
 Open access Proceedings Article DOI:10.1109/FCCM.2019.00017

CRoute: A Fast High-Quality Timing-Driven Connection-Based FPGA Router
— Source link

Dries Vercruyce, Elias Vansteenkiste, Dirk Stroobandt

Institutions: Ghent University

Published on: 01 Apr 2019 - Field-Programmable Custom Computing Machines

Topics: Router, Routing (electronic design automation), Physical design, Stratix and Clock rate

Related papers:

 FPGA-Assisted Deterministic Routing for FPGAs

 A framework for dynamic 2D placement on FPGAs

 Architecture and operating system support for two-dimensional runtime partial reconfiguration

Platform-based FPGA architecture: designing high-performance and low-power routing structure for realizing DSP
applications

 Partitioning constraints and signal routing approach for multi-FPGA prototyping platform

Share this paper:

View more about this paper here: https://typeset.io/papers/croute-a-fast-high-quality-timing-driven-connection-based-
10a25h7tnv

https://typeset.io/
https://www.doi.org/10.1109/FCCM.2019.00017
https://typeset.io/papers/croute-a-fast-high-quality-timing-driven-connection-based-10a25h7tnv
https://typeset.io/authors/dries-vercruyce-2dqljbtzmy
https://typeset.io/authors/elias-vansteenkiste-11j2jd24rp
https://typeset.io/authors/dirk-stroobandt-4l97tzmmom
https://typeset.io/institutions/ghent-university-14limu0t
https://typeset.io/conferences/field-programmable-custom-computing-machines-3nud1lpb
https://typeset.io/topics/router-1hgbi2sd
https://typeset.io/topics/routing-electronic-design-automation-optv38ec
https://typeset.io/topics/physical-design-14hx6f6t
https://typeset.io/topics/stratix-2d7qzf6r
https://typeset.io/topics/clock-rate-3od4at7k
https://typeset.io/papers/fpga-assisted-deterministic-routing-for-fpgas-2pl9dis43u
https://typeset.io/papers/a-framework-for-dynamic-2d-placement-on-fpgas-zg7ltsbyo6
https://typeset.io/papers/architecture-and-operating-system-support-for-two-lyrz8tkl9o
https://typeset.io/papers/platform-based-fpga-architecture-designing-high-performance-26j5w057ae
https://typeset.io/papers/partitioning-constraints-and-signal-routing-approach-for-dd5obtuqw0
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/croute-a-fast-high-quality-timing-driven-connection-based-10a25h7tnv
https://twitter.com/intent/tweet?text=CRoute:%20A%20Fast%20High-Quality%20Timing-Driven%20Connection-Based%20FPGA%20Router&url=https://typeset.io/papers/croute-a-fast-high-quality-timing-driven-connection-based-10a25h7tnv
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/croute-a-fast-high-quality-timing-driven-connection-based-10a25h7tnv
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/croute-a-fast-high-quality-timing-driven-connection-based-10a25h7tnv
https://typeset.io/papers/croute-a-fast-high-quality-timing-driven-connection-based-10a25h7tnv

CRoute: A Fast High-quality Timing-driven

Connection-based FPGA Router

Dries Vercruyce, Elias Vansteenkiste and Dirk Stroobandt

Department of Electronics and Information Systems

Computer Systems Lab, Ghent University

Ghent, Belgium

Abstract—FPGA routing is an important part of physical
design as the programmable interconnection network requires
the majority of the total silicon area and the connections largely
contribute to delay and power. It should also occur with minimum
runtime to enable efficient design exploration. In this work
we elaborate on the concept of the connection-based routing
principle. The algorithm is improved and a timing-driven version
is introduced. The router, called CROUTE, is implemented in an
easy to adapt FPGA CAD framework written in Java, which is
publicly available on GitHub. Quality and runtime are compared
to the state-of-the-art router in VPR 7.0.7. Benchmarking is
done with the TITAN23 design suite, which consists of large
heterogeneous designs targeted to a detailed representation of
the Stratix IV FPGA. CROUTE gains in both the total wire-
length and maximum clock frequency while reducing the routing
runtime. The total wire-length reduces by 11% and the maximum
clock frequency increases by 6%. These high-quality results are
obtained in 3.4x less routing runtime.

I. INTRODUCTION

An FPGA is an integrated circuit that can be programmed

after fabrication to implement a digital design as the func-

tionality is not fixed during the production process. For this

purpose, the FPGA fabric consists of programmable logic

blocks that are interconnected by a programmable intercon-

nection network. Although this programmability introduces

an overhead [1], it facilitates the design cycle, thereby re-

ducing the non-recurrent engineering cost and time to market.

Physical design translates the description of a digital circuit in

a hardware design language to an FPGA configuration. Key

metrics for efficient physical design are fast runtimes and high

quality configurations. The configuration should efficiently use

the available resources while maximizing the clock frequency.

As FPGAs grow in size, the relative area of the routing

infrastructure increases. Routing is therefore an important step.

Many attempts have been employed to speed-up the routing

process [2]–[10]. Some of them use algorithmic improvements

and new techniques to speed up routing [2]–[7], while others

rely on a multithreaded approach [7]–[10]. Improving the

total wire-length and maximum clock frequency is difficult

to obtain. The wire-length-driven CONR router [2] reports a

wire-length gain of 5.8% and is further improved to a gain of

8% with the ideas proposed in [3]. The timing-driven RORA

router [4] achieves a gain of 2.5% and 1.4% in maximum

clock frequency and wire-length respectively.

Dries Vercruyce is supported by a PhD grant of the Research Foundation
Flanders (FWO).

In this work we elaborate on the connection-based routing

principle [2] and the ideas proposed in [3]. The result is a

fast high-quality timing-driven router, called CROUTE, with

a single threaded implementation. It has a finer granularity

in routing connections [2], [4], instead of nets [11], [12].

The method is orthogonal to the multithreaded acceleration

techniques and can thus be further accelerated. Algorithmic

enhancements are proposed and a timing-driven version is

introduced. Firstly, we adapt the cost of the wire segments and

the calculation of the estimated remaining cost to the sink of a

connection to cope with the heterogeneity of modern FPGAs.

Furthermore, the negotiated sharing mechanism is improved

by adding a bias cost, relative to the geometric mean of a

net. The timing-driven version uses a wire-length and timing-

driven direction factor to improve the runtime-quality trade-

off. It also better estimates the initial connection criticality to

ensure that the router does not unnecessarily focus on timing

in the first routing iteration. Also, uncongested highly critical

connections are rerouted to improve timing as they might have

been routed with less timing importance in the first iteration.

The rerouting of highly critical connections is similar to the

work of Wang et al. [4]. Finally, the router detects illegal

routing trees and fixes them after all congestion is resolved.

Quality and runtime are compared to VPR 7.0.7 [12] for a

set of large heterogeneous benchmark designs, the TITAN23

design suite [13]. They are targeted to a detailed representation

of the Stratix IV FPGA. CROUTE achieves a gain for both

the quality of results and the required runtime. Total wire-

length and maximum clock frequency are improved by 11%

and 6% respectively, while being 3.4x faster. The router is

implemented in an easy to adapt FPGA CAD framework,

written in Java, and is publicly available on GitHub [14]. The

framework also consists of a packing (MULTIPART [15]) and

placement (LIQUID [16]) tool. With the addition of CROUTE,

the framework is complete. It is now able to pack, place, and

route the large heterogeneous TITAN23 benchmark designs

faster, while gaining in quality of results when compared to

the state-of-the-art VTR framework [12].

The remaining part of this article is organized as follows.

In Section II the basic concept of the connection-based router

is described. The enhancements to the original algorithm are

explained in Section III. Section IV contains the timing-

driven extension. Experiments are conducted in Section V and

Section VI contains the conclusion.

II. BACKGROUND

FPGA routers are typically based on the negotiated con-

gestion mechanism, introduced by Pathfinder [17]. For all

nets (signal between a source and one or multiple sinks),

the router iteratively tries to find a disjunct routing tree

in the routing-resource graph (RRG). This graph represents

the routing resources and interconnectivity of the FPGA’s

programmable interconnection network. In each iteration, the

pathfinder algorithm rips up and reroutes all nets until no

resources are illegally shared. To ensure a legal solution, the

cost of illegally shared resources is gradually increased.

In our work we further build on the concept of a connection-

based router [2]. Instead of routing nets, each net is split up in

a set of source-sink connections and these are routed indepen-

dently. The routing problem then reduces to finding a simple

path in the RRG for each connection in the circuit. These

paths should only share nodes if the corresponding connections

have the same source. The remaining paths should be disjunct

in order to avoid short circuits. The connection-based router

saves runtime as congested connections are rerouted instead of

nets. This is in contrast with a net-based router that reroutes

all (including uncongested) connections in a net if a single

source-sink connection of the net is congested.

A. Routing a Connection

Starting from the source, a connection is routed by itera-

tively expanding nodes until the connection’s sink is reached.

In each expansion step, the node that results in the smallest

estimated path cost f(n) is analyzed by exploring all its

downstream neighbors. The path cost of a node (1) consists

of three parts: an upstream node cost, the congestion cost of

the node (2) and an expected cost to the target sink (3), which

is multiplied by a direction factor α.

f(n) = cprev(n) + c(n) + α · cexp(n) (1)

The upstream path cost cprev(n) is the sum of the conges-

tion costs of all route nodes along the upstream path from the

current node to the source. The congestion cost c(n) of a node

is the product of its base cost b(n), the present congestion

penalty p(n), and a historical congestion penalty h(n). It

is divided by a sharing factor share(n), because multiple

connections in a net can share the same node, as explained

in Section II-B.

c(n) =
b(n) · p(n) · h(n)

1 + share(n)
(2)

The expected cost cexp(n) enables a directed search to the

target sink of a connection. Instead of expanding the node

with the lowest congestion cost c(n), which was done in the

first routability-driven routers targeted to small FPGAs [11],

the node that leads to the lowest path cost is expanded [18].

This results in a narrow wavefront that expands in the direc-

tion of the target sink, controlled by the direction factor α.

The direction factor determines how aggressively the router

explores towards the target sink. The expected cost is based

A

B

C

(a) After iteration 1

A

B

C

(b) After iteration 2

Fig. 1. An example of (a) a suboptimal and (b) an optimal routing solution
for a net with three terminals.

on the expected number of wire segments that are required

from the current node to the sink, multiplied by its base cost.

The equation of the expected cost (3) is split up in three parts:

one part for wire segments in the same direction as the wire

segment under consideration, a second part for the orthogonal

direction, and a third part that consists of the base cost of an

input pin (bipin) and a sink pin (bsink) as a routing path always

ends with these pins. Splitting up the cost of the wires for wires

in the same direction and for wires in the orthogonal direction

is required because the wire segments in these directions may

have different base costs (bsame and bortho). The expected cost

in both directions is divided by the sharing factor share(n)
to allow an A* search [2].

cexp(n) =
nsame · bsame

1 + share(n)
+

northo · bortho

1 + share(n)
+ bipin + bsink (3)

B. Negotiated Sharing Mechanism

Connections can legally share routing nodes if they are

driven by the same source. For this reason, the cost of a

node for a connection should be lower in case it is already

being used by other connections in the same net. It cannot

be zero, because that would force the router to explore these

nodes. Instead, the cost of a node in a connection is divided

by a sharing factor share(n), which is equal to the number of

connections through this node that share the same source. The

reason lies in the fact that the cost of a connection is the sum

of the base costs of the nodes that realize the connection. If

a node is shared between a number of connections that share

the same source then the cost of that node has to be shared

equally by all connections using it. By ripping up a connection

at a time, the rest of the routing tree remains and influences

the cost of the nodes through the share(n) devision. This

effectively encourages sharing routing resources over multiple

pathfinder routing iterations.

In Fig. 1a a suboptimal routing tree is depicted. It is the

result obtained after the first pathfinder routing iteration. The

main cause why a suboptimal tree is generated, is that a large

number of equivalent shortest paths are possible. For example,

connection A-B has 20 equivalent paths with a minimum cost

of 6 wire segments from which one is arbitrarily chosen. In the

case of Fig. 1a this path does not allow any resource sharing

for connection A-C. However, there are other possibilities

that would enable more routing resource sharing and result

in a routing tree closer to a minimum Steiner tree, as shown

in Fig. 1b. This problem worsens if the manhattan distance

between the source and sink of a connection increases, because

the number of equivalent shortest paths increases exponen-

tially. The sharing mechanism overcomes this problem. It

is further improved in this work by introducing a bias cost

relative to the geometric center of the net (Section III-C).

C. Routing Schedule

The present congestion penalty p(n) of a node is updated

whenever a connection is rerouted (4). Its value is based on

the capacity, cap(n), and occupancy, occ(n), of a node. The

occupancy is the number of nets that are currently using the

node. It is thus equal to one if multiple connections in a net

share the same node. The factor pf is used to increase the

illegal sharing cost as the algorithm progresses.

p(n) =

{

1, cap(n) > occ(n)

1 + pf (occ(n)− cap(n) + 1), otherwise
(4)

The historical congestion penalty h(n) is updated after every

pathfinder routing iteration (5). The impact of h(n) on the total

resource cost is controlled by the factor hf .

h
i(n) =

1, i = 1

hi−1(n), cap(n) ≥ occ(n)

hi−1(n)

+hf (occ(n)− cap(n)), otherwise

(5)

The way the congestion factors pf and hf change as the

algorithm progresses is called the routing schedule.

III. ALGORITHMIC ENHANCEMENTS

In this section we discuss the enhancements added to the

connection-based routing algorithm. The aim is to improve the

quality of results and to deal with the heterogeneity of modern

FPGAs. First we explain how the cost functions are adapted to

cope with a heterogeneous architecture that contains multiple

wire segment types. Secondly a bias cost is used to improve

the negotiated sharing mechanism.

A. Base Cost of the Wire Segments

Modern FPGA architectures have routing networks with

multiple wire segment types [13]. Short wires enable the

routability-driven routing of short connections, while long

wires are added to improve the delay of the necessary long

connections and hence improve the maximum clock frequency.

The initial version of the connection-based router uses the

same base cost for all wire segment types. However, the results

in the experiments section show that introducing multiple

wire segment types with different lengths requires a base cost

adapted to its length. Long wires should have a larger cost to

ensure that short wires are used if this reduces the wire-length

without influencing the maximum delay. The base cost of the

wire segments is therefore multiplied with its actual length.

B. Expected Distance to the Sink of a Connection

The expected remaining cost to the sink of a connection in

equation (3) is based on an estimated number of wire segments

that are required to reach that node. However, in case there

are multiple wire segment types available, it is not possible

to provide a good estimation as the length of the used wire

segments is not known. Therefore, we do not estimate the

number of wire segments, but use an estimation of the total

wire-length instead. The estimation is based on the manhattan

distance from the current node to the sink. It is split up in

a same direction and orthogonal part, similar to equation (3).

The distance is multiplied with an average cost per distance in

both directions. The cost per distance (c̄same and c̄ortho) is the

average of a unit distance cost over all wire segments types,

taking into account the number of wire segments of each type.

cexp(n) =
δsame · c̄same

1 + share(n)
+

δortho · c̄ortho

1 + share(n)
+ bipin + bsink (6)

C. Bias Cost

The negotiated sharing mechanism only works if one of the

other connections is routed on a part of one of the shortest

paths. When the router is routing the first connection of a net

with Dijkstra, it is clueless about the location of the other sinks

of the net. In order to help the router with initially choosing

a good path from the equivalent shortest paths, a bias cost is

added towards the geometric center of the net (7).

c(n) =
b(n) · p(n) · h(n)

1 + share(n)
+ cbias(n)

cbias(n) =
b(n)

2 · fanout
·

δm,c

HPWL
(7)

The bias cost must have a smaller influence than the wire

cost as it is only meant to be a tie breaker. The minimum cost

of a node is b(n)/fanout in case a wire is shared by all of

the connections in a net. The bias cost will thus be maximally

half of the minimum wire cost. The bias cost depends on

the manhattan distance to the geometric center of the net

(δm,c), which is normalized against its half perimeter wire-

length (HPWL). As we close in on the geometric center, the

effect reduces. During the negotiated congestion mechanism,

the cost of the nodes can only increase. So the effect of the

bias cost becomes smaller towards the later routing iterations.

IV. TIMING-DRIVEN CONNECTION ROUTER

The connection-based routing principle is extended with

a timing-driven implementation to optimize for minimum

wire-length and maximum clock frequency simultaneously. A

criticality (8) is assigned to all connections in the design during

a static timing analysis in each pathfinder routing iteration. The

criticality of a connection determines if it should be routed

with minimum delay, in case the criticality is large, or with

minimum wire-length, if the criticality is low.

fcrit = min

[(

1−
slack

Dmax

)φ

, fcrit,max

]

(8)

The slack of a connection (9) is calculated from the connec-

tion’s delay (Tdel), the arrival time of the source (Tarr), and

the required time of the sink (Treq). The arrival and required

times are calculated in a forward and backward traversal of

the timing graph respectively.

slack = Treq − Tarr − Tdel (9)

The forward traversal calculates the arrival time of all nodes

in the timing graph and gives us the maximum delay in the

circuit (Dmax). This maximum delay is set as the required time

of the timing path leaf nodes in the backward traversal. The

slacks are normalized to Dmax (8). The result is a criticality

between 0 and 1 for all connections in the design. It is larger

as the delay of a connection is more critical and is capped

at fcrit,max to prevent deadlock in case a congested wire is

occupied by several critical connections. Typically fcrit,max

is equal to 0.99.

In case a design has multiple clock domains, the traversals

are repeated for each clock domain separately [12]. Paths

between two clock domains are cut to ensure that the router

optimizes for each clock domain separately [13]. The bench-

mark I/Os are constrained to a virtual I/O clock. To ensure

that the router can not unrealistically ignore I/O timing, the

paths between the netlist clock domains and the I/O domain

are included [13].

A. Buffered Routing Switches

The current implementation of the timing-driven router

is designed for architectures with wire segments that are

driven by buffered routing switches. A more detailed timing

analysis is required to allow the routing of architectures with

pass transistors. The capacitance and resistance of a wire is

then dependent on the downstream capacitance and upstream

resistance of routing resources along the connection. In a

buffered architecture, the delay of a wire is only dependent on

its own resistance, capacitance, and driving route switch. This

simplification in the first timing-driven version is acceptable

as many architectures are buffered. The detailed representation

of the Stratix IV FPGA in the TITAN23 design suite [13] is

fully buffered as well as the flagship architecture in the VTR

framework [12].

B. Timing-driven Cost Function

The timing-driven router uses an adapted node cost (10) and

expected cost (12) to ensure that critical connections focus

more on reducing delay than on resolving congestion. The

adapted node cost is the sum of a wire-length-driven cost and

a timing-driven cost. The wire-length-driven cost of a node is

set to its congestion cost (2). The timing-driven cost is equal to

the delay of that routing resource. The relative importance of

the wire-length-driven and the timing-driven part is determined

by the criticality of the connection.

c(n) = (1− fcrit) · c(n)wld + fcrit · Tdel (10)

(a) Direction factor α: 2 to 1.05 (b) Direction factor β: 1.5 to 0.5

Fig. 2. Runtime-quality trade-off for (a) the wire-length-driven direction factor
α and (b) the timing-driven direction factor β. The results are the average
over the TITAN23 benchmark designs.

The adapted expected cost (12) consists of two parts: a wire-

length-driven part, which is adapted from the wire-length-

driven router (6), and a timing-driven part, which is based

on an estimation of the remaining delay to the sink (11). The

estimated delay to the sink is equal to the estimated distance to

that node, multiplied by an average delay per distance in the

same (T̄same) and orthogonal (T̄ortho) direction as the wire

under consideration. The delay per distance for a direction

is based on the average delay over all wire segments in that

direction.

cexp,td(n) = δsame · T̄same + δortho · T̄ortho (11)

C. Timing-driven and Wire-length-driven Direction Factors

We assign a direction factor to the wire-length-driven and

timing-driven expected costs (12) to enable a better runtime-

quality trade-off. The direction factor α of the wire-length-

driven part is large and allows a fast and aggressive search

towards the target sink. Since the critical path delay is more

important, a second, smaller direction factor β is used for the

timing-driven part. This increases the runtime because more

nodes are expanded, but leads to a lower maximum delay.

cexp(n) = (1− fcrit) · α · cexp,wld(n)

+ fcrit · β · cexp,td(n) (12)

The runtime increase introduced by the small timing-driven

direction factor β is minimized by using an exponent φ in

the calculation of the criticality (8). We rely on the fact that

the maximum clock frequency of a design is only determined

by the longest paths. Paths with a small delay can therefore

optimize for wire-length without affecting the maximum delay.

The larger the value of φ, the smaller the criticality of the

non-critical connections will be, resulting in a fast wire-length-

driven routing of these connections with the aggressive direc-

tion factor α. This way, only the highly critical connections

are routed with the slow timing-driven direction factor β.

The exact values of the direction factors α and β are

important for a good runtime-quality trade-off. Small changes

can largely increase runtime or reduce quality (Fig. 2). First

we analyze the timing-driven direction factor β. The geomean

runtime and critical path delay of CROUTE are shown relative

to each other in Fig. 2b for a β varying from 1.5 to 0.5.

Both the geomean runtime and critical path delay are highly

sensitive to the exact value of β. The runtime is equal to 108

seconds if β is equal to 1.5 and increases by a factor of 2.7x to

291 seconds if β is reduced to 0.5, thereby gaining 13.9% in

critical path delay. The wire-length is not sensitive to β, with

a difference of only 0.4%. An optimal value for β is between

0.6 and 0.9. It is set to 0.7 in the experiments section.

The value of the wire-length-driven direction factor α
should be larger to enable an aggressive search towards the

sink of a connection. Its value affects both the wire-length

and critical path delay, but the influence is small. If α varies

from 2 till 1.05, then the geomean wire-length and critical path

delay improve by 3% and 1.2% respectively, at the cost of a

5.4x runtime increase (Fig. 2a). Further reducing α results in

extremely long runtimes. The optimal runtime-quality trade-

off is chosen at an α value of 1.4.

D. Initial Connection Criticality

In the first routing iteration, it is not possible to exactly

calculate the criticality of the connections as the delay of the

yet unrouted connections is not known. A possible solution

is to perform a congestion oblivious first iteration by setting

the criticality of all connections equal to one. The exact delay

and the according criticality of the connections can then be

calculated after the first iteration. We do not use this method as

it stresses too much on reducing delay instead of congestion in

the first routing iteration, even for the non-critical connections

in the design. Therefore we use an estimated delay for the

connections in the first iteration. This delay is equal to

the optimistic congestion oblivious minimum delay used by

placement tools. The minimum delay should be calculated only

once for a given FPGA architecture and is already available

as placement precedes routing. This way we relax the first

routing iteration by only stressing on delay for the long paths

in the design.

E. Reroute Critical Connections

The first routing iteration uses an optimistic estimation for

the connection delays to calculate their criticalities. This leads

to a non-minimal delay for connections with a low criticality.

These connections, in turn, can affect the maximum clock

frequency in later iterations if the delay of other connections

is reduced. In each routing iteration, we therefore reroute all

uncongested connections with a criticality larger than a pre-

defined value θf . This allows previously routed uncongested

connections to be rerouted if their delay limits the maximum

clock frequency. The influence of rerouting connections is

however small. The total runtime spend to reroute uncongested

critical connections is only 2.5% of the total routing runtime

as only the highly critical connections are rerouted. In case a

design has many connections with a criticality larger than the

threshold θf , its value is increased so that a maximum of 3%

of the connections are rerouted.

(a) Iteration i (b) Iteration i+1

(c) Iteration i+2 (d) Iteration i+3

Fig. 3. Intermediary illegal routing tree

F. Illegal Routing Trees

The routing of a source-sink connection of a net is typ-

ically sped up by expanding from the (partial) routing tree

of the already routed connections in that net [4], [12]. In

CROUTE, each connection is routed from scratch, starting

from the source, to maximally exploit the negotiated sharing

mechanism. A drawback of this methodology is that illegal

routing trees can occur. In case a node is congested, the router

will try to circumvent the congestion. It is possible that the

routing graph will be temporary illegal in-between iterations.

An example is given in Fig. 3. Connections with sink A, B,

and C use a congested node in iteration i (Fig. 3b) and the

congestion mechanism is gradually solving the connection. In

iteration i + 1 (Fig. 3b) the routing graph is not a tree as it

contains an illegal node that is driven by two nodes. The illegal

tree is resolved in iteration i+ 2 (Fig. 3c) and all congestion

is resolved in iteration i+ 3 (Fig. 3d).

In case there are remaining illegal routing trees after all

congestion is resolved, the connections containing these illegal

nodes are rerouted. An illegal routing tree occurs if a net

consists of connections with a low criticality and connections

with a high criticality. The connections with a low criticality

use the lowest cost path in terms of congestion, while the

connections with a high criticality use the lowest cost path in

terms of delay. This problem is solved by a forced rerouting of

all illegal connections in an illegal routing tree along the path

of the connection with the highest criticality. Although this

might slightly increase wire-length, the path of the highest

criticality connection is used because the maximum clock

frequency of a design is more important than its wire-length.

V. EXPERIMENTS

The connection-based CROUTE router is compared with

VPR 7.0.7 (r75b47d3) in terms of quality of results and re-

quired time for routing. The TITAN23 designs [13] are used for

benchmarking. The target device is a model of the Stratix IV

FPGA [13]. The FPGA dimensions are sized for each design

separately. The RRG used by CROUTE is extracted from

VPR as a file containing the data of all routing resources

and their interconnectivity. This enables a fair comparison

between CROUTE and VPR as it is hard to exactly duplicate

the RRG generator of VPR. The routing runtimes of CROUTE

and VPR are the actual times required for routing and exclude

the generation of the RRG as this should be done only once

for each FPGA.

The TITAN23 designs are packed by MULTIPART [15] and

are placed by VPR [12]. MULTIPART is used for packing

as it enables the routing of many TITAN23 designs with the

default channel width of 300 [15]. However, a few TITAN23

designs have to be omitted: routing congestion problems arise

for bitcoin miner with the default channel width of 300, an

error occurs for LU network and gaussianblur in VPR 7.0.7,

and LU230 fails during the packing with MULTIPART. Ex-

periments are performed on a workstation with an Intel E5-

2660v3@2.6GHz and 128 GB memory. All important results

are given in Table I. They are split up in three categories:

runtime, wire-length and critical path delay.

The routing schedule is based on the net router of VPR and

experimental results of CROUTE. The value of pf is equal

to 0.5 in the first two routing iterations. From then on it is

multiplied by 2 in each iteration. The historical congestion

penalty uses the same factor hf of 1 in all iterations.

A. Runtime Improvement

The routing runtime of CROUTE is 3.4x smaller when

compared to VPR (Table I). This large gain in runtime is

due to several reasons. Firstly, the total number of rerouted

connections largely reduces (8.5x) if the connection-based

routing principle is used. If a connection is congested in the

net-based router, then all connections in that net are rerouted.

Moreover, only rerouting uncongested connections also leads

to a faster convergence. With CROUTE, 6.2x less pathfinder

routing iterations are required to achieve a congestion free

solution. The detailed runtime of VPR and CROUTE is shown

in Fig. 4. The runtime of the first iteration is approximately

equal for VPR and CROUTE. The time to reroute connections,

however, largely reduces. Furthermore, a static timing analysis

is performed in each routing iteration. The total required time

for static timing analysis thus largely reduces as less iterations

are required. The remaining time is needed to initialize data

and to calculate statistics in each iteration. Wang et al. [4]

report a runtime gain of 3.2x when compared to VPR. They

used, however, a set of small benchmark designs and only

slightly gain in quality of results with a gain of 2.5% and

1.4% in critical path delay and wire-length, respectively.

Fig. 4. Detailed geomean routing runtime of VPR and CROUTE. The runtimes
are the average over the TITAN23 benchmark designs.

B. Total Wire-length Reduction

CROUTE requires less routing resources to route all connec-

tions in a design. On average 11% less wire-length is required

(Table I). This result is important as the interconnection

network consumes a large fraction of the total FPGA area.

With the new router, the designs can be implemented on

FPGAs that contain fewer routing resources.

The detailed representation of the Stratix IV FPGA contains

length 4 (L4) and length 16 (L16) wire segments. It is

important to note that the wire-length gain is mainly due to

the lower usage of the L16 wire segments. Routing the designs

with CROUTE leads to the same number of required L4 wire

segments when compared to VPR. The number of used L16

wire segments, however, is reduced by 58%. The reason is that

we increased the cost of using long wire segments, relative to

their length. Therefore, the L16 wire segments are only used

if they are really required, for example to reduce the delay

of connections on the critical path. If the L4 and L16 wire

segments would have the same cost, then the router is unable

to know that using an L16 wire segment for a short connection

leads to a large overhead from the unused part of the wire. Also

note that the reduction in L16 wire segments does not lead to

an increase in the number of L4 wire segments. In general the

router is thus able to efficiently route the connections with a

minimum amount of required wire segments.

C. Maximum Clock Frequency Increase

The maximum clock frequency can be analyzed by three

performance metrics. Firstly, the critical path delay (CPD) is

the delay of the longest path in the design. This can be a path

inside a clock domain or a path between a netlist clock domain

and the I/O clock domain. This metric for the maximum clock

frequency is reported by most related work and is therefore

given in Table I. The geomean reduction when compared to

VPR is equal to 6%. Other metrics are the geomean critical

path delay over all netlist clock domains and the fanout-

weighted geomean critical path delay over all netlist clock

domains. For some designs (sparcT1 core, sparcT2 core and

sparcT1 chip2) an error prevents a fair comparison for the

latter two metrics as some clock domains are left out in VPR

7.0.7. The clock domains are not analyzed by VPR because

they are considered as constant generators. If these designs are

left out, we obtain a geomean gain of 5% for both metrics.

TABLE I
RUNTIME AND QUALITY COMPARISON OF VPR AND CROUTE EXPRESSED IN NUMBER OF ROUTING ITERATIONS (IT), NUMBER OF REROUTED

CONNECTIONS (REROUT), ROUTING RUNTIME (RT), TOTAL WIRE-LENGTH (ALL), THE WIRE-LENGTH OF THE LENGTH 4 (L4) AND LENGTH 16 (L16)
WIRE SEGMENTS, AND THE CRITICAL PATH DELAY (CPD). THE CPD IS THE MAXIMUM DELAY OVER ALL CLOCK DOMAINS.

VPR [12] CROUTE

It ReRout RT Wire-length [M] CPD It ReRout RT Wire-length [M] CPD

Circuit # [K] [s] All L4 L16 [ns] # (rel) [K] (rel) [s] (rel) All (rel) L4 (rel) L16 (rel) [ns] (rel)

neuron 52 272 127 0.81 0.66 0.15 10.1 7 (0.13) 25 (0.09) 31 (0.25) 0.74 (0.91) 0.68 (1.02) 0.06 (0.42) 8.90 (0.88)

sparcT1 core 60 985 125 1.13 0.94 0.19 9.39 8 (0.13) 96 (0.10) 40 (0.32) 0.97 (0.86) 0.90 (0.96) 0.07 (0.38) 9.56 (1.02)

stereo vision 60 235 89 0.72 0.57 0.15 8.30 8 (0.13) 30 (0.13) 29 (0.33) 0.66 (0.92) 0.60 (1.04) 0.06 (0.42) 8.47 (1.02)

cholesky mc 55 487 233 1.11 0.92 0.19 8.35 8 (0.15) 43 (0.09) 52 (0.22) 0.98 (0.88) 0.90 (0.98) 0.08 (0.40) 7.74 (0.93)

des90 50 1319 359 2.52 2.08 0.45 12.1 11 (0.22) 175 (0.13) 165 (0.46) 2.33 (0.92) 2.07 (1.00) 0.26 (0.58) 10.3 (0.86)

SLAM spheric 67 2272 261 2.03 1.72 0.31 80.4 10 (0.15) 216 (0.09) 73 (0.28) 1.76 (0.87) 1.65 (0.96) 0.11 (0.35) 79.9 (0.99)

segmentation 46 2212 271 2.33 1.92 0.41 788 12 (0.26) 375 (0.17) 120 (0.44) 2.10 (0.90) 1.96 (1.02) 0.14 (0.35) 798 (1.01)

bitonic mesh 62 2411 694 5.02 4.03 0.99 15.6 10 (0.16) 326 (0.14) 235 (0.34) 4.55 (0.91) 4.07 (1.01) 0.48 (0.49) 12.8 (0.82)

dart 73 1277 297 2.30 1.92 0.38 16.5 8 (0.11) 145 (0.11) 83 (0.28) 2.06 (0.90) 1.91 (1.00) 0.15 (0.40) 16.0 (0.96)

openCV 71 1471 671 3.70 3.06 0.64 11.1 9 (0.13) 247 (0.17) 212 (0.32) 3.31 (0.90) 3.05 (1.00) 0.26 (0.40) 11.7 (1.05)

stap qrd 41 1274 378 2.37 1.87 0.50 7.54 10 (0.24) 99 (0.08) 105 (0.28) 2.08 (0.88) 1.87 (1.00) 0.21 (0.41) 7.00 (0.93)

minres 73 1063 504 2.93 2.39 0.55 8.85 9 (0.12) 136 (0.13) 145 (0.29) 2.62 (0.89) 2.40 (1.01) 0.22 (0.40) 8.01 (0.91)

cholesky bdti 58 1053 445 2.56 2.10 0.46 9.00 9 (0.16) 115 (0.11) 119 (0.27) 2.29 (0.90) 2.07 (0.99) 0.22 (0.47) 8.03 (0.89)

sparcT2 core 76 3224 474 4.14 3.40 0.74 11.9 10 (0.13) 426 (0.13) 166 (0.35) 3.59 (0.87) 3.33 (0.98) 0.27 (0.36) 11.5 (0.96)

denoise 65 4510 585 4.81 3.96 0.85 789 12 (0.18) 752 (0.17) 265 (0.45) 4.36 (0.91) 4.00 (1.01) 0.36 (0.43) 798 (1.01)

gsm switch 55 2418 797 5.48 4.22 1.26 10.5 11 (0.20) 287 (0.12) 215 (0.27) 4.83 (0.88) 4.31 (1.02) 0.52 (0.41) 9.94 (0.95)

mes noc 66 5398 2751 6.15 5.24 0.91 12.5 11 (0.17) 507 (0.09) 406 (0.15) 5.34 (0.87) 5.02 (0.96) 0.33 (0.36) 12.5 (1.00)

sparcT1 chip2 59 5120 1066 7.00 5.51 1.49 21.7 12 (0.20) 468 (0.09) 288 (0.27) 6.21 (0.89) 5.51 (1.00) 0.69 (0.47) 21.4 (0.99)

directrf 76 4297 3022 12.8 9.91 2.86 13.1 12 (0.16) 667 (0.16) 774 (0.26) 11.8 (0.92) 10.1 (1.02) 1.72 (0.60) 10.6 (0.80)

geomean 60 1573 443 2.84 2.31 0.52 19.4 10 (0.16) 185 (0.12) 131 (0.30) 2.53 (0.89) 2.31 (1.00) 0.22 (0.42) 18.3 (0.94)

VI. CONCLUSION

We propose a connection-based timing-driven router, called

CROUTE. It is originates from [2] and the ideas proposed

in [3]. We propose algorithmic enhancements and introduce

a timing-driven version. The router is analyzed by comparing

it with the router in VPR 7.0.7 for the TITAN23 benchmark

designs. A large gain is achieved for both the quality of results

and the required runtime. On average, 11% less wire-length

is required with a 6% larger maximum clock frequency, while

reducing the total routing runtime by 3.4x. Routing the large

directrf design reduces from a runtime of 50 minutes to just

13 minutes, enabling faster design cycles. The gain in quality

leads to a higher performance of the FPGA implementation

with less required resources. The source code is publicly

available in our FPGA CAD framework on GitHub [14].

In the future, we would like to analyze if the finer granular-

ity of a connection-based router is beneficial for multithreaded

acceleration techniques. The number of conflicts might be

reduced as the source-sink connections have a smaller covering

area than multi-sink nets. The workloads could also be better

balanced as each net is split up in a set of smaller connections.

The method to solve illegal routing trees at the end could also

be improved by resolving these trees during the pathfinder

routing iterations.

ACKNOWLEDGMENT

The computational resources (Stevin Supercomputer Infras-

tructure) and services used in this work were provided by

the VSC (Flemish Supercomputer Center), funded by Ghent

University, FWO and the Flemish Government - department

EWI.

REFERENCES

[1] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 26, no. 2, pp. 203–215, 2007.
[2] E. Vansteenkiste, K. Bruneel, and D. Stroobandt, “A connection-based

router for FPGAs,” in Field-Programmable Technology (FPT), 2013

International Conference on. IEEE, 2013, pp. 326–329.
[3] E. Vansteenkiste, “New FPGA design tools and architectures,” Ph.D.

dissertation, Ghent University, 2016.
[4] D. Wang, Z. Duan, C. Tian, B. Huang, and N. Zhang, “A runtime opti-

mization approach for FPGA routing,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 37, no. 8, pp.
1706–1710, 2018.

[5] S. Mukherjee and S. Roy, “Graph colouring based multi pin net detailed
routing for FPGA using SAT,” in Advance Computing Conference

(IACC), 2013 IEEE 3rd International. IEEE, 2013, pp. 308–312.
[6] M. Gort and J. H. Anderson, “Combined architecture/algorithm approach

to fast FPGA routing,” IEEE Transactions on Very Large Scale Integra-

tion (VLSI) Systems, vol. 21, no. 6, pp. 1067–1079, 2013.
[7] M. Gort and J. H. Anderson, “Accelerating FPGA routing through par-

allelization and engineering enhancements special section on PAR-CAD
2010,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 31, no. 1, pp. 61–74, 2012.
[8] M. Stojilović, “Parallel FPGA routing: Survey and challenges,” in Field

Programmable Logic and Applications (FPL), 2017 27th International

Conference on. IEEE, 2017, pp. 1–8.
[9] Y. Moctar, M. Stojilović, and P. Brisk, “Deterministic parallel routing

for FPGAs based on galois parallel execution model,” in 2018 28th In-

ternational Conference on Field Programmable Logic and Applications

(FPL). IEEE, 2018, pp. 21–214.
[10] C. H. Hoo and A. Kumar, “ParaDiMe: A distributed memory FPGA

router based on speculative parallelism and path encoding,” in Field-

Programmable Custom Computing Machines (FCCM), 2017 IEEE 25th

Annual International Symposium on. IEEE, 2017, pp. 172–179.
[11] V. Betz and J. Rose, “VPR: A new packing, placement and routing tool

for FPGA research,” in International Workshop on Field Programmable

Logic and Applications. Springer, 1997, pp. 213–222.
[12] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk,

M. Nasr, S. Wang, T. Liu, N. Ahmed et al., “VTR 7.0: Next generation
architecture and CAD system for FPGAs,” ACM Trans. on Reconfig-

urable Technology and Systems (TRETS), vol. 7, no. 2, p. 6, 2014.

[13] K. E. Murray, S. Whitty, S. Liu, J. Luu, and V. Betz, “Timing-
driven Titan: Enabling large benchmarks and exploring the gap between
academic and commercial CAD,” ACM Transactions on Reconfigurable

Technology and Systems (TRETS), vol. 8, no. 2, p. 10, 2015.
[14] “FPGA CAD Framework: MultiPart, Liquid and CRoute”

https://github.ugent.be/UGent-HES/FPGA-CAD-Framework, 2019.
[15] D. Vercruyce, E. Vansteenkiste, and D. Stroobandt, “How preserving

circuit design hierarchy during FPGA packing leads to better perfor-
mance,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 37, no. 3, pp. 629–642, 2018.
[16] D. Vercruyce, E. Vansteenkiste, and D. Stroobandt, “Liquid: High

quality scalable placement for large heterogeneous FPGAs,” in Field

Programmable Technology (ICFPT), 2017 International Conference on.
IEEE, 2017, pp. 17–24.

[17] L. McMurchie and C. Ebeling, “Pathfinder: a negotiation-based
performance-driven router for FPGAs,” in Field-Programmable Gate

Arrays, 1995. FPGA’95. Proceedings of the Third International ACM

Symposium on. IEEE, 1995, pp. 111–117.
[18] J. S. Swartz, V. Betz, and J. Rose, “A fast routability-driven router for

FPGAs,” in Proc. of the 1998 ACM/SIGDA sixth int. symposium on Field

programmable gate arrays. ACM, 1998, pp. 140–149.

