received at each output port from
different inputs with different wavelengths. Overall, anN×N
AWG can be simultaneously traversed byN2 information
flows, one for each input/output pair, leading to a full mesh
bipartite connectivity exploiting space and wavelength separa-
tion.

The specific wavelengths used to route information through
an AWG depend on the device design, but commercial devices
typically exploit the ITU grid standard bands, with 100 GHz or
50 GHz spacing. Although other wavelength assignments are
possible, we assume in this paper, with no loss of generality,
that i) theN ×N AWG operates with a set ofN wavelengths
Λ = {λ0, λ1, . . . , λN−1}, and ii) at inputi, 0 ≤ i ≤ N −
1, information is delivered to outputj, 0 ≤ j ≤ N − 1,
using wavelengthλk, with k = (j − i) mod N being the
wavelength channel number. This cyclic behavior is typicalof
the interferometric nature of the AWG, whose routing behavior
is replicated over the wavelength axis with a period called
Free Spectral Range (FSR). Our assumptions on the AWG
behavior imply that onlyN wavelengths are needed to support
N2 connections overN input andN output ports. Fig. 1
depicts, for a4×4 AWG, the wavelength behavior considered
in this paper, where superscripts refer to input port indices,
and subscripts to wavelength channel numbers.

We consider the non-blocking optical interconnection
among input and output ports depicted in Fig. 2. Slotted,
synchronous operation is assumed: fixed-size data units,
named cells, are temporarily buffered at input ports accord-
ing to an Input Queueing (IQ) architecture, waiting for the
availability of the output line. To balance electronic and

2

optical complexity, each input port is equipped with a single
Tunable Transmitter (TT). Thus, at most one cell can be
transmitted from each input in each time slot, using the proper
wavelength to reach the chosen output. The adopted switch
control (scheduling) algorithm must ensure that at most one
cell is forwarded to each output at the same time, to avoide
output contention where buffering is not available. Current
schedulers typically use Virtual Output Queueing (VOQ) at
inputs to achieve high throughput: Incoming cells at each
input port are stored inN separate FIFO queues according
to their destination. Since, at each output port, cells are
received at a wavelength depending on the transmitting input
port and, at each time slot, at most a single cell is received
at each output, there is no need for tunable receivers at the
outputs, and a single wideband receivers suffice. Yet, since
each output port receives (over time) cells from different
inputs, burst-mode operation—hence, Wideband Burst Mode
Receivers (WBMR)—is necessary. Note that in this setup, the
AWG is largely under-utilized, as only at mostN out of the
possibleN2 input/output connections are used at a given time.
This under-utilization is a direct consequence of the single
transceiver architecture assumed in the paper, a constraint
introduced to reduce the electronic complexity of input/output
line-cards. Indeed, given the increasingly high transmission
speeds, it is becoming overly difficult and expensive to sup-
port more than a single data flow at each input/output port,
especially when considering memory access speed. Different
AWG-based optical switching architectures have been studied
in the technical literature (e.g. [6]–[8]); although some of
these architectures achieve better performance, they require a
significantly higher electronic complexity and are not further
considered in this paper.

Commercial AWGs provide uniform transfer functions, and
extinction ratios among adjacent channels in the order of 30-
40 dB. These physical layer characteristics are largely suffi-
cient for multiplexers and demultiplexers, which are indeed
commonly used in commercial WDM systems. However,
significant coherent crosstalk figures were reported inN ×N
AWGs with large port counts [9]. If the same wavelength is
used at all AWG inputs, the maximum admissible value ofN
is severely limited: Fig. 3 (from [10]) shows the power penalty
LAWG in dB for a typical AWG as a function of the number
of portsN . While insertion losses (IL), non uniformities of
the transfer function (U), and polarization-dependent losses
(PDL) are almost independent from the port count, in-band (or
coherent) and out-of-band crosstalk (IX+OX) increase sharply,
and limit the port count to around 15.

We remark that several proposals in the literature assume
very large AWG port counts, even if this turns out to be unfea-
sible without counter-measuring the above described crosstalk
impairments. These large crosstalks can only marginally be
reduced by improving the physical layer behavior of the device
[11]. One possibility to overcome this impairment is to exploit
homologous wavelengths in several FSRs (as proposed in some
studies, e.g. [12]). However, this increases the operational
bandwidth of the system (possibly preventing the utilization
of optical amplifiers); furthermore, the behavior of the device
outside the principal FSR often degrades rapidly. The alter-

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

Number of ports (N)

L A
W

G
 [d

B
]

Total Penalty
IL
U
PDL
IX+OX Penalty

Fig. 3. Power penalties as a function of port countN in a N × N AWG.

native approach pursued in this paper and initially explored
in [13], [14] is to prevent coherent crosstalk by controlling
AWG-based slotted switches with scheduling decisions that
avoid using simultaneously the same wavelengths at too many
different inputs.

In this paper, the crosstalk-constrained scheduling problem
is formally formulated in Sec. II. We introduce the notion
of k-legal permutations: A scheduling decision isk-legal if
each wavelength is re-used at mostk times in a given time-
slot. By choosing a proper value fork, crosstalk figures
can be controlled and large port counts become feasible. In
Sec. III we discuss basic properties of the permitted switch
configurations. For1-legal permutations, we show that a
difference exists between odd and even values of the number
of input and output portsN . In Sec. IV we elaborate on
the performance obtainable with single-stage AWG switching
architectures, showing that uniform traffic patterns can be
scheduled using1-legal permutations with no speedup for odd
N and with a small speedup with evenN . In Sec. V we
show that general traffic patterns can be instead scheduled
with 1-legal permutations using two-stage switches using the
same small speedup, VOQs between the two switching stages,
and cell resequencing at outputs. We also show that2-
legal permutations permit to avoid intermediate VOQs and
resequencing problems for small values ofN . Finally, as
completely original contributions, in Sec. VI and Sec. VII
we formally prove that a2-stage AWG-based switch can
be configured with pairs of4-legal permutations (or3-legal
permutations, in caseN is a prime number) with no buffering
between the two stages, proposing a switch control scheme
with quadratic complexity in the number of ports.

II. PROBLEM STATEMENT

The considered IQN × N switch handles fixed-size cells
that arrive at input ports and leave output ports in a time-
slotted manner: All the switch external lines are assumed to
be synchronized. In each time slot, the scheduler definesS
scheduling decisions, whereS is the switch speedup. At each
scheduling decision, at most one cell can be sent from each
input port and at most one cell can be sent to each output port.

3

AWG

TT0

TT1

WBMRN−1

WBMR0

WBMR1

VOQN−1

VOQ1

VOQ0

TTN−1

Fig. 2. Simple single-stage AWG-based switch.

Thus, each scheduling decision is apermutation(or a partial-
permutation) of port indexes. We denote these permutations
by vectorsπ = [π[0], π[1], . . . , π[N − 1]], whereπ[i] is the
output port index to which inputi forwards a cell. Clearly
each output port index can appear at most once inπ. If the
scheduling decision creates a partial permutation, some entries
in π are “don’t care”. We denote byI the unit permutation:
I = [0, 1, . . . , N − 1].

The traffic to be forwarded by the switch can be described
by a traffic matrixT = [ti,j], whereti,j is the number of cells
(or, alternatively, the number of cells per time unit, or the
number of cells per time frame) that must be forwarded from
input i to outputj. Using a matrix notation, an input/output
permutation could also be described by anN×N permutation
matrix, i.e., a 0-1 matrixP = p[ij], where rows (columns)
represents inputs (outputs), andp[ij] = 1 if and only if input
i is connected to outputj. In a permutation matrix, at most a
single “1” is present in each column and in each row.

Since we deal with an AWG passive router, cell forwarding
through the switching fabric is done by assigning to each cell
a wavelength out of a predetermined set ofN wavelengths
Λ = {λ0, . . . , λN−1}, according to the following rule:

A cell sent from input porti with wavelengthλk ∈ Λ
is forwarded to output porti+ k mod N1.

Given a permutationπ, we call λ(π) the wavelength assign-
ment of π; that is, the vector of indices of the wavelengths
that are needed at input ports to realize permutationπ. Note
that, with our wavelength assignment rule, the wavelength
used to reach outputj from input i is λ(j−i) mod N . Hence,
λ(π) = (π − I) mod N , whenI is the identity permutation.
As mentioned in Sec. I, other wavelength assignments are
possible, depending on the design of the AWG device. These
different wavelength behaviors can in some cases (for example
if output (i − k) mod N is reached from inputi using
λk) be modeled by relabeling wavelengths and ports in our
formalization, so that the properties outlined in the sequel hold
for several AWG wavelength assignments.

Recall that performance degradation due to the coherent
crosstalk arises when several different input ports in an AWG-
based switch use simultaneously the same wavelength to
send cells to different output ports. The impairments due to
coherent crosstalk increase as the number of input ports using
the same wavelength increases, up to the point in which the
switch operation becomes impossible; this limit was estimated
to be around 15 in [10]. We focus on avoiding such effects

1In the remainder of the paper themod N operator, denoting the
remainder of the division byN , may be omitted to improve readability.

by restricting the switch scheduler to use only a certain type
of permutations:

Definition 1: A permutationπ is k-legal if, in the vector
λ(π) = π − I, no index appears more thank times.
k represents the maximum number of times the same wave-

length is used at different input ports in a given scheduling
decision. Our goal is to build a switch which can handle
the incoming traffic using onlyk-legal permutations, with the
smallest possible value ofk, to minimize crosstalk.

III. PROPERTIES OFk-LEGAL PERMUTATIONS

We start by investigating the properties ofk-legal permu-
tations. Definition 1 immediately implies that a permutation
π is 1-legal if and only if its wavelength assignmentλ(π) is
also a permutation. Note that anyk-legal permutation is also
m-legal, for anym ∈ {k, . . . , N}. Furthermore,

Lemma 3.1:Let χ ∈ {0, . . . , N − 1}N , such that all its
elements arex. If a permutationπ is k-legal, then the
permutationπ + χ is alsok-legal.

Proof: Assume towards a contradiction thatπ + χ is
not k-legal, so inψ = π + χ − I there existk + 1 indices
i1, . . . , ik+1 such thatψ[i1] = . . . = ψ[ik+1]. This implies
that π[i1] + χ[i1] − i1 = . . . = π[ik+1] + χ[ik+1] − ik+1.
Sinceχ[i1] = . . . = χ[ik+1] = x, it follows thatπ[i1]− i1 =
. . . = π[ik+1]− ik+1, implying thatπ− I hask+ 1 identical
elements. This contradicts the assumption thatπ is k-legal
and the claim follows.

Next, we show how to build1-legal permutations for odd
values ofN .

Lemma 3.2:If N is odd, then there exist a1-legal permu-
tation πodd of {0, . . . , N − 1}.

Proof: Let πodd be the following permutation:

πodd[i] = 2i mod N i ∈ {0, . . . , N − 1}.
If i 6= j, then2i− 2j is even and does not equal0. SinceN
is odd, this implies that2i − 2j 6= 0 mod N , implying that
πodd[i] 6= πodd[j]. Hence,πodd is a permutation.

The wavelength assignment ofπodd is πodd−I = 2I−I =
I which is clearly a permutation. Thus,πodd is 1-legal.

Note that similar arguments proves that theanti-diagonal
permutation−I, whose wavelength assignment is−2I, is also
a 1-legal permutation.

The following lemma deals withevenvalues ofN . The
proof is omitted, because the result was independently proven
in [13].

Lemma 3.3:If N is even, there is no1-legal permutation
of {0, . . . , N − 1}.

4

We next deal with2-legal permutations:
Lemma 3.4:For everyN , there is a2-legal permutation of
{0, . . . , N − 1}.

Proof: Since every1-legal permutation is also a2-legal
permutation, the claim follows immediately by Lemma 3.2 for
odd values ofN .

Assume thatN is even and consider the following assign-
ment permutation:

πeven[i] =

{

2i mod N i < N/2
2i+ 1 mod N N/2 ≤ i ≤ N − 1

Clearly,πevenis a permutation: Its first half covers all the
even output ports and its second half covers all the odd output
ports. We now compute the wavelength assignment ofπeven:

λ(πeven)[i] =

{

i mod N i < N/2
i+ 1 mod N N/2 ≤ i ≤ N − 1

Clearly, each input port except input port0 andN − 1 has
a different wavelength assignment, while for input ports0 and
N − 1 we getλ(πeven)[0] = λ(πeven)[N − 1] = 0, implying
thatπevenis a2-legal permutation. Hence, we have a2-legal
permutation with only one wavelength repetition.

IV. SINGLE-STAGE AWG-BASED SWITCHES

We first consider a single-stage AWG switch. We start by
investigating the speedup required to realize any adversarial
traffic pattern.

A. Worst-case traffic

Due to the AWG switch crosstalk impairment, the most
difficult traffic to handle is a “generalized diagonal” traffic,
in which all cells from input porti are directed to output port
i+ x mod N (x ∈ {0, . . . , N − 1}), with the same value of
x for each input port: All inputs are forced to use the same
wavelength to reach the proper output. As a consequence,
under generalized diagonal traffic, if we are restricted tok-
legal permutations, at mostk cells can be forwarded in any
scheduling decision, implying that the required speedup is
S = N/k. Since k should be a small constant (less than
16, as shown in [10], but possibly even smaller, in case of
all-optical cascades of switching stages) to avoid coherent
crosstalk impairments, this implies that single stage AWG
switches with large port counts require prohibitive speedups to
cope with such an adversarial traffic. In contrast, a crossbar
switch, in which there is no restriction on the permutation
used, can schedule generalized diagonal traffic with speedup
S = 1.

B. Uniform traffic

Let us now focus on the classical uniform traffic pattern,
where the uniform traffic matrixT contains all “1”s. It is
well known that anN × N uniform traffic matrix can be
scheduled using a fixedTime Division Multiplexing (TDM)
approach, in which, during a frame ofN time slots, each
input is in turn connected to the differentN outputs. This can
be interpreted as the decomposition of matrixT in a set ofN

“covering” permutation matrices. If we ignore the constraint of
using onlyk-legal permutations, a possible decomposition of
matrix T is achieved through a set ofN generalized diagonal
(switching) matricesΠTDM = {π0, π1, . . . , πN−1}, where
πi = I+χi mod N andχi is a vector in which all elements
arei. For example, in the caseN = 4, we have the following
decomposition:







1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1






=







1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1






+







0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0






+







0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0






+







0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0







We look for a decomposition of a uniform traffic matrix in
k-legal permutations, and we wish to determine the minimum
number ofk-legal sub-permutations needed to decompose a
uniform traffic matrix.

1) Scheduling Uniform Traffic Using1-legal Permutations:
Case 1, OddN :

If N is odd, we use the following covering sequence of
N 1-legal permutations, in which each input/output pair is
connected exactly once:Π = {πodd+ χx | 0 ≤ x ≤ N − 1},
whereπodd is the permutation defined in Lemma 3.2 andχx

is theN -vector whose elements are all equal tox. BeingN
odd, by Lemmas 3.2 and 3.1 all permutations inΠ are1-legal.
Furthermore, each input porti is connected to output portj if
and only if the permutationπodd+χx ∈ Π with x = (j−2i)
mod N is used.

Case 2, EvenN :
Recall that by Lemma 3.3, no1-legal permutation exists

whenN is even. Thus, we cannot apply the same strategy as
with odd values ofN .

A straightforward way to get around this problem is to add
another port to the switch making its port count odd. The
cost of adding ports relative to the entire switch is called the
spatial speedupof the switch and in this case it is1 + 1

N
(a

single additional port should be added forN existing ports).
Note that the extra port will not be active in sending/receiving
cells, hence it does not add complexity in term of transceiver
hardware.

Usually in switch design, a spatial speedup corresponds
directly to the (time) speedup of the switch (as defined is
Sec. II). The rational behind it is that building as times
larger switch is logically equivalent (although this may not be
technologically true in the optical domain where the complex-
ity of time operations is larger) to building as-times faster
switch by speeding-up the time between the ports. This leads
to a possible conclusion that an AWG-based switch with even
N can be realized by a (time) speedup of1 + 1

N
. The next

theorem shows that this is not the case:
Theorem 4.1:An AWG-based switch with evenN using1-

legal permutations requires a speedupS > 1+1/N to schedule
a uniform traffic pattern.

Proof: Let theweight of a sub-permutation be the num-
ber of input (output) ports matched in this sub-permutation.

5

Since N is even, Lemma 3.3 implies that there is no1-
legal permutation of{0, . . . , N − 1}. Thus, the maximum
weight of a 1-legal partial-permutation of{0, . . . , N − 1}
is N − 1, i.e., the minimum number of repeated outputs
in π is 2. Note also that, since each input port should be
connected to each output port, the total weight of all (partial)-
permutations in anN period isN2. This implies that at least
⌈

N2

N−1

⌉

=
⌈

N + 1 + 1
N−1

⌉

= N + 2 > N + 1 scheduling
decisions are required in such a period, translating to a (time)
speedupS > 1 + 1/N .

This result highlights an interesting difference between
space and time speedup for the considered switch architecture.

2) Scheduling Uniform Traffic Using2-legal Permutations:
When N is odd, we already found in the previous section
a scheduling for uniform traffic providing 100% throughput
with no speedup, i.e. relying on 1-legal permutations. When
N is even, and we permit2-legal permutations, we can use
the setΠ = {πeven+ χx | 0 ≤ x ≤ N − 1}, whereπeven is
the permutation defined in Lemma 3.4 andχx is anN -vector
whose all elements arex. The correctness of the construction
is identical to the one described for1-legal permutations.

In summary, in a single-stage AWG-based switch, uniform
traffic can be scheduled using1-legal permutations with no
speedup whenN is odd. WhenN is even, either a time
speedup larger than1 + 1/N or a spatial speedup of1 + 1/N
are required for1-legal permutations. Alternatively,2-legal
permutations with no time or space speedup can be used. The
worst-case traffic scenario implies that a time speedup ofN/k
is required to schedule all admissible traffic patterns under the
k-legal constraint.

V. TWO-STAGE ARCHITECTURES

In this section, we consider an AWG-based two-stage switch
architecture. We adapt the two-stage Load-Balanced Switch,
introduced in [15] and briefly recalled below, and schedule the
AWGs switching stages to operate withk-legal permutations.

A. The Two-Stage Load-Balanced Switch

The Load-Balanced Switch (Fig. 4) consists of two switch-
ing stages: The first stage performs load balancing of the
incoming traffic, while the second stage performs the actual
switching of cells to their destination. The basic idea is to
transform any generic traffic pattern at the switch input into
a uniform traffic at the output of the first stage, hence at the
input of the second stage. To achieve this, cells arriving at
one input in the first stage are forwarded in turn to all outputs
of the first switching stage, regardless of the final output
port. This permits to evenly distribute the considered input
load to all first stage outputs. Since this traffic “spreading”
operation is performed at all inputs, all first-stage outputs
receive, on average, the same amount of traffic. The traffic
at the input of the second stage is therefore uniform: Same
load at all ports, and equal probability for any input/output
pair. This uniform traffic can be easily forwarded in a load-
balanced switch by a fixed TDM switch schedule in the second
stage, providing100% throughput if the traffic is stationary

and weakly mixing2, excellent delay performance and efficient
buffer usage.

It is important to notice that no cell buffering is required
at inputs, as arriving cells are immediately forwarded. VOQ
buffering is instead required between the two stages (cells
destined for different output ports are stored in separate FIFO
buffers), in which cell queues may build up in case of
congestion.

The load balancing operation with VOQ buffering between
the two switching stages has the drawback of out-of-sequence
cell delivery. To avoid this, either resequences modules must
be introduced at the outputs of the second stage, or more
complex queuing structures and policies must be used between
the two stages [16]–[18]. Both solutions must be implemented
in the electronic domain, and increase complexity. Further-
more, the second solution has scalability problems, as its
implementation complexity grows polynomially withN .

The scheduling in the two stages can be fully distributed,
i.e., based on local decisions at each input port, without any
coordination among different ports, apart from a switch-wide
slot synchronization, provided that traffic is weakly mixing, to
avoid adversarial patterns that would impair the load balancing
effect when the first stage is operated in fixed TDM. It can be
easily understood that, for both switch stages, the scheduling
translates into a periodic sequence ofN permutations, such
that each input/output pair is connected exactly once in each
period. This is equivalent to scheduling uniform traffic ma-
trices in both stages; hence, the scheduling for the two-stage
N ×N load-balanced switch must cyclically run over a set of
N covering permutations for a uniform (i.e., comprising all
“1”) traffic matrix. While theseN covering permutations can
be found in several ways, we are interested, for the AWG-
based switch, in a set ofN k-legal permutations, which can
be obtained as described in Sec. IV-B1.

Note that the twoN×N switching stages can be interpreted
as a two-fold speedup realized in the space domain: Up to2N
cells are simultaneously switched in every time slot.

Implications to AWG-based Switches:The results from the
previous sections imply that any traffic pattern in the two-stage
AWG-based load-balanced switch can be scheduled with no
speedup in each stage when the number of ports is odd. A
spatial speedup equal to1 + 1/N is needed in the case of
even number of ports. If considering the two-stage architecture
as a switch spatial speedup, a generic traffic matrix can be
scheduled with a speedup of2 (2 + 2/N) for AWGs with
odd (even) number of ports. Since the spatial speedup avoids
any speed increase in components and transmission lines, this
architecture is well suited for the optical domain, keepingthe
electronic speed in the feasible domain of today’s technology.

B. Avoiding buffers in the middle-stage

A promising approach to circumvent the need for buffering
in the middle stage and resequencing at the egress is to

2A stochastic sequence{a(t), t ≥ 1} is weakly mixing [15] if for all
A, B ∈ R

(N×N)∞ , limt→∞
1
t

∑

t−1
s=0 |Pr(θsa ∈ A, a ∈ B) − Pr(a ∈

A) Pr(a ∈ B)| = 0, whereθsa is the sequencea shifted bys time-slots:
θsa = {a(t + s), t ≥ 1}. Note that each weakly mixing stochastic sequence
is also ergodic.

6

AWG

(stage 1)

AWG

(stage 2)

TT0

TT1

TTN−1

TT0

TT1

VOQN−1

VOQ1

VOQ0

TTN−1

WBMR1

WBMRN−1

WBMR0WBMR0

WBMR1

WBMRN−1

Fig. 4. A two-stage AWG-based switch. Electronic paths and components are highlighted with thick lines.

π1 π2

Fig. 5. Illustration of a1-legal decomposition of the identity permutation in
a 5×5 switch using permutationsπ1 = [0, 2, 4, 1, 3] andπ2 = [0, 3, 1, 4, 2];
both π1 andπ2 are1-legal permutations.

control the AWG in both stages simultaneously, so that their
combination will produce the desired permutation. In this
setting, suppose we have anoracle crossbar schedulerthat
produces a sequence of permutations; our goal is to realize
each of these permutationsπ using twok-legal permutations
π1 and π2 such thatπ = π1 ◦ π2 where◦ denotes function
composition. We call the pair of permutations〈π1, π2〉 a k-
legal decomposition ofπ. Since the oracle may produce any
permutation of{0, . . . , N − 1}, our algorithm must be able
to decompose all these permutations. Fig. 5 depicts a1-legal
decomposition of the identity permutation in a5× 5 switch.

The resulting architecture is depicted in Fig. 6, where Tun-
able Wavelength Converters (TWC) (or equivalently, a WBMR
followed, with no cell buffering stage, by a TT) are needed
between the two stages to create the proper permutation.
With this solution, VOQ buffering and O/E/O conversions are
no longer required between the two stages, and cell out-of-
sequence delivery is eliminated. VOQs are however needed
in front of the first stage, similarly to the classical IQ switch
architecture depicted in Fig. 2.

Besides eliminating the need for buffering in the mid-
dle stage, our decomposition approach has other signifi-
cant advantages over the two-stage Load-Balanced Switch
approach. Firstly, while the load-balanced switch provides
100% throughput on a wide range of traffic patterns, there
are still pathological traffic patterns that make its throughput
arbitrarily small [19, Chapter 1.3.3]. Moreover, load-balanced
switches require a full switch reconfigurations at each schedul-
ing decision; these reconfigurations may become infeasible
as the line rates grow. Lastly, the two-stage load-balanced
switch is only aiming at providing100% throughput; however,
there is no bound on other important performance measures
such as latency, smoothness (delay jitter) or fairness. These
measures are crucial to provide the stringent QoS required by
contemporary applications, and therefore a thorough research
was done in the last decade to devise scheduling algorithms
that perform better under these metrics (see, for example, [20]
for a comprehensive survey).

Our decomposition algorithms offer a modular black-box

approach in which any existing (or future) scheduling algo-
rithm can beconvertedto be a crosstalk-preventing algorithm.
We indeed model the scheduling algorithm as an oracle whose
output is its switching decisions (that is, a sequence of per-
mutations). Our algorithms get as an input these permutations
(one by one) and produce the necessaryk-legal permutations
needed for crosstalk-preventing scheduling (see illustration in
Fig. 7). It is thus suited to operate withany input-queuing
scheduling algorithm.

Algorithm
Oracle

Decomposition

π1 π2

π2

π

π

π1

Fig. 7. Exploiting an oracle to implement a decomposition.

For example, to reduce the number of reconfigurations of
the AWG devices one can use a scheduling algorithm which
takes into account the reconfiguration delays and aims at
minimizing the total delay (e.g., [21]–[23]). Since the changes
in permutations under such schedulers are not frequent, the
number of needed decompositions decreases accordingly, thus
facilitating the computation demands of our decomposition
algorithms.

We now discuss for which values ofk a k-legal decompo-
sition exists for all permutations.

Impossibility of Using1-legal Permutations: Recall that by
Theorem 3.3, no1-legal permutation exists for evenN ; this
implies that no1-legal decomposition exists. However, we
are able to prove, by a counter example, that no1-legal
decomposition algorithm exists for anyN , regardless of its
parity.

Theorem 5.1:For anyN , the following permutationπ =
[0, 1, 2, . . . , N−3, N−1, N−2] has no1-legal decomposition.

Proof: Assume that there is a1-legal decomposition of
π into two 1-legal permutationsπ1 andπ2. Let λ1 = λ(π1)
and λ2 = λ(π2) the wavelength assignments ofπ1 and π2,

7

AWG

(stage 1)

AWG

(stage 2)

TT0

TT1

VOQN−1

VOQ1

VOQ0 WBMR0

WBMR1

TTN−1

TWC0

TWC1

TWCN−1 WBMRN−1

Fig. 6. A two-stage AWG-based switch with no internal buffering. Electronic paths and components are highlighted with thick lines.

respectively; sinceπ1 and π2 are 1-legal, λ1 and λ2 are
permutations. Since for everyi ≤ N − 3, π[i] = i, then
λ2[π1[i]] = −λ1[i]. Thus, in the composite permutation
π[i] = π2[π1[i]] = π1[i] − λ1[i] = i + λ1[i] − λ1[i] = i,
as required.

Since λ2 is a permutation, the remaining elements
λ2[π1[N−2]] andλ2[π1[N−1]] must use the remaining values
−λ1[N−2] and−λ1[N−1]. If λ2[π1[N−2]] = −λ1[N−2],
this results inπ[N − 2] = π2[π1[N − 2]] = N − 2 6= N − 1.
Thus, we should haveλ2[π1[N − 2]] = −λ1[N − 1] and
λ2[π1[N − 1]] = −λ1[N − 2], implying that π[N − 2] =
π2[π1[N−2]] = N−2+λ1[N−2]−λ1[N−1], which in turn
implies thatλ1[N−2]−λ1[N−1] = 1 sinceπ[N−2] = N−1.
This yields thatπ1[N − 2] = N − 2 + λ1[N − 2] =
N − 1 + λ1[N − 1] = π1[N − 1], which contradicts thatπ1 is
a permutation, and the claim follows.

Decomposition Using2-legal Permutations: We continue by
investigating2-legal decomposition algorithms. First, forN =
3, Theorem 5.1 and the fact that each permutation of{0, 1, 2}
is either1-legal or3-legal immediately implies the following:

Corollary 5.2: There is no2-legal decomposition algorithm
for N = 3.

For N = 4, . . . , 12, we verified by exhaustive search
that any permutationπ of {0, . . . , N − 1} can be2-legally
decomposed. Hence, we can state that:

Theorem 5.3:There exists a2-legal decomposition for all
permutations withN ∈ {4, . . . , 12}.

Furthermore, it is important to notice that, given a per-
mutationπ, by choosing a2-legal first permutationπ1, one
only needs to verify thatπ2 = π−1

1 ◦ π is 2-legal to decide
whether the decomposition is legal. Our experiments, reported
in Tab. I, show that, to decompose any permutationπ, it
is sufficient to chooseπ1 from a small setΠ1 of 2-legal
permutations. SinceΠ1 can be pre-computed and programmed
directly in the scheduler of the AWG, it implies that it is
feasible to implement this scheduler for these values ofN .
Tab. I shows the size ofΠ1 for different values ofN .

We were not able to find an algorithm to compute a2-
legal decomposition, nor we were able to prove that2-legal
decompositions exist for everyN . We thus leave these two
issues as open research problems and formulate the following
conjecture, partially supported by our exhaustive searches for
small values ofN :

Conjecture 5.1:There exists a2-legal decomposition for all
permutations withN ≥ 4.

The main contributions of this paper regard 4-legal and 3-
legal decompositions, for which we provide constructive rules
and complexity assessment in the next sections.

TABLE I
NUMBER OF FIRST-STAGE PERMUTATIONS NEEDED TO PROVIDE A

2-LEGAL DECOMPOSITION

Number of Number of Number of2-legal Size ofΠ1

portsN permutations permutations (upper bound)

4 24 20 2
5 120 65 4
6 720 396 8
7 5040 2338 12
8 40320 16912 29
9 362880 132759 53
10 3628800 1183200 107
11 39916800 11531641 237
12 479001600 123019776 543

VI. 4-LEGAL DECOMPOSITIONS

In this section we describe a decomposition algorithm that,
for anyN and any permutationπ of {0, . . . , N − 1}, finds a
4-legal decomposition ofπ.

We start by describing a method to“correct” a non-legal
decomposition. This method is general for everyk-legal
decomposition and it constitutes a single iteration of our
algorithm. The procedure (see Algorithm 1 for a pseudo-code
description) usestranspositionsof middle-stage ports, which
are defined as follows:

Definition 2: Given a decomposition〈π1, π2〉 of π, the
(i, j)-transposition of〈π1, π2〉 is a decomposition ofπ into
permutationsπ′

1, π
′
2 such that:

π′
1[ℓ] =







j ℓ = π−1
1 [i]

i ℓ = π−1
1 [j]

π1[ℓ] otherwise

π′
2[ℓ] =







π2[i] ℓ = j
π2[j] ℓ = i
π2[ℓ] otherwise

It is easy to verify thatπ′
1 andπ′

2 are still permutations and
thatπ′

1 ◦π′
2 = π. Fig. 8 illustrates a(0, 1)-transposition of the

decomposition described in Fig. 5.

π1 π2

Fig. 8. Illustration of a(0, 1)-transposition of the decomposition of the
identity permutation depicted in Fig. 5. The resulting decomposition uses
permutationsπ1 = [1, 2, 4, 0, 3] andπ2 = [3, 0, 1, 4, 2].

The process of correcting a permutation is captured by a
potential function which counts the minimal number of input

8

Algorithm 1 A correction procedure of a decomposition using
a single transposition.

1: 〈π1, π2〉 procedure CORRECT(〈π1, π2〉, k)
2: λ is an (arbitrary) wavelength used inπ2 more than

k times
3: i is an (arbitrary) input port ofπ2 using wavelength

λ
4: Λ1 is the set of wavelengths used inπ1 at leastk times
5: Λ′

1 is the set of wavelengths used inπ1 exactlyk− 1
times

6: Λ2 is the set of wavelengths used inπ2 at leastk times
7: Λ′

2 is the set of wavelengths used inπ2 exactlyk− 1
times

⊲ Recall that all calculations are moduloN

8: A1 ←
{

ℓ | (ℓ− π−1
1 [i]) ∈ Λ1

}

9: A2 ←
{

ℓ | (i− π−1
1 [ℓ]) ∈ Λ1

}

10: A3 ← {ℓ | (π2[i]− ℓ) ∈ Λ2}
11: A4 ← {ℓ | (π2[ℓ]− i) ∈ Λ2}
12: A5 ←

{

ℓ | ℓ+ π−1
1 [ℓ] = i+ π−1

1 [i], i− π−1
1 [ℓ] ∈ Λ′

1

}

13: A6 ← {ℓ | ℓ+ π2[ℓ] = i+ π2[i], π2[i]− ℓ ∈ Λ′
2}

14: Find an middle-stage portj such that
j /∈ A1 ∪A2 ∪A3 ∪A4 ∪A5 ∪A6

15: if no suchj existsthen
16: return ⊥ ⊲ The algorithm fails
17: else
18: 〈π′

1, π
′
2〉 ← (i, j) transposition of〈π1, π2〉

19: return 〈π′
1, π

′
2〉

20: end if
21: end procedure

ports that should be corrected to make permutationπ k-legal
and is formally defined as follows:

Definition 3: Let #λ(π)[λ] be the number of appearances
of wavelengthλ ∈ Λ in λ(π). The k-potential of π, denoted
potk(π), is

∑

λ∈Λ max
{

0,#λ(π)[λ]− k
}

.
Clearly, the highest possible potential value isN − k, given
to the identity permutationI. On the other hand, eachk-legal
permutation has ak-potential0.

The correction is done by swapping a middle-stage porti,
whose wavelengthλ(π2)[i] is used more thank times byπ2

(we call such a port aviolating port), with another middle-
stage portj. Assumingπ1 to be k-legal, j is chosen under
the following constraints:

1) In the first stage, the wavelength assigned to reachj
from π−1

1 [i] keepsπ1 k-legal. SetA1 (Line 8) contains
all the choices ofj violating this constraint.

2) In the first stage, the wavelength assigned to reachi
from π−1

1 [j] keepsπ1 k-legal. SetA2 (Line 9) contains
all the choices ofj violating this constraint.

3) In the second stage, the wavelength assigned to reach
π2[i] from j is not acritical wavelength (that is, it is
not already usedk times or more). SetA3 (Line 10)
contains all the choices ofj violating this constraint.

4) In the second stage, the wavelength assigned to reach
π2[j] from i is not a critical wavelength. SetA4

(Line 11) contains all the choices ofj violating this

Algorithm 2 A 4-legal decomposition algorithm that decom-
poses a permutationπ of {0, . . . , N − 1} to two permutations
π1 andπ2

1: if N is eventhen
2: π1 ← πeven
3: else
4: π1 ← πodd
5: end if
6: π2 ← π ◦ π−1

1

7: while π2 is not 4-legal do
8: 〈π1, π2〉 ← CORRECT(〈π1, π2〉, 4)
9: end while

10: 〈π1, π2〉 is a 4-legal decomposition ofπ

constraint.
5) SetsA5 and A6 (Lines 12-13) deal with the delicate

situation in which the wavelength assigned toi is the
same as the wavelength assigned toj. In such a case,
violating the k-legality of π1 can happen even if the
wavelength was used onlyk− 1 times inπ1. Similarly,
in such a situation a wavelength is critical inπ2 even if
it is used onlyk − 1 times.

These constraints yield the following two lemmas:
Lemma 6.1:If Algorithm 1 is given a first-stagek-legal

permutationπ1 then the algorithm either fails or returns ak-
legal first-stage permutation.

Proof: The proof follows from the construction of the
algorithm.

Assumeπ1 is k-legal in the beginning of the execution and
denote byπ′

1 the first-stage permutation resulting by executing
Line 18. Assume by the way of contradiction thatπ′

1 is not
k-legal, implying that atπ′

1 a wavelengthλ is used (strictly)
more thank times. The only wavelengths that were introduced
to first stage permutation at areλ1 = j − π−1

1 [j] and λ2 =
i− π−1

1 [j], implying thatλ is eitherλ1 or λ2.
If λ = λ1 andλ1 6= λ2, it implies thatλ1 appearsk times

in π1 and therefore belongs toΛ1; thus j ∈ A1 contradicting
Line 14. If λ = λ2 and λ1 6= λ2 it implies thatλ2 appears
k times in π1 and therefore belongs toΛ1, thus j ∈ A2

contradicting Line 14.
We consider now the case thatλ = λ1 = λ2, which implies

that j + π−1
1 [j] = i + π−1

1 [i]. If λ appearsk times in π1 it
belongs toΛ1 and j ∈ A1, contradicting Line 14; otherwise,
if λ1 appearsk − 1 times inπ1 it belongs toΛ′

1 andj ∈ A5,
also contradicting Line 14.

Thus, we showed that all cases contradict the choice ofj
at Line 14, hence either the algorithm fails (no valid choice
of j exists) orπ′

1 is k-legal and the claim follows.
Lemma 6.2:At each execution of Algorithm 1, either the

algorithm fails or the potential of the second-stage permutation
π2 strictly decreases.

Proof: If the algorithm fails, the claim follows trivially.
Otherwise, the transposition in Line 18 is executed; leti and
j be the ports used for this transposition. Furthermore, denote
by π2 the second-stage permutation at the beginning of the
execution and letπ′

2 be the second-stage permutation after
executing Line 18.

9

We will consider the following4 wavelengths:λ1 = π2[i]−
i, λ2 = π2[j]− j, λ3 = π2[i]− j, λ4 = π2[j]− i.

We notice that the only changes in the number of appear-
ances was in these four wavelengths, therefore

potk(π2)−pot(π′
2) =

∑

λ∈Λ

max
{

0,#λ(π2)[λ]−k
}

+

−
∑

λ∈Λ

max
{

0,#λ(π′

2)
[λ]−k

}

(1)

=
∑

λ∈{λ1,...,λ4}

(

max
{

0,#λ(π2)[λ]−k
}

+

−max
{

0,#λ(π′

2)
[λ]−k

})

(2)

=
∑

λ∈{λ3,λ4}

max
{

0,#λ(π2)[λ]−k
}

+

+
∑

λ∈{λ1,λ2}

(

max
{

0,#λ(π2)[λ]−k
}

+

−max
{

0,#λ(π′

2)
[λ]−k

})

(3)

≥
∑

λ∈{λ1,λ2}

(

max
{

0,#λ(π2)[λ]−k
}

+

−max
{

0,#λ(π′

2)
[λ]−k

})

(4)

≥ max
{

0,#λ(π2)[λ1]−k
}

+ (5)

−max
{

0,#λ(π′

2)
[λ1]−k

}

(6)

≥ 1, (7)

where (1) holds by Definition 3 and (2) is since the only
changes are related to wavelengthsλ1, . . . , λ4.

The gist of the proof lies in Inequality (3) and is due to the
fact that for eachλ ∈ {λ3, λ4}, max

{

0,#λ(π′

2)
[λ]−k

}

= 0:
Assume otherwise, and consider first the case whereλ3 6= λ4.
Thus, if #λ(π′

2)
[λ3] > k it implies that #λ(π2)[λ3] ≥ k,

henceλ3 ∈ Λ2 and thereforej ∈ A3, contradicting Line 14;
similarly, #λ(π′

2)
[λ3] > k implies j ∈ A4, also contradicting

Line 14. In caseλ3 = λ4, #λ(π′

2)
[λ3] > k implies that

#λ(π2)[λ3] ≥ k− 1, henceλ3 ∈ Λ′
2 andj + π2[j] = i+ π2[i]

and thereforej ∈ A6, which contradicts Line 14 as well.
Inequality (4) holds because each term in the first sum-

mation is non-negative by definition. Inequality (6) stems
from the fact that the number of appearances ofλ2 decreases
betweenπ2 and π′

2 unlessλ2 = λ3 or λ2 = λ4; in the
latter case, with the same reasoning of (3), we get that
max

{

0,#λ(π′

2)
[λ2]−k

}

= 0 and Inequality (6) follows as
well. Finally, Inequality (7) holds since by the choice ofi in
Line 3, #λ(π2)[λ1] > k and therefore

max
{

0,#λ(π2)[λ1]−k
}

= #λ(π2)[λ1]− k (8)

andλ1 ∈ Λ2. Therefore,λ1 is not equal toλ3 or λ4, which
immediately implies that

#λ(π2)[λ1]−#λ(π′

2)
[λ1] ≥ 1. (9)

Combining (8), (9) and the fact that#λ(π′

2)
[λ1] − k ≤

max
{

0,#λ(π′

2)
[λ1]− k

}

yields immediately Inequality (7).

We proceed now by describing the4-legal decomposition
algorithm which is based on this correction procedure. Al-
gorithm 2 starts with a4-legal permutationπ1 (either πodd

which is 1-legal orπeven which is 2-legal) and compute the
requiredπ2 to realize permutationπ. Clearly, π2 needs not
to be 4-legal. Then, the algorithm correctsπ2, keeping the
following invariant:

π1 is a4-legal permutation throughout the execution
of the algorithm.

The following lemma will prove that in this algorithm,
the invocations ofCORRECT procedure in Line 8 never fail.
Specifically, we will show that as long asπ2 is not a4-legal
permutation, it is possible to choose a middle-stage port that
keeps all the constraints.

Lemma 6.3:At each invocation of procedureCORRECT at
every execution of Algorithm 2 (Line 8), there is a valid choice
of a middle-stage portj in Line 14.

Proof: We first observe that fixing a middle-stage port
i implies thatπ−1

1 [i] and π2[i] are also fixed. Thus, each
wavelengthλ ∈ Λ1 adds a single port toA1 and a single port
to A2. Similarly, each wavelengthλ ∈ Λ2 adds a single port
to A3 and a single port toA4. Hence, the size of the sets
A1 andA2 is bounded by|Λ1| and the size ofA3 andA4 is
bounded by|Λ2|. Similarly, the size ofA5 is bounded by|Λ′

1|
and the size ofA6 is bounded by|Λ′

2|.
We focus now to|A1∪A2∪A5|, whose size is bounded by

|A1|+|A2|+|A5| ≤ 2|Λ1|+|Λ′
1|. In addition,4|Λ1|+3|Λ′

1| ≤
N , since by definitionΛ1∩Λ′

1 = ∅ and each wavelength inΛ1

must be used by 4 different ports, while each wavelength in
Λ′

1 requires 3 ports. By solving this simple linear optimization
problem, we get that the largest possible size of|A1∪A2∪A5|
is N

2 , obtained when|Λ1| = N/4 and |Λ′
1| = 0. We continue

by evaluating|A3 ∪ A4 ∪ A6|, which has a similar analysis
except for the following fact: since porti has a wavelength
which is used more than4 times inπ2 (Lines 2-3),π2[i]− i ∈
Λ2, yielding thati ∈ A3 andi ∈ A4, and, obviously,i ∈ A3∩
A4. Therefore,|A3∪A4∪A6| ≤ 2|Λ2|+ |Λ′

2|−1 ≤ N/2−1.
This implies that|⋃6

r=1Ar| ≤ |A1∪A2∪A5|+ |A3∪A4∪
A6| ≤ N − 1. Therefore, there is always a middle-stage port
j such thatj /∈ ⋃6

r=1Ar and Line 14 can be executed. Note
that, sincei ∈ ⋃6

r=1Ar, the chosen middle-stage portj is not
equal toi.

Theorem 6.4:For any N and any permutationπ of
{0, . . . , N − 1}, Algorithm 2 finds a4-legal decomposition
of π in O(N2) time.

Proof: Consider an arbitrary permutationπ. Let π1 be
the initial first-stage permutation, andπ2 be the initial second-
stage permutation resulting in executing Line 6. Denote by
x = pot4(π2) ≤ N−4. By Lemma 6.3, the invocations of
CORRECT never fails. Thus, Lemma 6.2 implies that each
iteration of the algorithm (Lines 7-9) decreases the potential
of π2 by at least1, implying that aftery ≤ x iterations the
potential of the second-stage permutationπ2 is 0. Therefore,
π2 is 4-legal. In addition, since theCORRECT procedure
never fails and the initial first stage permutationπ1 is 4-
legal, Lemma 6.1 yields that first-stage permutationπ1 is also
4-legal after iterationy. Since i) the only changes in the
permutations were made by transpositions (Line 18), and ii)
after the execution of Line 6,π1◦π2 = π, Definition 2 implies
that, when the algorithm ends,π1 ◦ π2 is still π. Therefore,
〈π1, π2〉 is a 4-legal decomposition ofπ.

10

Algorithm 3 A 3-legal decomposition algorithm that decom-
poses a permutationπ of {0, . . . , N − 1} to two permutations
π1 andπ2, assuming thatN is a prime number.

1: π1 ← arg min{πr|r∈2,N−1} pot3(π ◦ π−1
r)

⊲ πr as defined in Definition 7.1
2: π2 ← π ◦ π−1

1

3: while π2 is not 3-legal do
4: 〈π1, π2〉 ← CORRECT(〈π1, π2〉, 3)
5: end while
6: 〈π1, π2〉 is a 3-legal decomposition ofπ

The running time of the algorithm can be easily derived:
Each iteration is linear in the number of ports, and the number
of iterations is bounded byN−4.

Note that our algorithm can be used also fork < 4, but we
could not prove its convergence in this case, except for the
special casek = 3 andN prime, which is discussed in the
next section.

VII. 3-LEGAL DECOMPOSITIONS

In this section, we assume thatN is a prime number and
describe how to modify Algorithm 2 to achieve a3-legal
decomposition. For non-prime numbers, this implies that the
device needs some spatial speedup, which can be bounded by
1.375. The maximum speedup is needed forN = 8, when3
additional ports are required.3

The key insight behind the algorithm for primeN is that
by carefully choosing the first pair of permutations, one can
decrease the number of iterations needed by the algorithm to
complete. In addition, a finer analysis shows that the size of
setΛ1 (that is, the set of wavelengths that are used3 times in
the first-stage permutation) in some iterationx is bounded by
x. Thus, if x < N

6 , one can always find a middle-stage port
j to decrease the potential of the second-stage permutation.

We start by the following lemma, which generalizes
Lemma 3.2:

Lemma 7.1:If N is a prime number, then, for everyr ∈
{2, . . . , N − 1}, the permutationπr defined as follows

πr[i] = r · i mod N i ∈ {0, . . . , N − 1}.
is a 1-legal permutation.

Proof: We first prove that for everyr ∈ {1, . . . , N − 1},
πr is a permutation. Assumeπr is not a permutation, thus
there arei, j such thati > j and πr[i] = πr[j], implying
that r(i− j) = 0 mod N . Note that sinceN is a prime and
0 < r, (i−j) < N , r(i−j) = 0 mod N implies the existence
of a zero-divisor in the fieldGF(N), which is a contradiction.

Furthermore, for everyr ∈ {2, . . . , N − 1}, πr is 1-legal,
since the wavelength assignmentλ(πr) = πr − I = πr−1 is
also a permutation becauser − 1 ∈ {1, . . . , N − 2}.

The next lemma shows the correlation between the different
permutationsπr:

Lemma 7.2:If N is prime, then, for any permutationπ
of {0, . . . , N −1}, for everyr1, r2 ∈ {2, . . . , N − 1}, and for

3For N > 28, this claim follows by applying Rosser and Schoenfeld’s
bounds on the prime-counting function [24], showing that itsvalue forN is
strictly less than its value for1.375N . For N ≤ 28, the statement can be
verified manually.

everyi, j, if λ(π◦π−1
r1

)[i] = λ(π◦π−1
r1

)[j] andλ(π◦π−1
r2

)[i] =
λ(π ◦ π−1

r2
)[j], theni = j.

Proof: Assume, without loss of generality, thatr1 > r2.
We first observe that, for eacha ∈ {i, j} and b ∈ {r1, r2},
λ(π ◦ π−1

b)[a] = π[a]− ab. Thus, we can state that:

π[i]− r1i = π[j]− r1j (10)

π[i]− r2i = π[j]− r2j (11)

By subtracting Equation (10) from Equation (11) we get
(r1 − r2)i = (r1 − r2)j mod N . Note that r1 − r2 ∈
{1, . . . , N − 2}, thus i = j since πr1−r2

is a permutation
by Lemma 7.1.

Lemma 7.3:The3-potential ofπ2 in Line 2 of Algorithm 3
is at mostN8 .

Proof: Assume towards a contradiction thatpot3(π2) >
N
8 . We represent the conflicts between two input ports ofπ2

as a graph whose vertexes are the ports. We construct the
graph by considering each input/output pair in permutation
π2,r = π ◦ π−1

r (r ∈ {2, . . . , N − 1}) one by one: For each
such permutationπ2,r we add an edge betweeni andj if and
only if i and j use the same wavelength underπ2,r.

Note that by Line 2 of Algorithm 3 and by the assumption
pot3(π2,r) ≥ pot3(π2) > N/8. We next show that to realize
a potential of at leastN/8, we had to add at least5N/8
edges to the graph. Recall that by Definition 3,pot3(π2,r) =
∑

λ∈Λ max
{

0,#λ(π2,r)[λ]− 3
}

. We focus on the setΛ′ ⊆ Λ
of wavelengths in which#λ(π2,r)[λ] > 3; notice that, for each
such wavelength, the number of edges added to the graph is
#λ(π2,r)[λ](#λ(π2,r)[λ]−1)

2 , while the potential it contributes is
#λ(π2,r) − 3. Thus, the number of edges per potential unit is

#λ(π2,r)[λ](#λ(π2,r)[λ]− 1)

2(#λ(π2,r) − 3)
.

This term is minimized when#λ(π2,r)[λ] = 3 +
√

6 = 5.45.
Since #λ(π2,r)[λ] is an integer, it implies that the number
of edges per potential unit is minimized when#λ(π2,r)[λ] is
either5 or 6, which in both cases yields5 edges per potential
unit, and at least5N/8 edges for a potential ofN/8.

Lemma 7.2 implies that two input ports that use the same
wavelength in a permutationπ2,r cannot use the same wave-
length in another permutation. This implies that we cannot add
the same edge twice. Thus, to realize a potential ofN/8 in all
N − 2 permutations we need5N(N − 2)/8 edges. However,
for everyN > 6, 5N(N − 2)/8 > N(N − 1)/2, which is the
maximum number of edges inN -vertices’s graph, and, hence,
a contradiction. ForN = 3 andN = 2, all permutations are
3-legal. Therefore, trivially the3-potential of π2 is 0. For
N = 5, we verified by exhaustive search that the claim holds,
and that the potential ofπ2 is always0.

Lemma 7.4:After each iterationx of Algorithm 3, 2|Λ1|+
|Λ′

1| ≤ 2x.
Proof: The proof is by induction on the iteration number

x. We denote byΛ1(x) (Λ′
1(x)) the setΛ1 (Λ′

1) after the
iteration x, and byπ1,x the first stage permutation obtained
after iterationx.

11

When x = 0 (that is, before the first iteration)Λ1(0) =
Λ′

1(0) = ∅ since the initial first-stage iteration is1-legal and
therefore the base case holds.

We now assume that the claim holds after iterationx − 1
and prove that it holds for iterationx. In each iteration, the
algorithm introduces only a single transposition, implying that
at most 2 input ports, i and j, changed their wavelength
assignment in iterationx. Denote byλi and λj the new
wavelengths that portsi and j use after iterationx. Without
loss of generality, assume that#λ(π1,x)[λi] ≥ #λ(π1,x)[λj].
Furthermore, note that by Algorithm 1,λi, λj /∈ Λ1(x − 1),
and, if λi = λj , thenλi, λj /∈ Λ′

1(x− 1) as well.
We proceed by considering the following four cases, estab-

lishing our induction step:

• λi 6= λj , λi /∈ Λ′
1(x − 1). In this case, in the worst

case, bothλi and λj appearedk − 2 times in π1,x−1

and therefore are added toΛ′
1(x). Hence,2|Λ1(x)| +

|Λ′
1(x)| ≤ 2|Λ1(x− 1)|+ |Λ′

1(x− 1)|+ 2 ≤ 2(x− 1) +
2 = 2x, where the last inequality holds by the induction
hypothesis. Note that situations in which only one of the
wavelengths is added toΛ′

1 and/or other wavelengths are
omitted either fromΛ1 or Λ′

1 trivially hold as well.
• λi = λj , λi /∈ Λ′

1(x − 1). In this case, in the worst
case,λi ∈ Λ1(x) implying that 2|Λ1(x)| + |Λ′

1(x)| ≤
2(|Λ1(x − 1)| + 1) + |Λ′

1(x − 1)| ≤ 2(x − 1) + 2 = 2x
as well. Note that ifλi is added toΛ′

1(x), then2|Λ1|+
|Λ′

1| ≤ 2x− 1 ≤ 2x.
• λi 6= λj , λi ∈ Λ′

1(x − 1), λj /∈ Λ′
1(x − 1). In this case,

in the worst case,λi ∈ Λ1(x) andλj ∈ Λ′
1(x). However,

sinceλi 6= λj , the Λ′
1(x) = (Λ′

1(x − 1) \ {λi}) ∪ {λj}
and therefore the size ofΛ′

1 does not change. Hence,
2|Λ1(x)|+ |Λ′

1(x)| ≤ 2(|Λ1(x−1)|+1)+ |Λ′
1(x−1)| ≤

2(x− 1) + 2 = 2x.
• λi 6= λj , λi ∈ Λ′

1(x − 1), λj ∈ Λ′
1(x − 1). In this

case, in the worst case,λi, λj ∈ Λ1(x) and therefore
λi, λj /∈ Λ′

1(x). This implies that the size ofΛ′
1 decreases

by 2 while the size ofΛ1 increases by 2. Thus,2|Λ1(x)|+
|Λ′

1(x)| ≤ 2(|Λ1(x − 1)| + 2) + (|Λ′
1(x − 1)| − 2) ≤

2(x− 1) + 2 = 2x.

It is important to notice that Lemmas 6.1 and 6.2 hold for any
value ofk. In particular, Lemma 6.2 implies that the number
of iterations required for Algorithm 3 to stop is at mostN

8 .
It is left to prove that the algorithm can proceed in each

iteration:
Lemma 7.5:At each iteration of every execution of Algo-

rithm 3, the procedureCORRECTdoes not fail.
Proof: It is sufficient to show that there is a valid choice

of a middle-stage portj in Line 14 of Algorithm 1.
Consider thex-th iteration (x ≤ N

8). By Lemma 7.4, at
the beginning of this iteration,|A1 ∪ A2 ∪ A5| ≤ |A1| +
|A2| + |A5| ≤ 2|Λ1| + |Λ′

1| ≤ 2x. Similarly to the proof
in Lemma 6.3, the size of|A3 ∪A4 ∪A6| ≤ 2|Λ2|+ |Λ′

2| − 1
which is bounded by2N

3 − 1, since 3|Λ2| + 2|Λ′
2| ≤ N .

Thus, |⋃6
r=1Ar| ≤ |A1 ∪ A2 ∪ A5| + |A3 ∪ A4 ∪ A6| ≤

2x+ 2(N/3)− 1 ≤ N − 1, where the last inequality is since
x ≤ N

8 .

The correctness of our algorithm is given by the following
theorem.

Theorem 7.6:For any primeN and any permutationπ of
{0, . . . , N − 1}, Algorithm 3 finds a3-legal decomposition of
π in O(N2) time.

Proof: Consider an arbitrary permutationπ. Let π1

be the initial first-stage permutation chosen in Line 1 and
π2 the initial second-stage permutation resulting in executing
Line 2. Denote byx = pot3(π2). By Lemma 7.3,x ≤ N

8 .
By Lemma 7.5 the invocations ofCORRECT never fails.
Thus, Lemma 6.2 implies that each iteration of the algorithm
(Lines 3-5) decreases the potential ofπ2 by at least1, implying
that aftery ≤ x iterations the potential of the second-stage
permutationπ2 is 0. Therefore,π2 is 3-legal. In addition,
since theCORRECT procedure never fails and the initial first
stage permutationπ1 is 3 legal, Lemma 6.1 implies that the
first-stage permutationπ1 is also 3-legal after iterationy.
Since i) the only changes in the permutations were made
by transpositions (Line 18), and, ii) after the execution of
Line 6 π1 ◦ π2 = π, Definition 2 implies that, when the
algorithm ends,π1 ◦ π2 is still π. Therefore,〈π1, π2〉 is a
3-legal decomposition ofπ.

The running time of the algorithm is derived by the fact that
each iteration is linear in the number of ports and the number
of iterations is bounded byN8 .

VIII. H ARDWARE CONSIDERATIONS

In this section, we take a closer look at our4-legal decom-
position algorithms (Algorithms 1 and 2) and present alinear
time parallel implementation, assuming that the following
primitives are available and that they operate in constant time
(independent ofN):

1) Bitwise operations of widthN , including circular shifts
(bitwise rotations). We denote circular shifts by≫circ

(e.g., 101000101 ≫circ 2 = 011010001). Note that
circular shifts can be implemented by two arithmetic
shifts and a bit-wise OR.

2) N -bit priority encoder, which given a vector ofN bits
returns the index of the left-most bit set to1.

3) Applying a permutationπ on a bit-arrayA of length
N ; the resulting bit-arrayA′ will have the following
property:A′[π[ℓ]] = 1 if and only if A[ℓ] = 1. Sinceπ
is a permutation, this can be computed without conflicts
usingN parallel operations.

We divide the operations of the algorithm into three phases.
The first phase is executed only once at the algorithm setup and
takes linear time. The second and third phases are executed
in at mostN − 4 iterations, each taking constant time.

The setup phase:This phase consists of computing the initial
value of the data structures depicted in Table II. We assume
that all sets are represented by bit arrays of widthN such that
a bit i (0 ≤ i < N) is 1 if and only if elementi is in the set.
Each permutationπ of is stored by an array ofN ⌈logN⌉
bits, such that itsi-th elements holds (explicitly) the value
π[i] in ⌈logN⌉ bits. The mappingsM1 andM2 are arrays of
sets:M1[i] (M2[i]) holds the set (represented as a bitmap) of
middle-stage ports using wavelengthλi in π1 (π2); moreover,

12

TABLE II
DATA STRUCTURES MAINTAINED WHEN IMPLEMENTING ALGORITHMS 1

AND 2.

π1, π−1
1 Defined in Algorithm 2, Lines 1-4

π2, π−1
2 Defined in Algorithm 2, Lines 5

Ψ The set of all middle-stage ports using a wavelength which is
used inπ2 more than4 times (3 times for Algorithm 3)

M1 Mapping between a wavelength and the middle-stage ports
using it in π1

M2 Mapping between a wavelength and the middle-stage ports
using it in π2

Λ1 The set defined in Algorithm 1, Line 4
Λ′

1 The set defined in Algorithm 1, Line 5
Λ2 The set defined in Algorithm 1, Line 6
Λ′

2 The set defined in Algorithm 1, Line 7
−Λ1 {N − ℓ | ℓ ∈ Λ1}
−Λ2 {N − ℓ | ℓ ∈ Λ2}
−Λ′

1 {N − ℓ | ℓ ∈ Λ′

1}
−Λ′

2 {N − ℓ | ℓ ∈ Λ′

2}
Q1 An N × N bit matrix whose(x, ℓ) element is set if and

only if ℓ + π−1
1 [ℓ] = x; we refer tok-th row of Q1[k]

as a bit array of sizeN .
Q2 An N × N bit matrix whose(x, ℓ) element is set if and

only if ℓ + π2[ℓ] = x; we refer tok-th row of Q2[k]
as a bit array of sizeN .

we assume there is an additional counter which counts the
number of middle-stage ports using each wavelength in each
permutation.

Clearly, all values can be computed in linear time (notice
that there are exactlyN 1-bits in matricesQ1 andQ2, and in
mappingsM1 andM2; further, the sum of all the counters in
each mapping is alsoN).

The body phase: This phase is computing the value of the
middle-stages portsi and j which are used for the(i, j)-
transposition (Algorithm 1, Line 18).

First, we note that choosing the inputi which we need
to correct (Line 3, Algorithm 1) can be done by applying
a priority encoder on setΨ. Given i, one can compute in
constant time the valuesπ−1

1 [i] andπ2[i].
Second, we notice that setsA1, . . . , A4 can be computed

in constant time using the primitives:A1 = Λ1 ≫circ π
−1
1 [i],

A3 = −Λ2 ≫circ π2[i], A2 is obtained by applying permu-
tation π1 on −Λ1 ≫circ i, andA4 is obtained by applying
permutationπ−1

2 on Λ2 ≫circ i. SetA5 is computed in two
steps: first we compute the set{ℓ | i − π−1

1 [ℓ] ∈ Λ′
1} ⊇ A5

by applyingπ1 on −Λ′
1 ≫circ i; then, we intersect it with

setQ1[i + π−1
1 [i]] using a bitwise-AND. Similarly, setA6 is

computed by intersecting set{ℓ|π2[i]−ℓ ∈ Λ′
2} = −Λ′

2 ≫circ

π2[i] with setQ2[i+ π2[i]].
Finally, the setA1 ∪ A2 ∪ A3 ∪ A4 ∪ A5 ∪ A6 is obtained

by a bitwise-OR on the corresponding sets, and the middle-
stage portj (Algorithm 1, Line 14) is obtained by applying a
priority encoder on the negation of this result.

The update phase:In this phase we update our data structures
to reflect the(i, j) transposition of〈π1, π2〉 (Algorithm 1,
Line 18). We note that this transposition involves only
a constant number of changes. Namely, only2 middle-
stage ports and at most8 wavelengths:4 added wavelengths
π2[i] − j, π2[j] − i, j − π−1

1 [i], i − π−1
1 [j] and 4 removed

wavelengthsπ2[j]−j, π2[i]−i, j−π−1
1 [j], i−π−1

1 [i]. Note that
the number of middle-stage ports using a specific wavelength
can be checked in constant time by reading the corresponding

counter in mappingsM1 andM2. The algorithm terminates
whenΨ = ∅ after the update phase.

A detailed example of a complete run of the algorithm is
worked out in the appendix.

Finally, we note that this implementation works also for
our 3-decomposition algorithm (Algorithms 1 and 3) with the
following change in the setup phase: when computingπ1

(Algorithm 3, Line 1), one should compute in parallel each
value of pot3(π ◦ π−1

r) for each2 ≤ r ≤ N − 1 and then
choose the permutation with minimum potential. Each such
computation takes linear time, thus, with parallelism, thesetup
phase works in linear time also in this case.

IX. CONCLUSIONS

In this paper we studied ways to overcome coherent
crosstalk impairments in AWG-based optical switching fabrics.
The notion ofk-legal permutations was introduced, in which
each wavelength is re-used at mostk times. We first found
properties of1-legal permutations, showing that a difference
exist between odd and even values of the number of input
and output portsN . We then showed that uniform traffic
patterns can be scheduled in input-queued cell switches using
1-legal permutations with no speedup for oddN and with
a small speedup with evenN . General traffic patterns can
be instead scheduled with1-legal permutations using two-
stage load-balanced switches using the same small speedup,
non input queues, VOQs between the two switching stages,
and cell resequencing at outputs.2-legal permutations were
observed to permit to avoid intermediate VOQs (but VOQs
are needed at input ports) and resequencing problems for small
values ofN . We left as an open research question to prove
that this holds for all values ofN .

Finally, we were able to formally prove that a2-stage
load-balanced switch can be configured with pairs of4-legal
permutations with no buffering between the two stages and
a quadratic decomposition algorithm is presented.3-legal
permutation pairs can be algorithmically found when the
number of ports is a prime number, or when a small spatial
speedup is introduced for arbitrary number of ports.

In summary, our results show that, by using proper hardware
configurations and scheduling algorithms, the physical-layer
impairments due to coherent crosstalk can be practically ne-
glected in AWG-based optical switches with arbitrary number
of ports.

Acknowledgments:The work described in this paper was car-
ried out with the support of the BONE-project (“Building the
Future Optical Network in Europe”), a Network of Excellence
funded by the European Commission through the 7th ICT-
Framework Programme.

REFERENCES

[1] N. McKeown, “Optics inside routers,” inECOC, 2003.
[2] R. Ramaswami and K. Sivarajan,Optical networks: A practical per-

spective. Morgan Kaufmann Publishers Inc., 1998.
[3] J. Gripp, M. Dulek, J. Simsarian, A. Bhardwaj, P. Bernasconi,

O. Laznicka, and M. Zirngibl, “Optical switch fabrics for ultra-high-
capacity IP routers,”IEEE/OSA J. Lightw. Technol., vol. 21, no. 11, pp.
2839–2850, 2003.

13

[4] R. Tucker, “The role of optics and electronics in high-capacity routers,”
IEEE/OSA J. Lightw. Technol., vol. 24, no. 12, pp. 4655–4673, 2009.

[5] C. Dragone, “Ann × n optical multiplexer using a planar arrangement
of two star couplers,”IEEE Photon. Technol. Lett., vol. 3, no. 9, pp.
812–815, 1991.

[6] N. Caponio, A. Hill, F. Neri, and R. Sabella, “Single layer optical
platform based on WDM/TDM multiple access for large scale ‘switch-
less’ networks,”European Trans. on Telecommunications (ETT), vol. 11,
no. 1, pp. 73–82, 2000.

[7] A. Bhardwaj, J. Gripp, J. Simsarian, and M. Zirngibl, “Demonstration
of stable wavelength switching on a fast tunable laser transmitter,” IEEE
Photon. Technol. Lett., vol. 15, no. 7, pp. 1014–1016, 2003.

[8] M. Maier and M. Reisslein, “AWG-based metro WDM networking,”
IEEE Commun. Mag., vol. 42, no. 11, pp. S19–S26, 2004.

[9] H. Takahashi, K. Oda, and H. Toba, “Impact of crosstalk in an arrayed-
waveguide multiplexer onn× n optical interconnection,”IEEE/OSA J.
Lightw. Technol., vol. 14, no. 6, pp. 1097–110, 1996.

[10] R. Gaudino, G. G. Castillo, F. Neri, and J. Finochietto,“Simple optical
fabrics for scalable terabit packet switches,” inIEEE ICC, May 2008,
pp. 5331–5337.

[11] V. Mikhailov, C. Doerr, and P. Bayvel, “Ultra low coherent crosstalk,
high port-count free-space wavelength router,” inOptical Fiber Com-
munications Conference (OFC), vol. 1, March 2003, pp. 257–258.

[12] M. Maier, M. Reisslein, and A. Wolisz, “High-performance switchless
WDM network using multiple free spectral ranges of an arrayed-
waveguide grating,” inSPIE Terabit optical networking: architecture,
control, and management issues, vol. 4213, 2000, pp. 101–112.

[13] M. Rodelgo-Lacruz, C. Ĺopez-Bravo, F. J. González-Castano, and H. J.
Chao, “Practical scalability of wavelength routing switches,” in IEEE
ICC, 2009.

[14] A. Bianco, D. Hay, and F. Neri, “Crosstalk-preventing scheduling in
awg-based cell switches,” inIEEE Globecom, 2009, to appear.

[15] C. Chang, D. Lee, and Y. Jou, “Load balanced Birkhoff-von Neumann
switches, part I: One-stage buffering,”Computer Communications,
vol. 25, no. 6, pp. 611–622, 2002.

[16] I. Keslassy and N. McKeown, “Maintaining packet order in two-stage
switches,” inIEEE INFOCOM, 2002, pp. 1032–1041.

[17] C. Chang, D. Lee, and Y. Shih, “Mailbox switch: A scalable two-stage
switch architecture for conflict resolution of ordered packets,” in IEEE
INFOCOM, 2004, pp. 1995–2006.

[18] H. Lee, “A two-stage switch with load balancing scheme maintaining
packet dequence,”IEEE Commun. Lett., vol. 10, no. 4, 2006.

[19] I. Keslassy, “Load balanced router,” Ph.D. dissertation, Stanford Uni-
versity, June 2004.

[20] H. Chao and B. Liu,High Performance Switches and Routers. Hoboken,
NJ, USA: John Wiley & Sons, Inc., 2007.

[21] X. Li and M. Hamdi, “On scheduling optical packet switches with
reconfiguration delay,”IEEE J. Sel. Areas Commun., vol. 21, no. 7,
pp. 1156–1164, 2003.

[22] V. Alaria, A. Bianco, P. Giaccone, E. Leonardi, and F. Neri, “Design of
switches with reconfiguration latency,” inIEEE ICC, vol. 6, June 2006,
pp. 2599–2605.

[23] B. Towles and W. Dally, “Guaranteed scheduling for switches with
configuration overhead,”IEEE/ACM Trans. Netw., vol. 11, no. 5, pp.
835–847, 2003.

[24] J. Rosser and L. Schoenfeld, “Approximate formulas for some functions
of prime numbers,”Illinois J. Math, vol. 6, pp. 64–97, 1962.

APPENDIX

This section provides a detailed example of a complete run
of our 4-legal decomposition algorithm, and more specifically,
of its hardware implementation.

We consider an11 × 11 switch and aim at decomposing
the permutationπ = [0, 2, 4, 7, 9, 5, 1, 3, 6, 8, 10]. SinceN
is odd, the permutationπodd = [0, 2, 4, 6, 8, 10, 1, 3, 5, 7, 9]
is chosen as the first stage permutationπ1; this implies that
the second-stage permutationπ2, which is not 4-legal, is
[0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 5]. We also compute and store the
inverse permutationsπ−1

1 = [0, 6, 1, 7, 2, 8, 3, 9, 4, 10, 5] and
π−1

2 = [0, 1, 2, 3, 4, 10, 5, 6, 7, 8, 9].
Two wavelengths are used5 times in π2: wavelengthλ0

is used by middle-stage ports0, . . . , 4 and wavelengthλ1 is

used by middle-stage ports5, . . . , 9. Thus,Ψ is the bit-vector
representation of the set of ports{0, . . . , 9}; namely, Ψ =
11111111110.

We continue by computing the mappingsM1 and M2,
which link a wavelength with the middle-stage port using it.
Specifically,

M1 =





































10000000000
01000000000
00100000000
00010000000
00001000000
00000100000
00000010000
00000001000
00000000100
00000000010
00000000001





































M2 =





































11111000000
00000111110
00000000000
00000000000
00000000000
00000000000
00000000001
00000000000
00000000000
00000000000
00000000000





































Note also that we attach a counter to each row of the
mapping: all the eleven counters ofM1 are set to1, while
the first two counters ofM2 (corresponding toλ0 andλ1) are
set to5, the seventh counters (corresponding toλ6) is set to1
and all other counters are set to0. SetΛ1 (Λ′

1) consists of the
set of wavelength used inπ1 at least4 (exactly3) times, and
are both empty. This implies thatΛ1 = Λ′

1 = −Λ1 = −Λ′
1 =

00000000000. Λ2 = 11000000000 because wavelengthsλ0

andλ1 are used inπ2 at least4 times. Since only wavelengths
λ0 and λ1 are in Λ2, then −Λ2 = {11 − 0, 11 − 1} =
{11, 10} = {0, 10} = 10000000001. SetsΛ′

2 and−Λ′
2 are

both 00000000000 (empty sets).
We conclude the setup phase by computingQ1 and Q2.

For ease of explanation, consider the following vectors:
ℓ + π−1

1 [ℓ] = [0, 7, 3, 10, 6, 2, 9, 5, 1, 8, 4] and ℓ + π2[ℓ] =
[0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 4]. Thus, for example, inQ1 bit
(4, 10) is set to 1, corresponding to the last element of
ℓ+ π−1

1 [ℓ]. Specifically,

Q1 =





































10000000000
00000000100
00000100000
00100000000
00000000001
00000001000
00001000000
01000000000
00000000010
00000010000
00010000000





































Q2 =





































10000100000
00000000000
01000010000
00000000000
00100001001
00000000000
00010000100
00000000000
00001000010
00000000000
00000000000





































The first iteration starts by applying a priority encoder on
Ψ, resulting ini = 0. Note thatπ−1

1 [0] = 0 and π2[0] = 0.
We proceed by computing the 6 setsA1, . . . , A6:

• A1 = Λ1 ≫circ π−1
1 [i] = 00000000000 ≫circ 0 =

00000000000.
• A2 = π1(−Λ1 ≫circ i) = π1(00000000000 ≫circ 0) =
π1(00000000000) = 00000000000.

• A3 = −Λ2 ≫circ π2[i] = 10000000001 ≫circ 0 =
10000000001.

14

TABLE III
THE VALUES OF THE DATA STRUCTURES AFTER THE FIRST UPDATE PHASE.

UNDERLINED ELEMENTS MARK CHANGES FROM THE INITIAL VALUES.

π1 = [2, 0, 4, 6, 8, 10, 1, 3, 5, 7, 9] π−1
1 = [1, 6, 0, 7, 2, 8, 3, 9, 4, 10, 5]

π2 = [2, 1, 0, 3, 4, 6, 7, 8, 9, 10, 5] π−1
2 = [2, 1, 0, 3, 4, 10, 5, 6, 7, 8, 9]

Ψ = 00000111110

M1 =

































00000000000
00000000000
10100000000
00010000000
00001000000
00000100000
00000010000
00000001000
00000000100
00000000010
01000000001

































M2 =

































01011000000
00000111110
10000000000
00000000000
00000000000
00000000000
00000000001
00000000000
00000000000
00100000000
00000000000

































Λ1 = 00000000000 −Λ1 = 00000000000
Λ′

1 = 00000000000 −Λ′

1 = 00000000000
Λ2 = 01000000000 −Λ2 = 00000000001
Λ′

2 = 10000000000 −Λ′

2 = 10000000000

Q1 =

































00000000000
10000000100
00100100000
00000000000
00000000001
00000001000
00001000000
01000000000
00000000010
00000010000
00010000000

































Q2 =

































00000100000
00000000000
11100010000
00000000000
00000001001
00000000000
00010000100
00000000000
00001000010
00000000000
00000000000

































• A4 = π−1
2 (Λ2 ≫circ i) = π−1

2 (11000000000 ≫circ

0) = π−1
2 (1100000000) = 1100000000.

• A5 = Q1[0] & π1(−Λ′
1 ≫circ i) = 00000000000.

• A6 = Q2[0] & −Λ′
2 ≫circ π2[i] =

= 10000100000 & 00000000000 = 00000000000.
This implies that¬(A1 | A2 | A3 | A4 | A5 | A6) =

00111111110, and middle-portj = 2 is selected for the
transposition. Note that if we had selected middle-port1 or
middle-port10 it would have resulted in increasing the number
of middle-stage ports usingλ1 to 6.

We conclude by the update phase, in which we update a
constant number of elements after the(0, 2)-transpositions.
Table III depicts the updated data-structures where changes are
underlined. Notice that the setΨ now shows only middle-stage
ports that use wavelengthλ1; the update is done in constant
time by applyingΨ&(¬M2[0]), whereM2[0] is the first row
of mappingM2 of the first iteration.

In the second iteration, middle porti = 5 is selected. Notice
that π−1

1 [5] = 8 and π2[5] = 6. Thus, the six sets are as
follows:

• A1 = Λ1 ≫circ π−1
1 [i] = 00000000000 ≫circ 8 =

00000000000.
• A2 = π1(−Λ1 ≫circ i) = π1(00000000000 ≫circ 5) =
π1(00000000000) = 00000000000.

• A3 = −Λ2 ≫circ π2[i] = 00000000001 ≫circ 6 =
00000100000.

• A4 = π−1
2 (Λ2 ≫circ i) = π−1

2 (01000000000 ≫circ

5) = π−1
2 (0000001000) = 0000010000.

• A5 = Q1[2] & π1(−Λ′
1 ≫circ i) = 00000000000.

• A6 = Q2[0] & −Λ′
2 ≫circ π2[i] =

= 00000100000 & 00000010000 = 00000000000.
Thus,¬(A1 | A2 | A3 | A4 | A5 | A6) = 11111011111,

and middle-portj = 0 is selected for the transposition.
This results inπ1 = [2, 5, 4, 6, 8, 10, 1, 3, 0, 7, 9] and π2 =
[6, 1, 0, 3, 4, 2, 7, 8, 9, 10, 5] which are4-legal decomposition
of π.

PLACE
PHOTO
HERE

Andrea Bianco Andrea Bianco is Associate Pro-
fessor at the Electronics Department of Politecnico
di Torino, Italy. He was technical program co-
chair of HPSR (High Performance Switching and
Routing) 2003 and 2008, and of DRCN (Design of
Reliable Communication Networks) 2005. He has
been guest or co-guest editor of several special issues
in international journals, including IEEE Commu-
nications Magazine and Computer Networks. He
was TPC member of several conferences, including
IEEE INFOCOM, IEEE GLOBECOM, and IEEE

ICC. His current main research interests are in the fields of protocols and
architectures for all-optical networks and switch architectures for high-speed
networks. He has co-authored over 130 papers published in international
journals and presented in leading international conferences in the area of
telecommunication networks.

PLACE
PHOTO
HERE

David Hay David Hay received his BA (summa
cum laude) and PhD degree in computer science
from the Technion - Israel Institute of Technology
in 2001 and 2007, respectively. He is currently a
post-doctoral fellow at the Electronics Department
of Politecnico di Torino, Italy. His main research
interests are algorithmic aspects of high-performance
switches and routers: QoS provisioning, competitive
analysis and packet classification. Between 1999-
2002, David Hay was with IBM Haifa Research
Labs. During summer 2006, he was interning at

the Data Center Business Unit of Cisco Systems, San Jose. In 2007-2008,
he was a post-doc fellow at the department of computer science,Ben Gurion
University of the Negev, Israel.

PLACE
PHOTO
HERE

Fabio Neri Fabio Neri is Full Professor at the Elec-
tronics Department of Politecnico di Torino, Italy.
He leads research activities on optical networks and
on switching architectures at Politecnico di Torino.
He coordinated the participation of his research
group to several national Italian research projects.
He was involved in several European projects on
WDM networks, and was the coordinator of the
FP6 Network of Excellence e-Photon/ONe on optical
networks, which involved 40 European institutions.
He served in the editorial board of IEEE/ACM

Transactions on Networking, and is co-editor-in-chief of the Elsevier Optical
Switching and Networking Journal. He was general co-chair of the 2001 IEEE
Local and Metropolitan Area Networks (IEEE LANMAN) Workshop, and of
the 2002 and 2007 IFIP Working Conference on Optical NetworkDesign and
Modelling (ONDM). He was a member of the technical program committees
of several conferences, including IEEE INFOCOM, IEEE GLOBECOM and
IEEE ICC. His current research interests are in the fields of performance
evaluation of communication networks, high-speed and all-optical networks,
packet switching architectures, discrete event simulation, and queuing theory.
He has co-authored over 200 papers published in international journals and
presented in leading international conferences.

